Parallel Processing Letters Vol. 4 No. 3 {1994) 339-350
(© World Scientific Publishing Company

OPTIMAL SYNTHESIS OF PROCESSOR ARRAYS WITH
PIPELINED ARITHMETIC UNITS*

KUMAR GANAPATHY and BENJAMIN W. WAH
Coordinated Science Leboratory
Universily of Illinois, Urbana-Champaign
1808 West Main Sireet
Urbana, IL 61801, U.5. 4.

E-mail: {kumer,wah}@manip.crhe.uive. edu

Received 17 July 1993
Revised 25 November 1993
Accepted by Y. Robert

ABSTRACT

Two-level pipelining in processor arrays (PAs) involves pipelining of oper-
ations across processing elements (PEs) and pipelining of operations in func-
tional units in each PE. Although it is an attractive method for improving
the throughput of PAs, existing methods for generating PAs with two-level
pipelining are restricted and cannot systematically explore the entire space of
feasible designs. In this paper, we extend a systematic design method, called
General Parameter Method {GPM), we have developed earlier to find optimal
designs of PAs with two-level pipelines, The basic idea is to add new con-
straints on periods of data flows to include the effect of internal functional
pipelines in the PEs. As an illustration, we present pipelined PA designs for
computing matrix products. For n-dimensional meshes and other symmetric
problems, we provide an efficient scheme to obtain a pipelined PA from a
non-pipelined PA using a reindexing transformation. This scheme is used in
GPM as 2 pruning condition to arrive at optimal pipelined PAs efficiently.
For pipelines with minimum initiation interval (MII) greater than unity, we
show additional constraints that ensure correctness of the synthesized PAs,

1. Introduction

In this paper, we present a method for synthesizing processor arrays (PAs) with
pipelined functional units (PFU). A VLSI PA has simple processing elements (PE)
that are regularly connected and globally synchronized, and have implicit control
within each. Its advantages are cost-effective VLSI implementations and alleviation
of the von- Neumann memory botileneck. PAs have been applied in numerous appli-
cations in real-time signal processing and as hardware lbraries for general-purpose
computers.

Given the design of a PA, its performance can be improved by increasing the rate
at which the PA is clocked. However, it has become increasingly difficult to reduce
the cycle time of non-pipelined arithmetic-logic units (ALUs) in the PEs beyond

*Research Supported by Joint Services Flectronics Program coniract N00014-90-J.1270, Na-
tional Science Foundation grant MIP 92-18715, and an IBM Graduate Fellowship Grant.

339

340 K. Gonapathy & B. W. Wah

a certain limit. A possible solution is to design the ALUs as PFUs, and subdi-
vide computations performed by each ALU into multiple stages. This technique of
pipelining operations across PEs, and pipelining operations in the functional units
of the PEs, is known as two-level pipelining.

Using two-level pipelining, it is much easier to design a PA with the same clock
rate, using PFUs that perform fewer operations per cycle than a PA with non-
pipelined functional units. This leads to designs that require less power and are
easier to manufacture. On the other hand, the pipelined design can be clocked at a
much higher rate using superpipelining (upto S times faster for an S-stage pipeline
than a non-pipelined design since there is less circuitry in each pipeline stage). This
leads to a higher throughput than a non-pipelined design.

A major problem in designing two-level pipelines is the lack of a systematic
method that evaluates alternative designs and finds optimal designs with respec-
t to user-specified objective function and design constraints. The search for the
optimal design is different than that of PAs without PFUs because internal pipelin-
ing introduces a new dimension in the design problem (effectively constraining the
search space). Further, internal pipelines in a PE can have a large number of stages
(say over 20 stages) when several functional units in a PE are chained together to
perform the operations in the body of a complex inner loop.

This paper is motivated by the problems described above and presents a sys-
tematic method for designing two-level (deeply) pipelined PAs that optimize user-
specified objective and design constraints for a given application and problem size.
We present the enhancement of a systematic design method, called General Param-
eter method (GPM), we have developed earlier »? to map nested-loop algorithms
into PAs with PFUs. Our enhanced GPM can find optimal PA designs efficiently
using a polynomial-time search algorithm.

This paper is organized as follows. In Section 2, we summarize the features of
GPM and its search method 2. We then present new constraints in Section 2.4 that
can be incorporated into GPM to automatically synthesize PAs with PFUs from the
algorithm description. Such a systematic method to generate two-level pipelined
designs has not been proposed before. In Section 3, we show a closed-form condition
for deriving pipelined designs from non-pipelined ones for n-dimensional (written
as n-D) mesh algorithms. This condition can also be used in GPM for pruning
suboptimal designs. In Section 4, we present the results of applying the enhanced
GPM to the matrix-product application. Comparison to previous wotk are given in
Section 5, and conclusions are drawn in Section 6.

2. General Parameter Method

2,1, Recurrences

The algorithm description used in GPM is in the form of recurrence equations.
An n-D recurrence is equivalent to a collection of n-nested loops represented as
a dependence graph (DG), with arcs denoting the loop-carried dependencies and
nodes (also referred to as index points) denoting the body of the innermost loop. In
this paper, we focus on algorithms with constant dependencies equivalent to a set
of uniform recurrence equations. These include algorithms that can be modeled di-
rectly as uniform recurrences as well as affine recurrences that can be “uniformized”

Optimal Synthesis of Processor Arrays with ... 341

to yield equivalent sets of uniform recurrences. The loop bounds are affine functions
of the loop variables and define a convex polyhedral domain. Branch statements, if
any, must involve only loop variables and do not go outside the loop containing the
branch statement i.e., the unit for scheduling is the body of the loops enclosing alt
the branch statements,

Example 1. The following collection of equations are the uniform recurrences for
the product of two N x N matrices A and B to yield a resulting matrix C.

C(i,5,k) = C@H5,k- 1} + A%, 4, k) x B(4, §, k)
Afi, 3, k) = AQG,7-1, k)
B("'::jak) = B(i- 1,7 k)

The boundary conditions are A(3,0,k) = A[4, k], B(0, j, k) = B[j, k},C(4,7,0) =
C[t,j]. There are three dependencies, (0,0, 1), (0,1, 0)}, and (1,0, 0)¢, in the algo-
rithm.

2.2. Parameters

GPM synthesizes a set of n-D uniform recurrence equations into a set of vector
and scalar parameters that characterize the behavior, correctness, and performance
of an m-D PA, where m < n. When a uniform recurrence is executed in a PA,
the computations are periodic and equally-spaced in the PA. GPM captures this
periodicity by a minimal set of parameters defined as follows 1+2.

Parameter 1: Period. A period captures the time between execution of the
source and sink index points of a dependence vector. Suppose 7¢(I} is the time at

which index point I (2 n-D vector denoting a node in the DQ) is executed. We
define the period of computation £; along dependence direction d; as

t; = rc(f+cfj)-—1'c(ﬂ, J=12,--r (1)

The number of periods defined is equal to », the number of dependencies in the
algorithm.

Parameter 2: Velocity. Velocity f/_; of data flowing along dependence vector a;,;
is defined as the directional distance traversed in one clock cycle. All data tokens
of a variable have the same velocity (both speed and direction) which is constant
during the execution in the PA. The total number of velocity parameters is r (one
for each variable), with each velocity being an m-element vector, where m is the
dimension of the PA. Hence, velocity, ff:., is given by

L kL
w:ﬁ, J=12,--,7 (2)
7

where i-:_,- is the (vector) distance between the execution locations of the source and
sink index points of dependence vector d;.

342 K. Ganapathy & B. W. Wah

Parameter 3: Spacing or Data Distribution. Consider variable §2; pipelined
along vector d;. The directional distance in the processor space from token £2; (f —&;)
to (7 - tf.) is defined as spacing parameter S; ;. Since there are r variables
%, 1 < i < r, each associated with a vector d;, 1 < i < r, there are — 1 non-trivial
spacing parameters for each variable and one trivial spacing parameter, g',-,.- = 0.
Each spacing parameter §id is an m-D vector, where m is the dimension of the PA.

The total number of parameters defined is 7 x (r + 2} of which r of them are
periods (scalars); the remaining 72 + r are m-D vectors, of which r of them are
displacements (or velocities), and r? are spacings (r of these spacings are trivially
zero).

2.8, Design Method

The search for the “best” design can be represented by the following optimization
problem.

Minimize (N, t1,...,tr k1, o- s Br) (3)
1<, i=1...,7
0< ksl <ts, i=1,...,7

constraints defined in Eq’s 5, 6 and 7
#PE < #PEYB and T, < TYB.

Subject To: (4)

The constraints on the parameters for any feasible non-pipelined lower-dimensional
PA are listed below.

1. All data tokens participating in computing the result at an index point must
arrive at a PE simultaneously.

ﬁti:ﬁjti‘l‘g',i: i,j=1,2,"',1‘. (5)

2. Linearly dependent dependence vectors must satisfy the following constraint:

-

T -N=0,and KN=0, {(8)
where g is the rank of dependency matrix D, and N is the Null Space of D.

3. Data-input conflicts (two tokens sent into a boundary PE simultaneously)
must be avoided. Let S; = [.5;;‘1, 5‘,—12, .. .,S_:i,g_l] be a matrix of g — 1 in-
dependent spacings. Further, let Ly, Uk, k=1,2,---,9 — 1, be integers such
that the positions of all tokens of variable Q, relative to a common origin,
are defined as Ei;i i,kﬁk, Li < By < Ui. To avoid data-input conflicts, we
need the following constraint.

S;@# 0, where G # 0, anda € [(Li ~Ts),- o (s + D), 1<is g~ 1. (N

The target PA can be obtained by first specifying the desired objective function
b(), and by searching the solution space for the appropriate design that optimizes

the given objective while satisfying the above constraints. The search for the feasible
(or optimal) design is based on the following observations.

Optimal Synthesis of Processor Arrays with ... 343

A—] - .
B PE PE PE
g hea s
1 i 2 i 10
C =] 2 E— re—
G044 — — — 243034 — —Q42G33024 — 041032633614 — Q31022013 — —Q21812 — — — @11

b14b24b3abes — b1abaabasbas — biobasbazbag — by1baibyibyy — — — — — — — ——
€44€34C24€14C43033023C13C42€32022012C41€31C21C1] — — — = — — — — — —n o — —

Fig. 1. Linear PA for 4 x 4 matrix product with non-pipelined functional units.

a) The objective of a design at the logical level is a function of the number of
PEs and the completion time of processing an application problem. The “optimal”
design is problem-size dependent.

b) It is possible to express the number of PEs used and the completion time
as functions of the parameters defined in GPM. Examples of such functions for
computing matrix products ? and transitive closures ! can be found in the references.

c) H the objective is a monotonic function of the parameters defined in GPM,
then the search space can be ordered in such a way that the first feasible design
found is the optimal design. Such is the case when minimizing the completion
time or the number of PEs in the matrix-multiplication 2 and transitive-closure !
problems. The search procedure is very efficient because the search space is a
polynomial function of the problem size and can be ordered in its traversal.

d) If the objective is a non-monotonic function of the parameters defined in
GPM, then it is difficult to order the search space as is in the case of monotonic
objective functions. In this case, a monotonic component of the objective is identi-
fied and enumerated efficiently. The difference, however, is that a feasible solution
defines an upper bound on the value of the monotonic component being enumer-
ated. The search is then continued to find better designs until the upper bound
is reached. A special case happens when the objective function is monotonic. In
this case, the upper bound defined by the feasible solution is equal to the feasible
objective value itself, making the feasible solution optimal.

e) Additional design constraints can be incorporated easily in the formulation
of the search problem as defined in Eq. 4. Examples of such design constraints
include i) maximum number of PEs allowed in a design for a given application,
ii) maximum allowed completion time, iit) additional delays incurred inside a PE
(such as those due to internal pipelines in a PE). We illustrate in the next section
constraints for such PAs with two-level pipelining.

Example 1 (cont’d). Figure 1 shows a linear PA that minimizes computation
time and #PE for multiplying two 4-by-4 matrices using non-pipelined functional
units. Note that compuiation time measures the time between the first and last
computations in the PA, and does not include load time of inputs and drain time
of outputs. For a linear PA, the parameter values are (t1,t2,t3) = (1,2,3) and
(®1, k2, k3) = (1,1, —1). Each PE is an inner-product processor, with computation
time and #PF given as

Teomp = 14 (N —1)(t1+t2+1ts) =19 (8)
#PE = 1+ (N~ 1)(Jks] + [ka] + ksl = 10 ©)

344 K. Ganapathy & B. W. Wah

PE
ab a a [2
b
. b
HH b PE
¢ — M= c=¢+ab ¢ —m ¢=c+ab
3-stage pipeline .
Non-pipelined

Latency = 3 cycles

Fig. 2. Pipelining is equivalent to adding delays to dependent data.

In summary, GPM provides for a given application of given size a) a set of param-
eters for characterizing movements of data in the PA, b) a set of constraints for char-
acterizing correct and desirable operations, c) design objective, and d) an efficient
search procedure for finding optimal/feasible designs. It differs from dependency-
based approaches proposed by Kuhn, Moldovan, Fortes, and many others in problem
representation and traversal of search space.

2.4. New Consiraints for Pipelined Funciional Units

The effect of pipelining can be summarized by the following simple observation.
Observation 1. Pipelining with S stages is equivelent to retiming where the delays
on all inputs or all oulputs, but not both, are increased by S.

In a PA, two types of data flows exist.

a) Dependent. The datum is modified as it flows through the PA; and

b) Transmittent. The datum is not modified (read-only).

If the processors have PFUs, only the delays of the dependent data and not the
transmittent daia have to be increased. Figure 2 shows the effect of pipelining.

The following lemma characterizes the effect of internal pipelines in PEs as new
constraints in GPM. We assume that in general each dependent flow 3 through the
PE is computed using a pipeline with S; stages.

Lemma 1. Pipelining the functional unil is equivalent lo enforcing the following
constrainis in GPM:

t; > S;, for all dependent flows i, (10)

where S; is the number of stages in the pipeline for dependent flow 3.

Proof. An 5;-stage pipeline delays dependent flow i passing through the PE by
S; time steps. Since, by definition, period #; captures the time difference between
two dependent computations of data flow ¢ separated in the index space by vector
d;, constraint ¢; > S; incorporates into GPM the effect of an S;-stage pipeline to
compute the dependent flow 4 in each PE. .

Note that pipelining in a PE amounts to a reduction of the search space (ast; > 1
for non-pipelined designs). Hence, the computation or completion time (cycle count
of the PA) of the optimal two-level pipelined design is more than or at best equal
to that of the non-pipelined design. However, the clock rate of a pipelined design
can be increased easily to match the same throughput as that of a non-pipelined
design. Our approach, therefore, provides a trade-off between the degree of internal
pipelining in PFUs and the rate at which PEs are clocked.

Optimal Synthesiz of Processor Arrays with ... 345

2.5, Minimum Initiation Interval Greater Than Unity

The constraints in Eq. 10 assume that two independent operations can be initi-
ated into a PFU in successive cycles without any stage conflicts; that is, MII, the
Minimum Initiation Interval, is 1. In general, for pipeline < computing dependent
flow i, its reservation table can be in such a way that its MIT = §; > 1. Since in
our model, each PE computes the entire body of the innermost loop in each time
step, it is necessary to ensure that no two executions of any PE are within & time
steps of each other, where § = max; §;. The following conditions avoid scheduling
two index points within § steps in any PE.

Min
Voo

‘f.&'l > &, subject to K& = 0 and D& # 0, (11)

where T = [t1t2...%4,] is the vector of periods, K = {k-;k; - k;] is the matrix of
displacements, and D = [d:d-; . d;] is the matrix of dependencies. These condi-
tions say that if two distinct computations are assigned to the same PE, then the
time between executing them should be at least & steps. For each feasible solution
(satisfying Eq. 4) found in GPM, Eq. 11 has to be checked, increasing the time
complexity to find the optimal parameter values.

3. Pipelined Designs For n-D Meshes

In this section, we present a closed-form condition for deriving pipelined designs
from non-pipelined ones for a class of algorithms whose dependence graphs are n-D
meshes. For an n-D mesh algorithm, the dependence graph is the identity matrix
in n-D (I,) with n — 1 transmittent flows of data and one dependent flow. For
example, computing a matrix product is a 3-D cube graph algorithm, with C as
the dependent flow and A and B as transmitent flows.

Definition 1. Let § = (i, ik, degr, in)! be the indez vector of an n-D mesh
dependence graph G. We define a cyelic interchange of distance k, denoted as CI,
as a reindexing of 7 as follows.

CIk(G) : (in-«k+1| t ',inr 7:1: . ':":n-»k)t — (1:11 v 'aikaik-i-l) . "in):- (12)

C1I(G),is alinear transformation of dependence graph G and can be represented
by the permutation matrix P; = [En—k+1s€n kyny v, &, &1, €, - -,é',,_k}t, where
€& = (0,---,0,1,0,.-.,0) is the i-th unit vector with a single 1 in the i-th position.

i-1

We now extend the definition of cyclic interchange CI; to apply to PAs as
well. A PA for an n-D mesh algorithm has n inputs: 1,0, --,0,. A cyclic
interchange, CIy, for a PA is equivalent to renaming the inpui variables as follows.
ClL : (n_kt1,-+, g, Oy, - S mok) = (1, O, Vg, -0y Q.) i.e., variable
Qn_k+1 is renamed as 0, §,_p ;2 as Va, and so on. Therefore, when referring to
dependence graphs, a cyclic interchange CI; means a reindexing of the index space.
Further, in the context of PAs, a cyclic interchange C'I; means a reindexing of the
n-input variables. For example, in a PA for matrix product, a cyclic interchange of
distance 1 renames variables (C, 4, B) to (A, B,C). Thus, in Figure 4, variable 4
is replaced by variable C, variable B by A, and variable C by B.

346 K. Gonapathy & B. W. Wah

Since PAs for solving a given algorithm are obtained by a linear transformation
T of dependence graph G, the following lemma shows that PAs for n-D mesh
algorithms remain valid under cyclic interchanges of their inputs.

Lemma 2. Given an n-D mesh algorithm with e dependence graph G, and ¢ PA
with inputs Q1,Q2,- -+ ,Qn, the new PA obtained by a cyclic interchange Cly k =
1,2,---,n — 1 of the ezisting PA is a valid PA that solves the given n-D mesh
algorithm.

Proof. Since mapping a uniform recurrence on a PA corresponds to a linear trans-
formation, cyclically interchanging the inputs of the PA by CIy is equivalent to
reindexing the dependence graph by CI;. Tt is easy to see that reindexing by Cly
maps the dependence vectors into each other, resulting in the same set of depen-
dence vectors. Thus, CIx maps dependence vector d;, + = 1,2,:-+,n, to vector
d{(i—k-1)modn+1)- By appling the same transformation (T) that defines the non-
pipelined PA to the cyclically interchanged dependence graph (CIx{G)), we have a
new PA whose inputs are a cyclic interchange of inputs in the original PA. In other
words, the composite linear transformation T Py is also a valid transformation, and
PAs remain valid under cyclic interchanges for n-D mesh algorithms, O.

The next lemma establishes the main resuli for deriving designs of PAs with
PFUs from existing non-pipelined ones.

Lemma 3. Assume an n-D mesh algorithm involving inputs Qy,Qz,- - ,Qn. Pur-
ther, assume thal o non-pipelined PA exists for this algorithm with periodsty, ... tn,
where ty is the dependent data flow. To obtain & PA wilh S-stage pipelined PEs
from the original non-pipelined design we can apply ClI; 1, o cyclic interchange of
distance j — 1, if there exisls a period t; > S.
Proof. For an n-D mesh algorithm, if ¢; > S, then the parameters in GPM
correspond to a valid S-stage pipelined PA (Eq. 10). Thus, if there exists some j,
1< j < n, such that ¢; > S, then by applying CI;_1 we obtain a dependence graph
whose dependent flow is £2; instead of §2,. This corresponds to a new PA with its
inputs interchanged by the same CI;. By Lemma 2, cyclically interchanging the
inputs results in a valid PA that still solves the same n-D mesh algorithm. 0.
Lemma 3 can be used to derive PAs, given existing non-pipelined designs. In
the next section, we apply this result as a pruning condition fo find optimal PA
designs for the matrix-product application.

4. Applications: Matrix Product

Matrix product belongs to an important class of algorithms called 3-D cube
graph algorithms. It is fundamental in signal and image processing, and most com-
mercially available DSP processors are evaluated on the number of MAC (Multiply-
And-Accamulate) operations they can perform per second. In this section, we
present optimal designs of pipelined PAs for computing the product of two N x N
matrices. Since, there is only one dependent flow C, let S denote the number of
stages in the PFU to compute C.

4.1. Evaluation Meiric

The total time to compute a matrix product is equal to T x t,, where T is the
number of clock cycles, and 1. is the clock period of each clock cycle. Hence, for a

Optimal Synthesis of Processor Arroys with ... 347

given PA design, its performance can only be improved by increasing its clock rate.
This has become increasingly difficult, as there are a fixed number of gate delays
(corresponding to the computation of the inner loop body by each PE) that have
to be incurred within a clock cycle.

For a given clock rate, it is much easier to design pipelined functional units in
each PE and sub-divide the computations (and hence the fixed gate delays) than
to design a non-pipelined PE where the entire inner loop has to be executed within
a clock tick. As a result, it is simpler to scale the clock rate of a pipelined design
than a non-pipelined one. Equivalently, the clock rate of a pipelined design with
ALUs of S stages can be up to S-times kigher than that of a non-pipelined one.
Since it is difficult to predict how many times the clock rate of a pipelined design
would be as compared to a non-pipelined one (as it depends whether the designer
can split the operation equally and balance the delays), we evaluate an equivalent
metric of the ratio of the clock periods as described below.

Let ¢! and ¥ be the clock periods of the non-pipelined PA and a PA with 5-
stage PFUs (denoted as S-pipelined), respectively. Further, let Tclmp and Tf;,mp
be the computation times (i.e., clock cycles) of the optimal non-pipelined PA and
the optimal S-pipelined PA, respeciively. The metric we use for evaluating an 5-

5
pipelined design over a non-pipelined design is the ratio of clock periods R = %% in

order for both designs to have the same performance; i.e., 1 X Ty =t X TL, .
5 T :
= R fi' = ﬂf;mp <1 (since T, < Cl::‘imp). (14)
c cornp

It is easy to see that for the same clock rate, if the pipelined design has the same
performance as a non-pipelined one, then all the internal pipelines in the ALUs are
fully utilized. Hence, GPM aims to find pipelined designs so that T g = Ty
or R=1% = tl = 1; i.e., all the stages of the internal pipelines are fully utilized. A
value of R < 1 implies that the pipelined design has to be clocked faster in order to
have the same performance as the non-pipelined one. This also means that some of
the stages in the internal pipelines are not being fully utilized.

4.2. Results

Figure 3 shows the 3-D plot of the ratio of clock periods R = t5 = ¢! as a
function of the number of pipeline stages (.S) and the matrix size (N). The X-Y
plane of the 3-D plot also shows the contours for different fixed values of R as S
varies from 1 to 25 and the problem size N from 4 to 512 in 8 steps. The N’s are
plotted in logscale to prevent the compression of smaller values of N. For any given
value of N, R stays at the desired maximum value of 1 until S reaches a critical
value (S.,it) beyond which R staris to fall below 1. For example, for N = 128,
Ris 1 upto § = 15; ie., S, = 15. Similarly, for a given value of S, there
is a2 minimum value of N (Necrie) such that GPM can find pipelined designs with
R = 1. Thus, given a 10-stage PFU (typical of an arithmetic pipeline}, GPM is
able to find a pipelined PA design for matrix product that can fully exploit the
10-stage pipeline without increasing the cycle count when the matrix size N is at
least 64 (N, ry; = 64). These results indicate that for matrix products, given a value

348 K. Gonapathy & B. W. Wah

Ratio of Clock Periods

coppesD
(AT N3P

Pipelined Stages (S) 25

s
Fig. 3. Ratio of clock periods R= %ﬁ- in order for the S-pipelined and non-pipelined designs to
[

have the same performance; i.e., £ x Tf;,mp =tl x Tclomp.

of S, there exists a rcasonably small matrix size N.ri¢, beyond which the internal
pipeline stages can be fully atilized. These results also show the ability of GPM to
systematically explore the design space in order to arrive at pipelined designs that
optimize the given objeciive of computation time Teomp.

Example 1 (cont’d). In the design presented in Figure 1, input C is the only
dependent data flow in computing matrix products. Therefore, if we assume 3-stage
PFUs for computing inner products, the constraint t; > 3 is added to account for
the PFUs (Eq. 10). Figure 4 shows the data flows for the new PA obtained. The two
delays on the C-links in Figure 4 indicate that each PE has a 3-stage pipeline. The
different stages of the pipeline in each PP are fully utilized to execute independent
operations of 3 C elements. This leads to a computation time of this PA of 19
cycles, which is the same as that of the non-pipelined design (R = 1). Comparing
the data flows in Figures 4 and 1, we see that the new PA is obtained by replacing
the C input by B, B by A, and A by C.

Lemma 3 has been applied in generating the results in Figure 3. Tor in-
stance, given a matrix size N = 64, the optimal non-pipelined design has periods
(t1,t2,t3) = (4,5, 10), resulting in Teomp — 1198. Using Lemma 3, the optimal
pipelined designs for § varying from 1 to 10 can be obtained by CI, (interchange of
distance 2) without any search, as the objective function Teomp (which is the sum
of the three periods) evaluates to the same value under any cyclic interchange of
inputs. From the above parameter values and Lemma 3, it is easy to see that all the
optimal designs for § = 1,---,10 have the same computation time of 1198 cycles;
ie, R=1for §=1,---,10. Consequently, Lemma 3 can be used as an effective
pruning condition in GPM io define the flat portion of the surface in Figure 3, and
can be used in trade-off analysis discussed in the next section.

Optimal Synthesis of Processor Arrays with ... 349

C -1~
A PE PE PE
-l -ee pagte———
1 l 2 l 10
B | — <
€44 — — — €43C3¢ — —C42€33C24 — €41C33C23C14 — €31022€13 — ~—€31€12 — — — €13

214024034044 — Q13023033043 — 212022032042 — @1102103184] ~ — — — ~ — — ——
baabaabaabiabaabasbasbisbanbazbazbizbarbarbarbyy — ~ — ~ — — — — _ . _ _ _ _ _

Fig. 4. A PA for matrix multiplication with 3-stage PFUs,
Note that this is obtained by a cyclic interchange of the inputs as compared to
those shown in Figure 1.

22 T T T T T T T
20 | N =50, Stageg =1 —— |
' N =50, Stages = 16 --—--
18 k N =50, Stages =31 - |
16 - \ i i
1k % .
4

£ 12p L .
10 F \ .
g+ L]
6l N -
4t \ i
2 1 1 L 1 L i 1

15 20 5 30 35 40 45 50 55

Computation Time

Fig. 5. Performance trade-offs: Variation in #PE with Teomp-

4.8. Processor-Time Trade-offs

GPM can be used to generate optimal designs when there are constraints on
processor count # PE or computation time Teomp for a given number of stages § in
each PFU. Figure 5 shows the trade-offs between #PE and Teomp for computing
50 x 50 matrix products and three values of 5. A particular trade-off curve (with a
fixed value of 5) shows the minimum #PE (resp., Toomp) Tequired, given an upper
bound on the computation time T;‘o’:ﬂp (resp., #PE"). For example, given a bound
Teomp < T;"J;np = 25, Figure 5 shows that the minimum # P E needed is 7, if each PE
has a PFU with at most 16 stages. Thus, the designer can use this figure to arrive at
a final design, given restrictions on resources such as #PE or Tyomp. Figure 5 also
shows that, given a fixed number of PEs, the minimum computation time required
increases as the number of stages in the PFU increases. This is true because it gets
harder to utilize the PFUs efficiently. For instance, if #PE <12, then T, > 17,
Toomp = 23, and T3, > 36. Further, the plot shows an increasing initial steep
decline as § is increased. Hence, for larger S, there are more attractive alternatives
than the time-optimal or processor-optimal designs.

350 K. Ganapathy & B. W, Wah

5. Comparisons With Existing Work

There have earlier efforts by Kung and Lam ® and recently by Valero-Garcia
el el., * to obtain iwo-level pipelined PAs. They used a common approach that
retimes a PA in order to include additional delays for pipelining. Their approach,
however, is restricted to PAs that have already been designed; that is, they took an
existing PA and derived a two-level pipelined one by retiming. Since pure addition
of delays only increases the clock-cycle count of the retimed PA, they coalesced
the PEs in order to obtain better utilization and improved execution time. Valero-
Garcia, et al. 4, further showed that linear PAs with contra-flow data can be retimed
and the PEs coalesced in order to obtain the same clock-cycle count.

The drawback with these previous approaches is that coalescing is not always
possible. In fact, for lower dimensional PAs, there is no systematic technique to
coalesce PEs by a factor of S. In addition, these methods cannot systematically
explore the space of pipelined designs because they start with a particular PA and
are restricted only to the data flows defined in it. For instance, the PA shown in
Figure 4 cannot be obtained by retiming and coalescing, as there is a new data-flow
pattern that is a cyclic interchange of ihe old one. In contirast, GPM can be used
as a systematic tool to explore the entire space of pipelined PAs, and arrive at a
design that optimizes a user-specified objective and satisfies design constraints.

6. Conclusions

In this paper, we have exiended GPM, the Ceneral Parameter Method, for
designing two-level pipelined processor arrays. Qur method can explore the space
of feasible PAs to obtain a PA that optimizes a given objective. In contrast, existing
methods can only retime a given design for two-level pipelining; hence, they cannot
be nsed to find other possibly better designs that are not obtained by retiming.
We present a new design for matrix multiplication that cannot be obtained by
existing methods, and show the tradeoffs (in Figure 3) between the degree of internal
pipelining and the rate at which PEs are clocked. Our new design requires a new
data-input pattern that is obtained by a cyclic interchange of the old one. Finally,
we give closed-form results for an important class of algorithms represented by n-D
meshes, which can be used as constraints in GPM to reduce the search complexity.

References

1. K. N. Ganapathy and B. W. Wah, Synthesizing optimal lower dimensional processor
arrays, Proc. Int. Conf. on Parallel Processing (Pennsylvania State University Press,
1992}). ‘

2. K. N? Ganapathy and B. W. Wah, Optimal design of lower dimensional processor arrays
for uniform recurrences, Proc. Application Specific Array Processors (IEEE Computer
Society Press, 1992} 636-648.

3, H. T. Kung and M. Lam, Wafer-Scale integration and two-level pipelined implementa-
tione of systolic arrays, J. Parallel and Distributed Computing 1 {1984) 32-63.

4. M. Valero-Garcia, J. J. Navarra, J. M. Llaberia, and M. Valero, Systematic hardware
adaptation of systolic algarithms, Int. Symp. on Computer Architecture {1989) 96-104.

