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Abstract
In this paper, we develop new methods for adjusting configuration parameters of genetic
algorithms operating in a noisy environment. Such methods are related to the scheduling
of resources for tests performed in genetic algorithms. Assuming that the population size
is given, we address two problems related to the design of efficient scheduling algorithms
specifically important in noisy environments. First, we study the duration-scheduling prob-
lem that is related to setting dynamically the duration of each generation. Second, we
study the sample-allocation problem that entails the adaptive determination of the number
of evaluations taken from each candidate in a generation. In our approach, we model
the search process as a statistical selection process and derive equations useful for these
problems. Our results show that our adaptive procedures improve the performance of
genetic algorithms over that of commonly used static ones.

Keywords
genctic algorithms, noisy environment, search scheduling, statistics theory, sample allo-
cation

1. Introduction

Genetic algorithms (Holland, 1975; Goldberg, 1989) provide robust yet efficient procedures
for guiding searches even in the absence of domain knowledge. Examples of such applications
are found in such areas as parameter optimization in complex systems, and heuristic learning
or strategy acquisition through experience (De Jong, 1988; Booker, Goldberg & Holland,
1990; Wah, 1992; Goldberg, 1989).

In these knowledge-lean domains, it is difficult to express an application in a well-defined
model and analyze its behavior. A feasible way for finding a good solution is to measure
the performance of candidate solutions through actual experimentation or simulation. This
is particularly difficult when the application environment is noisy. For example, consider
a parameter-optimization problem in which search points correspond to different control
parameter values; the objective of the search is to select a suitable parameter set through
experimentation. Noise in the experiments can be caused by randomness in the underlying
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environment, uncertainty in the control signals, or variation of conditions used in the ex-
periments. Since such noise is generally expressed by a stochastic process, we refer to the
evaluation process as sempling and the observed value as a sample from the candidate being
evaluated.

In a noisy environment, at least a few evaluationsare needed to estimate the performance
of a candidate solution accurately. Generally, better accuracy on the performance value can
be obtained when more tests are performed on each candidate. On the other hand, the more
candidates we examine, the greater the probability of encountering better ones. Since the
total testing time is finite, there is a trade-off between the accuracy of estimation and the
number of candidate solutions examined in a search. This trade-off, although important, is
difficult in knowledge-lean application domains where domain knowledge relating quality
and cost is missing (Wah, 1992). A good sampling (scheduling) strategy is required to obtain
a better solution candidate within a finite amount of time.

This paper focuses on the scheduling of computational resources in genetic algorithms
operating in a noisy environment. A scheduling algorithm is a triplet (M, T, N) where

M : population size in each generation
T: duration of each generation

N: number of evaluations for each candidate

In our terminology, M is the number of candidates maintained in one generation; T, the total
number of samples assigned to each generation; and N, the number of samples taken from
each candidate. In a standard implementation of genetic algorithms, itis implicitly assumed
that these three parameters are constant and do not change between or within generations.
Assuming that unit time is needed to sample a candidate, the relationship among these three
parameters is:

T =M xN. 1)

The most common approach to scheduling is to determine the best population size M based
on schema analysis, assuming that duration T is given (Fitzpatrick & Grefenstette, 1988;
Goldberg, Deb, & Clark, 1991).

In this paper, we assume that M is given and that T and N can vary between or within
generations. When 7 and N vary between generations, generations are sampled with dif-
ferent amounts of time, and candidates in different generations are sampled with different
numbers of tests. When N varies within a generation, candidates in a generation are sampled
different numbers of times. Let # be the total number of samples tested in the kth genera-
tion, and 7; be the sample size of the ith candidate in the kth generation. The relationship
corresponding to Equation 1 is:

M
n=y mp k=12, @

i=1
This paper investigates two types of scheduling problems. The first problem, the
duration-scheduling problem, focuses on the effect of varying T and N between generations.
The sample size N is common for all candidates in each generation (thatis, m1p = 24 =
- = npy)- The second problem, the sample-allocation problem, focuses on within-generation
scheduling in which N may be different for different candidates in each generation, while T’

is kept constant (thatis, t; =, = - ).
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Our approach to these scheduling problems is based on statistical observations that
the behavior of genetic algorithms can generally be expressed by a statistical model whose
parameters can be estimated from sampled values. Based on the statistical model, we explore
ways to determine adaptively the schedules used in genetic algorithms.

This paper is organized as follows. Section 2 presents a static scheduling policy with con-
stant T'and N and shows the advantage of using dynamic policies. Section 3 presents a statistical
model of the generate-and-test process used in genetic algorithms. We also show methods
for collecting statistics when a genetic algorithm is executed. In Section 4, we introduce the
Bayesian posterior distribution used in our scheduling policies. This distribution is derived
using the statistical model defined in Section 3. We also present analytical results to compare
the Bayesian and non-Bayesian methods. In Section 5, we study the duration-scheduling
problem, and in Section 6 we derive decision equations for the sample-allocation problem.
Section 7 shows the improvement in performance of our dynamic scheduling policies over
the conventional static ones. Finally, conclusions are drawn in Section 8.

2. Description of the Problem

2.1 Scheduling Resources in Conventional Genetic Algorithms

Itis known that population size has significant influence on the performance of genetic algo-
rithms. This is explained by the schema theory as follows. The population size determines
the diversity of schemata evaluated during the search. Holland (1975) showed that for most
practical values of N and L, a population of size N contains O(N *) schemata. Goldberg, Deb,
and Clark (1991) pointed out that this does not necessarily imply that larger population sizes
are better. They showed that the optimal population size is determined by a trade-off be-
tween the number of existing schemata in a population and the rate of schema processing.
When the population size is too small, genetic algorithms tend to converge prematurely,
whereas their convergence is often too slow when the population size is large.

Such analysis is also applicable to cases in noisy environments (Fitzpatrick & Grefen-
stette, 1988; Grefenstette, Ramsey, & Schultz, 1990). The selection of a suitable population
size in a noisy environment is often discussed using the concept of variance of fitness (Goldberg
& Rudnick, 1991; Goldberg, Deb, & Clark, 1991).

Consider a class of candidates represented by schema H. The performance values of
these candidates are different, even if they contain the common schema H. The variance
of fitness of schema H is the variance of the performance values of candidates that contain
schema H. In the case of noisy environments, the variance value is simply increased by a
certain amount to take the environmental effect into consideration.

An example of such population sizing in a noisy environment is shown by Fitzpatrick
and Grefenstette (1988). They studied the best population size M for a genetic algorithm,
assuming that the duration time T is given. Their analysis is based on the schema theory.
Let 7 be the number of candidates with hyperplane H, where » & M. Further, let os? be the
variance of sample means of the » candidates; oy be the variance of the true performance
of the r candidates; o%(c;) be the variance of samples from candidate ¢;; and (o2(c;)); be the
average sample variance of the r candidates with hyperplane H. Applying a simple statistical
analysis, they showed the following equation (Fitzpatrick & Grefenstette, 1988);

1

o’ = % on’ + N () g - €)

Since duration time T is given, #N in Equation 3 is constant according to Equation 1. In
short, Equation 3 shows that when T is given (and the cost of generating new candidates is
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Figure 1. Behavior of static scheduling policies.

negligible), a genetic algorithm will perform better with smaller sample sizes (it will be the
best when N = 1).!

2.2 Problems with Static Scheduling Policies

Although there exist a number of studies on genetic algorithms operating in noisy environ-
ments, most analytical studies deal with static scheduling policies where M, T, and N are
chosen beforehand and remain unchanged throughout the operation of the genetic algo-
rithm. Contrary to past approaches, we study in this paper the case in which population size
M is given, and we cvaluate the effect of T and N on performance. Such an assumption
is important in practice because possible values for M are often restricted by the available
computational resources, the requirement on convergence, and the characteristics of the
search space. When only M is given, Equation 3 is not useful because it only indicates that
taking more samples within one generation is better.

Assuming M is given, we first approach the static scheduling problem in two steps.
First, we assume that samples are allocated equally among candidates. Hence, T'is uniquely
determined by N using Equation 1 for a given M. Next, we examine the optimal N (and,
therefore, optimal T) by enumerating possible values of N (= 1,2, - - ). Figure 1 shows the
effect of changing N (and accordingly T) for M = 100 in a minimization problem. The
conditions for the experiments are the same as those of Fitzpatrick & Grefenstette (1988),
except that we have used a sample variance of o = 64.0 instead of o = 2.0 in their study. Here,
we have used a relatively large variance to demonstrate its effect on genetic algorithms with
a fixed scheduling policy. This effect is similar for smaller variances, only that it takes more
time to see the effect.

1 In order to make our analysis consistent, we have modified the symbols used by Fitzpatrick and Grefenstette (1988). Their

original equation is os? = ,laz + ,—L—(az(xi))H.
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Figure 2. Duration-scheduling problem.

Itis clear from Figure 1 that there is no optimal static scheduling policy that performs
the best consistently even for the same problem, and that the best value of N depends on
the total execution time. In general, smaller sample sizes are better in early generations, and
larger ones are better in later generations. For example, in Figure 1, N = | performs the
best in the beginning but performs the worst at the end.

In short, policies with fixed T and N (called static policies) do not work well when M
is predetermined. Adjusting N for a specified deadline is not practical because there is no

more complex when deadlines are soft, involving trade-offs between improvement in solution
quality and additional overhead of sampling.

2.3 Definition of the Scheduling Problems

Based on the above observation, we focus in this paper on methods for determining N, T,
or both dynamically during the execution of a genetic algorithm. As described in Section 1,
we classify the scheduling problems into two types.

¢ Duration-scheduling problem (F: igure 2). This problem entails methods for determining
when to stop the current generation. Candidates in the same generation are assumed
to be sampled equally. This is also called between-generation scheduling.

o Sample-allocation problem (F igure 3). This problem involves methods for allocating #
samples among M candidates, where to is given. This is also called within-generation
scheduling.

Duration scheduling addresses the problem of premature/slow convergence of genetic
algorithms due to an inappropriate duration size (i.e., the estimation of the performance of
candidates is unnecessarily accurate or inaccurate) and is applicable when there are plenty of
computational resources. In contrast, sample allocation is important when each evaluation
(or sample drawn) is costly. Consequently, it is essential to select tests carefully in order to
have the maximum benefit on the test results and to use the results to adjust the sample size
dynamically. Note that these two problems do not occur concurrently; hence, we do not
attempt to evaluate their combined effects in the same genetic algorithm.

These two problems are basically decision-making problems. For the duration-schedul-
ing problem, the decision is to determine when to stop the current generation; for the
sample-allocation problem, the decision is to determine the candidate to sample next.
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Figure 4. Statistical model of the generate-and-test process.

3. Statistical Model and Assumptions

3.1 Model of Generate-and-Test Process

To address the scheduling problems defined in Section 2 -3, we use a statistical model to rep-
resent the generate-and-test process in genetic algorithms. In our model shown in Figure 4,
generation and testing procedures are modeled as independent statistical processes.

3.1.1 Statistical Model of the Testing Process In the testing phase, the performance
of candidates in the current generation is evaluated. In our model, testing a candidate js
equivalent to picking a sample from a distribution.

Let p1j) be the “true” performance of candidate ¢; in the kth generation. Note that
the “true” performance is unknown due to noise in the environment. Here, we assume the
evaluation noise to be common for all candidates and be invariant in time.

Denoting the jth sample from ¢; as %;,j%), and the evaluation noise for %i,j(k) S € jry, We
have

X5 k) = Hitk) + €, jay- )

The distribution of x; j&) 1s called the sample distribution of ¢ and is denoted as f(x | ;).

3.1.2  Statistical Model of the Generation Process In the generation process, candi-
dates in the kth generation are created by applying randomized genetic operators to candi-
datesin the (£ — 1)st generation. Since all candidates are assumed to have the same statistical
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properties, creating a new candidate can be interpreted as picking a sample from a set having
a given distribution.

Let Ej be the “noise” in the generation process caused by the probabilistic nature
of genetic operators. The performance of the ith candidate in the kth generation is then
expressed as

wiey = Ho) + Eie), %)

where o) is the average of expected performance of candidates in the kth generation. The
distribution of 1, is called the prior distribution and is dénoted as h(1). It expresses the expected
performance of an arbitrarily chosen candidate in generation &.

When both the generation and testing processes are considered, x; jg of the sample
drawn can be expressed as

i) = Hog) + Eiwy + €i,jce)- ©)

In the rest of this paper, we omit the suffix (¥) when it is obvious.

3.2 Normality Assumptions
In our statistical model, we assume normal distributions for both the sample and prior
distributions.

First, we assume that the evaluation noise is Gaussian. Denoting the variance of the
evaluation noise as o2, the sample distribution is Gaussian N (i), 0%), where

@=pp)?
)

|
felp)=g—e

The Gaussian-noise assumption is so widely accepted in numerous fields that we take it for
granted in this paper.

Second, we assume that the prior distribution is expressed as a normal distribution. As
defined before, 1o is the (expected) average performance of the kth generation. Let o’ be
the (expected) deviation of the performance of individual candidates in the same generation.
The prior distribution of the kth generation is then a normal distribution N(kow), cog?),
where '

~temng?

1
h(w) = o0 € ot ®

The building-block hypothesis in genetic algorithms suggests the validity of the normality
assumption. From the Law of Large Numbers, we can assume that the overall distribution is
normal since the performance of a candidate is the sum of effects of many small components
(schemata).

As the sum of two normal distributions is also a normal distribution, Equation 6 corre-
sponds to the so-called two-factor analysis, where ; ; is expressed as a normal distribution
N(uo, 00’ +0?).

Precisely speaking, the exact form of the prior distribution is not normal. The dis-
tribution of the kth generation should be uniquely determined by the binary codes of the
(k — 1)st generation and the genetic operators applied. Since such an “exact” form can only
be verified empirically, we sometimes refer to such distribution as empirical distributions of
the kth generation (denoted as ho(p)).

Figure 5 shows an example of a comparison between the “normal” and the “exact” prior
distributions. In this example, a genetic algorithm is first executed 200 generations. At
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Figure 5. Example of an empirical distribution.

the end of the 200th generation, genetic operators are applied repeatedly to create 100,000
new candidates (Figure 5(a)). The empirical probability density function (PDF) and the
cumulative distribution function (CDF) are drawn for these 100,000 points. The mean
and the standard deviation of the distribution are calculated, and the corresponding normal
distribution is derived (Figure 5(b) and 5(c)). The empirical distribution is then approximated
by a normal distribution shown as dotted lines in Figure 5(b) and 5(c). The effects of
approximation are discussed in the next section.

3.3 Estimation of Statistical Parameters

So far, we have assumed two distribution functions: the sample distribution f(x | ) ~
N(u,0?), and the prior distribution A(1) ~ N(uo,00?). This means that our model uses
three parameters that should be estimated from the samples obtained:

e o?; the variance of the noise
e jio): the mean of the y;’s in the kth generation

o oow?: the variance of the p/’s in the kth generation
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Figure 6. Transitions of ygy and ooy, between generations.

First, we estimate ¢ using the following equation for estimating common variance (Crow,
Davis, & Maxfield, 1960):

M
Z ((ﬂz - 1)51'2) n;
5 = iiLM__.___, where (n; — 1)s;% = Z (i — Ei)z' ©)

Z n; - M sl

i=1
When samples are obtained for the current generation, the estimation of po and 002 is the
same as in two-factor analysis (Crow, Davis, & Maxfield, 1960). When #; = --- = nyy = n,
R . . — . . 2
the distribution of the #;'s is normal with mean p¢ and variance (002 + "7) . Therefore, uo(k)

and 0¢?(k) can be estimated as:

| M

Fow = 37 > =, (10)
1
1 M M\ g

s b =32 = _ o

%0 = M= 1) M.‘z-o: (x;) Z_}xz - 11

The initial values of these three parameters are obtained through pre-sampling, where a
negligible number of samples are taken. (For example, four samples can be taken from each
candidate in the first generation.) We assume that ¢ does not change during the execution;
however, this is not true for p and o¢. Figure 6 shows the changes in po%) and oow? during
the execution of a genetic algorithm with different sample sizes. In general, pog) gradually
improves as oo becomes smaller.

The discussion above shows that we should update the estimations of po and o¢ in
each generation and predict these values for the next generation using the values obtained in
previous generations. Figure 7 shows an example of parameter estimation using Equations 9,
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10, and 11. Although the empirical values fluctuate due to sampling error, the predicted
curve, smoothed using a moving average, is smooth. (The current moving average was
computed by adding the current predicted value and 0.7 of the previous moving average.)
Although we can apply regression analysis for the prediction, we compute the moving average
for simplicity in this paper. Note that in this example, only one sample is taken from each
candidate; if more samples are drawn, the estimate would be improved.

As existing samples are used for these estimations, no additional pre-sampling is needed
after the first generation.

As is demonstrated later in this paper, the estimated statistical parameters we have
developed in this section are very useful in leading to good schedules. The use of exact
statistical parameters may not be necessary and may be compurationally intractable.

4. Statistical Inference and Analysis

4.1 Bayesian Posterior Distribution
In the testing process, the prior and sample distributions described in Section 3 are used to
estimate the statistical parameters of individual candidates. With the normality assumption,
the prior distribution represents « prior belief or knowledge about the performance of the
candidate before it is actually tested. In contrast, the belief or knowledge about the value of ;
after we actually test candidate ; is called the posterior distribution. The posterior distribution
is a conditional distribution calculated from the prior distribution and sampled values.
Using the Bayes theorem, the posterior distribution of ; is derived as follows (Lloyd,
1984). Assume that #; samples are drawn from candidate ¢;, and that the sample mean is .
Let h(u) be the prior distribution and b} (u | %;, 7;) be the posterior distribution of ¢;. The
distribution of ¥, is expressed as

- ol
P i) ~N (2. (12)

1
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Using the Bayes theorem, the posterior distribution is derived as
f i | 100G

LG . 13)
[ Ftin | bt

bi (i | Zipm) =

When squared-error loss is applied, the best estimator for y; (denoted as p}) is the
expected value of the posterior (conditional) distribution defined in Equation 13.

wi= [ b B (14)
—o0

When we have no knowledge about the distribution of ;’s, we can use the non-informative
prior which is defined as h(u) = (const) for all 1. From Equation 13, the posterior distribution
in this case is equal to the sample distribution. Also, we can use the empirical distribution
ho(u) as a prior and calculate 5} in Equation 13 and 4} in Equation 14 by numerical in-
tegration. As we can measure the empirical distribution accurately, we can obtain a good
estimation of all possible prior distributions.

When the prior distribution is normal, Equation 13 is also normal as shown below.

= 2 2
. _ nx + quy 0 o
bi(u | xiym) ~ N [ —= a=—. 15
Fu | X m) mra mea)’ ) (15)
We denote the mean and variance of the above normal distribution as 41} and o2, respectively.
p} gives the best (Bayes) estimation with respect to u;, and ;2 gives the expected estimation
error (assuming the squared-error loss), where

2

*

by

_miXi + Qg o2 2
ni+a ! mro

(16)

When both the sample and prior distributions are normal, «; is an indicator of the strength
of our belief about the performance of ¢; without actually sampling it. Figure 8 shows an
example of the prior and posterior distributions computed using Equation 16. We assume
that the average performance of candidate ¢; is 1.0 after taking two samples. When we have
a strong belief that 4 is close to 0, the posterior distribution is still close to 0 (Figure 8(a)).
In contrast, when we have a vague belief about p,, the posterior distribution is close to 1
using the same sample set (Figure 8(b)).

4.2 Analysis
In this section we analyze the effect of applying prior distribution to estimate the performance
of each candidate. The following three prior distributions are compared:

a. no prior

b. normal prior

c. exact (empirical) prior
As an empirical distribution, we use the one obtained in Section 3. As a normal prior, we use
a normal distribution with the same mean and variance as the empirical distribution. Using

these prior distributions, we calculate and depict the corresponding posterior distributions
in Figure 9. Among the three posterior distributions shown in Figure 9, the one derived
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from the exact prior (case ¢) gives the ideal prediction. Comparing the other two cases z and
b with the ideal case, we see that using the normal prior is more accurate both in terms of
the mean and variance of the distribution.

To evaluate these different priors quantitatively, we calculate the expected (squared) er-
ror of the performance estimation for each distribution. Denoting the empirical distribution
as by, the expected error can be expressed as

/ i { /_ oj (b — pf )Zf(fi,ni | u)da?] ho(w) dps. a”

The inside integrand in Equation 17 shows the expected estimation error when the “true”
performance is p1. u* is obtained using Equation 14, where h(u) is an arbitrary prior distri-
bution (our belief). It is integrated over the exact prior distribution A¢(y).

108 Evolutionary Computation Volume 2, Number 2



Scheduling of Genetic Algorithms in a Noisy Environment

24 T v T

no prior ——
2 r normal prior -—----
exact prior B

expected error
—
[~
T
s

sample size per a candidate

Figure 10. Effect of the prior distribution.

In Figure 10, we compare the error of these three estimations. We see that the normal
prior is fairly close to the exact prior case. Note that the exact prior gives the best case.

We note that the use of the prior distribution /(1) is meaningful only when b;() is a
good guess of the real value of 7;. As shown in Figure 8, the prior distribution with a sharp
peak has much prominent effect on the calculation of the posterior distribution. Therefore,
inaccurate strong belief (prejudice) can distort considerably the performance of the samples.
This is not surprising, because the prior distribution is only our knowledge to enhance our
evaluation, and inferencing with the wrong knowledge is often worse than inferencing with
no knowledge. Because the values of 119 and o used in the actual genetic algorithm are only
estimated, we examine the effectiveness of applying normal prior in our simulation study in
Section 7.

5. Between-Generation Scheduling: Duration-Scheduling Problem

5.1 Objective

In executing a genetic algorithm, useful schemata are identified implicitly by selecting candi-
dates with better sample means. Statistically, the difficulty of selection in the kth generation
can be characterized by the variance ratio (denoted as B(k)), which is the ratio of the sample
variance and the variance of the p;’s; that is, 8(k) = 02/ oow’( = 1/a). When B(k) is small,
the y;’s are distributed “sparsely,” and the selection of better candidates is easy. On the other
hand, when §(k) is large, then the p;% are distributed close to each other, and the selection
is difficult. Figure 11 illustrates the cases with small and large 3(k).

The above discussion explains why static scheduling does not work well. Note that in
Figure 6(a), the distribution of the p,’s is “dense” at first and gradually becomes “sparse”
as time progresses. Since the variance of the u,s varies between generations, no sample
size N can be the best throughout all the generations. Hence, we can expect the overall
performance to improve if we use smaller sample sizes in early generations and larger ones
in later generations.
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(a) Small 3(k) (b) Large 3(k)

Figure 11. Selection problem with different variance ratios.

5.2 Equations for Scheduling
"The above observation leads us to choose the following duration (or the number of samples
drawn) in the kth generation in our scheduling strategy.

k-1
tk=Mx<no+{7 Zt;]). (18)

I=1

In this case, Zf: t; is the total number of samples observed so far. Equation 18 simply
means that we increase the duration time at fixed intervals of time.

We also set the following conditions to guarantee that the candidate variance is within
a certain range. :

b < a/Vn - v B(k) < 6. (19)
Tok) n

Equation 18 is only applied when the following conditions are satisfied. If \/B(k)/n < &y,
then we consider the candidates to be distributed “sparsely” enough so that we can distinguish
them from each other without further sampling. Thus, the current generation is terminated

immediately. On the other hand, if \/8(k)/n > 6,, then we consider the candidates to be
distributed too “densely,” and we need to take more samples, and the current generation is
not terminated even if Equation 18 is satisfied.

In this paper, we choose « heuristically as § x 1073, 6; as 1.0, and 4, as 4.0.

5.3 Scheduling Procedure
'To summarize, our scheduling procedure for determining the duration of a generation con-
sists of four steps.
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7

(a) Equal #; (b) Unequal #;

Figure 12. Equal and unequal allocation of #;’s.

1. Determine the initial sample size 7o using Equation 19. Here, the value of G(k) is
determined by the estimation of o and oo’ using Equations 9 and 11 shown in
Section 3.3.

2. Take one sample from each of the candidates in the current generation.
3. If the current time ¢ is less than z; as defined in Equation 18, then go to Step 2.

4. Else terminate the current generation; generate new candidates for the next
generation; and go to Step 1.

6. Within-Generation Scheduling: Sample-Allocation Problem

6.1 Objective

Our approach to this problem is based on decision theoretic methods (Ferguson, 1967;
Ghosh & Sen, 1991). Our objective is to determine an efficient allocation (1, . . ., 7a1) SO
that the expected value of a pre-defined loss function (or risk) is minimized. Asa loss function,
we use the estimation error (o;2) of the candidate selected. Our choice is motivated by the
fact that candidates with better performance have larger probability of being selected for
reproduction in the next generation. Hence, we can improve the performance of genetic
algorithms by sampling more from better candidates (i.e., by decreasing the estimation error
of these candidates), and by spending less time on inferior ones. (See Figure 12.)

6.2 Equations for Scheduling
Our scheduling policy tries to minimize the expected risk by determining adaptively the
candidate to be sampled next. The expected risk is expressed as follows:

R=Y P o], (20)

where P is the probability that candidate ¢; is the best. We calculate P} as:

P; = / {H H (u | %, nj)} b (u | Ty mi)dp, @1

J#
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where H (i | %,m) = ff b 7 (1 | &, m)du is the CDF of bf. Let ¢ and @ be the PDF
and CDF of the standard normal distribution, respectively. Using p} and o/ defined in
Equation 16, Equation 21 becomes

- [ T4 o (555 o

J#
Note that P} could have been defined as the actual selection probability f;/ M s
however, we use Equation 21 because it is less dependent on the specific fitness function
(especially the scaling factor) used in individual genetic algorithms. For ease of calculation,
we make the simplifying assumption that P} is independent of o}%; therefore, 8P} /0n = 0
for all 7.

Now let (3, ..., n}) be the optimal (desired) allocation for Equation 21. By applying

Lagrange multiplier A, we obtain the following M equations:

o M M
p {ZP* *2 )\Zni] =0, i=1---M. (22)
i=1

=1

Since %—P‘_- = 0, it immediately follows that:

o’

P} G =A=0,  i=lM 23)
Therefore, (n], ..., n},) should be chosen in such a way that
o? o? o?
-Pf—————=-P == Py ————. 24
v T geay My v o) @9

Equation 24 means that when the samples are optimally allocated, each term of the equation
should be equal. Comparing the term — P* for the current and the desired allocations,

we obtain the feedback value for each i. Note that we can only increase »; for samples
drawn in the future; hence, the best sampling strategy is to select candidate / with the largest
feedback value:

2 2 2 2
Select ¢; such that ~ Pf——— — Pf—— = max |Pf—— — P} —"—
(n; + @) (nf+a)y 1M |7 (nj+aq) (; +a)
o? o’
= P; = max |Pf———|. 25
(i ea)y 19eM [ e @25)

Since the calculation of P} requires complex numerical integration, further simplifi-
cation is sometimes desirable to reduce its complexity. We interpret P} to represent the
importance of candidate ¢;. Hence, if we substitute P} by a reasonable weight that can be
calculated more easily, then we can avoid the costly computation of P/. As an empirical

simplification, we define a heuristic risk function using heuristic weight w}.
M
= Z w; o] 2, (26)
i=1
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For w}, we consider only the probability that candidate ¢; is better than the current best
candidate (or second best, in case that¢; is the best). Let 7 be the permutation of indices such
that ui7; is the ith estimated mean and p is the largest. Then ] is defined as:

wie [ HGimmEEma w9 RO

The computational complexity is o(k) for the simplified version as compared to o(k2) for the
gradient-based sampling. For the normal-distribution case, we use 4} and o defined in
Equation 16. w} can then be simplified as:

) i =B . ® fori £ (k)
wi =@ (‘_ﬂz—_i—z) w”mF{ (k—1) fori=(k) 28)

g; +0'j

The scheduling policy based on the computation of the heuristic risk function in Equa-
tion 26 is the same as before; that is,

2

o o?
——5 = max | @ 5 | - 29
(n; + @) 1<<M (nj + a)

Select ¢; such that w;}

6.3 Scheduling Procedure
To summarize, our scheduling procedure for sample allocation is as follows.

1. Sample once each of the M candidates. .
2. Calculate o and P} (or w} as an approximation) for each candidate.

3. Select the candidate with the largest feedback using Equation 25 (or Equation 29 as an
approximation).

4. Sample the candidate selected in Step 3.
5. Repeat Steps 2 through 5 untilz =T.

7. Experimental Results

7.1 Experimental Conditions
To illustrate the effectiveness of dynamic scheduling, we compare the performance of static
policies with that of dynamic ones using simple GA test functions. In our simulation study,
we assume that candidate ¢; is represented by a binary code 2; ( = 2;1,2;2, . . ) and the “true”
evaluation value p; is determined by a test function F, such that u; = F(z;). As is expressed
in Equation 4, we add a Gaussian noise with variance o2 when ¢; is evaluated in a simulation.
In the next two subsections, we use two test functions. The first function F is De Jong’s
unimodal function (De Jong, 1975).

30
Fi@) =) izim*, (=128 <zim < 1.28,2, has 8 bits). (30)

m=1
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The second function F, (Miithlenbein, Schomisch, & Born, 1991) is a highly multimodal
function.

20
Fyz)=20+Y (zi,,,,z — cos (zm,-,,,,)) (=512 < 2 < 512, i bas 10 bits).  (31)

m=1

The size of the solution space is 22®° for F; and 2?%° for F;. Both functions have the global
minima when all z;,, = 0. Note that F; has 720 local minima. When the z;’s are created
randomly, the distribution of the p;’s is almost normal: for Fy, poe) = —225 and og() = 69;
and for Fy, popy = —194 and oo = 35. The evaluation noise is set to be o = 1.0 X ().

For other simulation conditions, we use the standard genetic-algorithm parameters with
population size of 100, crossover rate of 0.6, mutation rate of 0.001, and scaling-window size
of 7.

Simulation results using six other test functions are shown in Section 7.3.

7.2 Performance of Policies Based on Static and Dynamic Duration Sizes

In our first experiments, we examine the effect of applying dynamic policies for the duration-
scheduling problem. The total evaluation time is set to be Ty = 200,000 in order for us to
compare the performance of different policies over a long time range.

Figure 13 shows the typical behavior observed for a dynamic policy. The x-axis shows
the generation number, and the y-axis, the number of samples per candidate allocated in the
generation. The figure shows that the duration size, and accordingly the number of samples
per candidate, increases steadily in the long run, while the number of samples drawn in a
particular generation may fluctuate. The number of samples drawn may increase when the
population variance in a generation decreases. This happens because the relative magnitude
of noise increases when the population variance decreases, and more samples have to be
drawn in order to reduce the estimation error. The global trend in the increase in the
number of samples drawn is given by constant v in Equation 18, whereas the fluctuation is
given by constraints §; and 6, in Equation 19. (Recall that é1, 65, and v are chosen to be 1.0,
4.0, and 5.0 x 107°, respectively.)

Table 1 shows the average computation overhead for a population of size 100 for both
static and dynamic policies. There is no difference in the overhead between static and
dynamic policies because dynamic policies only incur negligible overheads to compute pos-
terior mean for each candidate and mean and variance of the current population at every
fixed number of generations. We use z,, to denote the cost of generating a new candidate and
t3 for the cost of sampling the population once. In the current implementation, 4 /t3 is 7.9
when the population size M = 100. Since this value is highly problem dependent, we assume
that ¢, /t3 are variables in the following experiments. We achieve this in the functions tested
by increasing the overhead of each function evaluation using statements that perform no
operation,

Figure 14 and Figure 15 show the effect of using static versus dynamic duration sizes.
In these figures, the x-axis is the total test time normalized by ¢4, and the y-axis is the per-
formance of the current top candidate (“on-line” performance). Since we assume relatively
small sampling cost, we set the generation gap to be 1.0, and assume that no sample infor-
mation is carried from previous generations to future generations. The result shown is the
average over 50 runs.

In Figure 14, we assume that the cost for creating a new population is negligible (to /3
= 0.0). Consequently, the x-axis corresponds to the total number of samples examined. For
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generation number

Figure 13. Typical behavior of a dynamic policy in duration scheduling.

Table 1. Computation overhead for the duration scheduling problems.

cost for creatinga | cost for sampling a
population once (¢3) | new population (¢,)

static policies 173 (msec) 22.0 (msec)
dynamic policies 173 (msec) 22.0 (msec)

both Fy and F,, the performance of our policy using dynamic duration sizes is at least as
good as that of the best static policy at any point in time.

In Figure 15, we assume that the cost for creating a new population is greater than the
cost for sampling it once (to/t3 = 3.0). In this case, scheduling using small sample sizes is
better than that using large sample sizes. For example, when the normalized time is greater
than 100 in Figure 14(b), the performance for duration size of 800 is generally worse than
that for other duration sizes, whereas in Figure 15(b), the performance for duration size of
800 is better than that for duration size of 100.

Figure 15 shows that the performance of the dynamic policy used in Figure 14 is worse
(for the values of v, §; and 6,) than that of static policies, assuming negligible generation cost.
To overcome this problem we heuristically increase the sample size of the original dynamic
policy by 2. The improved performance of the modified dynamic policy is also shown in
Figure 15. The method for choosing the sample size is left for future study.

In short, we have shown that, regardless of the value of #,/t3, the search sometimes
“gets stuck” when the variance of the population is small as compared to the variance of
the evaluation noise. In this case, increasing the sample size (i.e., decreasing the evaluation
noise) will bring the search out of the local minima. In our experiments, we have observed
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Figure 15. Effect of variation in duration sizes when ta /25 = 3.

relatively high values of #, /3 and have evaluated cases for a range of £ /#g values. In general,
more costly evaluation functions may be used and will result in negligible generation cost

(ta/t5 = 0).

7.3 Performance of Policies Based on Static and Dynamic Sample Sizes
We show in this section our experimental results in applying dynamic policies for the sample-
allocation problems. Since we assume that the sampling cost is high for these problems, we
use total evaluation time Ty = 5,000. Further, samples drawn in previous generations are
carried over to future generations, which means that the sample mean and sample size of a
candidate in the current generation are maintained when the candidate survives in the next
generation.

Figure 16 shows the typical behavior observed for dynamic sample-allocation policies.
The x-axis is the generation number, and the y-axis is the average number of samples allocated
for the top five candidates (solid line) and the worst five candidates (dashed line). The
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Figure 16. Typical behavior of dynamic policies in sample allocation.

Table 2. Computation overhead for the sample-allocation problems.

cost for creatinga | cost for sampling a

new population (¢,) | population once

static policies 173 (msec) tg =22.0 (msec)
dynamic policies 173 (msec) 5 =61.5 (msec)

numbers include samples carried over from previous generations. The figure shows that
candidates with good performance are sampled repeatedly, whereas candidates with poor
performance are examined mostly once. Note that the average trend of these curves is not
increasing. This happens because candidates in a population are evaluated based on their
relative performance.

Table 2 shows the average computation overhead for a population of size 100 for both
staticand dynamic policies. Since dynamic policies need extra computation time to determine
the specific population to sample for each sample drawn (Equations 27 and 28), the overhead
in this case is not negligible. For example, when the duration size is T = 2 00, the observed
computation overhead of dynamic policies is 0.4 times more than that of static policies for
the simple test functions studied (Equations 30 and 3 1).

We denote the sampling cost of dynamic policies as t5. Again, this value is implemen-
tation dependent and we treat 5 and tg as variables. For the allocation problems studied,
we do not consider the cost for generating a new population (¢,.) since the duration time T
is common for both static and dynamic policies.

Figures 17 and 18 show the performance results for static and dynamic sample-allocation
policies. The x-axis is the total test time normalized by ¢ and 2, respectively, and the y-axis
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Figure 18. Effect of sample allocation when th =3.0¢p.

is the performance of the current top candidate. The generation gap is set to be 0.6, and the
best 40% of candidates survive in the next generation. The results plotted are the average
of 200 runs. For static allocation, we use a sample size of 2, which is the best within the time
range.

In Figure 17, we assume that the additional computation cost for the dynamic policy is
negligible (z; ~ t5). For both F; and F3, our dynamic policy consistently outperforms the
static one.

In Figure 18, we assume that the additional computation cost for a dynamic policy is
not negligible (¢5 = 3.0 #3). Here, our dynamic policy still outperforms the static one for
both test functions.

Since the evaluation time in our example is only 220 pusec per candidate, it is very likely
that the assumption ¢ ~ t5 holds in most of the cases.
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Table 3. Simulation conditions.

Simulation Duration-Scheduling | Sample-Allocation
Conditions Problem Problem
Test functions fi~fs fi~fs
Sample variance o =0.50¢ ~ 2.00¢ o =0.509 ~ 3.00¢
Population size M =30 ~ 100 M =30~ 100
Deadline T =10,000 ~ 300,000 { T = 2,000 ~ 10,000

Table 4. Test functions.

A@) =T, (102,)

fi@) = Ty [3im® + (1 = cos Qmzim))]

£@) = oy [t | 2 | (1= cos 27z))]
fi@) = oty zim % (102f,,)

@) =320 Zim % [2im? + (1 — cOs 272im))]

fs@) = S5 Zim X [2ht | Zim | (1~ O (272im)) ]

7.4 Overall Evaluation
In this section, we show the performance of the static and dynamic scheduling policies
for additional test functions under a variety of configuration parameters. Table 3 shows
conditions we have used in our simulations. It also defines six test functions f; ~ fs (Table
4) for z; = 21,22, ...,2i20, where 2;,, is represented in 10 bits and —512 < z;, < 512.
All functions have the global minimum at z;,, = 0. f and f; are unimodal; f5 and f; are
multimodal with large local minima around the optimal points; f3 and fg are also multimodal
but with smaller local minima around the optimal points. For fi ~ f3, zi’s are weighted
equally, while for f3 ~ f5, 2;'s are weighted differently. Figure 19 depicts the change in
performance values along one dimension (2;,,) of three of these functions.

For each run of the simulation, one set of conditions is selected randomly from Table 3,
and the performance is measured under the same condition for both:

1. genetic algorithm with static scheduling

2. genetic algorithm with dynamic scheduling

For static policies, we used sample sizes N = 1,2,4,8. For each scheduling policy, we
repeated the simulations five times and reported the average performance. We also show
for comparison the “off-line” performance, which is obtained by taking an additional 10

Evolutionary Computation Volume 2, Number 2 119



Akiko N. Aizawa and Benjamin W. Wah

30 30 30
25 25 25
20 20 20
15 15 15
10 10 10

5 5

0 0

705 0 05 1 ST 2 4 S0 2 4

@) f(x) = 10«* (b) f (@) = 2? + [1 — cos (2mx)] (©) fx) =2+ | x| [l — cos (nx)]

Figure 19. Behavior of test functions fi,f>, and f; used in our experiments.

samples from the top 20 candidates after the last generation is completed. We denote the
performance values as Y, Y2 Yy, Y for the static policies and Y for the dynamic
policy, respectively. For each policy we report its performance normalized with respect to
Yy (Y:(I)/Yd), (Y;(z)/Yd), (Y;(4)/Yd), and (Y;(g)/Yd). Note that from the definition of the test
functions, the optimal performance is equal to zero for all cases.

Table 5 shows the result obtained for the duration-scheduling problems, assuming that
the generation cost is negligible (ta /25 = 0). The first column is the normalized performance
averaged over 250 simulation runs under different simulation conditions. Since the problems
defined in Table 4 are minimization problems, “Ysov) /¥; > 1.0” means that the dynamic
policy performs better than the static policy with sample size N. The second column is the
number of simulation runs (out of 250) in which the static policy performs better than the
dynamic policy.

On the average, the dynamic policy performs better than the static ones. However,
when the performance of the dynamic policy is compared with the best static policy, the latter
performs better. This may be due to the fact that a dynamic policy has three parameters
that are set heuristically. Further, in a long time range, the distribution of the observed
performance of these policies in reference to their real performance becomes large; hence,
it is hard in duration-scheduling problems for the dynamic policy to outperform 4/l other
static policies at al/ times.

Table 6 shows the result obtained for the sample-allocation problems, assuming that
the evaluation cost is expensive (t; ~ £g). The first column is the normalized performance
averaged over 1,000 simulation runs. The second column is the number of simulation runs
where the static policy performs better than the dynamic policy. Here, we set the duration
time for the dynamic policy tobe T = 2 x M.

Again, the dynamic policy performs better than the static policies on the average, and
it performs better than the best static policy in most cases. Note that the dynamic sample-
allocation policy does not need any heuristic parameters.

The results obtained here extends the results of Fitzpatrick and Grefenstette (1988),
who showed that when the duration time is given, a static policy with sample size N = 1 ~ 2
performs the best among policies with constant sample sizes. This corresponds to the
results in the second row of Table 6. In addition to existing results, our experiments show
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Table 5. Comparison of static and dynamic duration-scheduling policies.

policies applied in normalized perfor- number of points

the simulation mance value where Y;on) > ¥y

dynamic (reference) 1.00 -
static (N =1) 1.20 74 /250
static (N =2) - 1.05 110 /250
static (N =4) 1.06 103 /250
static (N =8) 1.25 56 /250
static  (best) 0.92 179 /250
static (mean) 1.14 56 /250

Table 6. Comparison of static and dynamic sample-allocation policies.

policies applied in normalized perfor- number of points
the simulation mance value where Yoy > Ys
dynamic (reference) 1.00 -

static WN=1) 1.33 65 / 1000
static N=2) 1.25 90 /1000
static N=49 1.27 76 / 1000
static N=8) 1.45 34 /1000
static (best) 1.14 © 198 /1000
static (mean) 1.32 13 /1000

that further improvement is possible by applying variable sample sizes. The method is
particularly effective when the sampling cost is expensive (and accordingly, the generation
cost is negligible).

8. Conclusions

In this paper, we have studied the scheduling of computational resources for genetic algo-
rithms operating in a noisy environment. Assuming that the number of candidates tested in
each generation is fixed, we have studied two related scheduling problems. The first problem
entails the determination of a suitable duration for a generation, whereas the second requires
finding the appropriate number of samples to be drawn from each candidate. Our results
show that dynamic scheduling policies perform better than existing static ones.
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Although we have used simple test functions in our experiments, the advantage of
using dynamic scheduling is universal and is independent of the reproduction mechanism
of individual genetic algorithms. (In the extreme case, dynamic policies could improve the
performance of random searches.) We are in the process of incorporating our dynamic
scheduling policies presented in this paper in a prototype heuristic learning system (Wah,
1992; Teumwananonthachai, Aizawa, Schwartz, Wah, & Yan, 1992). Future studies will
report results on evaluating these dynamic policies for realistic applications.
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