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vised—is accomplished by adjusting the weights between con-

nections in response to new inputs or training patterns. In
feed-forward neural networks, this involves mapping from an input space
to an output space. That is, output O can be defined as a function of inputs
Iand connection weights W: O = ¢ (I, W), where ¢ represents a mapping
function.

Supervised learning involves finding a good mapping function—one
that maps training patterns correctly and generalizes the mapping to test
patterns not seen in training. This is done by adjusting weights W on links
while fixing the topology and activation function. In other words, given a
set of training patterns of input-output pairs {(I,, D,), (I, D,), ..., (I, D,)}
and an error function (W, I, D), learning strives to minimize learning
error E(W):

I earning in neural networks—whether supervised or unsuper-

mmin E(W):mwinzfs(w, I,,D)) (1
i=1

One popular error function is the squared-error function in which e(W,
I, D) = (¢ (I, W)-D)2 Since E(W) 2 0 for a given set of training patterns,
if a W’ exists such that E(W") = 0, then W’ is a global minimum; other-
wise, the W that gives the smallest E(W) is the global minimum. The qual-
ity of a learned network is measured by its error on a given set of training
patterns and its (generalization) error on a given set of test patterns.,

Supervised learning can be considered an unconstrained nonlinear
minimization problem in which the objective function is defined by error
function and the search space is defined by weight space. Unfortunately,
the terrain modeled by the error function in its weight space can be
extremely rugged and have many local minima. This phenomenon is illus-
trated in Figure 1, which shows two contour plots of the error surface
around a local minimum along two dimension pairs. The top one shows
a large number of small local minima; the bottom one shows large flat
regions and steep slopes. Obviously, a search method that cannot escape
from a local minimum will have difficulty in finding a solution that mini-
mizes error function.

Many learning algorithms find their roots in function-minimization
algorithms that can be classified as local- or global-minimization algo-
rithms. Local-minimization algorithms, such as gradient-descent, are fast
but usually converge to local minima. In contrast, global-minimization
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Figure 1. Two-dimensional projections of the 33-
dimensional error surface for a five-hidden-unit 33-
weight feed-forward neural network with sigmoidal
activation function: top, dimensions 2 and 3; bottom,
dimensions, 0 and 1. The terrain is around a solution
NOVEL found to solve the two-spiral problem.

algorithms have heuristic strategies to help escape from
local minima.

The benefits of using smaller neural networks are many.
They are less costly to implement and faster in both hard-
ware and software. They generalize better because they
avoid overfitting weights to training patterns. In general,
more unknown parameters {weights) induce more local
and global minima in the error surface, making it easy for
a local minimization algorithm to find a global minimum.
However, the error surface of smaller networks can be very
rugged and have few good solutions, making it difficult for
alocal-minimization algorithm to find a good solution from
a random starting point. This phenomenon also explains
why a gradient-based local search method, such as back
propagation, can find a converged network when the num-
ber of weights is large but have difficulty otherwise.

To overcome these problems, we need more powerful
global search methods. We propose a novel global-mini-
mization method, called NOVEL (Nonlinear Optimization
via External Lead), and demonstrate its superior perfor-
mance on neural-network learning problems. Our goal is
improved learning of application problems that achieves

cither smaller networks or less error-prone networks of

the same size.

Computer

METHODS FOR NONLINEAR
UNCONSTRAINED MINIMIZATION
Learning feed-forward neural-network weights is like
solving an unconstrained, contintuous, nonlinear mini-
mization problem. The task is to find variable assignments
that minimize the given objective function. The problem
can be unimodal or multimodal, depending on the num-
ber of local minima in the objective function’s space. In
general, neural network learning is a multimodal, non-
linear minimization problem with many local minima.
Our study reveals the following features:

« Flat regions can mislead gradient-based methods.

« There can be many local minima that trap gradient-
based methods.

+ Gradients may differ by many orders of magnitude,
making it difficult to use gradients in any search
method.

A good search method should, therefore, have mecha-
nisms to

» use gradient information to perform local search (and
be able to adjust to changing gradients) and
* escape from a local minimum after getting there.

Local-minimization algorithms, such as gradient-
descent and Newton’s method, find local minima effi-
ciently and work best in unimodal problems. Global-
minimization methods, in contrast, employ heuristic
strategies to look for global minima and do not stop after
finding a local minimum."?

Many local-minimization methods have been applied
to learning of feed-forward neural networks.** Examples
include back propagation, conjugate-gradient, and quasi-
Newton methods.

Local-minimization algorithms have difficulties when
the surface is flat (gradient close to zero), when gradients
can be in a large range, or when the surface is very rugged.
When gradients can vary greatly, the search may progress
too slowly when the gradient is small and may overshoot
when the gradient is large. When the error surface is
rugged, alocal search from arandom starting point usually
converges to a local minimum close to the initial point and
aworse solution than the global minimum. Moreover, these
algorithms require choosing some parameters, and incor-
rectly chosen parameters can cause slow convergence.

To overcome local-search deficiencies, global-mini-
mization methods have been developed. Figure 2 classi-
fies unconstrained, nonlinear, global-minimization
algorithms. These algorithms can be classified as proba-
bilistic or deterministic. They use local search to deter-
mine local minima and focus on bringing the search out
of a local minimum once it gets there.

Of the few deterministic methods developed, most
apply deterministic heuristics (such as modifying the tra-
jectory in trajectory methods and adding penalties in
penalty-based methods) to bring a search out of a local
minimum. Other methods, like covering methods, recur-
sively partition a search space into subspaces before
searching. None of these methods work well or provide
adequate coverage when the search space is large.

¢ g+ e
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Figure 2. Classification of unconstrained, nonlinear, continuous global-minimization methods. See sidebar,
“Global-minimization methods,” for an explanation of terminologies.

Probabilistic global-minimization methods rely on prob-
ability to make decisions. The simplest probabilistic algo-
rithm uses restarts to bring a search out of a local
minimum when little improvement can be made locally.
More advanced methods rely on probability to indicate
whether a search should ascend from a local minimum—
for example, simulated annealing when it accepts uphill
movements. Other stochastic methods rely on probability
to decide which intermediate points to interpolate as new
starting points——for example, random recombinations and
mutations in evolutionary algorithms. All these algorithms
are weak in either their local or their global search. For
instance, gradient information useful in local search is not
used well in simulated annealing and evolutionary algo-

rithms. In contrast, gradient-descent algorithms with mul-
tistarts are weak in global search.

Other probabilistic methods rely on sampling to deter-
mine the terrain and to decide where to search. Such strate-
gies can fail when the terrain is very rugged or when the
search gets trapped in a deep but suboptimal basin. This
happens in clustering methods, whose performance is sim-
ilar to that of random restarts when the terrain is rugged.
Bayesian methods, on the other hand, do not work well
because most of their randomly collected error-surface sam-
ples are close to the average error value, and these samples
are inadequate for behavior modeling at minimal points.
Further, they are computationally expensive and seldom
applicable to problems with more than 20 variables,

Global-minimization methods

Covering methods

These methods detect subregions not containing the
global minimum and exclude them from further consider-
ation. In general, this approach is useful for problems
requiring solutions with guaranteed accuracy. These meth-
ods can be computationally expensive, since computation
time increases dramatically with problem size.

Generalized descent methods

Trajectory methods modify the differential equations
describing the local descent trajectory. Their major disad-
vantage is the large number of function evaluations spent
in unpromising regions.

Penalty methods prevent multiple determination of the
same local minima by modifying the objective function,
namely, by introducing a penalty term relating each local
minimum to an auxiliary function. The problem is that as
more local minima are found, the auxiliary function
becomes rather flat, and the modified objective function
becomes more difficult to minimize.

Clustering methods

Clustering analysis is used to prevent redetermination of
already known local minima. There are two strategies for
grouping the points around a local minimum: Retain only

points with relatively low function values; push each point
toward a local minimum by performing a few steps of a
local search. Clustering methods do not work well with a
very rugged terrain.

Random-search methods

These methods include pure random search, single-start,
multistart, random line search, adaptive random search,
partitioning into subsets, replacing the worst point, evolu-
tionary algorithms, and simulated annealing. They are sim-
ple to realize and perform well for some applications.
However, they usually have many problem-specific para-
meters, leading to low efficiency when improperly applied.

Methods based on stochastic models

Most of these methods use random variables to model
an objective function’s unknown values. The Bayesian
method, for example, is based on a stochastic function and
minimizes the expected deviation of the estimate from the
real global minimum. Although theoretically attractive,
these methods are too expensive for application to prob-
lems with more than 20 variables. They approximate the
objective function in the average sense, which doesn’t help
find the minimum solution.
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of the equations.)

General nonlinear (global orlocal) minimization algo-
rithms can at best find good local minima of a multimodal
function. Only in cases with very restrictive assumptions,
such as the Lipschitz condition, can algorithms with guar-
anteed accuracy be constructed.

NOVEL: A NEW GLOBAL-
OPTIMIZATION METHOD

NOVEL, our hybrid global/local-minimization method,
has a deterministic mechanism to bring a search out of a
local minimum. A trajectory-based method, NOVEL relies
on an external force to pull the search out of a local min-
imum and employs local descents to locate local minima.

NOVEL has three features: exploring the solution space,
locating promising regions, and finding local minima. In
exploring the solution space, the search is guided by a con-

Figure 4. Contour plots of Levy’s No. 3 function with super-
imposed search trajectories. The graphs (top left to bottom right)
show the initial trace function and the trajectories after stage 1,
2, and 3. A darker color represents a smaller function value. The
trajectories are solved by LSODE, a differential-equation solver.

Computer

Figure 3. Framework of the NOVEL method. (See subsection titled “Global-search phase” for an explanation

tinuous terrain-independent trace that does not get
trapped in local minima. In locating promising regions,
NOVEL uses a local gradient to attract the search to a local
minimum, but it relies on the trace to pull out of the local
minimum once little improvement can be found. Finally,
NOVEL selects one initial point for each promising local
region; it uses these initial points for a descent algorithm
to find local minima.

NOVEL is efficient in that it tries to identify good start-
ing points before applying a local search. This identifica-
tion avoids searching unpromising local minima from
random starting points using computationally expensive
descent algorithms.

NOVEL framework

NOVEL has two phases: global search to identify regions
containing local minima and local search to actually find
them (see Figure 3).

The global-search phase has a number of bootstrapping
stages (Figure 3 shows three). The dynamics in each stage
is represented by an ordinary differential equation. The
first-stage input trace function is predefined. Then, each
stage couples to the next stage by feeding its output tra-
jectory as the next-stage trace function. Interpolations are
performed when the input trace from the previous stage
is not a continuous function.

In general, the equations in each stage can be different.
In earlier stages, more weight can be placed on the trace
function, allowing the resulting trajectory to explore more
regions. In later stages, more weight can be placed on local
descents, allowing the trajectory to descend deeper into
local basins. All equations in the global-search phase could
be combined into a single equation before being solved,
but that could limit each trajectory’s identification of new
starting points leading to better local minima.

Inthelocal-search phase, we apply a traditional descent
method, such as gradient descent, conjugate gradient, or
a quasi-Newton method, to find local minima. The selec-
tion of initial points is based on trajectories output by the
global-search phase. Two heuristics can be applied: Use
the best solutions in periodic time intervals as initial
points, or use the local minima in each stage’s trajectory.
We used the first alternative because the error terrain in
neural network learning is very rugged and because the
second alternative results in too many initial points.

To illustrate NOVEL’s global-search stage, we'll use a
simple example based on Levy’s No. 3 problem.® The prob-
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Figure 4 shows the 2D contour plots of this function and
the NOVEL search trajectories. In the range shown, the func-
tion has three local minima, one of which is the global min-
imum. Using a search range of [-1, 1] in each dimension, we
start NOVEL from (0, 0) and run it until logical time ¢t = 5.
Although the trace function visits all three basins, it touches
only the basin with the global minimum. The trajectories
are pulled closer to the local basins after stages 1, 2, and 3.
Following the trajectories, NOVEL identifies three basins
with local minima. A set of minimal points from each tra-
jectory provides initial points for local search.

Global-search phase

Assume f(X) with gradient V, f (X) is to be minimized,
whereX = (x;, x,, ..., x,) are variables. There may be sim-
ple bounds like x; € [a;, b;], wherea;, b, i = 1, ..., n, are
real numbers.

Each stage in the NOVEL global-search phase defines a
trajectory X(t) = (x, (), ..., x, (t)) thatis governed by the
following ordinary differential equation:

X(t) = PV, F(X()) + QUTE), X (t)) ®)

where t is the autonomous variable; T, the trace function,
isa function of t; and P and Q are general nonlinear func-
tions. This equation specifies a trajectory through vari-
able space X. It has two components: P(V, f(X)) lets the
gradient attract the trajectory to a local minimum, and Q
(T, X) lets the trace function lead the trajectory out of the
local minimum.

P and Q can have various forms. We used a simple form

X(0)= —u,V, f(X0)-u,(XO-T0)) &)

where p, and y, are constant coefficients.

Finding the global minima, without terrain knowledge,
requires a trace function that covers the search space uni-
formly. There are two alternatives: Divide the space into
subspaces and search one extensively before going to
another, or search the space from coarse to fine. Numerous
dimensions can make the first approach impractical, so we
chose the second approach and, after much experimenta-
tion, designed a nonperiodic, analytical trace function:

1-(0.05+0.45(i-1)/n) (-1
Tl([) — pSin 2”[3] -+ L_) (5)
n

where i represents the ith dimension, p is a coefficient
specifying the range, and n is the number of dimensions.

Given Equation 4, we can apply various numerical
approaches to evaluate the ordinary differential equation.
We have used both a differential-equation solver and a dif-

ference-equation solver.

The differential-equation solver we have used isLSODE |
(Livermore Solver for Ordinary Differential Equations).®
It solves Equation 4 to a prescribed degree of accuracy, but
itis computationally expensive, especially for a large num-
ber of variables. It also requires the true gradient, so neural
network learning must be done in an epochwise rather
than patternwise mode.

The second approach is to discretize Equation 4 and use
a finite-difference equation solver. The difference equa-
tion derived is

X(t + 80 =X(0) + 8¢t [— p, V fX©) — p, X(6) = T()] (6)

where 8t is the step size. A large &t causes a large stride of
variable modification, possibly resulting in oscillations. On
the other hand, a small §t requires a longer computation
time to traverse the same distance. This approach is fastand
allows both patternwise and epochwise learning. However,
solutions may be slightly worse than those found by LSODE.

EXPERIMENTAL RESULTS

In general, NOVEL finds better results than other global-
minimization algorithms in the same amount of time. In
this section, we compare NOVEL’s performance on several
benchmarks with that of other good methods for global
minimization. (See sidebar, “Benchmark problems stud-
ied in our experiments.”)

Two-spiral problem

The two-spiral problem is a difficult classification prob-
lem. Published results include training feed-forward net-
works using back propagation, cascade correlation
(Cascor”), and projection pursuit learning.® The smallest
network is believed to have nine hidden units with 75
weights trained by Cascor.

In our experiments, we used feed-forward networks
with shortcuts (see Figure 5). Each hidden unit is ordered
and labeled by an index; it has incoming connections from
all input nodes and from all hidden units with smaller
indexes. The activation function is an asymmetric sig-
moidal function f(x) = 1/(1 + e™), where ois the sigmoid
gain. We fixed the search range as [-1, 1] in each dimen-
sion and varied ¢ from 1 to 150. The error function E(w),
defined in Equation 1, is the total sum of squared error
(TSSE). All our experiments were carried out on Sun
Sparcstation 20/71 75-MHz workstations.

In applying NOVEL with the differential-equation
solver LSODE, we always started our trace from the ori-
gin of the weight space. This eliminates any bias in choos-
ing “good” starting points in the search. NOVEL
generates trajectories that are functions of the auto-
nomous variable t, which we call logical time, and one
time unit represents a change fromt= rtot=7+1.In
our experiments, we executed all three stages in the
global-search phase in each time unit.

After trying various combinations of «, i, and y, for
four and five hidden-unit networks, we found that the
combination of y, = 1, i, = 20, and a = 100 works well
and used this set of parameters in our experiments.

NOVEL successfully trained five hidden-unit networks
in less than 100 time units. Training four hidden-unit net-
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Benchmark problems studied in our experiments

We used the following benchmarks in our experi-
ments. All benchmarks were obtained from ftp.cs.
cmu.edu in directory /afs/cs/project/connect/bench.

Two-spiral problem

This problem discriminates between two sets of
training points that lie on two distinct spirals in the
x-y plane. Each spiral has 94 input-output pairs in
both the training and test sets.

Sonar problem

This problem discriminates between sonar signals
bounced off a metallic cylinder and those bounced
off a roughly cylindrical rock. We used the training
andtest samples.in “aspect angle-dependent” exper-
iments.

Vowel recognition problem ]

- This problem trains a network for speaker-inde-
‘of British English. Vowels are classified:
distance of the correct output to

pendent recognition of the 11 steady-state vowels
‘ correctly
theactual

output is the smallest among the distances fr
actual output to all possible target outputs.

10-parity problem

This problem trains a network that compu
modulo-two sum of 10 binary digits. There ar
training patterns and no test patterns.

NetTalk problem
This problem trains a network to produce
phonemes, given a string of letters as input. Ni

" data set contains 20,008 English words. We u:

same network settings and unary encodin
Sejnowski and Rosenberg’s experiments,* thi
most common English words as the training
entire data set as the test set, and the “best
criterion.

Reference o
1. T.J. Sejnowski and C.R. Rosenberg, “Parallel Nt
That Learn to Pronounce English Text,” Comi
tems, Vol. 1, No. 1, Feb.:1987, pp. 145-168

Outputs
Qutput neurons

Hidden-
k hidden units
with shortcuts
from neuron §
to neuron j,
J >,

Activation function g.
1
T+exp~*

where o, is the sigmoid gain anc

x is the inner product of output
other neurons and incoming we

gx) =

works is more difficult. After running NOVEL for 19 hours,
we found a solution with TSSE of 4.0. Using this solution
as a new starting point, we executed NOVEL for another 15
hours and found a 2.0 solution, which is 99 percent cor-
rect. Again, starting with this solution and running NOVEL
for another 10 hours, we found a solution that is 100 per-
cent correct. The second figure in the first row of Figure 6
shows how the best four hidden-unit network found clas-
sifies the 2D space.

Next, we compare NOVEL's performance with that of
simulated annealing, evolutionary algorithms, cascade
correlation with multistarts, gradient descent with mul-
tistarts, and a truncated Newton’s method with multi-
starts. (For a brief description of each method, see the
sidebar, “Good global minimization methods for neural

network training.”) To allow a fair comparison, we ran all

Computer

Figure 5. Neural network structure for the two-spiral problem.

methods for the same amount of time using the
work structure.

The simulated annealing program used in o
ments is Simann from netlib.?

We experimented with various temperature s
factors RT, function evaluation factors NT, ai
ranges. The best results were achieved when R
NT = 5n, and the search range is [-2.0, 2.0].

We have also studied two evolutionary aly
Michalewicz’s Genocop (genetic algorithm for1
optimization for constrained problems)* and Sp
(linear cellular evolution).” Genocop aims t
objective-function global minimum under li
straints. After trying various search ranges an
tion sizes, we found that range [-0.5, 0.5] and
give the best results.



Figure 6. Two-dimensional classification graphs for the two-spiral problem by three (first column), four
(second column), five (third column), and six (fourth column) hidden-unit neural networks trained by
NOVEL (upper row) and Simann (lower row). Parameters for NOVEL are (= 1, 1, = 20, and o = 100. Parame-
ters for Simann are RT = 0.99, NT = 5 n, and the search range is [-2.0, 2.0]. The crosses and circles represent

the training patterns.

Good glohal-minimization methods for neural network learning

Simulated annealing (SA)

SA, a stochastic global-minimization method, starts
from an initial point, takes a step, and evaluates the
error function once. When minimizing a function, it
accepts any downhill movement and repeats the
process from this new starting point. It may acceptan
uphill movement and, by doing so, escape from local
minima. As the minimization process proceeds, the
step length decreases, and the probability of accept-
ing uphill movements decreases as well. The search
converges to a local (sometimes global) minimum.

Evolutionary algorithms (EAs)

EAs are based on the computational model of evo-
lution. Proposed EAs include genetic algorithms, evo-
lutionary programming, and evolutionary strategies.
EAs maintain a population of individual points in the
search space, and population performance evolves
and improves through selection, recombination,
mutation, and reproduction. The fittest individual has
the largest probability of survival. EAs have been
applied to complex, multimodal minimization prob-
lems with both discrete and continuous variables.

Cascade correlation with multistarts
(Cascor-MS)

The Cascade correlation learning algorithm, orig-
inally proposed by Fah!man and Lebiere,' uses a con-

structive method. It starts from a small network and
gradually builds a larger network to solve the prob-
lem. Cascor-MS executes multiple runs of Cascor
from randomly selected initial points.

Gradient descent with multistarts (Grad-MS)

Gradient-descent algorithms are simple and pop-
ular, and variants have been applied to many engi-
neering applications—for example, the back-
propagation learning algorithm. Gradient descents
are performed by solving an ordinary differential
equation using LSODE (Livermore Solver for
Ordinary Differential Equations).

Truncated Newton’s method with multistarts
(TN-MS)

The truncated Newton’s method uses second-
order information that may help convergence. This
is usually much faster than LSODE.

Reference
1. S.E. Fahiman and C. Lebiere, “The Cascade-Correlation
Learning Architecture,” in Advances in Neural Infor-
mation Processing Systems 2, D.S. Touretzky, ed., Mor-
gan Kaufmann, San Mateo, Calif,, 1990, pp. 524-532.
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Figure 7. The best performance of one run of various global-minimization algorithms for learning the
weights of neural networks with five and six hidden units for solving the two-spiral problem. (Sigmoid
gain o = 100 for all algorithms except Cascor-MS and TN-MS, which have o = 1. CPU time allowed for each

experiment was 20 hours on a Sun 20/71.)
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Figure 8. Training and test errors of the best designs obtained by various algorithms for solving the two-
spiral problem. There are 18, 25, 33, and 42 weights (including biases in neurons) in the neural network for
networks with three, four, five, and six hidden units, respectively.

Lice is a parameter optimization program based on evo-

| lutionary strategies. In applying Lice, we have tried vari-
- ous. initial search ranges and population sizes. Range

[-0.1,0.1] and size 100 n give the best results.
In applying Cascor-MS, we ran Fahlman’s Cascor pro-

- gram’ from random initial weights. We used a new start-
- ing point when the current run did not result in a

converged network for a maximum of three, four, five, and

six hidden units, respectively.

In Grad-MS, we generated multiple, random initial

points in the range [-0.2, 0.2]. Gradient descents were
done with LSODE.

Finally, we used the truncated Newton’s method

- obtained from netlib with multistarts (TN-MS). We gen-

erated random initial points in the range [—-1, 1] and set
the sigmoid gain to 1. Since one run of TN-MS is very fast,
many runs were done within the time limit.

Figure 7 shows each algorithm’s best performance. Figure

Computer

8 summarizes the training and test results of their best solu-
tions in 20 hours of CPU time on a Sun Sparcstation 20,/71.
NOVEL has the best training and test results, followed by
Simann, TN-MS, Cascor-MS, and the two evolutionary algo-
rithms. We used the conventional 40-20-40 criterion in
comparing actual outputs with desired outputs.

The experimental results show that a learning algo-
rithm’s performance depends on error-functicn com-
plexity.

The differential-equation solver is computationally
expensive. To improve the computational speed, we used
a difference-equation solver instead of LSODE. In using a
difference-equation solver, we tried four pairs of coeffi-
cients: i, = 0.001 and y, = 0.01; 4, = 0.001 and y, = 0.1;
#, = 0.0l and y, = 0.01; and pr, = 0.01 and y, = 0.1.
Further, we tried the following sigmoid gains ¢ 1, 10, 30,
50, and 100. Table 1 presents the combination of para-
meters leading to NOVEL's best results with epochwise




total number of time units in each run is 400.

Table 1. Summary results of NOVEL with a finite-difference-equation solver for solving the two-spiral problem. The

Sigmoid Best solution CPU time
Hidden gain Coefficients Training Testing per unit
units Weights o L, e TSSE % correct % correct (minutes)
4 25 50 0.01 0.1 14.0 92.8 85.6 0.20
5 33 50 0.001 0.01 6.0 96.9 94.8 0.36
6 42 10 0.01 0.1 0.0 100 95.4 0.55

1

Table 2. Comparison of the best results obtained by NOVEL and a truncated Newton's algorithm with multistarts
(TN-MS) for solving four benchmark problems, where the parameters in one method that obtains the best result may

be different from those of another method. Results in bold are better than or equal to results obtained by TN-MS.

TN-MS NOVEL TN-MS + NOVEL
% correct % correct % correct CPU
Hidden Time Time time
Problems units Wghts Training Test Restarts Training Test units Training Test units limits
Sonar 2 125 98.1 90.4 454 98.1 94.2 191 98.1 92.3 226 1,000sec
3 187 100 91.3 485 100 92.3 291 100 92,3 315 2,000sec
Vowel 2 55 72.2 50.9 298 72.5 49.1 131 73.5 50.6 203 2hrs
4 99 80.7 56.5 152 82.6 57.8 41 81.2 57.1 168 2hrs
10-parity 5 61 97.2 — 148 98.9 -— 51 97.2 —— 49 2,000 sec
6 73 97.6 — 108 99.8 — 62 97.6 — 44 3,000 sec
Pattern-wise back propagation . Trace Pattern-wise BP+Trace
NetTalk 15 3,476 86.3 70.5 13 874 727 1 89.0 70.4 11 3hrs
30 6,926 92.9 73.1 9 93.2 725 4 94.7 723 7 4hrs

training. The difference-equation solveris about 10 times
faster than LSODE, but its solution quality is slightly
worse,

Results on other benchmarks

The network topologies used in these experiments with
other benchmarks are layered feed-forward networks
without shortcuts (to be consistent with what other
researchers have used), and the goal is to minimize the
total sum of squared errors. Other setups are similar to
those described for the two-spiral problem.

For the sonar problem, we applied NOVEL with a dif-
ference-equation solver, TN-MS, Simann, and back prop-
agation. As found by Dixon,* TN runs much faster than
epochwise back propagation and achieves comparable
solutions. Simann is one order of magnitude slower than
TN-MS and NOVEL with a difference-equation solver, and
the results are not better. For these reasons, we describe
only the results for TN-MS and NOVEL using a difference-
equation solver. TN is used in the local-search phase of
NOVEL.

Table 2 shows the best solutions of both algorithms that
achieve the highest percentage of correctness on the sonar
problem’s test patterns. Our results show thar NOVEL
improved test accuracy by 1-4 percent.

All results in Table 2 were run under similar conditions
and time limits. In particular, NOVELalways started from

the origin and searched in the range [-1, 1] for each vari-
able, using some combinations of sigmoid gains from the
set {1, 10, 30, 50, 100, 300} and (u,, {4, from the set {(10,
1), (1, 1), (1,0.1}, (0.1,0.1), (0.1, 1), (0.1, 0.01), (0.01,
0.1)}. TN-MS was run using different combinations of
random initial points in search ranges from the set {[-0.1,
0.11, [-0.2,0.2], [-0.5,0.5], [-1, 1]} and the same sig-
moid gains as in NOVEL. In TN-MS + NOVEL, NOVEL
always started from the best result of TN-MS using the
same sigmoid gain when TN-MS was run. In solving the
NetTalk problem, the sigmoid gain is set to 1. NOVEL used
learning rates of 1 and 2 and a momentum of 0.1. Back
propagation generated its initial pointin the range [-0.5,
0.5], using a momentum of 0.1 and learning rates from
the set {0.5,1, 2,4, 8, 16}.

We attribute NOVEL's superiority in finding better
local minima to its global-search stage. Since the func-
tion searched is very rugged, it is important to avoid
probing from many random starting points and toiden-
tify good basins before committing expensive local
descents. However, multistart algorithms may provide
good starting points for NOVEL.

On the vowel-recognition problem, Table 2 shows that
NOVEL improves training compared with TN-MS, but per-
forms slightly worse in testing when there are two hidden
units. TN-MS + NOVEL also improved training compared
with TN-MS.
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On the 10-parity problem, using a setup similar to the
one described for the sonar problem, NOVEL improved
the learning results obtained by TN-MS.

In the last application, the NetTalk problem, the num-
ber of weights and training patterns is very large, so we
used patternwise learning when applying back propaga-
tion (as in Sejnowski and Rosenberg’s'? original experi-
ments).

NetTalk’s large number of weights precluded using any
method other than patternwise mode in the global-search
phase and patternwise back propagation in the local-
search phase. Even so, very few (logical) time units could
be simulated, and our designs perform better in training
but sometimes worse in testing. To find better designs, we
took the best designs obtained by patternwise back prop-
agation and applied NOVEL. Table 2 shows improved
learning results but worse testing results. The poor test-
ing results are probably due to the small number of time
units that NOVEL ran.

In short, NOVELs training results are always better than
or equal to those of TN-MS but are occasionally slightly
worse in testing. We attribute this to the time constraint
and the excellence of solutions already found by existing
methods. In general, improving solutions that are close to
the global minima s difficult, often requiring exponential
time unless a better search method is used.

ALTHOUGH WE HAVE DEMONSTRATED NOVELs power in solv-
ing some neural network benchmarks, its applicability to
other benchmarks and general nonlinear optimization
problems needs further study. In particular, we need to
study new trace functions that cover the search space from
coarse to fine, their search range, the relative weights
between local descent and affinity to the traveling trace,
parallel processing of NOVEL, combining NOVEL with
other local/global-search methods, and applying NOVEL
to other problems.

In short, NOVEL represents a significant advance in
supervised learning of feed-forward neural networks and
optimization of general high-dimensional nonlinear con-
tinuous functions. 1
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