International Journal on Artificial Inteiligence Tools, Vol. 7, No. 4 (1998} 487-550
© World Scientific Publishing Company

STRATEGY LEARNING: A SURVEY OF PROBLEMS, METHODS,
AND ARCHITECTURES

PANKAJ MEHRA
Tandem Labs.
10555 Ridgeview Court
Cupertino, CA 95014-U789, USA

mehra_pankaj@esp.tandem. com

BENJAMIN W. WAH
Department of Electricel and Computer Engineering
and the Coordinated Science Luboratory
University of Illinois at Urbana-Champaign
1308 West Main Street
Urbana, IL 61801, USA

b~wah@uiuc.edu

Received 30 June 1996
Accepted 5 August 1998

Problem solvers employ strategies in searching for solutions to given problem
instances. Strategies have traditionally been designed by experts using prior
knowledge and refined manuaily using trial and error. Recent attempts to auto-
mate these processes have produced strategy-learning systems. This paper shows
how various issues in strategy learning are affected by the mature of performance
tasks, problem solvers, and learning environments. Surveyed learning systems are
grouped by the commonality of their approaches into four general architectures.

Heywords: Artificial intelligence, credit assignment, delayed feedback, heuristics,
ill-defined objectives, lcarning architectures, machine learning, sequential prob-
lems, strategies.

1 Introduction

Much recent work in machine learning has targeted sequential problems in decision,
control, and optimization. Sequential problems abound in robotics, navigation,
tracking, and dynamic scheduling. They require the problem solver to make multiple
choices or initiate muitiple actions, one after another, in order to reach and/or
maintain a “desired state”” Such a sequence of choices or actions constitutes a
soluticn; the knowledge used for generating it is a strategy. Problem soivers employ
strategies to systematically pgenerate solutions to given problem instances. Our

487

488 P. Mehra & B. W. Wah

focus in this paper is on the automated learning of such strategies,

Strategies are useful when there are choices, and guidance is needed in exploring
or searching various courses of action. When a single course of action is clear
ai the outset, the problem can be solved algorithmically. Otherwise, systematic
exploration or search is performed on the space of alternatives. Search without
guidance is often prohibitively expensive and, therefore, intractable. Search with
guidance is called heuristic search [1). Heuristics, in this context, are modular
pieces of readily applicable knowledge — “rules of thumb” {2, 3] — which allow

: the decision maker to select, prefer, or rule out some alternatives at each decision
! point. A strategy, on the other hand, is a “general plan of action” that applies to
muitiple decision points [4]. Frequently, strategies are broken down into modular
heuristic rules that are applied dynamically; this is especially true for applications
with time-varying inputs. Perhaps that is why some researchers do not distinguish
between heuristics and strategies [2].

We wiil not distinguish between learning to improve solution quality and learning
to improve problem-solving speed because both notions can be captured equally weil
by a properly designed objective function and reward/penalty scheme,

1.1 State of the Art

Traditionally, strategies have been designed by experts using prior knowledge, and
refined manually using trial and error. Recent attempts to automate these pro-
cesses have produced strategy-learning systems that run the gamut of applications
from dynamic load balancirg to symbolic reasoning and combinatorial optimization.
| Despite its volume and diversity, the literature on strategy-learning systems lacks
a systematic characterization of the relationship between applications, algorithms,
and architectures. Prior surveys {5, 6, 7, 8] have focused on well-defined symbolic
learning problems characterized by simple feedback schemes and knowledge-rich
learning environments.

Time is an important parameter of sequential behavior. Systems that learn
strategies for sequential problems must, therefore, tackle a number of temporal
problems, These generally involve predicting future states of the environment, The
states may evolve under the influence of either the problem solver’s decisions (causal
dynamics), or the passage of time {natural dynamics), or both; difficult prediction
problems result in the last case. Learning systems developed by artificial intelligence
{AI) researchers have had limited success in coping with natural dynamics.

When learning strategies by trial and error, a learning system may experiment
with multiple strategies. The measured performance of tested strategies provides
feedback for guiding both the selection of strategies for future tests and the mod-
Hication of incumbent strategies toward improved performance. The translation
of feedback into strategy modifications is called credit assignment {9]. Successive
occurrences of performance feedback often span an entire sequence of decisions.
The credit/blame implied by the feedback signal must be distributed temporally
{(among the decisions) as well as structurally (among the various factors governing
each decision). Sutton [10] was the first to make this distinction between tempo-
rab and structural credit assignment (SCA). Credil assignment requires extensive
knowledge of the problemn domain. The temporal credit-assignment (TCA) prob-

:ploring
is clear
Lematic
vithout
h with
odular
L allow
ecision
liey to
odular
ations
\guish

Ag ity
v wel]

,and
pro-
Liong
Lion.
acks
NS,
olic
rich

AT
el
Che
s af
on
e

11t
las
d-
on
Ve

ly
2
)...

Strategy Learning: A Survey of Problems, Methods, and Archifectures 489

Table 1: Components of strategy-learning problems.
Component Description

fine bl e |
Performance Task g}ci:vélé:s a class of problems whose instances are to be

Solves instances of performance task using strategies
to decide what operation{s) to perform at each deci-
sion point.

Reacts to problem selver’s actions by providing feed-

Learning Environment ga.ck;.may also provide prior knowledge of problem
omain.

Problem Solver

lem (like the projection problems described above) is complicated by time-varying
states. Existing systems solve this problem using either ad hoc schemes [11, 12],
user-suppiied domain knowledge [13], or Markov property (future states may depend
on the current state but not on any of the past states) [14]. There is no general vet
rational solution to the temporal credit-assignment problem.

Since closed-form objective functions may not be available for certain problems,
strategy-learning systems sometimes optimize measured performance. The trans-
formation of such (ill-posed) problems into well-defined ones, which the problem
solver can solve, is often achieved by empirically modeling the true ob Jective func-
tion from data. Several existing systems [15, 16, 17, 18] learn evaluation functions
that associate a scalar performance metric with every state of the problem sclver.
When the objective-function value depends on a state sequence rather than on a
single state, one needs to learn scalar-valued functions of time series. This situa-
tion arises only when the state-space representation used by the problem solver is
non-Markovian, i.e., the quality of future states (solutions) depends not only on the
current state but also on the path from the initial state to the current state. The
probiem of learning evaluation functions for non-Markovian representations has not
been addressed in the learning literature.

The challenging problems in strategy learning are, therefore, the development of
techniques to cope with time-varying parameters (natural dynamics), non-Markovian
representations, and ill-defined objective functions.

1.2 Contributions of this Paper

We introduce attributes for classifying the problems, methods, and architectures of
strategy-learning systems. We use the term strategy-learning problem to denote a
triple (P, PS, £), comprising a performance task (7), a problem solver {(PS), and
a learning environment (£) (Table 1). Various aspects of P, PS, and & dictate
the form and complexity of learning algorithms and system architectures. Studying
these aspects is important for both characterizing the limitations of existing systems
and finding an appropriate learning system for a given application.

Figure 1 shows a coarse classification of strategy-learning problems. Broadly,
learning problems can be classified as either well-posed or ill-posed on the basis
of the objective functions of their performance tasks. Ill-posed learning problems
have performance tasks with ill-defined objective functions; that is, the objective

490 P. Mehra & B, W, Wah

Well-defined tasks Ii-posed tasks
Immediate
Reactive feedback
environment
Delayed
B feedback
Non-reactive
environment

] Pl !

Measurable Unknown
objectives objectives

Figure 1: Classification of strategy-tearning problems. (Shaded areas in this figure
Indicate classes of strategy-learning problems addressed in this paper.)

functions are not specified as closed-form functions of the problem solver’s inputs.
Hl-defined objective functions can be further classified as either measurable or un-
known. Orthogonally, one may classify learning problems on the basis of the feed-
back structure of their learning environments. Here, learning environments can
be classified as either reactive (those that produce feedback) or non-reactive (those
that don’t). Further, feedback may be immediate (which occurs regularly after each
decision) or delayed (which occurs intermittently).

Our focus in this paper is on the classes of strategy-learning problems shown
shaded in Figure 1. These problems are characterized by slow reactive learning
environments and performance tasks having ill-defined but measurable objective
functions. The unshaded boxes in the third column of Figure 1 correspond to
problems with one or more unknown objective functions in their performance tasks,
For such problems, it is not clear at the outset what function to optimize. A
cominon technique to solve a problem in this class is to transform it into another
with either a well-defined or an ill-defined but measurable objective function. This
transformation is indicated by the dashed arrows in Figure 1. Another common
technique is to add constraints to the problem and to solve for a feasible solution of
the constrained problem. Finally, the unshaded boxes in column 1 represent well-
posed problems with immediate feedback as well as those without feedback. Such
problems have been studied extensively and can be learned by existing learning
techniques in AI {19].

in Section 2, we analyze the structure of strategy-learning problems and identify
the key issues in strategy learning. Section 3 describes techniques for addressing
these issues, and Section 4 compares four architectures of strategy-learning systems.

Strategy Learning: A Survey of Problems, Methods, and Architectures 491

Feedback,

Background
£ knowledge . ™

T o
A

Strategy
Learning
Dccisions!Act_i_qEC ~ _ | System

RV e I
Y

Variables,
Objectives,
Constraints

Selected/modified
strategies

A Figure 2: Typical information flow in a sirategy-learning systerm.

2 The Anatomy of Strategy-Learning Problems

We view strategy-learning problems as triples (P, PS, £), comprising a performance
task (7), a problem solver (PS), and a learning environment (£3. It is important
to distinguish between a performance task and its instances: each instance corre-
sponds to some initial assignment of values to the problem variables (inputs) of
7. In this sense, P defines a class of problems whose instances are solved by PS.
When presented an instance of P, PS instantiates the decision variables (outpuis)
of P, thereby causing action via application of problem-solving operators. Oper-
ators transform both the external state of £ and the internal state of PS. PS
reacts to the new external state by either applying another operator or stopping;
It uses strategies in deciding what operator to apply next. Sometimes, £ responds
to operator application with feedback indicating the guality of current and recent
external states. The role of a strategy-learning system (Figure 2) is to use the
feedback received from £ in order to improve the strategies used by PS in such a
fashion that i) future actions will produce more favorable feedback, and ii) optimal
or near-eptimal stopping states (if any) will be reached quickly.

Besides modifying existing strategies, a learning system can improve the problem
solver in several other ways. For example, it can i} learn a model of the cbjective
function; or ii) learn to predict future states; or iii) learn to predict the state changes
caused by a proposed action; or iv) learn to predict future feedback. The first of
these is critical for ill-posed tasks; the second, for coping with natural dynamics;
the third, for coping with causal dynamics; and the fourth, for solving difficult TCA
problems. Whether or not a strategy-learning problem will be ill-posed depends on
the objective function of 77; similarly, whether or not it will have natural dynamics
depends on the variables of 7. A strategy-learning system will need learning to
predict future states only if a causal model of P8 is not provided as background
knowledge by &. Finally, prediction of future feedback is necessary only when
feedback is delayed. Thus, the components of a strategy-ltearning problem strongly
determine the specific issues that a learning system must address.

492 P, Mchra & B. W. Wah

Before we begin to dissect and classify strategy-learning problems, we introduce
a few problems drawn from diverse domains which will be used as running exampleg
throughous this paper.

Example 1. Learning Strotegies for Load Balancing. Consider a set of worksta-
tions connected by a local area network. Users at each workstation {or site) issue
commands interactively; each command spawns off one or more jobs. The objective
ig to finish these jobs as quickly as possible. Through a technique called load bal-
ancing, the time taken to complete a job can be reduced by ‘migrating’ some jobs
from heavily loaded sites to lightly loaded ones. A Jjob’s completion time depends
not only upon the raw speed of the site at which it is executed but also upon the
‘background load’ at that site due to competing jobs. The performance task P is to
decide whether to run a job locally at its site of origin, or remotely at another site
with lighter load. P8, the problem solver, makes these decisions based on the job’s
characteristics as well as information about the past, current, and projected loads
at various sites. £, the learning environment, provides feedback by measuring the
speedup (reduction in completion time w.r.t. local execution) of each job.
Different formulations of the load-balancing problem represent different degraes
of realism. Abstract formulations assume that i) the background load at sites does
not change outside the control of PS8 (no natural dynamics), and #) £ provides
background knowledge relating migration decisions and measured speedup. More
realistic formulations drop both of these assumptions, u

Example 2. Learning to Steer a Ship. The performance task P is to steer a ship
in a variety of (simulated) training scenarios, eventually getting as close as possi-
ble to a specified target position, which may be different for different scenarios. A
scenario is described by the current coordinates of the ship relative to the target as
well as current velocity vectors. Using these values, the problem solver PS must
determine the direction and amount of turn at each decision point. In contrast to
load balancing, the learning environment £ provides PS with rudimentary operator-
application rules and some general domain knowledge. |

Example 3. Learning to Balance a Pole. The controller PS aims to balance a
pole that is fixed at one end to 2 mobile cart with one (rotational} degree of freedom.
At any decision point, the cart can be moved either left or right by applying a fixed
amount of force. The cart is mounted on a rail of fixed length and is constrained
to not go off the ends of the rail.

This performance task P exemplifies the class of control problems [20, 21]. Other
examples in this class include: i) regulation, in which the objective is to keep the
external environment close to a “desired state,” it) tracking, in which the objective
is to make certain output variables follow the same sequence as their corresponding
input variables, iii) optimal-path problems, in which the objective is to get the
external environment in a desired state at a desired time, and iv) minimum-time

dice
nples

kst a-
55110
ctive
bal-
jobs
snds
the
5 to
site
ob’s
ads
the

ees
0es
des
ore

Strategy Learning: A Survey of Problems, Methods, and Architectures 493

Table 2: Components of a performance task.

Component Description
. External inputs (problem variables) and problem-solving ac-
Variables tions (deciston variables).
o Gloals of problem solving and strategy learning, i.e., functions
Objectives to be optimized or conditions to be achieved.
Constraints Conditions that should not be violated by solutions.

optimal control, in which the objective is to get the external environment in a desired
state in minimum time.

Control problems can be either knowledge-intensive or knowledge-lean; the latter
are classified under adeptive control Knowledge-intensive versions assume closed-
form objective functions and complete knowledge of state changes (modulo noise)
resulting from operator application; these tend to use static strategies called open-
loop control. Knowledge-lean versions assume only that objective-function values
can be sampled at each of the different states of £; these tend to use dynamic
strategies also known as closed-loop control. Controllers usually employ state-space

representations that satisfy the Markov property. |

Example 4. Learning Strategies for the Towers of Hanoi Problemn. The scenario
consists of three towers, of which the first is surrounded by rings whose diameter
decreases from bottomn to top. The objective is to move all the rings, in the same
order, onto the third tower. The only operator available is one of lifting a ring from
the top of one tower and placing it on top of another. The congtraints are that a
ring can never be placed over a smaller ring.

This performance task exemplifies the class of symbolic problems that have been
studied in cognitive science and Al (22, 6]. These problems feature input vartables

that do not vary outside the control of PS.]

The remainder of this section is devoted to a detailed analysis of the anatomy
of strategy-learning problems: the first subsection examines performance tasks; the
second, problem solvers; and the third, learning environments. The final subsection
isolates the key issues in strategy learning and relates them to the anatomy of

strategy-learning problems.

2.1 Performance Task

A performance task 7 can be specified in terms of its objectives, constraints, and
variables (Table 2). Objectives may be specified either explicitly (as functions to
be optimized) or implicitly {using measured quantities indicating objective-function
values of certain states); the former are called well-defined objectives and the latter,
ill-defined. Similarly, constraints may be defined either explicitly (as truth-valued

494 P, Mehra & B. W. Weah

Performance Task

T TN

znahlcx Dhlcuzvcc Cnatlmmu
/"‘___
Problem variables Decision variables Wc]l Uniknown f,mttn:s.\ Speullt.anun
}‘ﬁ‘i@\‘* {outputs) defined dcﬁnc-:i
Time- Dat
dependence lype_
o L
Constant Time- Symbotic Numenc Sianc Dynamic Measured Measured ar Soiy Weli- m-
varying al ins1ants aver inlervals defined defined

Figure 3: Attributes for classifyving performance tasks.

expressions of variables) or implicitly (using measured quantities indicating feasi-
bility); the former are called well-defined constraints and the latter, ill-defined.

The variables of a performance task serve two purposes: representation and
modification of external state. The space of all possible assignments of values to
all of the variables of a performance task is called the state space of that task. An
assignment of values to the set of decision vartables is called a solution. States
satisfying all the constraints of a performance task define the space of feastble solu-
tions. For optimization objectives, the feasible states that satisfy the optimization
criterion define the set of optimal selutions. In general, states satisfying both the
objectives and constraints are called geal states. Sometimes, the term solution also
denotes a state-space path from the initial state for a given instance to some goal
state of that instance.

The objectives and constraints, respectively, of a performance task are ways to
measure its quality and feasibility; together, they constitute a performance stan-
dard {23} against which strategies may be judged. Problem solvers may either add
new constraints (such as deadlines or limits on memory usage) or refine the ob-
jective function by trading between quality and complexity of sclutions. Even so,
the objectives of performance tasks are the prime drivers of problem solving and
strategy learning.

Various properties of variables, objectives, and constraints determine the com-
plexity of strategy learning; these are, therefore, useful attributes for classifying
strategy-learning problems (Figure 3).

Example 1 (cont’d). Lesrning Strategies for Load Balancing. Fach site of a
distributed system has private resources, such as CPU and memory. All sites share
access to common resources such as networks and digsks. The completion time of a
job at a particular site depends upon the level of utilization of that site’s private
resources as well as on the level of utilization of common resources: the greater is
the competition for these resources due to background load, the longer a job takes
to complete. In addition, the basic service requirements of a job determine how
much resource it would need even if there were no competition from other jobs.
The variables of the load-balancing problem include status variables (utilization
tevels of various resources, such as CPU, memory, disk, and network), job descriptors

i

Strateqy Learning: A Survey of Problems, Methods, and Architectures 495

{absotute and/or relative amounts of service required by a job from the various
resources), and placement variables {for each incoming job, the site at which it will
be executed).

Different load-balancing systems target different objectives: maximum through-
put (number of jobs completed per unit time); minimum average completion time
{over all jobs); or minimum completion time per job. All these objectives are func-
tions of completion time. Without any background knowledge of the relationship
between variables and completion time, all of them are ill-defined functions.

Constraints may include precedence constraints (e.g., some jobs cannot start be-
fore certain others finish), size consiraints (e.g., requirements on physical memory},
and placement constraints {e.g., no more than one foreign job per site at any time).
These are examples of well-defined consiraints. Other constraints, such as prefer-
ence for placement of communicating jobs at the same site, are ill-defined when the
communication characteristics of jobs are not known ahead of time. |

2.1.1 Variables

Thaose variables of a performance task that represent the problem solver’s input pa-
rameters are called problem variables, and those representing the problem solver’s
output parameters, decision variables. An assignment of values to problem variables
defines an instance of a performance task. An assignment of values to decision vari-
ables defines a solution. The values of probiem variables are affected by changes in
the state of the external environment. The values of decision variables are changed
by the problem solver when its strategy is applied to particular problem instances.

Example 1 (cont’d). Learning Strategies for Load Balancing. Status variables
and job descriptors are the problem variables, and job placements are the decision
variables. A load-balancing system uses information about resource utilization and
job characteristics in deciding where incoming jobs are placed. |

Temporal Dependence of Problem Variables. Problem variables are said to
exhibit temporal dependence when their values vary with time. Without temporal
dependence, the external state varies only under the problem solver’s control; fu-
ture states are relatively easy to predict, enumerate, and evaluate. With temporal
dependence, however, the external state may continue to evolve even after an action
has been taken. The key issue is, therefore, the prediction of future states defined

as Issue 1 in Table 3.

Example 2 (cont'd). Learning to Steer a Ship. Ships tend to have a large mo-
menium. If no steering operations are taken, the current speed and direction of
the ship {and water curreat, if significant) determine the ship’s course. Given qual-
itative rules describing the ship’s dynamics, steering actions are chosen only after
considering the {predicted) states of the ship under the combined effects of the
causal and natural dynamics of steering,. L]

496 P Mehma & B. W. Wah

Table 3: A summary of all the issues in strategy learning.

Issue

Details

1: Prediction
of Future
States

M
Problem solvers and strategy-learning systems choose strategies based op .4
the guality of external states produced. An important issue ig the pre-
diction of time-varying problem variables that requires consideration of
natural dynamics (the laws governing time-dependent behavior). Certajy
learning environments provide qualitative laws describing the natural dy.
namics as background knowledge; in such scenarios, the problem of pre-
dicting future states is one of reasoning with qualitative termporal mod-
els [24). In others, the model of temporal variation must be induced by the
learning system based on repeated observation of state sequernces; in such
cases, prediction of future states is a problem of learning to predict time
series [25].

2
Generalization
across
Instances of
the same
Performance
Task

e
Except for the most trivial problems, it is impossibie to expose a strategy-
learning system to all possible instances of 2 performance task. Even 50,
the strategies developed by a learning system are expected to work on
‘simifar’ (hitherto unseen) instances. The issue of generalization concerng
how well the strategies learned perform on such new instances. For perfor-
mance tasks with numeric variables, generalization is spontaneous because
well-behaved decision fanctions yield similar outputs for similar inputs.
However, with symbolic variables, the learning system rnust generalize ex-
plicitly; i.e., it rust determine the exact set of instances that can be solved
using a solution developed for one particular instance,

3: Dynarmic
Becision
Malking

In dynamic decision problems, interactions among decisions need to be
considered. Dynamic decision variables require causal models for repre-
senting the interdependence between decisions and states. Briefly, a cousal
maodel is defined as a set of rules for determining she new state given an old
state and a decision. It must be stressed that for tasks with time-varying
problem variables, the new state has a causal component (due to decision-

making) as well ag a temporal component (due to the natural dynamics of
the external state).

4: Standard-of-
Comparison
Problem

This problem, first recognized by Ackley [26], concerns the method of as.
sessing (eedback. If the objective function of a performance task is well-
defined and the Markov property is satisfied, then dynamic programming
provides a way to choose the optimal alternative at each decision point,
thereby defining an optimat strategy. Other decisions can be evaiuated with
respect to this optimaum. If, however, the objective function is ill-defined,
it is difficult to assess solution quality in absolute terms, and alternative
operators can only be evaluated relative to sach other.

&: Learning an
Gbjective
Function

When an objective function is ili-posed, information about the goals of
problem solving is implicit in the feedback associated with each state. Since
feedback for a state is generated only after the state has been traversed,
learning the objective function is more difficult. Two cases need to be
considered. First, when states can be evaluated independently, one can
tabulate evaluations as <state,feedback> pairs. The problem of making
the learning problem well-posed then reduces to one of fitting a function
to the tabulated data. Second, when measured objective-function values
depend on several states, one can regress either a simple function upon the
current and past values of problem variables, or an autoregressive {recur-
sively defined) function on Just the current values.

Strateqy Learning: A Survey of Problems, Methods, and Architectures 497

Table 3 (cont’d): A summary of all the issues in strategy learning.

Issue

Details

6: Learning
while Searching

This is also known as within-trial learping: the nondeterminism in later
stages of search is reduced using information about states vigited in earlier
stages. It is especially useful for learning stochastic strategies which, de-
pending on the amount of prior knowledge available, may start with a ran-
dem search and eventually converge to an almost deterministic search {27].
Learning while searching is also useful for problem solvers that ernploy de-
terministic strategies to expand large search spaces [28, 29] For learning
with asynchronous feedback, which precludes identification of clean learn-
ing episodes, as well as for learning in changing environments, learning
while searching is the only tractable way to learn. Learning while search-
ing requires the learning algorithm to have law overhead because learning
occurs at each decision point.

7: Constraint
Handling

Caonstraints limit the solution space for decision variables on the one hand,
and impose restrictions on generalization by the learning sysiem on the
other. The strategies generated by the learning system must not recom-
mend operators that lead to infeasible states.

&: Violation of
Markov
Property

This issue entails the incorporation of past states and decisions into the
current decision point: a histary of past decisions needs to be maintained
for both decision making and TCA. Corollary issues, such as how to ‘forget’
old or unimportant decisions, must also be addressed [30]. The problem
i particularly acute for tasks with time-varying problem variables because
past states and decisions may carry information useful at future decision
points.

9: Storing Past
Decisions

There are two related problems: managing the storage of the state vectors
leading to the final state, and optimizing the time for distributing credit
among them. The first problem in maintaining such a history is that of size.
Not all the information in a state vector is relevant, nor is it feasible to go
through the entire history each time a feedback signal is received. Deter-
mination of the past information to be retained then becomes important.
Even with non-Markovian state spaces, and especially with time-varying
problem variables, the effects of decisions become insignificantly small af-
ter a certain time interval; such decisions should be ‘forgotten’ or deleted
from the history. The second problem concerns the extraction of relevant
information from past history so that when feedback becomes available, it
can be distributed among decisions in proportion to their contribution to
the state{s) being evaluated by the current feedback signal.

10: Managing
Greneral
Objectives

With general probiem solving, learning systems are expected to learn
strategies whose “desired state” may vary from one problem-solving sce-
nario to another. This requires representation schemes that bring out the
internal structure of objectives as weil as the techniques for achieving gen-
eral goals. The learning system may need to use general-purpose reasoening
techniques [31, 32). In this case, the procedural component of the knowl-
edge stored should be reduced to a minimum; such reduction in procedural
knowledge may slow down learning as well as problem solving. A more
important consequence is that the learning system may need to acquire
different strategies for meeting different objectives. This raises the need
for efficient indexing of strategies by goals [33L

498 P Mehra & B W, Wah

Table 3 (cont’d): A summary of all the issues in strategy learning.

Tssue

Details

11: Handling
Structured
Solutions

For generating structured soluiions, static strategies are preferred over
dynamic ones because siatic strategies can simultaneously consider mul-
tiple (interdependent) decision points. Static strategies are feasible in
knowledge-rich problems in which the strategy-learning system exploits
the structure of the solutions already tested in order to find solutions for
problems not seen before. Such learning requires substantial deductive
reasoning as well as inductive generalization of solutions, Static strate-
gies are not possible in knowledge-lean applications because there is not
enough prior knowledge to guide the design of such strategies. In this case,
new knowledge acquired during learning must be incorporated into new
strategies in the system, causing considerable overhead during learning.

12: Nondeter-
minism

The strategy learner must be designed so that it can discover heuristic
rules for choosing the ‘best’ aiternative without having to explore all of
them. in knowledge-lean environments, alternatives cannot be compared a
priori because there is insufficient information. Moreover, the exploration
of an alternative may have an irreversible side-effect on the external state,
especizlly for tasks having time-varying preblem variables. [n this case, the
learning system rmay sustain nondeterminism by introducing a controlled
elernent of randomness in decision making. Only one randomly selected
alternative is explored on each visit to a state; but several different al-
ternatives may be explored if each state is visited several times. This is
achieved using stochastic strategies, which are popular in strategy-learning
systems for knowledge-lean environments {27, 34].

13: Structural
Credit
Assignment
{SCA)Y

SCA deals with methods for apportioning feedback F to elements of the
decision process. These methods depend on the ‘structure’ of the decision
process, and whether 7 is prescriptive or evaluative. It is often more diffi-
cult when the decision process is procedural and the feedback, evaluative.

14: Temporal
Credit
Assignment
{TCA)

TCA is the first stage in the assimilation of feedback and precedes SCA
during learning. It divides up feedback JF between current and past deci-
sions. Methods for TCA depends on whether the state space is Markovian.
Non-Markovian representations and direct operations often require more
complex TCA procedures,

15: Predicting
Future
Feedback

Predicting fuiure feedback 1s important when feedback is delayed; here, the
learning system needs to estimate future feedback in order to determine
the magnitude and direction of parameter modification. When the envi-
ronrment produces immediate prescriptive feedback, the learning systern
simply atternpts to reduce the error between the observed and the desired
values of decision variables. However, when the feedback is evaluative, the
learning system must learn to predict the externally generated feedback
signals using its own internal state. Ispecially when feedback is tempo-
rally giobal, or when the objective function is ill-defined and measured over
intervals, it is not obvious which states will lead to better feedback. While
prior prediction of future feedback is useful for decision making, a poste-
riori association of feedback and states (as in the TCA problem) is useful
for learning.

Strategy Leartung: A Survey of Problemns, AMethods, and Arvchitecturss 499

Numeric versus Symbolic Problem Variables, Probiem variables can be o
ther numeric or symbolic. For performance tasks having rnumeric variables only,
the degree of similarity between different instaneces can e defined using distance
functions in the input space. Symbolic values, on the other hand, oftenn exhibit
internal sirictire, which precludes numerical characterization of similarity befween
instances. The issue involved is stated as Issue 2 in Table 3.

Static versus Dynamic Deciston Variables. The goals of problem solving
are specified as functions and formulae of decision variables. A problem solver in-
stantintes (assigns values to) decision variables during decision making. The Hnal
assignment of values constitutes a solution state. Frequently, decision variables rep-
resent actions and their parameters. Decision variables whose instantiation affects
[uture inputs to a problem solver {i.e, future values of problem variables) are called
dynamic decision variables; and those whose instantiation does not affect future n-
puts, static dacision variables. Temporal dependence is the only souree of variation
for strategy-learning problems having static decision variables (called stafic deci-
sion problems), in this case, the context of strategy learning can be limited 1o one
decision poing at a time. The more difficult issue is on dynamac decision problems
where the external state evolves under the influence of the problem solver’s actions.
The related issue is summarized as Issne 3 in Table 3.

Example 1 (cont’d). Learning Sirategies for Load Dulancing. Usually, P& em-
ploys a dynamic load-balancing strategy that decides placements based on values of
status variables. When a job is migrated from one site to another, its net effects
are reduced load on resources local to the originating site and increased load on re-
sourees local 1o the remote site. Therefore, status variables evolve under the effect
of placements, making this a dynamic decision problem.

However, there exist formuiations of this problemn in which all the jobs to be
placed are available at the outset, and placements do not depend on status vari-
aliles. Such strategies are appropriately called sfalse lond-bolancing strategics. In
these, job descriptors are the only problem variables and do not evolve under the
effect of placements, making this a static decision problem. The context of strategy
learning includes only one decision point: the one at the initial state, although each
decision (of simultaneously placing all the jobs) tends to be complex. ||

2.1.2 Ohjectives

Figure 3 shows that various degrees of precision are possible in specifying the ob-
inctives of a performance task. Traditionally, problem solvers have aitempted only
performance tasks having closed-form cbjective functions. Realistic applications.
however, frequently involve ill-posed tasks whose objective functions are cither un-
known or cmpirically determined.

Well-defined, Ill-defined, and Unknown (hjectives. Objectives are aald to
e well-defined when a closed-form ohjective tinction of problem variables 1s (o
ther explicitly or impheitly) speciliod, and -defined sehen such aspecilication is

B00 P Aehra 8 B W Wik

unaviilable but states can be evaluated either individually or (:()Ilf-)(:ti\'{\fy. When
the objective function is unknown, the problem solver NSt use prior knowledge
b asstme cither o well-defined or an Hl-defined objective function. In the o e of
di-defined obiective furctions, the measured objective-funetion valiues may evalunge
states either individually or collectively, In the latter case, evaluations are not avail-
ahle for every state and, when available, measure the overall quality of » SeQUence
of successive states

Example 1 {cont d). Learning Strategies Jor Load Balancing. Objectives suey
as equalizing the load across all sites are well-defined provided ‘load” itself ig i@
well-definad entity. In ahstract formulations of the problem, popular with quening
theorists, CPPU is the onlyv rescurce of contention, and the level of CPU utilization
is considered the sole determinant, of the overall load. The objective is well defined
because load can be definad easily in terms of the available inputs (CPU utilization).

Usually, the objectives of load halancing are defined n terms of job completion
times. Without extensive knowledge of hardware architecture and the operating syg-
temn’s scheduling policy, compietion-time-baged objective functions are ill-defined.
Automata theorists [35] chonse 1o formulate completion time as a function of only
Lhe current values of statys variables; this results in an Ul-defined objective function
whose values can be measured for states individually. In this case, a deterministic
evaluation function can be learned by regressing job completion time onto the values
of status variables at the time of starting the job.

in reality, the completion time of g Job depends on past, current, and future
vadues of status variables (36], which makes it an ill-defined function whose values
evaluate multiple stares, If non-recursive models -— such as MA [37] — are used in
regression, then the window of past status variables to censider must be determined
first. If, on the other hand, recursive regression models — such as ARMA and
ARIMA [37] — are used. then the coetficients of the model must be determined
using the relatively complex time-series regression techniques.

A number of alternative objectives are possible for the l()advhalaucing probilem.
For instance, if tHrovghput ‘number of jobs pracessed PET unit tims) is o be max-
hiized, then it does not matter whether or net specific jobs complete sooner with
load balancing than without it. Thig objective is valid for users who submis jobs
e batches (groups), and only the performance of the batch is relevans, On the
other hand, when scheduling independent jobs, it may be important to have a high
probability of speeding up eaclr individual Job. In this case, zood performance on
large jobs cannot tompensate for poor performance on small jobs, A learning sys-
tem starting without a specific ohjective must compare alternative proposals and
chonse the one whose predicred value matehes the actual feedback from the user. W

For performance tasks with ilb-defined objective functions, the goals of learn-
ing and problem solving are not clear at the outset; they must he inferred nsing
eithor prior knowledge or goal-related information impiicit in the feedback, For
probiems with non-reactive learning environments and ill-defined oblectives ({fass
s of Figure 1), feedback must be generatad internally by Lhe learning Systen,

The following three issues arise in learning strategies for performanens tasks with
Hl-defined objective Ninetions: standard-ol-comparison probiem {Fssue 4Y, dearning

by When
nowlodge
he cage of
v oevaduate
not avail.
Sequence

LVES stich
tself g 4
queulng
Lilization
I defined
ation).
npletion
bt sy s
defined.
of only
unction
TS i
e valies

future
values
nsed in
rrrinedd
A and
rined

shlem.
- max-
rowith
t jobs
1 tho
v high
Cooon
L By s-
5 and

ArTI-
1sing

Foy
Tlasg

Wit

LELEEY

Strateyy Learning: A Survey of Problems, Methods, and Architectures 501

an objective function (Issue 5), and learning while searching (Issue 6) We define
these issues in Table 3 and Hlustrate them by the following examples.

Example I {cont’™d). Learning Strategies for Load Balancing. To llustrate [s
sue 4, consider the load-balancing problem that has ill-defined objectives. To solve
the standard-of-comparison nroblem in the evaluation of load-balancing strategies,
the case with no load balancing is often used as a point of reference. This approach
requires that two sets of experiments be performed using oxactly the same set of
jobs and loading conditions: once with, and once without, load bal ancing [38].

To llustrate Issue 5, note that completion time is not 2 well-defined function of
status variables alone, and job descriptors are rarely available when decisions are
made. The completion-time-based objective [unctions are ill-defined and can be
evaluated only over state sequences. When queuing models of computers and jobs
are avallable and applicable, objective functions are well-defined, and the queue
sizes on various resources of contention [39, 40] can be shown to be useful for pre-
dicting completion time. In practice, the use of these models is questionable, and
objective functions need to be modeled from data relating completion times of jobs
to foad conditions at the time of decision making. [

Example 3 (cont’d). [FLearning to Boelonce a Pole. As the learning system gets
better at balancing, the episodes become longer with no external feedback. To limit,
memory usage, the learning system must learn within trials. One way to do this js
for the learning system to predict future feedback, and use its own predictions in
place of the real feedback. Whenever external feedback does become avatlable, it
can be used to train the internal feedback-generation mechanism. |

2.1.3 Constraints

The constraints of a performance task determine its space of feasible solutions over
which optimization is performed. They mayv either be explicitly specified, or be built
inte the problem solver’s strategy, or be part of the objective function. Constraints
can be classified on the basis of thelr exactuess (as hard or soft), as well as their
specification (as well-defined or ill-defined) (Figure 3).

Hard versus Soft Constraints, Hard constraints impose sharp boundaries on
the state space, demarcating feasible selutions from infeasible ones Thev curtail
syntactie generalization {syntactically similar problems having similar selutions)
and are uwsually enforced by a move generator in the problem solver. Problems
with hard constraints are sometimes solved by first solving relaxed versions of the
orlginal problems in arder to obtain an approximate solution, which s then used
as auanitial state for an exact solution. On the other hand, probiems with soft
constraits are associated with a large space of feasible solutions. Thoese constraints
are usually transfortmed into penalty terms that are added ro the objective funeion.

502 P Mrehra 8 BOW Wak

Well-defined versus Ill-defined Clonstraints, Well-defined constraints are -
fined as truth-valued functions of o performance task’s variables; hence, one ean
determine whether o solution is foasible or not by testing whether it satisfies the
constraints. In contrast, ll-defined constraints are cither unknown or too complex
to be moedeled as functions of problem and decision varizbles. As a result, the con-
straints cannot be formulated as fruth-valued functions. In some cases, ili~defined
constraints become well-defined during the conrse of problem solving and are in-
corporated in the problem solver. For instance, if a robot is attemmpting to fir 4
projection on one part into a slot in another but does not have geometric models of
the two parts, then it can discover infeasible moves by testing whether the move ig
feasible and by hypothesizing a model of infeasible regions. If the robot knew that
all slots are square in shape and aligred parallel to some known coordinate system,
then it may find the exact coordinates of the slot after a few trials.

The key issuz on constraint, handling (Issue 7 in Table 3) is related to how
constraints are handled by 28 that are to be learned by the learning system,

Example 1 (cont’d). Leorning Sirotegies for Load Lalencing. Graph-theoretic
formulations of load balancing take into account explicit precedence and placement
comstraints both of which are hard, well-defined constraints System engincers, on
the other hand, either ignore these dependences or enforce them procedurally in the
problem solver. Size constraints in load balancing are examples of soft, ill-defined
constraints because the memory requirements of a job are usually data-dependent
and carnot be modeled analvtically. Too large a job for a small physical memory
canses only a gradual degradation in performance. Thus, there is no sharp boundary
between feasible and infeasible states. Because of such ‘sofiness,’ size constraints
are often expressed as preferences, becoming part of the objective function. =

Example 4 {cont’d}. Leawrning Strategies for the Towers of Honot Problem. This
problem has one significant hard constraint, namely, that no disk can ever bhe placed
on another of smalier diameter. When generalizing from solutions to specific sub-
goals to strategies for achieving more general goals, the learning systemn must ensure
Lhat the strategies it learns do not viclate this constraint. N

Table 4 illustrates the structure of P for the four strategy-learning problems
descrilred in the beginning of Section 2.

2.2 Problem Solver

Problem solvers cinploy ropresentation schemes 4o mternally represent problems and
solutions; they also have a repertoire of operators which are used for transforming
initial states into goal states. (A sequence or a partial order on the set of operators
constitutes a solution.) The prablem solver uses parameters that may be tuned via
learning as well as others that are constrained in its design. 1n this section. we
identify those aspocts of probilem solvers’ representations, operators, and strategies
that influence the desipn of strat egy-learning svstems, The components of problem
solvers and their propertios are shown in Froure -4,

An
b
ey

-

eic

h
of
i

Strategy Learming: A Swrvey of Problems, Aethods, and Architectures 503

Table 4: Exarples of performance tasks in stratepy learning.

Example

Performanca

Task 7

Comments

Load
Ralancing

To schedule
meoming jobs

Problemn variables (indicators of background work-
load, job characteristics) are numeric and time-
varying, decision variables (placements), dynamic.

Ship
Steering

To decide when
and liow much to
turn

Problem variables {position and velocity) arce time-
varyving; and the decision variables (amount of turn},
dynamic. The objective function (pavigating the
ship along a trajectory) is il-defined, measurable
over infervals.

Pale
Balancing

To balance an
inverted
pendulam

The problem variables (the pole's angle of inclinacion
and angular velocity, and the cart’s position and lin-
ear velocity) are numeric time-varving; and the deci-
sion variables (direction of applied force), dynamic,
The objective is ill-defined, measurable over instants.

Towers of
Hanoi

To achieve o
desired
configuration of
disks on the

The problem variables (specifyving one of the three
towers cach disk 15 on) are symbolic and constant;
and the decision variables (which disk to maove
where), dyvnamic The objective (to achieve a desired
configuration) i well-defined; and the coustraints

towers {no disk can be placed over another of smaller di-
ameter), exact.

2.2.1 Representation

States and objective functions are significant components of strategy-learning prob-
lems; their representation determines the type of strategv-learning technique used,
Following are the key properties of states and objective functions that affect strategy
learning.

Markovian versus Non-Markovian State Space. [f each state carries enough
information to permit optimal decision making without consideration of past states
or past decisions, then the state space is calied Markovian. Markov property asserts
that the fulure behavior of a system is not affected by past states, given the current
state (417, Tts manifestation in decision making is the path-independence axiom: the
optimal decision in a state does not depend on the state-space path leading to that
state [42]. For such state spaces, past states and past decisions do not influence
current decisions.

If the state space is non-Markovian, then a history of past states and/or past
decisions needs to be maintained for use in making future decisions. Often
the former case, large state veclors may be needed to capture all of the nseful
Information in one state. When the number of problem variables is larege, one mnay
choose Lo traclk onlv a few significant variables rather than retain the entire state
vector: such representations will be inherently non-Markovian,

Viotation of Markov property is especially easy to verify for systems having

LT

time-varving problem variables. One can study the partial antocorrelation
of the fime series generated by problem variables: nouzero correlations at lags

S04 £ Mehra #EOBW. Wak
Froblem Solver

Representation Qperators Slratepy

\\ ‘ \\“
Objeciives Direct tdirget Decision Rules Deciston Making
/ ™ S
" .,
% \\
Markovisn Non- Specific Generat ; . . .
Deterministic . Stochastic Stanc Dynamic

Murkovian

Figure 4: Components of problem solvers and their propertics.

greater than one are the simplest evidence for the violation of Markov proparty.
The corresponding issue (Issue 8) is described in Table 3.

Example 1 (cont’d). Learning Sirategies Jor Load Balancing. The violation of
Markov property s clearty illustrated by significant partial autocorrelations at lags
greater than 2 observed in the time series generated by the status variables [36]. B

The viclation of Markev property and the consequent importance of past deci-
stons during TCA entail the storage of past decisions and possibly even the states

in which those decisions were taken. The related problems on storing past decisions
are summarized as Issue 9 in Table 3.

Example 1 (cont’d}. [Learning Strategies for Load Bolancing, Since this prob-
e violates Markov property, past states and/or decisions need to be stored. The
effects of past states on future decisions are captured in decision metrics {called load
averages) that are used in decision rules instead of status variables. The formulae
for compnting load averages can either be user supplied 143] or be induced from
completion-time measurements [44].]

Gieneral versus Specific Objectives, A problem solver may be cither general-
purpose or specialized, depending on whether it can represent and solve a class of
problems rather than a single problem. Ceneral problem solvers necd to index
their strategies by the strocture and the content of their objective finctions. Un-
Hke specialized prablem solvers, the ability to represent and manipulate oxplicitly
represented objectives is paramount in this case. Specialized problem solvers are
cominon in the literature on control [20], whercas generalized problem solvers are
common 1 the literature on planning and problem solving [45]. Strategy-learning
systems for general-purpose problem solving face the problem of generalizing aoross
fasks, that is. the expericnce from one problem ray need to be generalized to a dif-
ferent problem. For spociatized problem solvers, strategy learning merely warrants
generalizing across mstences of the siune problem {(Issae 10 managing general
objectives i Table 3)

ing

A

of

T4
R

Stralegy Learrang: A Survey of Problems, Methods, and Architectures 505

Direct versus Indirect Operators. Problem solvers transform their internal
and external states by applying operators. Operators can be either direct or indireet
Dhrect aperators act independently on the objective function without interfering with
other instances of opoerator application. The effects of direct aperators combine in
simple ways, satisfying criterin such as additivity and superposition [46]. On the
other hand, the effects of indirect operators combine in complex ways, such as
through causal chains or AND-OR graphs [47]. In this sense, strategios involving

Numerous examples

indirect. operators generate solutions having more ‘structure.’
exist, especially in planning [48], of problems that require such indirect problem-
solving capability. Strategies using indirect operators warrant complex strategy-
medification techniques.

Indirect operators are used in structured solutions: a solution is structured when
a rumber of indirect operators contribute (o the reward state(s) of the external en-
vironment. Indirect operators. In conjunction with hard constraints and symbolic
problem variables, characterize some of Lthe most complex learning problems. An
important issue is, itherciore, the design of strategies for generating structured so-
futions under varions environments. (Issee 11 in Table 3).

Example I (cont’d). Learning Strategies for Load Boelancing Placement of in-
dependent tasks is a direct operator because its effect on the external environment
can be completely captured by changes in the values of the status variables. Dif-
ferent instantiations of this operator interact in simple ways, reducing load at the
source of a migrating job and increasing it at the destination. Thus, balancing
tasks withoutl precedence constraints result in unstructured solutions. On the other
hand, the placement of dependent tasks requires (indirect) operators for matching,
sorting, and assignment, which combine into structured solutions. m

2.2.2 Problem-Solving Strategies

A probiem solver should have an internal blas towards certain preferred modes of
problem solving. Gne witheut such preferences would be horribly inefficient for mast
practical applications, despite its tremendous generality, Another reason for hias is
that expert knowledge may be available only in the form of time-tested procedures.
For efficiency and practicality, such procedures should be built into problem solvers
as skeletal strategies, and subsequently refined by strategy learning.

Strategics can be classified, based on the type of decision rules employed, into
doterministic and stochastic. Further, one can distinguish between static and dy-
naunic strategies on the basis of when the problem-solving decisions are made. These
distinetions are explained helow.

Deterministic versus Stochastic Strategies. A deterministic strategy always
recommends the same operator for an external state i a given context, no mittel
how many times this state recurs. Stochastic sirategies, on the other hand, cxplore
multiple alternative decisions at those decision points where a choice cannot be
made o preore. BExiva knowledge for guiding such a scarch may take the form of
decision rules for assessing either the probability that o particular alternative will he

OB P Mehra 8 B W, Wk

exuplored, or (he order it which alternatives will boe oxplored. Stochastic strateging
have the potential for producing better solutions at the cost of CxXtra computations

Several probiems discussed earler - standard-of-comparison and learning-whije.
searching - are related to the basic problem of nondeterminism in problem S(,)Iving,
When & problem solver jg forced to choose between alternatives, it must attempt 1o
reduce the nondeterminism by limiting the number of alternatives actually explored.
The challenge of nondeterminism js summarized as Issue 12 in Table 3.

Example 1 (cont’d). Learning Strategies for Load Bulancing. Instead of insian.
tlating the decision variabie directly, the controller P8 tomputes the probabilities
of the left and the right moves at each decision poing [19]. The actual assignment
of & value to the decision variable is performed randomly using these probabilities,
This approach is easily extended to the case with multiple alternative actions at
cach decision point [50]. As the probabilities of selection become more and more
biased in favor of good alternatives. nondeterminism is reduced. |

Static versus Dynamic Strategies. While certain stratepies make decisions
based on the specific state associated with cach decision point, others recommend
a series of decisions based on Just the initial state. The former are called dynamic
strategies; and the latter, static strategies. Static strategies are faster but nappro-
priate for problems whose variables cannol be predicted accurately or efficiently a
prior:. Designing static strategies requires a complete and accurate model of the
external environment; dynamie strategies, because they make decisions about one
or a few actions, require legs prior knowledge and are simpler to design. However,
dynamic strategies are computationally more exponsive to apply than static ones
because they warrant run-time mformation gathering and inference.

Strategies generated Ly conventional planning methods of Al [31] are static,
whereas those generated by conventional dynamic programiming methods of control
and optimization [42] are dynamic. There exist numerous variants of conventional
planning techniques that use dynamic strategies; these are called reactive planning
methods (52, 53, 54, 55, 56, 57) in AL

Example 1 (vont’d). Learning Strategies for Load Balnneing. Two types of
problem solvers represent. respectively, the analytical and software-based approaches
to the load-balancing problem. Both are designed for specifie objectives and ernploy
Markovian representations, using only the current state in making load-balancing
decisions. Becausge the stiatius variables do not directly poermit such representation,
these problom solvers use Toad indices, which are abstract variables computed as
moving averages of computation load. Often, the coctficients of MOVInG averagns
arg chosen ad hoc. An alternative considered in some of our recent work {36] s
to employ non-Markovian representations and learn the relative importance of post
and current values of status variables for predicting speed-ups of tasks.

The problem solvers designed for handling precedence constraints often employ
ndirect operators in whicl a number of different Lperators contribute to the reward
state{s) of the external covironment. Solutions i this case are said Lo be sfrpe-

Table

Strategy Learning: A Survey of Problems, Methods, and Architectures 507

5. Lxamples of problem solvers in strategy-loearning tas

l"roﬂli:;iem S(}]v;;‘i:
PE

Comments

Process mipgration
software

Representation of states is non-Markovian, of objec-
tives, specific. The operators (process migration) are
direct. Practical stratesies employ dynamic decision
making and either dererministic or stochastic deci-
sion rules.

A program for
navigallon

Representation of states i non-Markovian: of objec-
tives, general. The operators (turning actions; are
direct. The strategy is static, and the decision rules,
deterministic

A controller to
apply a fixed
force left or right

The controller employs Markovian representaiions
for states, and works for a sgpecific objective. The
operators (applying the fc;r(::;:g are direct. The con-
troler uses stochastic strategics.

A program for
partitioning
objectives and for
searcling among

The problem solver cmploys a Markovian represen-
tation of states and is able to handle general-purpose
goals because multiple goals are generated ilor each
problem instance. Its operators {moving disks) are
mdlirect, and its strategies, deterministic and static,

Moves

tured. Others generally use the simpler direct operators such as sending a job to a
remote site and accepting a job sent by a remote site. Analytical solutions often
emplay stochastic strategles 135, 38, 59, althongh deterministic strategies are more

gley
Ong, e

hila- Exarmiple
in £ P
1t

. ’ Load

vex. Balancing
- Ship

. Stecring
ties

onf -

Les. Pole

at Palancing
are

i

Towers of
Hanol

ns
il
s

-

&

10
162

r, commaon [60, G1].

Dynamic load balancing strategies take into accouns the load average at each
site in deciding where to send the next job, whereas static strategies schedule jobs
according to a predetermined criterion unaffected by the dynamle varialions of
workloads. While statle strategios avoid frequent communication of status informa-
tion among sites, they fail to exploit dynamic imbalances in load whose occurrence
cannot be predicted ahead of time,]

Table 5 illustrates the structure of P8 for the four strategy-learning problems
described carlier.

2.3 Learning Environment

The interface between a strategy-learning system and the external world 1s called
the learning environment. Environments that generate feedback are called reactive
enwvironmenis. These include human trainers and/or programs that generate feed-
back for the learning system, as well as other sources external to the learning system
that provide prior knowledge relating problem variables and decision varnables to
feedback, If the enviromnent is not reactive but the objective lunction is measur-
able (Figure 19, then the measurements can be used in feedback generation. T this
case, cortain additional jssues such as the standard-of-comparison problem necd to
he addressed. The components of a learning envirommoent are shown in Figuse 5.

HO8 L Mchra £ BW. Wahk

Learning Environment

Prior Knowledge

Structurally Temporally Fiming Information

, X N .. Knowledge Krowledye
/\\ /‘L / S i e intensive fean &
% A\ X T

Lacal Global Local Globa Synchro- Asynchro Preseriptive Evaluative
Bous nows

Figure b Components of a learning environment,

2.3.1 Feedback

The nature of feedback is the single most important determinant of (he form and
complexity of strategy-learning algorithms. Feedback may be a corrective error
signal or a scalar evaluation signal, covering either one or more decision points, and
generated either periodically or intermittently. Feedback can even be generated
internally in the learning systemn when litile or no external feedback is available.

Translation of environmental feedback (F) into strategy modifications is called
credit assignment. 1t is o problem in inverse modeling of both the environment, and
the problem solver: the learning system attempts Lo determine what changes in
the decision process wiil bring about desirable feedback on similar instances in the
future. Different types of feedback require different schemes for credit assignment.
Since credit assignment is a key component of any learning algorithm, different
types of feedback require different kinds of learning algorithms,

Frescriptive versus Evaluative Feedback. TIeedback signals carry certain ex-
phictt and implicit information useful for altering the behavior of o problem solver.
Signals that carry more explicit information require simpier learning rules hut a
more informed source than those that carry more implicit information. Based on
the amount of explicil information, one can distinguish between preseriptive and
evaluative feedback.

Prescriptive feedbock carries explicit information about the desired operators
and/or states: the learning system can use it for computing an error signal to be
minimized via strategy modifieation, However, generating such feadhack TequUires a
teacher who knows what the correct outcome should be. Learning from a teacher
is called supervised learning [62].

Example 2 (cont’d). Learnang to Steer o Ship. Since the desired course of the
ship s specified, this is an axample of prescriptive feedback At every decision point,
the problem solver knows how far off the desired course it is. o

Lvaluative feedbuck carries only implicit information about the desired hehavior
bt explicit evaluation of the observod behavior. Generating such foodback reanires

Strategy Learning: A Suruey of Problems, Methods, and Archilectures 309

only & aritie 53] who has some prior knowledge of the objective function and can s
gess the goodness of extornal states or sequences thereof. Sealar evaluative feedback
signals are called reinforcements [9] and learning from such signals, reinforeement
learning.

Example 3 (cont’d). Lewrning to Balonce @ FPole. The learning environment
generates (negative) feedback only when the pole fails down: otherwise, no feed-
back is generated. Such a feedback specifies only how well a problem solver is
performing but not what the desired external states are. This is an exarnple of
evaluative feedback.]

Structural Locality of Feedback. The goal of learning is to modify either the
decision rules or certain parameters theveof. Many rules or parameters may he
invalved at each decision point; these may be evalunted either individually or col-
jectively: if individually, feedback is termed structurally local; otherwise, slohal.
Usually, feedback is strocturally global (the external environment ovaluates deci-
sions but not individual rules), and the evaluation of individual rules is left to the
learning system. Translation of structurally global feedback into a structurally local
one is called structural evedit assignment (SCA)Y [10]. Examples of structurally local
feedback are rare: in some learning environments, a source of knowledge external

aih Bzt to the learning systerm may separate the individual effects of different rules and
i then feed these back to the problem solver; in vet others, the rules might operate
i The on independent aspects of a problem, each associated with its own feedback signal
R (refer to ICA -~ independent credit assignment — discussed in Section 3.2 I}, The
Herwar izaue involved is stated as Issue 13 — structured credit assignment — in Table 3.
When the rules encoding a decision maker’s strategy combine m predictable
and well-defined ways at every decision point, one can associate a ‘structure’ with
i s the decigion provess. For instance, a proof tree might be used for representing a
waEr symblic decision process, as in explanation-based learning [13]. Structures sich
uf 3 as proof trees are generated dynamicaliy. Examples of static decision structures
sl include feedforward neural networks, as in Anderson’s pole-balancing system [49].

In either case, the goal of SCA is to translate the (remporally local but structurally
global) feedback associated with a decision point into modifications associated with
various parameters of the decision process.

When a problem solver cncades its strategy using procedures rather than rules,

o g i the ‘structure’ of the decision process is not obvious. Here, SCA must either be
e ; avoided entirely or be used to assoclatively correlate the values of decision-process

parameters with average feedback. For instance, certain problem selvers for load
balancing [64] use parameterized decision procedures rather than a rule base [61]
to represent their strategies. In these, SCA is used merely to associate the average
completion Uime over a set of test jobs with every tested set of parameter vahies;
% such SCA perform selection among alternative strategies rather than modification

of an incumbent strategy,
When feadback 77 1s prescriptive and strategy 8 used by P& deterministic, SCA
s orelatively casy: iU involves reduction of the difference between the obsorved and

|

SR P Mehra & B W. Wah

the desired values of the decision varables, For Instance, in problems of tracking
and trajoctory planning [55], as well as in the ship-steering problem discussed earlier
(Fxample 2}, the dosired final state is explicitly known, On the other hand, when
strategy 5 used by P8 i stochastic, SCA involves estimation and optimization ¢
the probubility of producing the desired cutcome. For instance, in load balanting
{Example I}, if the fearning system forms internai models of johg using Markoy
chains, (66, then it must adjust the trangition probabilities of jtg model to magel,
those of the job being executed.

When F is evaluative, it is not clear what the desired valies of the decision
variables should be, ror are the direction and magnttude of parameter madifications
obvious. In thig case, SCA requires assumptions about how the feedback signalg
cvalnate the current strategy. S5CA can he simplified when the decision propegs
involves only a smal] mimber (say two orp three) of discrete outcornes [50]. For
instance, one might compare the current evaluation against o Moving average of past
evaiiuations in order to determine whether the probability of the observed outcome
should be increased or decreaged (26]: if the difference s favorable (positive for
maximization of evaluation), the probability of broducing the observed outcome ig
made closer to 1, and that of the remaining outcomes reduced accordingly; and viee
versa.

SCA with evaluative feedback always involves search among allernatives. Stochag.
tic strategies {27, 50] perform such search implicitly, and deterministic strategies [67),
explicitly. At cach decision point, the decision process chooses an operator to apply.
When the deeision process selects the operator producing the best evaluation, the
values of dectsion parameters are treated as positive examples: otherwise, negative
examples. SCA attempts to create decision regions in the space of problem variables
50 that each region has associated with it the best expected outcome for instances
falling in that region. In general, there is 4 tradectf between exploration (via search)
and testing (repeatedly applying the decision PEOCESS Lo new instances in order to
gain confidence in the quality of the moves selected by the decision process).

Temporal Locality of Feedback. Tie envircniment produces feedback in re-
sponse to the problem solver's decisions. Feedback may evaluate decisions either
individually or collectively: if collectively, several decision pointg may elapse before
feedback Lecomes available. Such feedback is called delayed feedback; it contains
the combined evaluaiion of soveral decisions. Delayed feedback explicitly evaluates
the current state and inplicitly evaluates past states and decisions, especially for
dynamic decigion problems. Based on the temporal properties of feedback, one can
distinguish hetween temporaliy local and temporally global fecdback

Temporaity loeal Feedbuck applies to decisions individually. In solving a large
and complex problem, a problem solver may make many decisions; temporal lo-
cality requires that the environment should produce an explicit reaction 1o every
decision. The burden of (‘ljsent::mgling the interdependences among decisions is on
the envitonment rather than on the learning systemn. Therefore, systoms that learn
from termporally iocal feedback are casior to design than the ones that learn from
termporally global feedback.

Temporally global feedbaek applics to decisions collectivelv, Resolution of inter-
dependence of decisions shifts from the CRVITONMent Lo Lhe learning systom. which

dng
Jier
hen
1 of
g
kow
teh

10
SHT
ks
et
For
ast
me
for
> 1
e

Strategy Learning: A Survey of Problems, Methods, and Archiectures 511

st distribute the feedback between decisions asing knowledge of cause-effect rela-
tionships between decisions and feedback. Translation of temporally global fecdback
into tempaorally local feedback s called temporal credit assigniment [10] (Issue 14 in
Table 3).

If the state space is Markovian, then J can he modeled as a function of only the
current state; as a resull, recent decisions {(which divectly contribute Lo the current
state) are more cligible to receive feedback than past decisions (which contribute
only indirectly through mtervening decisions and states). In particular, with direct
operators (which independently cause the evaluation), it suffices to have a discount
factor {less than 1} for determining the relative importance of cach decision with
respoct to s successors. For nstance, if the discount factor is 0.9, then the declsion
immediately preceding the feedback signal will have a weight of 1, the one preceding
it (.9, the next one .81, and so0 on.

vor non-Markovian representations and indirect operators [30], past decisions
and/or states may need to be retained because they may influence feedback 7
independent of the current state. Ti-defined objective functions that can only be
mmensured over intervals also require the retention of past states and/or decisions.
Determination of the relative importance of successive decisions may involve more
than just a simple discount factor. Instead, the interdependence between different
decisions may need to be captured explicitly using dependence graphs.

Example 1 {cont’d). Learning Strategies for Load Balencing. In load balancing,
credit assipnment is comphcated by delayed evaluative feedback. As jobs complete,
they are evaluated and feedback signals gene ated. TCA involves dividing such eval-
nations among the scheduling decisions made at various sites. The non-Markovian
state space of load balancing [36] requires explicit solution of TCA. Simple discount
factors are inappropriate because the completion time of a job 18 not predominantly
affected by the latest placement decisions. |

Example 3 (cont’d}. Learning to Balence o Pole. Since the system state follow-
ing u left /right move is completely determined by the knowledge of its current state
and the proposed move, the state space is Markovian, and the interaction between
states decays exponentially with respect to time [37]. Such exponential decisys can
be computad dvnamically as discount factors (681 Efficient procedures [69]) proven
te work for Markovian representations are known for this and related problems. W

Example 4 (cont’d). Learning Strotegies for the Towers of Hanoi Problem. The
operators are indirect but the state space is Markovian, Feedback is delaved with
respect to decisions: henee, TCA must be addressed. Due to the causal connections
betwoen decicions and states, solutions are stractured . Tn this case, TCA separates
casential states (those on the path from the initlal to the desired state} from nop-
cesential ones. SCA s then applicd to generalize the reduced solution structure so
i ean be used for sobving similar problem instances the future [13]. |

12 P Mehra 8 B W, Wah

Synchronous versus Asyanchronons Feedback. The timing of foedback dic-
tates the case with which a learning system can partition its data into episodes o
freals. When feedback ceeurs al predictable stages of problem solving, learning ig
episodic. Both the SCA and TCA problems discussed above are simplified when
feedback distribution is confined within episode houndaries. Such feedback iy cilled
synchronous. When the time of oceurronce of feedback is not casily predictable, the
learning system is responsible for bounding the scope of feedback distr bution. Only
a finite number of Lost decisions and/or states can be retained between SUCTesgive
oceurrences of feedback, and the learning svstem is responsible for their storage and
TCA. Hence, an important issue with asynchronous feedbacks is the prediction of
times for fnture feedbacks (Jssue 15 in Table 3).

Example 1 (cont’d). Learning Strategies for Load Balancing. Status variables
in load balancing vary with time: predicting their variation as well as their offects
on future values of feedback are the central issues in iearning load-balancing strate-
gies. Prediction of feedback is complicated by the viclation of Markov property.
As the states evolve with time under their natural dynamics as well as under the
inflaence of load-balancing decisions, more effort is spent on the tractable backward
projection of credit assignment, and less on the [orward projection of predicting
future states or luture feedback signals.]

Example 8 (cont’d). Learning to Balonce a Pole. This problem features delayed
and evaluative feedback. The length of apisodes grows with experience because the
problem solver can keep the pole balanced lenger. To continue to learn within
eplsodes, the learning svstem needs to predict future feedback so that it can substi-
tute its prediction in place of the {missing) immediate feedback for each decision.
The key {for Markovian representations oniy) is to express the total error of pre-
diction as a sum of ditferences between siccessive predictions |70}, |

2.3.2 Prior Knowledge

During credit assignment, a strategy-learning system nceds a world model 10 ~Ap-
ture the relationships among states, decisions, and feedback signals. When snch
knowledge is not given, it must somehow be inferred before/during credit assion-
ment. Environments that provide an explicit world model to the fearning system
are called knowledge-rich: those that do not, knowledge-lean.

In knowledge-rich cnvironments, croedit agsignment is a deductive process. The
learning system can explicitly construct proof trees or other computational strc-
tures relating decisions and feedback. In knowledge-lean environments, the learner
15 forced to induce a world model from the states observed between malking a deci-
sion and receiving foedbagk. Interleaving sueh induction with problem solving and
strategy modification places extra burden on Lhe tearning svstern.

In knowledge-rich environments, the uncertainty about the futire states, given

the currant state and action. is rmuch less than that in knowledge. Joonng ones. Strategy-
g

k die.
Jf}fff.s‘ Or
nng iz
whon
Called
the
Only
0Ssive
€ Aariel
o1 of

ables
Hocis
rate-
Tty
- the
L
ting

Ve
the
hin
TEA
ToleR

P RS

Stralegy Learning. A Survey of Problems, Methods, and Architectures 513

Table G:
Learming
5

. Comrments
ment &
Teedback 18 a function of measured completion time.
Load Mua:;tu_‘(*{nli’.‘lll'-ﬁ It is delayed, s—!\(‘aluntivet, asynchronous, and strue-
Bnlapcing f}i_ld models “i turally plobal Eifect of placement decisions on the
i complaton bine external state 18 unknown, as well as models of tasks
and their mter-arrival times. o

Measuretnent of Feedback (error berween actual and desired trajecto-
Shin target ries) is Sti‘ﬂ(:hli}";}:uy global, (}l’}lé-’l.“){(’.(i‘ <3vz‘ﬂuative, and
a%(‘gll_m displacement and synchronous. Prior knowledge of the effects of steer-
steening ing actions, as well as the natural dynamics {based
on momentum and acceleration}, are available as
closed-form rules.

maodels of
steering actions

. . . Feedback (signal indicating a fallen yale) s delayed,

Pole Sensors to detect evaluative, structurally grobal, an(i asynchironous.

Balancing & fallen pole Dynamics of the system can be made available as
a reference in training.

Precise knowledpge of the effect of each move on the

Knowledge of a ! ; L ;

Towers of “lesired state” (-_*.xtcrunl state 18 availabie a priori. Prior knowledge
Hanot and effects of (or partitioning the objective function is also avail-
able, Feedback is structurally gilobal, delayed, eval-

VATIDUS MOVes -
uative, and synchronous.

learning problems in such environments, thercfore, prefer learning the faster static

strategies rather than the slower but more robust dynamic strategies.

Example 1 {cont’d). Learning Strategies for Load Balancing. The feedback to
the learning system depends on the formulation adopted. Analytical formulations
based on combinaterial search are common for seheduling task graphs under zero
natural dvnamics for load; here, multiple alternatives can be evaluated and pre-
seriptive feedback penerated. In the case of empirical formulations, feedbaclk is
cvaluative. Depending on the objective function, feedback may be avallable either
after the completion of each job or after the completion of a batch of jobs,

The dependence of feedback on completion thine introduces a delay between
ihe oceurrence of a decision and the arrival of feedback signal(s) evaluating it. In
the interim, several other jobs may have arrived and been scheduled. This makes
the feedback signal structurally and temporally global., Feedback is asynchromnous
Because Lhe time to complete a job (and generate the feedback) cannot be predicted.

Besides svstems that use the scheduling formulation. loand-balancing software is
vsuatly knowledge-lean. The etfects of migrating jobs to remote sites cannot he

predicted precisely. "

Table 6 illustrates the coneepts of this section ont he strategy-learning problems

described in the beginning of Section 2

D P Melra BORDW Wah

2.4 Key Issues in Strategy Learning

Crrtain key issues are shavoed by a large number of strategy-learning problems, and
their relevance depends on various characteristics of performance tasks, problem
solvers, and learning environments. (For instance. prediction and TCA are es.
pecially relevant to tasks having time-varying problem variables.) [solating such
issues in discussing strategy learning methods will help us abstract problem-specific
details, and allow us to consider those metheds that are conventionally not used
in strategy learning but are nevertheless appropriate for addressing these common
issues. Table 7 summarizes these issues, characterizes the factors governing their
relevance, and provides painters to the pertinent approach(es). Table 8 summarizes
the specific issues pertaining to some of the strategy-tearning problems described in
this section. The next scction surveys approaches available for solving the various
issuws identified in this scction,

3 Methods of Strategy Learning

Methods for strategy learning abound in the literature on machine learning, neuraj
networks, cognitive science, and decision theory, While a comprehensive survey of
these arcas and methods can be attempted (see, for example, Mehra and Wah (751,
an issue-based survey is necessary for comparing and contrasting the well known
methods, as well as for identifying their common limitations. Table 7 suminarizes
the available approaches for addressing the issues raised in Section 2. In this section,
we elaborate on these approaches, Ulustrating them using our running examples.

3.1 Tackling IlI-Posed Objectives

A strategy-learning problem is l-posed when it lacks either a corplete and accurate
specification of its objective finction (Tssues 4, 5 and 6) or an appropriate way to
combine multiple ohjectives (Issues 2 and 10). Consequently, it does not have a
performance standard for choosing among the operators available at cach decision
point. The methods we deseribe in this section wse past experience with problem
solving to either maodel the ohjective function or learn other strategic information,
which will elp the problem solver compare the relative utilities of alternative moves.

Any of the methods described in this section can be adopted for learning while
searching (Issue 6), provided that it addresses the tradeoff between exploration and
convergence. While exploration demands that the system should sample a large
number of states {usnally by having a stochastic strategy), convergence demands
that it should converge quickly to the true model of the objective function, and
thence to the strategy thal optimizes the function, A munber of approaches for
addressing this tradeoff rationally are now available in the literature {21, 76}

There are two general techniques for making a problem with an ill-defined ob-
Jective well-posed: learning from absolute evaluation, and learning from relative
evaluation. Both assime that the objective fanction is ili-defined and moeasurable
over instants, Ondy the lattor addresses the standard-ol-comparison problem.,

;A
blem
 ege
Such
wcifie
Hsod
maon
heir
‘1nes
d in
s

Strategy Loarning: A Survey of Problems, Methods, and Architeclures

and approaches o strategy learning.

Approach (where d iscussad}

Standard-o-

. . Hl-cefined objective functions
comparison .

and evaluative feedback

Cearning from relative evaluation
{Sec. 3.1.2)

- Ohjective- .

posedness flmi‘ii:m i-elefined but measurable ob-
m.A T l("irn'i P Jeetive functions

i B Mg)

objectives

Statistical regression when l)'de(t(T
vive function s ill-defined, mea-
sured over inslants; time-series re-
YTRSEI0N, when measured over inter-
vals {Sec. 3.1.17

Learmng fnowledge-lean joarnng envi-
whiile ronment, stochastic strategies,
searching {6} and asynchronous feedback

Learnng models of reward-
seneration mechanisms and
learning to predict improvernents
(Sec’s 3.1.1, 3.1.2); must address
Lrade-off between exploration and
Ccomvergence

Structural

Frror-reducing approaches,

o ructurally global feedback problem-solver-specific
Credit W implementations (Sec. 3.2.1)
assign- B) - Comnlex general solusions, reit-
ment Termporal Fernporally plobal {delayed) ing reasoning with causal anel tern-
[14) teedback poral models; reduced complexity

due to Markoy property (Sec. 3,22}

Fime-varying probiem vart-
ables andfor dynamic decision
variables, especially difficult in
knowledge-lean environmentls

Predicting
future states

(1}

Approaches based on projection
and time-series analysis {(Sec’s
3.3.2, 3.5.3)

porally global (delayed)
uative feedback and/or
ihdefined objective functions
measirable over intervals

Prediction | L
Predicting

future
feedback (15}

Maodeling of the fecdback-
generation mechanism (Sec. 3.1 }
and approaches based on
projection and time-series analysis
(Sec. 3.3.1)

Violatwon Using past
of states and

Markow decisions i
FProperty current

{8 decision

Neon-Markovian representation
nf atates in the problem solver,
or tagged correlations in Lime-
varving problem variables

Explicit. storage of past decsions
(Sec. 3.6) and explicit modeling o
inter-decision relationships for tem-
poral credit assignment (Sec. 1223

Feact well-defined constraints
Clonsiraini handling (7] op solutions produced by
sirategies learned

Clonstraint satisfaction and con-
straint incorporation (Sec. 3.5)

Norn-Markovian representation
ates in Lhe problem solver,
weiafly hmportant with de-
taved feedback

Wmither on-line incorporation ol
feadback, or Lemporary siorage of
episodes (Sec. 3.6)3 methods for
limiting Lhe size of temporal scopes
{Sec, 3.2.2)

[onrning slrategies Jor peneral

problem solving; compiexity of

fearing depends on the size of
& probtom class

Gyvmbolic representation of probiem
spaces and peneral-purpose fearn-
ing Ltechniques {Sec. 3.7

VA strabegies and dy-
HATHIC deciaion variables:
complexity Jucreased by time-
varving problem va riabies,
ceintion of Markev property,
wiil lack of prior koowlodge of

.

Dynamin dectsion

kit ()

il ‘L}-fﬂ

[Iynamic programming annd s vart-
ants used for Markovian reprosen-
rations (Sec. 3.4Y no general sobo-
tions known for the non-sfarkovian

{10

516 P Mehra & L. W, Wah

Table 7 {cont’d) Issues and approaches in strategy learning.

lssue (number})

Characteristics
of Learning Task

Approach (where discussed}

Handiing structured
solutions (11}

operators in the
with

Indirect
problem solver (usually

static strategies), especizily
complex in knowledge-lean
environments

Preference for static strategies that
constder multiple decisions at the
same time; explicit representa-
tion of structured selutions dur-
ing credit assignment (Sec’s 3.2.1,
3.2.23

Large search
spaces for

The small
ators in
vironments

number of oper-
knowledge-lean en-
and

Preference for stochastic strategies
that

Controtling ; the general- elegantly represent varying
nondeter- Rachvmlst.am:e_a ity of operator preconditions amounts of nondeterminism as ran-
TRETISITE prohibit in knowledge-intensive environ- domness irn search; learning while
(12) SQMC_I" of rnents: indirect nature of oper- searching to limit episode size {Sec.
rtmltxple*: ators (thereby, the depth of so- 3.1 2})
alternatives Lutions)
3.1.1 Learning rom Absolute Evaluation

This technique assumes that feedback 7 is directly related to the (unknown} objec-
tive function. It is useful for learning cvaluation functions that can predict the true
alue of states. We deseribe two methods: the first when
feedhack is immediate, prescriptive, and available for each state; the second, when

{or expected) objective

it is imrmediate, evaluative, and possibly unav
a) Learning the Obj

ated independently of ¢

ailable for some states.
cotive- Function Value of States. When states can be evalu-
ach other, the path from the initial state to a chosen state

can be optimized independent of the path from the chosen siate to a goal state.
One can induce an evaluation function using statistical regression technigues; such

a function can then be used in place of a well-defined obje

ctive function {17, 15},

For example, in the game of checkers, the value of a board position is a function of

the rurrent board configuration rrespe

ctive of the moves made to reach that con-

figuration. Therefore, several researchers {77, 28, 29] have designed systems that
learn evaluation functions for this game.

When states can be evaluated only collectiv
upon the path to it from the initial state.

ely, the evaluation of a state depends
As a tesult, the objective function

learned must be sensitive not only to the current state but also to some past states.

The method of choice in this case is time-series regression [78, 791
evaluation-function models are possible: i)

Two types of

those using a finite window of past states;

and ii) those modeling evaluations as recurrences o state space.

Example 3 (cont’d}.

of the pole-balancing problem without the velocity inputs.

Learning to Balance o Pole. Lin [80] considers a version

This creates a nom

Markovian state space. He considers both window-based and recurrent evaluation-

function models, and

on distance.

hecause it 1s difficult to puess the right window size.

finds that a window size of 1 works well.
because velocity can be estimated by applymng the first-order differencing 0per
Lin also notes that recurrent models are to be preferred in genes

It makes sense
ator

- PPV

Strategy Learning:

Tahle &

=

A Survey of Problemns, Methods, and Architectures 517

Examples ol 1ssues in strategy learning.

ed)

Example Task

Relevant Issues

that
At the
SOTL G-
+ dur.
327,

h Load Balancing
{Examplea 1)

Eepioy
Lrytng
S Tan-

wiile

{Sec.

“Sintmum-completion-time” objective ill-defined, measurable
over intervals [36];

Standardrof-comparison problemn due to lack of absolute oval-

uations [71];

S5CA over process-migration rules [64];

TCA over interacting sequences of placement operations, cor-
plicated by a violation of the Markovian property 136];

Prediction of future values of status variables [66];

Capturing the effects of past states and decisions by learning
abstract decision metrics (load averages) [36].

S5CA on preconditions of operarors {13],

TCA over solution structures comprising indirect operators

[23];

Yjec- Specr: Shi e Prediction of trajectory under the influence of time-varving
' SLeering a oy ; . - v
true . & . : paramneters as well as the controller’s actions [72);
{Example 2]
vher e General problem-solving and learming capabilities for diverse
hen scanarios [32];
¢ Reduction of nondeterminism by macro-operator formation
- {73]
tate
ate. e “Balanced-pole” objective ill-defined but measurable over in-
such stants [49]
= S . . -
154 ¢ Within-trial learning warranted by episode length and asyn-
n of chronous timing of fecdback [49)
o . ‘ e T'CA over sequences of balancing operations; history mainte-
hat Pole Balancing P . ‘ . : .
Sl § nance and cligibility computation stmplified by the Markovian
(Example 3) - -
property {10}
nds o : . - A
A e« SCA over probabilities of applying “move-left” and “move-
1001 , . e
! right” operations [27];
tes.) L .) . . o)
; of e Prediction of future feedback signals necessary for within-trial
) n o
learning [70].
Les 5 g)] B
e General problemn solving warranted by recursive transtorn-
tion of the original goal inve subgoals [31];
ton e SCA over heuristics for move selection [13];
DI Towers of Hanuoi g . ‘ .
L e TOUA over explicitly stored struetured solutions due (o indirect
- {Example 1) :
aperikors;
)80 o))
Lor e Iixplicit modelng of hard constraints [74];
ral e« Controlling nondetarminism by macro-operalor formation [731,
H e e = e P s =

518 7 Mehra 86 B W, Wah

By Ugmmgg the Reward- Generation Mechanism, When external feedback s avaii- ot
abile (mlx' 1rm’m;/imt;f.(ml}‘ an anternal wodel - which characterizes feedback ag a g
function of current and past values of problem varlables — can be used for goner. ’ et
ating an internal feedback, Such a feedback signal can be used for evaluating the chs
states not immediately followed by an external feedback signal [81, 9. This ap- the
proach works with evaluative feedback. However, in order to learn strategies {rom po
such feedback signals, the learner should know the relative importance of currens,
and future signals, as well as whaether feedback is to be minimized or maximized, ;

Since learning from evalnative feedback is called reinforcement learning, internal el

generation of missing reinforcement is termed secondary reinforcement learning [9]. Lie

fo

Example 3 {cont’d). Learning to Balance o Pole. Barto en al. [27] describe : i

an approach using neural networks to learn a model of external feedback. Their : a

approach performs learning while searching (Sec. 3.1, Besides learning to predict n

the ‘pole-fallen’ signal, it provides evaluations for states not evaluated by external ; "
feedback. Anderson 149) extends this work further using the more powerful multi- :

lavered networks of nonlinear sigmeidal units {82] to perform nonlinear regression. ¥ I;

0

|

3.1.2 Learning from Relative Evaluation)

‘

In environments having prescriptive feedback, the standard-of-comparison problem .

is relegated ontside the learning system to the teacher. However, for evaluative
feedback, it must be addressed by the learning system. The approaches described
above do not address the standard-of-comparison problem [26] for learning from
evaluative feedback in knowledge-lean environments (Issue 12). The methods we
describe next, can be used when neither the sign nor the absolute value of evaluation
ig important. Methods that learn from absolute evaluation can be thought of as
value-based: they induce a model that can predict the objective-function value for
any given state. The methods described below can then be thought of as direction-
based. they estimate the ‘slope’ of the objective function. These methods assume
only that the relative magnitude of evaluations is proportional to the relative good-
ness of solutions. They learn a vestricted class of domminance relotions {83, 2], which
can be applied to cither a state and its siblings, or a state and its ancestors, in order
to select states for further exploration.

ay Using Pust States as Points of Reference. Certain methods target improve-
ment, rather than optimization, and are useful when the degree of optimality of a
solution cannot be computed easily. In this case, the current state is evaluated
against either an incumbent (the best evaluation so far) or an average of recent
values 84 Thus. even though the original objective was ill-defined, the goal of
fearning s well-defined, namely, to improve upon the incumbent. !

Exaraple 3 {cont’d). Learmng to Balance o Pole. An interesting approach Lo
this problem is ilustrated by the work of Morgan et al. [#5] who use structurally
local. immediate, evaluative feedback. They generate positive feedback for the part

A ———

of thie decision maker fuvoring ‘move right’

Strotegy Learnang: A Survey of Preblems, Methods, and Architectures 519

and negative Feedback [or the part favor-
jeft.” when the pole is Lo the right of vertical; and vice versa, Theim ylicit
=)

ing Imove
generated when the pole either

goal of each part is to minimize feedback, which is
leans, or changes significantly its angle of incline. When
immediately preceding state as a

changes the side to which it
the feedback is received, the system uses only the
potnt of reference in order o UMpToOve the balance.

rence. For cortain problems, espe-

by Ui tates as Points of Ref
cially those wi ction hle «
how to define a point of re
for alternative moves can be
maove that has the best {relative
arns to compare consistent

. functions measurable only over intervats, it 18 not clear

bjectiv
,if relative evaluations

oo
ference using past statos. However
obtained, then the strategy learned should choose the
) evaluation. Producing relative evaluations raguires
ly. For example, Tesauro 86! uses

& mechapism that e
comparison of board conligurations

peural networks for fearning to perform palrwise
in learning strategies for the game of backgammon.

Example 1 {cont’d). Learning Strategies for Load RBaloncing. Completion times
of jobs are important for determining the objective vahies for the load-balancng
problem. Completion time is & function of both the time geries generated by status
variables and the current value of iob-descriptor variables. The latter are unavail-
able for prediction, but their common effect can be ignored in comparing alternative
operators that represent. the migrations of the same job to alternative sites for ex-

Te perform a sensible comparison of alternatives, a reference stateé —-
ed by no load on this gite -— i used as a common reference point. Re-
hever is appropriate, 1s used for learning to
job under different loads [R7). 1

eOULIGN.
characterls
gression or tiTnE-Series Tegression, whic

compare the relatie completion times of the same

3.2 Solving the Credit-Assignment Problem

Fxact and officient algorithms for SCA (Issue 13} are svailable for a variety of
decision structures; however, approaches to the TCA problem {Issues 11, 14, and

15 tend to be ad hoe and biased.

2.2.1 Solutions to Geructural Credit Assignment

[N

The eventual goal of GCA s to modify the decision processes se that the error
and the expected outputs s recduced. Methods to achiove this

herween the actual
1 strategies. Dxisting SCA

need 1o consider the representations of solutions and
{opt one of the following three representation techniques.
ered Solutions. When the decision variables

3

goal
alzorithms a
4y Erplicit Representalion of Stru

are dynamic el the problem solver’s operators tndirect, solutions are st rictired
el consist of interdependent pperator appiications. This is particularty true of

a
svmbolic problem varinbles becanse decision rules are instantinted differently hif-
1

ferent contexts. SCA for ineh tasks nses exphelt representation of solutions, and
cweareds from the maore recent. decisions to the less recent

dietributes foedback back
cnes. An example of such technignes is poal regression (pp. 300 of (884 which 18

520 P Mehra £4 B W, Wah

particularly suitable for learning from preseriptive feedback in knowledge rich G-
vironments, In knowledge-fean environments, an approximation technique called
experimental goal-vepression [67] is more appropriate. Both techniques use the Te.
gression step, wherein new subgoals are derived from the unsatisfied preconditions
of an operator, whose known posteonditions match the current goal. If aperator
application leads to success. the preconditions of the operator are generalized either
anatytically (as in Bxplanation-Based Learning, or EBL {17 89, 90]) or experimen-
tally as in experimental goal-regression.

Example 5, Learning to Solve Simuftancous Fguations. Ported o]
use experimental goal-regression to learn heuristics for solving simultaneous Hnear
equations. The objective Is to minimize the number of terms in the equations. The
problem solver has operators that, for example, combine terms containing the same
variable, combine constant terms, cancel zero-valued terms, substitute one equation
into another, or replace an cquation by its difference with another. The symbolic
nature of terms and the indivect nature of operators give rise to structured solutions.

I their system, strategies are represented as preconditions for applving opera-
tors; these preconditions are initially set to some general test that always succeeds,
Therefore, the probicm solver initially finds solutions to given instances by search.
When a solution is found, its specific facts become the preconditions for applying
the operators involved. Parts of this solution structure may be found useful for
solving another problem instance in the future, when that happens, the precondi-
tions are generalized to accommodate both instances. The feedback signals merely
indicate the applicability of operators, and SCA uses them to modify the existing
strategy so that operators involved will apply correctly o a greater number of fu
ture instances. ||

A prablem that complicates SCA with symbolic varizbles is the combinatorial
complexity of the interactions among the variables to be considered. In this case,
strategy learning can benefit from factoring the set of problem variables into SrOups
of related variables: the simplified atgorithm is called independent credit assignment
(ICA) [88]. ICA is useful for learning from structurally local feedback.

b)) Explictt Represenialion of Decision Structures, When solutions lack strue-

ture, a commonly used method for SCA is to represent explicitly, in richly connected
networks, all possible ways in which deciston-making rules can be combined. SCA
e such strrctures consists of recording the level of activity for various components
at the time of making a decision and then modifving either the components, their
mterconnections, or both.

Example 3 (cont’d). ZLesrning to Delance a Pole. Anderson [49] uses a fead-
forward neural network [$2] to represent explicitly the decision structure of his
pole-halancing system. Bven though multiple decisions are made using the same
network, all information used for credit assignment is stored as cligibility values
with weights of the network, Weights are modified in the direetion of maore posieive
feedback, which constitutes a change of strategy, []

:hoen
Caflod
e T,
itiong
rator
gt f.h er

men-

iy
near
The
Aarme
tion
olic
Ons.
e r
2fs.
rch,
ng
for
eli-
ely
ng
fu-
-]

14]
I
138
23

Strategqy Learning: A Survey of Problems, Mothods, and Archaitectures 521

) SCA with Decision Procodures, Sometimes SCA Is nol possible because dedi-
sione are made in procedures, and even though the procedures may have modifiable

parameters, the role of these parameters in decision making s not explicit. IFor
example. in learning strategles for toad balancing (Example 1), if the migration
policy were implemented procedurally, and if the thresholds and weights used by iy
were available for modification. then some way other than traditional credit assign-
ment must be found for altering the policy. One pogsibility is to model the offect
of various parameters on (measured) performance. Using this model, SCA may
be carried put as before. Another possibility is to have a population of candidate
strategios that can be tested on different sets of nstances. The best one can be
selected based on measured average performance. Systemns that simultancously test
multiple alternative strategies are sald to be population based [91]. Population-based
learning has been found to be a viable alternative to SCA, and its apphicability is
characterized mainly by the nature of its episodes. It has been used for learning new
strategies for static load balancing of dependent jobs [92, 64], as well as for dynamic
load balancing of independent. jobs [93], and for designing suitable neural-network

configurations {94, 9

3.2.2 Solutions to Temporal Credit Assignment

TOA s responsible for disentangling the interrelationships between decisions and
feedback. When solutions are structured, the decisions are caucally related with
each other. Explicit representation of such causal relationships can, therefore, sim-
plify TCA; however, forming such representations requires complete and accurate
knowledpge of the consequences of applying each operator. In knowledge-rich learn
ing environments, such knowledge s available to the learning system in the form of
causal models. In knowledge-lean environments, there are two possibilities: the first
is to heuristically determine the causal connections between decisions [96]; the sec-
ond, to learn causal models in the course of problem solving [97]. While the frst of
these approaches introduces errors and biases into the learning process, the second
inewrs overhead during learning as well as problem solving. In general, the quality
of knowledge-lean TCA procedures is somewbat suspect. Whenever possible, TCA
should he avoided in knowledge-lean learning environments.

When problem variables vary with time, TCA requires not only o causal model
but also s femporal model specifying the natural dynamics of the external state,
Existing systems [9%, 001 often make simplifving assumptions about these dynamics
in order to simplify the model. For instance, Dean and Kancezawa [100, 24} classify
aperators into those that support the truth of a problem variable and those that
do not. 1o their model. the probability of a Boolean vartable being true increases
exponentially towards one following a supporting action. and decays exponentially
to zero (ollowing an interfering action, Exponential or memoryvless dynamics arc
tantamount to asguming Markovian representations.

In general, TCA can be posed as o problem of determining the ehigibility of o
stored decizion to receive a portion of the feedback signal [27]0 Ehgibility s come-

puted vsing the causat and temporal relationships botween the stored decision and
the Teodback signal, Thus, TCA amounts to resolving 1) whether o decision conld

hove cansed the foodbaek, and i) whether its effecrs were stitl persistent ot the
; |

529 P Mehra £ B0 W Wah

e of feedback ceneration [36]. Thus, TCA resolves the causal and temporal
dependences between decisions and feedback. For example, in the pole-balancing
problem, there is a causal dependence from a balancing decision to the state fol
Iowing it. There is also a temporal relationship, namely, the effect of a decision on
a state decays exponentially with fime. Typically, the causal component is usoed
in an all-or-none fashion. to determine which decisions are at all eligible to receive
feedback. On the other hand, the temporal model 1s used in the actual division of
ferdback beeause it provides a numerical cligibility value for each deciston. Existing
TCA algorithms [ollow three general schemes for representing and resolving decision
interactions; these are described next.

a) foplicit Reproscntation of Causal Dependence. Whenever a problem solver
produces structured solutions, te., a mumber of dilferent operators confribute to the
rowarded state(s) of the external envirenment, TCA ecan use the causal dependence
to identify candidate decisions for receiving a share of the feedback signal. In certain
cases [12], the depth of a decision in the causal chain, as well as its distance from
the current state, are used for computing a numerical eligibility value.

Fxample 5 (cont’d). Learning to Soluc Simultaneons Equations. A solution to
a given set of equANIONS COMPrises NUINCTOUS OPerators applied one after another.
Tnitially applicable operators, such as substitution and differencing, lead to states
in which later operators, such as operators for combining variables and coustants,
can be applied, The causal dependences between earlier and later operators do
not necessarily apply to all pairs of operators in the sequence. Structured repre-
sentations, such as trees and graphs, are better at capturing the necessary causal
relationships. More importantly, unlike the aforementioned sequence, these do not
imply any unnecessary dependencies. The feedback for a solution can be distributed
either equaliv to all decisions that are causally connected to it [11], or proportion-
ately based on the distance from the decision to the final state [67]. |

by Erplicit Representation of Deciston Structures. Tn systems with common al-
gorithms {or SCA and TCA 101, 102], learning can be simplified if the solutions
do not have an internal structure. As noted above, such systems represent Lhelr
decision structure explicitly, which includes all plausible interactions among deci-
sion rules. The algorithms proposed for computing the eligibilities of parameters
in these rules are variants of Sutton’s Time Difference (TD) procedure [70]. which

have Been shown to be rational {or problems satisfying the Markovian property

Example 3 (cont’d). Lewrning to Balonce o Pole. Barto et al, [27] use a stmple
poural network as the P8 component of their learning system for pole balancing.
Feedforward neural networks are explicit decision structures. (Certain other control
architecinres [103] employ recurrent networks, which cannot be considered explicnt
decision structures becsuse the full context of decision making is not stored in such
a structure.) Because of the Markovian nature of the representation used by the
T8 the temporal dependence between decisions and fecdback follows an exponen-
tinlly decaying pattern. Sutton [70] has shown that, for Markovian representations.
oligibility can be updated incrementally, Since no additional information from past

Doral
neing
e ol
1) 43 on
used
Ceive
on of
sting
1510n

3l vor
) the
Crice
tain
rom

1 to
ey
hes
LN
o
e
sal
101
od
M-

1]
ng

Strategy Learming: A Survey of Problems, Methods, and Architectures 523

gtates andfor decisions is requited, the eligibility values stored with cach weight

contain suflicient information for TCA.

) Scoping of Dectstons. This approach is characterized by a dynamic history of
i5 especially suitable for problerus having cithor multiple or

past decisions [36] and
structured objectives and time-varying problem variables. Like the first approach
ahove, it keeps an cxplicit record of decision making: and like the socond, i com-
pULEs numerical eligibility vaines. However. instead of associating eligibility values
with decision parameters, it associntes them with decisions themselves. The essen-

tial information with each decision 1s its scope: if a feedback signal falls within a
decision’s scope, then this decision i3 eligible to receive a portion of the signal. Two
types of scope information are usod.

Clausal scope can be used for separating decisions pertinent to each component
(when several components of an objective function can be computed independently)
or each objective (when multiple objectives are evaluated by the same fredback
signal}. Causal scoping can prevent decisions from receiving a share of the feedback

ed purely by the natural dynamics of the external state.

Cal

Example 1 {cont’d). Learning Strategies for Load Belancing. The decision 1o
migrate a job has the aifect of reducing the load at the originating site and of in-
creasing the load at the destination site. The cansal scope of a migration decision
includes only those other decisions that made use of information about the load
at either the source or the destination site. When a job finishes, its completion
time is evaluated against the case without load balancing, and an evaluation of the
scheduling decisions generated based on such evalnation. A decision is ehgible to
receive a share of the fesdback only when ite causal scope includes placement or

migration decisions regarding the completed job.

Temporal scope {or cotent). A state or a decision i said to be in the temporel
exiont of another (earher) decision if the offeets of the latter persist until the oceur-
rence of the former. When the external state of the enviremment is fully controfled
by the problem solver, decisions can have an infinite extent. More often though,
decisions have a finite temporal seope and can be discarded from the lustory ot
past decigions withont affecting learning. In addition, the learner can model the
persistence of each decision (the degree to which a decision affeets a feedback signal
that ocours within the deasion’s extenty. Such a temporal model may take several
formes, When objective functions evaluate states independently {usually for Marko-
vian representations). and when decistons affect the external state immmediately. a
temporal mmodel specifying an exponentially decaying persistence i5 quite adeguate.
In more complex environnents, where objective functions are evalnated over inter-
vals or where decisions tuke effect after an initial delay, more complicaied temporal

models may be needed.

Example 1 (cont’d}. Learning Strategics for Load Balancing, Migration of 4 job
causes load changes at both the site of origin and the destination site. Thie offects
are felr while the job is executing: after a job linishes execution, (ture decistons

mad4 . Mehra &5 W Wal

are not affected by ihe migration decision in gquestion. In this sense, migration
decisions have fingle ternperal seopes. Within its temporal scope, a decision’s porsis-
tonce initially increases while the job is being migrated, then stays high during the
job’s iifetime, and drops quickly to 2ero again upon completion. When a migration
decision is determined using causal scope to be a candidate for receiving feedback,
it i piven a portion of the feedback signal proportional o its persistence at the
time of fecdback. .-

3.3 Prediction

Prediction problems are inherent to performance tasks having time-varying inputs
(Issues 1 and 15). A number of approaches, each with its own advantages and
disadvantages, are available in (he literature. Various factors affecting the cholce
hetween these include 1) on-line versus oflLline learning, it) numeric versus symbolic
problemn variables, and iii) dynamic versus static decision variables,

3.3.1 Temporal Difference Methods

Temporal difference (TD) methods originated in carly literature on dynpamic pro-
gramming and problem solving, and methods retated to learning were studied for-
malily by Sutton [7GL The casemitial idea of these on-line methods is to rewrite the
total error of prediction as a s of differences between successive predictions. If
the problem solver uses Markovian representations, numeric problem varizbles, and
direct objectives, then the error of prediction can be minimized by reducing the
error between sucoessive predictions (69, 30].

Example 3 (cont’d). Learning to Balance a Pole. A popular class of strategy-
learning algorithms, Known as ACE/ASE, [27, 104] use TD methods to predict the
discounted sum of all future evaluations at each time step while simultancously us-
ing the difference between successive predictions to modify the predictor. (Iu the
computation of this ‘discounted’ sum [68], immediate evalnations are given exponen-
cially preater weight than their suecessors.) The predicted sum of future evaluations
can be used instead of missing external evaluations as the internal feedbaclk, thereby
solving the TCA problem. The error of prediction 1s divided between prediction de-
cisions using a recency weighting [70]: older predictions incur expenentially smaller
errors than recent prodictions when computing the current difference between Suc-
cogsive predictions. This is a sustifiable heuristic for Markovian representations and
instant-evatuated fecdback, both of which are true of the pole-balancing problem. W

3.3.2 Time-Series Analysis

This refers a large class of approaches that build models using sequential periodic
{therefore, synchronons) observations of time-varying paraneters, and predic bhased
on these models. Time-series methods have been developed by researchers in siatiss
tics, neural networks, and controb. In general, these are aseful for predicting e

Strategqy Learning: A Survey of Problems, Methods, and Architectures 520

states of learning prablems having numeric problem variables and statie decision
variables.

Time-series models developed by staristiclans [105. 23] comprise 1) trends: linear,
polynomial, and exponential dependence on Lirme; 1) periodic components: as found
by frequency-domain analysis of & signal and 1) randem or nnmode
of environmental processes. Statistical time-series analysis techniques tensd to be
off-line and require more complex computations than on-line ones, such as the T
method desceribed above.

Nonlinear recurrent neural networks [L06] can be used for time-series prediction.
Hewever, they have not been popular in stratogy-learning systems due to the unre-
solved problems of instability, poor convergence, and chaotic behavior. Somoewhat
more success has been obtained with TDNNs (time-delay neural networks) [107}
which are non-recurrent but simultaneously examine several delayed values of prob-
lem variables along with their current values. Both recurrent and non-recurrent
neural networks are capable of on-line learning,

While the methods described above are applicable to prediction in the absence
of prior knowledge. problems with numeric time-varying parameters, Markovian
representation, dynamice decision variables, and knowledge-rich environment can be
solved using Kalman filtening [108]. Kalman filtering is an example of stale-space
methods developed by control theorists [109]. Is predictions as well as its model of

ed dynamics

environmental dynamics can be updated on-line n straightiorward steps.

Example 1 {cont’d). Learning Strategies for Load Bolancing. The status vari-
ables in load balancing, namely, the levels of utilization on various resources, vary
with time and often exhibit periodic (stationary with time) behavior as well as local
trends (norn-stationary behavior). These characteristics are due to the fact that the
background load is pencrated by a process pepulation whose rate of change is slower
than the sampling rate of status variables. Statistical timne-serics methods such as
ARIMA rmodeting [37) are useful for identifying trends in these series, which can
then be used i making short-tenm predictions of future load,]

3.3.3 Projection

Mothods of temporal projection were developed as part of temporal-reasoning sys-
tems in Al These employ o technique called forward chaining: the curreni state of
tlie world and a set of rules that fire therein generate new facts that characterize
a possible next state of the world, Using these new worlds, one can continue o
reason amd to get a twostep-ahead prediction, and so on [100, 110]. Heuristics of
preference [24, 68, 99] are needed for narrowing down the space of possible worlds.
Time, being a conbinuons quantity, dees not easily lend itseif to modeling with dis-
crete event-based symbolic ropresentations except when problem variables do not
chanee outside the control of the problem solver. Projection methods are, thoere-
fore, applicable 1o symbolic {hut not thme-varving) problom variables and dyvniamice
decision variables. Dean and Siegle [F11] have proposed approachies thiad cin reason
syimbolicatly about nataral dyvnamics specified using dillerential cguations.

526 P Metrn 8 B0 W Weh

Strategv-learning svstems for symbolic problem variables and dvnamic decisiog
variables in time-varding environments commonly gse reactive rather than pro.
active approaches. Such nmthodn‘ are known as reactive planning [53, 55, 54,
ard learning from failure (112, 113, 481 In some sense. these approaches ignore this
natural dyvnamics of f’-vlmnmonmi processes and predict {using chaining) only ﬁiﬁ
cansal dynamics of the process.

Example 2 (cont’d). Learning to Sieer a Ship. Alt hough the ship-steering probe
femn involves decision-making with thoe-varving problem variables, there is little
time for the problem sslver to search in the space of solutions. Instead, the probe
lem solver uses a cansal model that relates ibs control inputs and resultant states, ;
The model is {earned from observation hy relating patierns in recent control actiong
with patterns (trajectories) in state variables following these actions. It is t - used
in chaining to determine action sequences that will reach a desired state fro..
current state.

3.4 Exploiting the Markovian Property

mctions that are either well-
sue 3. Some of these well-
- for these. in the presence of

Markovian representasions often accompany objoctive

dedined or ill-defined and measured over instants |
defined funetions satisfy the path-independence axio:
deterministic stratepies, tmmediate feedback, and o slete knowledge of state tran-
sitions (knowledge-rich environment), the optimal sclution can be computed using
dynamic programming 42, 114]. Similazly, for ill- asfined functions, the objective
of maximizing the [possi)iy discounted sum of future evaluatious is also amenable
to dynamic programming [68), Variants of this procsdure exist for knowledge-lean
environments as well as for problem solvers with stoonastic strategies {1 15}, In this
section, we discuss Uiree different dynamic-programming formulations for strategy
lcarning. Note that these formulations are limnited ™ their requirernent of a fipite
nmber of states and sheir high complexity in the rresence of a large state space.

3.4.1 Dynamic Programming (DP)

Approaches based on pure DP are suitable for knowlsdge-nich environments, sym-
bokic or discrete probism variables, and Markovian sapresentations. When the as-
sumptions of DI are satished, the optimal stratess can be computed given the
objective function (defined (nhox as utility or as cos” and a causal maodel of the en-
t the space of possible

vironment. However. Mt.lmut additional hearistics © restr
v to harness this complexity 18

solutions, DI? is too complex to be practical. One w
by learning dominance relations between states [117 0 whicn can be used to prune
moves feading to suboptimal states.

Example 4 (cont’'d). Learning Strategies for the Jowers of Haner Problem, Dy-
namic programming can be applied when the obloove = -0 find a solntion that
transiorms the initial state Lo the goal state in - minirm namber ol moves

.- — . L . E e
Stnee operatars appled resuit n deterministic ¢hoo i te toe problem state. D

Strategy Learning: A Survey of Problems, Methods, and Architectures 527

can ho uscd. {For probabibistic transitions, the SDI7 algorithin deseribed nexu ean
be taed.) The frst step is to set up the functional equations of dynamic programn-
ming [117], which define recursively the optimal cost of the final state(s) in terms
of the optimal costs of the preceding states. In the Towers of Hanol problem. there
are two possible preceding states: either the smallest disk was moved from the left-
most tower or the middle tower. The optimum cost of each of these states can
again be computed nsing stmilar recursive equations. Depending on which preced-
ing state achieves the minimum cost in the recurrence. the optimal solution can be
constructed. The major drawback of dynamic programming is that it may require
computations exponential n the number of problem variables.]

Dynamic programiming cau aid strategy learning by generating complete op-
timal solutions to certain specific instances; one can then use credit-assignment
procedures (8] or generalization techniques [72] to generalize these solutions to new
poal states as well as new instances.

3.4.2 Stochastic Dynamic Programmming (SDP)

When a problem solver’s strategy is stochastic, so is the evaluation of the solution.
In this case, it is not possible to say whether one policy is better than ancther
for a given instance; instead, one needs to consider the expected evaluation of the
policy rather than its exact evaluation [14, 118]. Methods analogous to deterministic
DF can be used to compute the optimal strategy. Stochastic dominance relations
between states {2] compare their expected evaluations rather than the exact ones,
and help limit the complexity of SDP. Their use leads directly to a method for
refining strategies called policy iteration [68]. However, like DP, SDT also requires
extensive knowledge of the environment and a well-defined objective function.

Example 6. Learning the Optimal Route te o Goal around Barrmers on o Grad.
This is the route-finding problem discussed by Barto et al. [14] in their review of
exact and approximate methods for SDP. The performance task has an i-defined
but, measurable objective of reaching a target location on a two-dimensional grid,
starsing from a given location on the grid. Tt also has an il-defined consiraint
that the path should not cross certain initially unknown barrier locations. The
environment produces an immediate feedback signal whose value is — 1 for all states
except Lthe goal state. The problem solver has four operators (whose preconditions
are unknown but effects are known): one cach for moving up, down. left, and right.
The problem solver's state neludes information about the current location on the
grich. The state space s Markovian, and the operators, direct. The problem solver's
strategy is stochastic, associating a probability of applying an operaior with ench
state. Bquivalently, the strategy defines a Markov chain on the staie space, where
transitions are possible from cach state to one of its four neighbors. No transitions
are possible out of the goal state.

With cach stratosy, SDP associates an evalualion function that allows one to
compitte, for each state, the expected number of steps to the target using the cur-

ront shratepy, As in deterministic DPDone can translate the optinmalicy of stratesies
o the oplinality of their respective evalnation functions [1 18], SDIP also per-

528 P Mehra £ B W, Wah

mits one to set up a recurrence equation for computing the optimal path lengih
with a k-step lookahead in terms of the optimal length for (F — 1i-step lookahead,
Once the optimal evaluation function is computed by solving this recurrence, the
optimal strategy simply picks the action that optimwizes this function at each stop. B

3.4.3 Heuwuristic Dynamic Programming (HDP)

HDP [119, 115, 21) iz applicable in knowledge-lean environments where a complete
model of state transitions is unavailable. As discussed before, DP derives an optimal
strategy by first deriving an optimal evaluation function from a partial enumeration
of the search space. HDP, on the other hand, works for problems with ill-defined
objective functions by estlinating an optimal evaluation function and an optimal
strategy. In the absence of extensive knowledge of state transitions, the learned
evaluation function and strategy can only approximate the optimal ones.

Example 3 (cout’d). Learning to Balance a Pole. The basic idea of HDP is
to use a generabization of temporal difference methods to predict the sum of all
future reinforcements. At any point in time, the prediction process is adapted so
it. will predict correctly the sum of the next state’s prediction (using the current
predictor), the external feedback received in that state, and an appropriate negative
constant (to keep the sum of {uture reinforcements finite) {119, The prediction at
the next state using the current set of weights becomes the apportioned feedback
for the current decision. The necessary strategy modifications for SCA can then be
sarried out using this feedback. u

3.5 Constraint Handling

Problem solvers take two distincet approaches to constraints: 1) by satisfying them
explicitly, and it} by incorporating them into the solution procedures (Issue 7). Ac-
cordingly, strategy-learning systems can modify either the operator-selection pro-
cedure or the objective function in order to prefer moves that generate valid states
rather than those that generate invalid ones, A common solution is to induce a
maodel of the feasible region from empirical observation of feasibility and infeasibil-
ity of various states. The model (like soft constraints) may then be incorporated
into the objective function as penalty terms. Soft constraints can often be incorpo-
rated as (positive) penalty terms added to the objective function of a {minimiza-
tiony problem (1201 Unknown or itl-defined soft constraints are handled just as
unknown or ill-delined objectives. In contrast, hard constraints must be modeled
exphicitly [74] so that the learning svstem does not over-generalize from limited ex-
perience. Techniques such as Lagrange multipliers [120] are useful for incorporating
hard constraints into objective functions during problem solving. However, they
ingrease the effective problem size and, therefore, the complexity of the problem.

VAT
o1
rel;
sat
fin
Vi
be
red

e

'ng{h
1ead.
) thf’
. M

lete
irial
1tion
ined
14k
roed

s
f all
d so
Tént,
iive
at
hack
n he

hert

Ac-
Dro-
Abes

X~
Ling
hey
n.

Strategy Learning: A Survey of FProblems. Methods, wnd Architectures 5H2g

3.5.1 Constraint Satisfaction

Constraint-satisfaction procedures for learning with gymbolic (discrete) problem
variabtes are typified by explanation-based learning (EBL) methods in which gen-
eralization is performed by retaining the structure of a known solution and by
relaxing the conditions under which the structure applies. In this case, gonstraint
atisfaction can reduce the space of sotutions significantly. General techniques for
finding feasible solutions for constrained problems with discrete-valued problem
variables arve surveyed by Nadel [121]. Techniques based on truth maintenance can
be used to enforee symbolic constraints during decision making and learning. (See
reference [122] for an overview.)

Constraint-satisfaction approaches for learning with continuous variables induce
& model of the feasible reglon and use it to perform constrained optimization dur-
ing both decision-making and learning. Examples include explicit search for feasible
solutions, and subsequent training of decision makers using such sclutions as ex-
amples [123] Methods for constrained optimization of continuous functions are
reviewed by Walsh [120] and use projection of infeasible solutions to the nearest
point in the feasible region. Such methods are applicable enly with well-cefined
constraints, but allow great flexibility for the strategy learner.

Example 4 {cont’d). Learning Strategies for the Towers of Hanot Problem. The
constraint, that if a disk A 15 on top of another disk I3 then A must be smaller than
B, is part of the domain theory. New states are generated by applying operators;
ihose that violate this constraint are simply inconsistent with the domain theory.
Upon detecting that the state resulting from she application of an operator meets
a1l other constraints excepl this one, the problem solver may postpone applying this
operator until the constraint can be satisfied. In ihe meanwhite, the problem solver
may attempt to satisly this constraint by setting up alternative subgoals {72 W

1.5.2 Constraint Incorporation

When the problem variables are numeric, constraints can be incorporated into the
olyjective funclions as penalty terms. Jordan [103] describes one approach for incor-
porating constraints into the SCA process and another for incorporating constraints
into the cost funetion, [is approaches work for a variety of munerical constralnts
in both knowledge-rich (comstraints are explicit) and knowledge-lean {constraints
lable bnplicitly by randem sampling) environments. Similar approaches
ler the rubric of knowledge compilation. An exambple ig the tost-
boof Dictterich and Bennett f124}. The drawback of methods
he objective function and

arc avad
ara discussed un
incorporation approac
i this class s that different relative importance given to
comatraint torms leads to differcnt optimal solutions.

Learning the Optimal Foute Lo o Gounl around Barriers on
that their violation
to the borper.

Example 6 (cont’d}.
a (Trid. I this case, the constraints are Modefined in ithe sense

can bo detected only when the problem solver attenipls to nove 111

S0 . Mehva ¥ B, W, Wah

The net effect of constraint violation is the increased cost of solutions because infea-
sible moves cause no change in state and are, therefore, wasted. Thus, by optimizing
the cost function, the problem solver learns to avoid barriers automatically. B

3.6 Managing a History of Recent Decisions

Available solutions Lo this problem use cither the episode structure of problem in-
stances [11, 13] or Markov property [49, 125] to limit the amonnt of information
stored (Issues 8 and 9). When the problem variables do not vary with time, the
stase of the external environment does not change outside the control of the problem
solver; in this case, the episode ends when the final feedback signal related to this
instance is received. This feedback 1s used either for modifying the decision process
via credit agssignment, or for assessing the importance of the current solution path.
In some cases, entire solution paths, or generalizations thereof, are retained for solv-
ing similar problem nstances in the future. Examples include analogical learning
systems [126. 127], that retrieve and then deductively transform old solutions for
solving new problem instances.

When the problem variables vary with time but their distributions are station-
ary, a learning system may still be able to converge to an optimal control strategy
in either an absolute sense (for deterministic variation) or an average sense {for
stachastic variation). One may congider such convergence as the end of an episede.
Freqguentiy though, either the length of episodes or the non-stationarity in the envi-
ronment preciudes storage of complete solutions. When Markov property is vielated,
now states and decisions must be added or removed continuously from the history.
A simple solution is to keep a fixed window of past states and decisions; see, for
example, the discussion of Lin’s pole-balancing approach in See. 3.1.1a.

Sutton [70] proposes the use of a scalar ‘eligibility” value for each modifiable
parameter of the decision maker. Holland [128] maintaing a ‘strength’ parameter
with each rtule, which represents the average credit received by that rule over sev-
eral problem instances. Thus, scalar indicators of eligibility can be associated with
either individual parameters or rules. Yet another option is to associate such indi-
cators with sach decision stored in the history {75}, When past state information 18
the trace of o time-varying problem parameter, time-series methods similar to those
nsed for learning objective funcitons may be employved for automatically construct-

ing ahstract problem variables, which can then be used in decision making [44].
The naive alternative — to maintain the full state veclor and associated decision
variables and to process feedback signals usimg prior knowledge — is both expensive
and unsuitable for knowledge-lean envirenments.

Example 1 {cont’d). Learning Strategies for Loud Baloncing. Load-balancing
decisions have finite temporal scopes (Section 2.3.1). The non-Markovian learning
problem requires decisions to be kept until feedback is received. Decisions with

expired temporal scope are not aligible for feedback and can be deleted {14] =

infeq-
Nizin g

i in-
ation

the
blem
3 thig
OCESS
hath,
solv-
ning
s for

1OT-
Legy

{for
ode,
Tvi-
Led,

ory.
for

vhle
er
V-
ith
-
118
DEe
[
ia;{j'
on
Ve

'
g
th

Strategy Learning: A Survey of Froblemns, Methods, and Architectures 531

3.7 General Problem Solving and Learning

Systems for general problem selving requires symbolic-ressoning capabilities (Is-
ques 10 and 2), irrespective of the nature of problem variables. Such systems
are capable of general strategy learning, although extensive amounts of explicitly
stated task-specific knowledge arc needed. The techniques used by such systerns
include knowledge-compilation methods, such as macro-operator formation [72],
chunking {129, 1304 and procedure learning [131]. The archetypical system m this
clags is S(}»’\.R [lg_Z} which can learn strategies associated with arbitrary problem
spaces defined by objectives and constraints using symbolic variables,

As for generalization 1o other instances of the same per formance task variables
that occurs spontancousiy, those tasks that have symbolic problem variables must
gonera,!:?{—“ explicitly, using algorithims such as AQI1S [133] and the version-space
method [134]. The AQ15 algorithm is more powerful of these two because it allows
instance descriptions to have both symbolic and numeric components. Specifically,
these algorithms can be used for generalizing preconditions of eperators upon suc-

cess and specializing them upon failure.

Example 7. SAGE.2: A General Learning System. Langley [8] demonstrates
his SAGE.2 system on the Towers of Hanol {Example 4) and five other learning
problems. This program employs general-purpose learning rules that allow it to
characterize good solutions in many domains. For instance, one such rule takes a
complete solution tree and characterizes the states on the path from the initial state
to the goal state as good. while characterizing all other states as bad. Yet another
general learning technique specializes praconditions of operator-application rules so
that a rule will fire only when its firing does not result in a bad state. The same
general rule is shown useful in learning strategies for several diverse problems. M

The techricues deseribed in this section resolve most of the igsues rased in
Saction 3. Tables 7 and & together describe how to handle the issues relevant to our
running examples. Consider, for instance, the load-balancing problem. Knowing
that its objective function is ill-defined and measurable over intervals and that
absolute evaduations are unavailable, we should apply time-series regression using
an alternative state as a point of reference in order to address the ill-defined nature
of its ohjective function. For the shipgstoering problem, which requires symbaolic
prodiction of the ships trajectory, the temporal-projection methods of Al are the

appropriate tec hntgue.

To summarize, we have presented in Sections 2 and 3 a general method for tden
tifving the issues and techniques relevant to any given st ategy-learning problem.
We first characterize the problem using various attributes of its per rformance task,
problem r’soiw‘,r, and learning environment. This allows us to focus our attention
on issues relevant to learning strategios for that problem type. We then select ap-
propriate methods for addressing those ssies. Next, we exatnine different wavs of
building an operational learning system ont of the building Blocks described above.

532 P. Mehra & B. W. Wah

4 Architectures for Strategy Learning

Figure 2 shows the basic information fiow of a strategy-learning system. The type ¢
strategy-learning problem(s) targeted determines the method used for implementing
the strategy-learning system. In this section, we show four different architectures
for strategy learning, each motivated by a different class of learning problems. Thi
first three models considered here are point-based in the sense that they keep track
of one point at a time in the space of possible strategies; the final model considere
here is population-based in that it simultaneously keeps track of multiple sirategies

4.1 Knowledge-Based Model

Learning systems developed in the areas of cognitive science and artificial intel-’
ligence tend to have knowledge-rich learning environments and synchronous, de-
layed, prescriptive feedback. The structure and operation of many of these learning
systems can be described, as in Figure 6a, using the knowledge-based model of
strategy learning. This models fits well the models described by Dietterich and
Buchanan [1, 23}, Langley [8], and Smith et al {135].

The performance tasks of interest are characterized by 1) symbolic problem vari-
ables whose values do not vary with time, ii) well-defined objective functions and
general problem solving, and iii) well-defined hard constraints. The problem solvers
usually employ rule-based deductive techniques using static deterministic strategies,
indirect operators, and non-Markovian representations. The learning environment
is information-rich where background knowledge of the problem domain abounds
and the learning system attempts to exploit it by learning a lot from each experi-
ment. This knowledge often takes the form of causal models relating preconditions
and postconditions of operators.

Since objectives are well-defined, none of the issues caused by ill-posedness of
objectives (Table 7) are relevant here. The problem solvers handle dynamic deci-
sion making and prediction of future states by deductively reasoning with the causal
models. Because problem variables do not vary with time and because of the avail-
ability of background knowledge, the problem solvers employ static strategies that
generate entire solution sequences at once. Structured solutions caused by indirect
operators are explicitly represented, upon which SCA is performed by regressing the
explicitly defined objectives through the causal model of operators. Temporal credit
assignment is performed by explicitly representing causal chains linking states and
decisions. History management is done by storing complete episodes. Constraints
are handled using constraint-satisfaction approaches.

The credit-assignment modules make extensive use of stored knowledge both
to relate the external feedback to objectives and to determine the preconditions of
operators responsible for the current feedback. The learning system uses an inter-
nal model of the problem solver to edit strategies. Retention of complete solutions
permits the use of symbolic learning techniques, such as syntactic generalization
of stored solutions and formation of macro-operators. Syntactic generalization and
credit assignment based on abductive reasoning permit systems based on this model
to generalize substantially from each example. Rule schemata, which can be derived
using only a few episodes of successful problem solving, capture the common struc-

provides preserptive
feedback

Sequence ol
decisions

>

£ Knowiedpe-inensive,

Strategy Learning: A Survey of Problems, Methods, and Architectures

533

Feedhack and Strategy-Learning System
Background - -
krowledge FTCA: Henlify possible

causes: heunsnealty
I— distnbute foedback
among decisions 1n
solution seguence

SCA: Ldentify operator-
preconditions 1o spoecializes
penerzlize based on
preseripive feedback

{

'

Store complete

PEPeriorms dedu‘.hvﬂ

I’(‘.:IS{IHITEL, using

P e J——

causal modets

-

episades of problem
solving

Unify recommended changes
int feasible modifications
and edil the knowledge basc

{/\‘ .

\[)

mm_},___-_,»

TN

Variahles, .
Objectives, Modified struiegy
Constraints
{a. Knowlodge based model of strategy-lcarning systems
B Feedback and Strategy-Learning System
5 Knowledge-lean, Backgrownd
proviges evaluarive knowledge TCA: Adaptive eriic SCA: Associmive leamning
fcc.dbai.k O predicts delayed L go| of correlations between
£ feednack action and reward
Single * *
decision ~~ Masmtaie an cligiiniily Local additive changes o
"“‘”C iy - velue per decision-tule . .
y decision-rule paramelers
T - purameter
P& Applying fixed decisinn ;| Lo
7 » SO S WA SUMCIUTES 11 fespuse My ~
10 run-iime slates \})
Variabtes,
Chicctives. Muodified strategy
Consirainls
(b) R inforccment—learning model of learning systems
[Feedback and Strategy-Learning System
£ Knowledge-leaw, Background T
provides cvaluulive knanwleidge TCA: U“:j heurislic SCA: Associalive fearning
causal end temporal | - l=tions b
e 12: _c_d_?_‘f_'_k _____ __) U mndels 1o wdenti fy - of u?n‘c ations hetween
4 cliginle desisions actions and feedback
dﬁ;;g;i“ | Dynamically manage Laual additive changes to
E S—— —— . i i
N history information deeision-process purameters
using temporal $C0|
- Run-time decision making m N ;
on non-bMarkovian mzl:s}'“ \l)
Varables,
Crbjectives,

Constrainls

Modified strutegy

{¢) The hybrid point-based model of learning systems

534 P. Mehra & 8. W. Wah

Feedback (measured performanice)

»- ITproved
.. Policies

Heuristics Manager:

£ Knowledge-fean, 1 Point-Based

provide evatuative [V 7" Tearaing Modute j:{{{!"jidb Generate new slealegies knowt
feedback J : ; and maintain partial orde R
sy S : based on the siategy partial order duee !
: ! of aggregate performance fut
Single . : hybrid model of candidates of fut
decision T () T 'ZDL — . R— assig[
2. Variables, 1 : [} Camdie - feedf
Objectives, e O o Perfarmance Computation: 3 di
Constraints &: Run-lime decision : Resaurce Scheduler: Normalize and record per- and |
e making o ron- /| Perforn tradeoffs between ot formance of candidates: relev
ngbia-ﬂ(ja:_nan states gengmtitm, testing and Compule aggregate per- g
- — ¢ | madificauon L formance of candidales
B edge
Test cases (selected problem nstances) 1
and candidale strategy f INTEGRATED STRATEGY LEARNING §YSTEM SOV
,,,,, rela
(d} Population-based model of learning systems imp

arc]

Figure 6: The four strategy learning architectures.

Th

. .. . nO

ture of observed solutions; their preconditions are the maximally general conditions st
under which the operators of the common structure may be applied. be

4.2 Reinforcement-Learning Model

Learning systems in the areas of control and decision theory are expected to oper-
ate in knowledge-lean learning environments. Techniques developed in these areas
generally employ statistical methods to identify models, and estimate their miss-
ing parameters. Knowledge-lean environments usually produce evaluative feedback ‘ .
which, in the presence of titme-varying problem variables, makes TCA the principal
problem. The common characteristics of systems employing statistical methods for
learning are well represented by the reinforcement-learning model of strategy learn-
ing (Figure 6b). This model underlies the AHC/ASE models of Barto et al. [27] as
well as the reinforcement-learning model of Minsky [9].

The key characteristic of the strategy-learning problems of interest here is that
the representations employed by the problem solver satisfy the Markov property and
states can be evaluated independently of each other. The performance tasks of in-
terest are characterized by i) numeric, time-varying problem variables, i) dynamic
decision variables, iii} ill-defined and specific objectives, and iv) soft constraints.
The problem solvers employ stochastic, dynamic strategies, direct operators, and
Markovian representations. The learning environment is knowledge-lean and feed-
hack is delayed, evaluative, and asynchronous,

The objective-function learning problem is solved by learning evaluation func-
tions of states; the standard-of-comparison problem, by comparing future states
against the current state; and the problem of learning while searching, by the use
of stochastic strategies whose randomness is reduced as learning progresses. The
prablem solvers perform dynamic decision making by exploiting Markov property

Strategy Learning: A Survey of Problems, Methods, and Architectures 335

pick (with high probability] the maximum-utility move at each decision point.
he soft constraints are handled using constraint-incorporation. Temporal credit
signment in this model is characterized by its use of feedback predictors (also
own as adaptive critics or sccondary reinforcement devices), which learn to pro-
wce internal feedback whenever the external feedback is delayed. Such prediction
future feedback often employs the TD methods of Sutton [70]. Structural credit
signment is performed on static decision structures (typically maintained using
feedforward neural networks {136, 49]) using the back-propagation algorithm (82]
4‘ d its variants. Since Markov property holds, history-management issues are not
relevant here.

Statistical methods are useful as ways to bootstrap learning without prioer knowl-
edge, but such {associative) learning techniques require a large number of problem-
solving episodes. The amount of information extracted from each example is small
relative to the knowledge-based model. That causes slowness of learning, which is an
important factor behind several recent proposals for hybrid reinforcement-learning

architectures (125, 34].

4.3 Hybrid Point-Based Learning Model

The hybrid point-based learning model (75, 36, 44] (Figure 6¢) was motivated by
non-Markovian strategy-learning problems in knowledge-lean environments. The
standard reinforcement-learning model is not directly applicable to such problems
because it lacks both the knowledge and the reasoning mechanisms necessary for dis-
tributing credit among explicitly stored past decisions {30, 80]. Usually, knowledge-
lean environments are accompanied by ill-defined objectives and evaluative feed-
back, both of which preclude the use of the knowledge-based model.

In the hybrid model, the states and decisions are recorded in a dynamically
managed history as decisions are made. Temporal models, containing information
about persistence and temporal scopes, are used in history management as well
as in TCA. Causal models are used only to identify candidate decisions during
TCA. Relative to the knowledge-based model, the causal mode] used here can be
heuristic and less detailed. Unlike the standard reinforcement-learning model, the
hybrid model cannot integrate solutions for TCA and SCA into the same algorithm:
instead of associating eligibility values with modifiable parameters of the problem-

solver’s strategies, it associates eligibility values with individual decisions in the

history.
When feedback becomes availlable, the candidate decisions are first identified

using the heuristic causal model; the eligibilities of individual decisions are then used
for proportional assignment of credit/blame among decisions. SCA is performed on
the explicitly stored portions of solutions. Examples of systems employing the
hybrid model include Samuel's Checker Player [29], Widrow, et al’s truck-backer-
upper system [65], and learning systems based on genetic algorithms {137, 138].

4.4 Population-Based Learning Model

All the models described above employ point-based search in the space of strategies,

uging credit assignment 20 modify the incumbent strategy based on feedback, and

536 P. Mehra 8 B. W. Wah

either stochastic strategies or explicit perturbations to explore the search space. Tha
fundamental idea in population-based learning {91} (Figure 6d) is to use populations
based methods for probing the strategy space at several points simultaneous]
Starting with an initial pool of candidates, this model admits several ways of gen.
erating new candidates: i) grernmar-based, in which problem-solving strategies are
generated as leaves of a phrase-structured grammar; ii} perfurbation-based, in Wh!(‘.h
randorm or systemadtic perturbations are applied to the incumbent strategy to obtain
new candidate strategies; and iii) performance-based, in which credit assignment ig
used either for modifying the incumbens or for updating the pro:.. it 7 r,elect,ingv
one of the candidates generated.

The population-based model is characterized by its resource scheduler, which
rationally divides learning time between generation, testing, and modification. It
honors deadlines on learning time. In order to make rational and effective use of
the limited time, it uses the theory of sequential selection from statistical decision
theory [139). However, this theory applies under certain restrictive assumptions
on the distributions of objective-function values over the populations of problem
instances.

Population-based learning works well when episodes are short, experimentation
is inexpensive, and the environment too complex to model. This model targets
breeding and selection of strategies instead of modification. It, therefore, avoids,
credit-assignment problems. The standard-of-comparison problem is solved by ei-
ther comparing strategies on an instance-by-instance basis or by normalizing the
performance of all strategies with respect to the average performance of a baseline
strategy. Objective-function learning is achieved via a statistical sampling process
that seeks to estimate the mean and variance of a strategy’s performance. The
degree of confidence sought is just enough to allow the learning system to minimize
the risk of choosing a bad strategy due to insufficient testing.

Population-based learning has been used to learn strategies for static load bal-
ancing with dependent jobs [92], dynamic load balancing with independent jobs [38],
VIS test generation [140], and stereo vision {141}

Table 9 summarizes the characteristic features of the four architectural models.
Table 10 reviews their applicability to the strategy-learning problems described at
the end of Section 1.

5 Conclusions

A strategy-learning problem is a triple comprising a performance task, a prob-
lem solver, and a learning environment. Performance tasks are characterized by
their variables, objectives, and constraints; problem solvers, by their representa-
tions, operators, and strategies; and learning environments, by their feedback and
knowledge-intensity. Sirategy-learning problems drawn from diverse fields can be
classified using this taxonomy.

The issues of interest to the designers of strategy-learning systems depend on
various atiributes of the learning problem(s) they wish to solve. Complex learning
problems are characterized by ill-posed objective functions, delayed feedback, viola-
tion of Markov property, dynamic decision making, time-varying problem variables,

Strategy Learning: A Survey of

Problems, Methods, and Architectures 537

Table 0: Architectural models characterized by their approach.

envi-

WM—-—_M_“'_‘._
K Knowledge-based (Fig. 6a);

Model Tesue Approach
Knowledge-based algorithms using ICA {Sec. 3.2.1); ex-
Credit Assignment plicitly represented structured solutions; well-defined
objective functions
Prediction Projection of symbolic variables using explicit causal
K model
General Problem Solving,
Non-Markovian Using powerful symbolic representations, prior knowl-
Representations, Indirect edge of general purpose problera-solving techniques,
Gperators, Multiple static strategies in problem solvers, and explicit storage
Ceneral Objectives, of structured solutions
Storing Past Decisions
LPoscd Objects Fu Interleaved learning of instant-evaluated objective
o ose bjective Nt eunctions and dynamic strategies; learning from abso-
tons lute evaluation and {delayed) evaluative feedback
Complex TCA problems in knowledge-lean
. . ronments solved using on-line learning of reward-
> ant . . . 3 T
Credit Assigninen generation mechanism; SCA interleaved with TCA; not
&3 suitable for non-Markovian representations
Learning to predict future feedback as a function of
Prediction current and recent inputs by temporal difference metl-
' ods; projection to future states not atternpted due to
lack of causal models
Using dynamic pProgramming and its variants to learn
Dynamic Decision Making dynamic strategies from evaluative feedback for Marko-
vian representations
Nondeterminism controiled using stochastic strategies
Iil-posed Objective Funce- Off-line learning of interval-evaluated objeciive func-
_tions tions from absolute or relative evaluation
H Credit Assignment Off-line learning of causal and temporal models, ex-
Tedil ABSIENTIREE plicit storage of past decisions (with size limited by
Storing Past Decisions, S
. temporal scopes), and combination of causal and tem-
Non-Markovian Represen- A R
tations poral scopes; valid even for non-Markovian representa-
’ B tions
Maintenance of a population of competing strategies,
and use of credit assignment only to alter probability
= Credit Assignment of selection but not necessarily to improve the incum-

bent strategy; avoidance of structural credit assignment
entirely, hence, suitable for decision procedures

Ti: Reinforcement-learning (Fig. 6b); H: Hybrid point-based (Fig.

gc); P Population-based (Fig. 6d)

538 P, Mehra 64 B. W. Wah

Table 10: Examples of strategy-learning problems and architectures.
_Example Model Comments

Knowledge-based critic needs a well-defined performance standard,
which ig not available. This model lacks mechanisms for predicting

K
future values of time-varying status variables because it assumes that
nothing changes outside the problem solver’s control.
Load Bal- The adaptive critic attempts to compute eligibility on-line, which
ancing R does not work for non-Markovian representations.
The adaptive performance element is efficient for learning stochastic
sirategies from evaluative feedback.
The model is suitable for non-Markovian states and time-varying
i status variables.

1t is difficult to find a persistence model that properly accounts for
fecdback delays,

The model obviates the credit-assignment problem.

Population-based learning allows multi-pronged performance di-
P rected gearch in strategy space.

Il background knowledge were available, it ¢an be used in intelligent

generation of new strategies.

A pood match because of well-defined objective function, static

K - .
strategies, and knowledge of operator semantics.
i The mode! is unsuitable because of non-Markovian representations,
Ship complex decision rules, and deterministic strategies.
Steering Unnecessary overhead is incurred due to the additional funciionality
H for handling dynamic strategies and dynamic history management

using temporal scopes.

The functionality for simultaneous testing of multiple strategies is
not needed for this problem.

P Sufficient background knowledge is available so that point-based
learning using Dietterich and Buchanan’s model requires only a few
problem-solving episodes.

Knowledge-based learning is not applicable to the ill-defined objec-
tive function and time-varying problem variables.

=

A perfect match for this problem due to Markovian representation,
Pole Bal- R ill-defined objective function measurable at instants, knowledge-lean
ancing environment, and evaluative feedback.

H This model works but fails to exploit Markov property for efficient
solutions to SCA and TCA.

Point-based learning suffices since Markov property is satisfied and
TCA can be solved efficientiy.

Perfect match for this model due to its ability to handle multiple,
general objectives.

Syntactic generalization techniques of this model work well for con-
strained generalization of observed solutions.

Towers of 7 ’_The model iacks mechanisms for handling hard constraints and learn-
Hanoi ing from compiete solutions.

H Since the Markovian property is satisfied, the extra functionality of
thig model is not used.

Lengthy test-cases preclude the application of population-based

P)
learning.

K: Knowiedge-based (Fig. 6a); R: Reinforcement-learning (Fig. 6b); H: Hybrid point-based {Fig-
6c); P: Population-based {Fig. 6d)

Strategqy Learning: A Survey of Problems, Methods, and Architectures 539

and knowledge-lean domain.

A clean separation of issues from applications allows us to study strategy-
Jearning techniques independent of the specific learning system in which they are
embedded. General-purpose approaches, such as dynamic programining, regres-
sion, and time-series analysis, are shown to be useful. Non-Markovian problems,
for which no general purpose techniques are known, require new approaches to up-
date dynamically history information and perform rational credit assignment on
stored solutions.

The pumerous issues and approaches can be abstracted into four general archi-
tectures: the knowledge-based learning model, the reinforcement-learning model,
the hybrid point-based learning model and the population-based learning model.
The first is useful for learning static strategies in knowledge-rich environments; the
second, for learning dynamic strategies for Markovian problems in knowledge-lean
environments; the third, for learning dynamic strategies for non-Markovian prob-
lems; and the fourth, for resource-constrained learning of procedurally encoded
strategies using generate-and-test approaches. The first three employ point-based
learning, while the fourth one employs population-based learning. The architec-
tures reviewed in Section 4 are by no means exhaustive; for example, none of the
architectures work too well in real-time systems where both resource-constrained
and on-line learning are desired.

Clertain issues in strategy learning are relevant only to specific techniques, such
a5 the slowness of reinforcement learning, the difficulty in generalizing the structure
of strategies in explanation-based learning, and the difficulty of methods for non-
linear prediction and regression. We list below a few important general issues that
need further research.

a) On-line versus Off-line Learning. This distinction has been ignored in our
classification primarily because several learning techniques have both on-line and
off-line versions. On-line learning algorithms can adapt under non-stationary or
time-varying environments, and have lower memory requirements. However, they
are slower and are harder to design because of the greater efficiency desired of
them. Even though numerous on-line learning procedures are known, their general
principles are not well understood.

b) Scaling and Generalization across Tasks. Scaling requires that the strategies
acquired should generalize to problem sizes different from those used in training.
Generalization across tasks requires that the strategies acquired should general-
ize to tasks other than those used for training. This direction of research is well
represented by the work of Singh [142] and Tesauro [30}.

¢} Ezploration-Convergence Dilemma. At what rate should the randomness of
stochastic strategies be reduced so that the performance trace is considered sufficient
for converpgence to the best strategy so £ar7 This issue reappears as the trade-off be-
tween generation (sampling) and testing (confidence-building) in population-based
architectures. Add in deadlines and the general problem is beyond the scope of
existing theory. The challenge is to get a rational solution to the trade-offs in ques-
tion without making unreasonable restrictive assumptions. Thrun [143] examines
several techniques for addressing this issue.

d) Quelity-Efficiency Trade-off. We have ignored the cost of applying a strategy
in our discussion. However, we have considered bath the time and resources needed

540 P. Mehra £ B, W Wah

for learning as well as the cost of the solutions found by the strategy. How sh

one choose between a strategy that finds a peor solution quickly versus ane
that takes a long time to find a good solution? Credit-assignment procedures ma.y 1] T
suggest different changes for improving quality than for improving efficiency. Wefaid { f(;q
and Russell [144] suggest a decision-theoretic approach to rational resolution of t Y'c
trade-off.
(2 s.
(
Acknowledgments i
Research was supported partially by National Science Foundation Grants MIP 922 [13] €
18715 and MIP 96-32316, and by National Aeronautics and Space Admlmstramon 1
Contract NAG 1-613. '
The second author would like to thank Prof. H. Tanaka and Fujitsu Lirmited, [14]
who provided support when the author was visiting the University of ‘Tokyo, and
the Chinese University of Hong Kong during which part of this paper was written
References (15)
[1] A.Barr and E. A. Feigenbaum, The Handbook of Artificial Intelligence, vol. 1, 6
2, and 3. Los Altos, CA: William Kaufmann, (1981). (16}
(2] J. Pearl, Heuristics-Intelligent Search Strategies for Computer Problem Solv- 7

ing. Reading, MA: Addison-Wesley, (1984).

{3] M. H. Romanycia and F. Pelletier, What is a heuristic?, Computational In-
telligence 1 National Research Council Canada (1985) 47-58.

[4] M. P. Georgefl, Strategies in heuristic search, Artificial Intelligence 20 North
Holland (1983) 393-425.

[3] R. M. Keller, A survey of research in siraiegy acquisition, Tech. Rep. DCS-
TR-115, Dept. of Computer Science, Rutgers Univ., New Brunswick, NJ, May
1982.

[6] T. M. Mitchell, Learning and problem solving, Proc. 8th Int’l Joint Conf. on
Artificial Intelligence, (Los Altos, CA), William Kaufman Aug. 1983 1139~
1151.

[7] N.S. Sridharan and J. L. Bresina, Ezploration of problem reformulation and
strategy acquisition: A proposael, Tech. Rep. LCSR-TR-53, Lab. Computer
Science Research, Rutgers Univ., New Brunswick, NJ, Mar. 1984.

[4] P. Langley, Learning to search. From weak methods to domain-specific heuris-
tics, Cognitive Science 9 Ablex Pub. Co. (1985) 217-260.

[9] M. Minsky, Steps toward artificial intelligence, Computers and Thought, E. A.
Feigenbaum and J. Feldman, eds., New York: McGraw-Hill (1963} 406-450.

{10l

1]

2]

[13]

[14]

[15]
[16]

[17]

[18]

[19]

(20]

121}

(22]
(23]

[24]

Strategy Lecrning: A Survey of Problems, Metheds, and Architectures 541

R. S. Sutton, Temporal credit assignment in reinforcement learming, Ph.D.
thesis, Univ. of Massachusetts, Amherst, MA, Feb. 1984.

T M. Mitchell, Towaerd combining empirical and analytical methods for in-
ferring, Artificial and Human Intelligence, Banerji and Elithorn, eds., New
York: Elsevier (1984} 81-103.

§. W. Wilson, Hierarchical credit allocation in classifier systems, Genetic Al-
gorithms and Simulated Annealing, L. Davis, ed., Research Notes in Artificial
Intelligence, London: Pitman {1987)

. F. DeJong and B. J. Mooney, Ezplanation-based learning: An alternative
view, Machine Learning 1, no. 2 Kluwer Academic Pub. (1986) 145-176.

A. G. Barto, R. 8. Sutton, and C. I. C. H. Watkins, Learning and sequential
decision making, Learning and Computational Neuroscience: Foundations of
Adaptive Networks, M. Gabriel and J. Moore, eds., Cambridge, MA: MIT
Press (1990) 539-602.

K. F. Lee and S. Mahajan, A pattern classification approach to epaluation
function learning, Ariificial Intelligence 36 North-Holland (1988) 1-25.

P. Schooley, Learning state evaluation functions, Machine Learning Kluwer
Academic Pub. (1985) 177-179.

J. Christensen and R. E. Korf, A unified theory of heuristic evaluation func-
tions and its application to learning, Proc. National Conf. on Artificial Intel-
ligence, AAAL Inc. {1086) 148-152.

Gi. Tesauro, Connectionist learning of expert backgammon evaluations, Ma-
chine Learning Kluwer Academic Pub. (1988) 200-206.

R. S. Michaiski, J. G. Carbonell, and T\ M. Mitchell, eds., Machine Learn-
ing: An Artificial Intelligence Approach, vol. 1, 9. Los Altos, CA: William
Kaufmann, (1983).

W. L. Brogan, Modern Control Theory. Englewood Cliffs, NJ: Prentice-Hall,
{1985).

A. G. Barto, §. J. Bradtke, and S. P, Singh, Real-time learning and con-
trol using asynchronous dynamic programming, Tech. report 91-57, Dept. of
Computer Sc., Univ. of Massachusetts, Amherst, MA, (1991).

B. Chandrasekaran, Towards a taromnemy of problem salving types, AJ maga-
zine Winter/Spring 1983 9-17.

T. ;. Dietterich and B. G. Buchanan, The role of critic in learning systems,
Tech. Rep. STAN-(S-81-891, Stanford Univ., CA, Dec. 1981

T. Dean and K. Kanazawa, Probabilistic temporal reasoning, Proc. National
Conf. on Artificial Intelligence AAAI-88 (1988) 524-528.

542 P. Mehra & B. W, Wah

25}

(28]

[29]

[37]

[38)

W. W. 5. Wei, Time Series Analysis: Univariate and Multivariate Methods
Redwood City, CA: Addison-Wesley, (1990).

D. H. Ackley, A Connectionist Machine for Genetic Hillclimbing. Bog:'
MA: Kluwer Academic Pab., (1987). !

A. G. Barto, R. 5. Sutton, and C. W. Anderson, Neuronlike adaptive eleme

that can solve difficult Ieammg control problems, Trans. on Systems, Man an
Cybernetics SMC-13, no. 5 IEEE (1983) 834-846.

A. L. Samuel, Some studies in machine learning using the game of checke
IBM J. Research and Development 3 IBM (1958) 210-229.

A L. Samuel, Some studies in machine learing using the game of checker
II-receni progress, J. of Research and Development 11, no. 6 IBM (1967
601-617.

(. Tesauro, Practical issues in temporal difference learning, Machine Learn-
ing 8, no. 3/4 {Special Issue on Reinforcemeni Learning) Kluwer Academic
Publishers (1991) 257-278.

J. E. Laird, P. 5. Rosenbloom, and A. Newell, Sear: An architecture for
general intelligence, Artificial Intelligence 33, no. 1 Elsevier Science Pub.
{1987) 1-64.

J. Laird, P. Rosenbloom, and A. Newell, Chunking in SOAR: The anatomy of
a general learning mechanism, Machine Learning 1, no. 1 Kluwer Academic
Pub. {1986) 11-46.

. Barietta and R. Kerber, Improving explanation-based indezing with empir-
ical learning, Machine Learning Kluwer Academic Pub. (1989) 84-86.

S. Whitehead and D. Ballard, A role for anticipation in reactive systems that
learn, Proc. 6th Int’l. Workshop on Machine Learning, (San Mateo, CA),
Morgan Kaufmann {1989) 354-357.

R. Mirchandaney and J. A. Stankovic, Using stochastic learning autornata for
job scheduling in distributed processing systems, J. Parallel and Distributed
Computing Academic Press (1986) 527-552.

P. Mehra and B. W. Wah, Learning load-balancing strategies using artificial
neural networks, Intelligent Engineering Systems through Artificial Neural
Networks {Proc. Int’l Conf. on Artificial Neural Networks in Engineering)
ASME Press {1991) 855-860.

G. E. P. Box and G. M. Jenkins, Time Series Analysis: Forecasting and
Control, #nd ed. San Francisco: Holden-Day, (1976).

P. Mehra, Automated Learning of Load Balancing Strategies for a Distributed
Computer System. Urbana, II.: Ph.D. Thesis, Dept. of Computer Science,
Univ. of [llinois, Dec. 1992.

Strategy Learning: A Survey of Problems, Methods, and Architectures 543

© [39] D. Ferrari, A study of load indices for load balancing schemes, Workload Char-
acterization of Computer Systems and Computer Networks, G. Serazzi, ed.,
Amsterdam, Netheriands: Elsevier Science {1986) 91-99.

[40] S. Zhou, Performance studies of dynamic load balencing in distributed sys-
tems, Tech. Rep. UCB/CSD 87/376 (Ph.D. Dissertation), Computer Science
Division, Univ. of California, Berkeley, CA, (1987).

[41] P. G. Hoel, S. Port, and C. J. Stone, Introduction to Stochastic Processes.
Atlanta, (3A: Houghton Mifflin Co., (1972).

[42] R. Bellman and S. Dreyfus, Applied Dynamac Programming. Princeton, N.J:
Princeton Univ. Press, (1962).

[43] D. Ferrari and S. Zhou, A load mndex for dynamic load balancing, Proc. Fall
Joint Computer Conf., ACM/IEEE Nov. 1986 634-630.

[44] P. Mebra and B. W. Wah, Adaptive load-balancing strategies for distributed
systems, Proc. 2nd Int’l Conf. on Systems Integration, (Morristown, NJJ,
TEEE Computer Society June 1992 666-675.

[45] E. Rich and K. Knight, Artificial Intelligence. New York: McGraw Hill,
{1591},

[46] C.-T. Chen, Linear System Theory and Design. New York: Holt, Rinehart
and Winston, Inc.. {1970).

[47] N. J. Nilsson, Principles of Artificial Intelligence. Tioga, (1980).

[48] E. Sacerdoti, The nonlinear nature of plans, Reasoning about Actions and
Plans, M. Georgeff and A. Lansky, eds., Morgan Kaufmann (1987} 206-214.

[49] C. W. Anderson, Strategy learning with multilayer connectionist representa-
tions, Proc. Fourth [nt’l. Workshop on Machine Learning, Morgan Kaufmann
June 1987 103-114.

[50] K. Narendra and M. A. L. Thathachar, Learning Automata: An [niroduction.
Englewood Cliffs, NJ: Prentice Hall, {1989).

[51} M. P. Georgeff, Planning, Annual Review of Computer Science, vol. 2, Palo
Alto, CA: Annual Reviews Inc. (3987) 359400,

[52] L. Kaebling, An architecture for intelligent reactive systems, Reasoning about
Actions and Plans, M. Georgeff and A. Lansky, eds., Los Altos, CA: Morgan
Kaufmann (1987)

(53] M. J. Schoppers, Representation and automatic synthesis of reaction plans,
Ph.D. thesis, Dept. of Computer Science, Univ. of Illinois, Urbana, IL.., {1988).

[54] P. 8. Ow, S. F. Smith, and A. Thiriez, Heactive plan revision, Proc. Tenth
National Conf. on Artificial Intelligence A AAY-88, vol. 1, (Saint Paul, MN)
(1988) 77-82.

544 P. Mehra & B. W. Wah

[55]

(60]

[61)

M. P. Georgeff and A. L. Lansky, Reactive reasoning and planning, Prac,
Mational Conf. on Artificial Intelligence, (Seattle, Washington), AAAI, Ine.
June 1987 677-82.

P. E. Agre and D. Chapman, PENGI: An implementation of a theory of
activity, Proc. National Conf. Artificial Intelligence, (Palo Alto, CA), Morgan
Kaufinan June 1987 268-272.

P. Maes, How to do the right thing, Connection Science 1, no. 3 {1989) 291
323.

C. Gao, J. W. S. Liu, and M. Railey, Load balancing algorithms in homoge-
neous distributed systems, Proc. Int’l Conf. Parallel Processing, IEEE Aug,
1984 302--306.

R. M. Bryant and R. A. Finkel, A stable distributed scheduling algorithm.,
Proc. 1st Int’l Conf. on Distributed Computing Systems, IEEE (1981} 314-
323,

K. Baumgartner and B. W. Wah, GAMMON: A load balancing strategy for a
local computer system with a multiaccess network, IEEE Trans. on Computers
38 IEEE Aug. 1989 1098-1109.

M. L. Litzkow, M. Livny, and M. W. Mutka, Condor - A hunter of idle
workstations, Proc. 8th Int’l. Conf. Distributed Computer Systems, IEEE
{1988} 104-111.

| G. E. Hintan, Connectionist learning procedures, Artificial Intelligence 40 El-

sevier Science Pub. {1989) 185-234.

B. Widrow, N. K. Gupta, and S. Maitra, Punish/reward: Learning with a

critic in adaptive threshold systems, Trans. Systems, Man, and Cybernetics
SMC-3, no. & IEEE (14973) 455-465.

A. Teumwananonthachai, A. N. Aizawa, S. R. Schwartz, B. W. Wah, and J. C.
Yan, Intelligent mapping of cornmunicating processes in distributed computing
systems, Proc. Supercomputing 91, (Albuguerque, NM), ACM/IEEE Nov.
1991 512-521.

D. Nguyen and B. Widrow, The truck backer-upper: An example of self-
{earning in neurel networks, Proc. Int’l Joint Conf. on Neural Networks,
vol. II, IEERE (1989} 357363,

K. K. Goswami and R. K. Iyer, Dynamic load-sharing using predicted process
respurce requiretnents, Tech. Rep. UILU-ENG-90-2224, Coordinated Sci. Lab.,
Univ. of Hlineis, Urbana, (1990).

B. Porter and D. Kibler, Experimental goal regression: A method for learning
problem-solving heuristics, Machine Learning 1, no. 3 Kluwer Academic Pub.
(1986) 249-286.

(707

(71

68

[69]

[70]

[71]

[72]

73]

[74]

[75]

(76}

(77]

[78)
[79]

(80]

(81]

Strategy Learning: A Survey of Problems, Methods, and Architectures 545

1 R. A. Howard, Dynamic Programming and Markov Processes. London: Jon

Wiley, {1960).

R. S. Sutton, Convergence theory for a new kind of prediction learning, Proc.
1988 Workshop on Computational Learning Theory (D, Haussler and L. Pitt,
eds.), (Palo Alto, CA), Morgan Kaufmann (1988) 421-422.

R. S. Sutton, Learning to predict by the methods of temporal differences, Ma-
chine Learning 3 Kluwer Academic Pub. Aug. 1888 9-44.

K. Bwang, W. J. Croft, G. H. Goble, B. W. Wah, F. A, Briggs, W. R. Sum-
mons, and C. L. Coates, A UNIX-based local computer network with load
balancing, Computer 15 IEEE Apr. 1982 55-66. Also in Tutorial: Compuier
Architecture, ed. D. D). Gajski, V. M. Milutinovic, H. J. Siegel and B. P. Furht,
[FEE Computer Society, 1987, pp. 541-552.

Y. Anzai, Doing, understanding, and learning in problem solving, Production
Systern Models of Learning and Development, et al. Klahr, ed., Cambridge,
MA: MIT Press (1987)

R. E. Korf, Macro-operators: A weak method for learning, Artificial Intelli-
gence 26 North-Holland (1983) 35-77.

P. M. Andreae, Constraint Gmited generalization: Acquiring procedures from
ezamples, Proc. National Conf. Artificial Intelligence, (Austin, TX), AAAIL,
Tne. (1984} 6-10.

P. Mehra and B. W. Wah, Architectures for strategy learning, Computer Archi-
tectures for Artificial Intelligence Applications, B. Wah and C. Ramamgcorthy,
eds., New York, NY: Wiley (1990} 395-468.

D. E. Goldberg, Probobility matching, the magnitude of reinforcement, and
classifier system bidding, Machine Learning 5 Kluwer Academic Pub. (1990)
AQT-425.

L. A. Rendell, An adaptive plan for state-space problems, Tech. Rep. CS-81-13,
Univ. of Waterioo, Ontario, Canada, Mar. 1981

SAS Institute, Inc., SAS/ETS user’s guide, version d edition, {1984).

T. W. Mirer, Economic Statistics and Econometrics. New York: Macmillan,
{1983).

1.-J. Lin and T. M. Mitchell, Memory approaches to reinforcement learning in
non-markovian domamns (tech. report no., Technical Report CMU-CS-92-138},
Dept. of Computer Scicnce, Carnegie-Mellon University, Pittsburgh, PA, May
1992.

P. Munro, A dual back-propagation scheme for scalar reward learning,
Proc. Ninth Annual Conf. of the Cognitive Science Society, {Hillsdale, NJJ,
Lawrence Eribaum Associates (1987) 165-176.

546 P. Mehre & B. W. Wah

[82)

(83]

[84]

193]

D. E. Rumelhart, G. E. Hinton, and R. J. Williams, Learning internal repre.-
sentaiions by error propagation, Parallel Distributed Processing: Explorationg
in the Microstructure of Cognition, D. E. Rumelhart, J. L. McClelland, and
the PDP Research Group, eds., vol. 1, Cambridge, MA: MIT Press (1986)
JiB-362.

C. F. Yu, Efficient Combinatorial Search Algorithms. West Lafayette, IN..
Ph.D. Thesis, School of Elect. Engr., Purdue Univ.. Dec. 1986.

M. Gluck, D. B. Parker, and E. S. Reifsnider, Learnu:.. W ternporal det"'tja-"‘:
tives in pulse-coded neuronal systems, Proc. Neural Information Processing
Systems (D. Z. Anderson, ed.), (New York), American Inst. of Physics (1988)

J. 5. Morgan, E. C. Patterson, and A. H. Klopf, Drive-reinforcement learning:
A self-supervised model for adaptive control, Network: Computation in Neura]
Systems 1 JOP Pub. Ltd. (1990} 439-448.

G. Tesauro and T. J. Sejnowski, A parallel network that learns to play
backgammon, Artificial Intelligence 39 Elsevier Science Pub. (1989) 357-390.

P. Mehra and B. W. Wah, Automated learning of workload measures for load
balancing on a distributed system, Proc. Int’l Conference on Parallel Process- :
ing, CRC Press Aug. 1993 IT1-263-I11-270.

M. R. Genesereth and N. J. Nilsson, Logical Foundations of Artificial Intelli-
gence. Los Altos, CA: Morgan Kaufmann, (1987).

T. Mitchell, R. Keller, and §. Kedar-Cabelli, Explanation-based generalization:
A unifying view, Machine Learning 1, no. 1 Kluwer Academic Pub. {1986) 47-
80.

5. Minton, J. G. Carbonell, C. A. Knoblock, D. Kuokka, and H. Nordin,
Improving the effectiveness of ezplanation based learning, Proc. Workshop
on Knowledge Compilation (T. G. Dietterich, ed.), Computer Science Dept.,
Oregon State Univ. {1986) 77-87.

B. W. Wah, Fopulation-based learning: A new method for learning from ex-
amples under resource constraints, IEEE Trans. on Knowledge and Data En-
gineering 4 IEEE Oct. 1992 454 -474.

A. leumwananonthachai, A. Aizawa, S. R. Schwartz, B. W. Wah, and J. C.
Yan, Intelligent process mapping through systematic improvement of heuris-
tics, 4. of Parallel and Distributed Computing 15 Academic Press June 1992
118-142.

P. Mehra and B. W. Wah, Population-based learning of load balancing policies
Jor a distribuled computer system, Proc. Computing in Aerospace 9 Conf,,
(San Diego, CA), American Institute of Aeronautics and Astronautics Oct.
1993 1120-1130.

Strategy Learning: A Survey of Problems, Methods, and Architectures 547

[94] B. W, Wah and H. Kriplani, Resource constrained design of artificial neural
networks, Proc. Int’l Joint Conf. on Neural Networks, vol. III, IEEE June
1990 269-279.

[95] C.-C. Teng and B. W. Wah, Mired-mode learning: A method for reducing the
number of hidden units in cascade correlation, Proc. Int’l Symposium on Ar-
tificial Neural Networks, (Hsinchu, Taiwan), National Chiao Tung University
Dec. 1993 1-01-1-07.

[96] M. Lebowitz, Integrated learning: Controlling explanation, Cognitive Science
Ablex Pub. Co. (1986) 219-240.

[97] R. 8. Sutton and B. Pinette, The learning of world models by connectionist
networks, Proc. Seventh Ann. Conf. Cognitive Science Soc., {Hillsdale, NI},
Lawrence Fribaum Associates (1985) 54-64.

98] H. A. Kautz, The logic of persistence, Proc. National Conf. on Artificial In-
telligence, Morgan Kaufman (1986) 401.

[99] L. Morgenstern and L. A. Stein, Why things go wrong: A formal theory
of causal reasoning, Proc. National Conf. on Artificial Intelligence AAAL-88
{(1988) 518-523.

{100] T. Dean and K. Kanazawa, A model for reasoning about persistence and eau-
sation, Compuational Intelligence 5, no. 3 National Research Council Canada
(1989) 142-150.

[101} €. W. Anderson, Learning and problem salving with multilayer connectionist
systems, Ph.D. thesis, Univ. of Massachusetts, Amherst, MA, (1986).

(162} J. H. Schmidhuber, Making the world differentiable,, Tech. Rep. FKI-126-90,
Technical Univ. of Munich, Munich, Germany, {1990).

{103} M. L Jordan, Supervised learning and systems with excess degrees of freedom,
Proc. Connectionist Models Summmer School (D. Touretzky, G. E. Hinton, and
T. J. Sejnowski, eds.), (Palo Alto, CA), Morgan Kaufmann (1988) 62-75.

[104] T. K. Miller, 11T, R. S Sutton, and P. J. Werbos, eds., Neural Networks for
Control. Cambridge, MA: MIT Press, (1990).

(105} M. Kendall and J. K. Ord, Time Series. London: 3rd ed., 1 Edward Arnold,
(1990).

[106] A.S. Weigend, B. A Huberman, and D. E. Rumelhart, Predicting the future:
A conmectionist approach, Int’l. J. of Neural Systems 1, no. 3 World Scientific
Pub. (1990) 209.

[107] K. J. Lang and C. E. Hinton, A Time-Delay Neural Network Architecture
for Speech Recognition. Pittsburgh, PA: CMU-CS-88-152, Dept. of Computer
Seience, Carnegie Mellon Univ., (1988).

548 P. Mehm & B. W. Wah

[108]
[109]
[110]

[111]

[112)
[113]

[114]
(115]

[116]

[117]
[118]
(119]
(120]
(121]
[122]

[123]

[124]

R. K. Mehra, Kalman filters and their applications to forecasting, TIMS Stud.
ies in Management Sciences 12 North-Holland {1978) 75-94.

G. C. Goodwin and K. 8. Sin, Adaptive Filtering Prediction and Control,
Englewood Cliffs, NJ: Prentice-Hall, (1984).

§. Hanks, Practical temporal projection, Proc. 8th Natl. Conf. Artificial Intel.
ligence, (Seattle, Washington), AAAIL Inc. (1990) 158-1863.

T. Dean and G. Siegle, An approach to reasoning about continucus change for
applications in planning, Proc. 8th Natl. Conf. Artificial Intelligence, (Seattle,
Washington), AAAT Inc. (1990) 132-137.

S. A. Chien, Learning by analyzing fortuitous occurances, Machine Learning
Kluwer Academic Pub. (1989} 249~251.

5. A. Chien, An explanation-based learning approach to incremental planning,
Ph.D). thesis, Dept. of Computer Science, Univ. of Ulineis, Urbana, 1L, (1991),

D. White, Dynemic Programming. Edinburgh, UK: Oliver and Boyd, (1969).

P. J. Werbos, Consistency of HDP applied to a simple reinforcement learning
problem, Neural Networks 3 Pergamon Press (1990) 179-189. '

C. F. Yu and B. W. Wah, Learning dominance relations in combinatorial
search problems, IEEE Trans. on Software Engineering SE-14 IEEE Aug.
1988 1155~-1175.

T, Tharaki, Enumerative approach to combinatorial eptimizetion, Annals of
Operations Research Scientific Pub. Co. (1988)

S. Ross, Introduction to Stochastic Dynamic Programming. New York: Aca-
demic Press, {1683).

P. J. Werbos, A menu of designs for reinforcement learning over time, Neural
Networks for Control, Miller et al., ed., Cambridge, MA: MIT Press (1990)
67-96.

G. R. Walsh, Methads of Optimization. London, England: Wiley, (1977).

B. A. Nadel, Constraint saisfaction algorithms, Computational Intelligence 5
National Research Council Canada {1989) 188-224.

D. McAllester, Truth maintenance, Proc. 8th Natl. Conf. Artificial Intelli-
gence, (Seattle, Washington), AAAI Inc. {1990) 1109-16.

B. W. Mel, MURPHY: A robot that learns by doing, Neural Information Pro-
cessing Systems,). Z. Anderson, ed., New York, NY: American Institute of
Physics (1988} 544-553.

T. (i, Dietterich and J. 8. Bennett, The test incorporation theory of prob-
lem splving, Proc. Workshop on Knowledge Compilation, Dept. of Computer
Science, Oregon State Univ., Sept. 1986 145-159.

Strategy Learming: A Survey of Proklems, Methods, and Architectures 549

{125] R. 5. Sutton, Integraied architectures for learming, planning, and reacting
based on approzimating dynamic programming, Proc. 7th Int’l. Conf. Machine
Learning, (Palo Alto, CA), Morgan Kaufmann (1990) 216-224.

")

[126] I. G. Carbonell, Learning by analogy: Formulating and generalizing plans
from past ezperiences, Machine Learning, R. S. Michalski, J. G. Carbonell,
and T, M. Mitchell, eds., Tioga (1983)

[127) R. Greiner, Learning by understanding analogies, Machine Learning Kluwer
Academic Pub. (1985) 50-52.

[128] J. H. Holland, Properties of the bucket brigade algorithm, Proc. Int’l. Conf.
Gienetic Algorithms and Their Applications (J. J. Grefenstette, ed.), (Pitts-
burgh, PA}), The Robotics Inst. of Carnegie-Mellon Univ. (1985) 1-7.

{129] C. Lewis, Clomposition of productions, Production System Models of Learning
and Development, Klahr and et al., eds., Cambridge, MA: MIT Press {1987)

{130] P. Rosenbloom and A. Newell, Learning by chunking: A production system
model of practice, Production System Models of Learning and Development,
Klahr and et al, eds., Cambridge, MA: MIT Press (1987)

[131] R. Neches, Learning through incrementael refinement of procedures, Produc-
tion System Madels of Learning and Development, Klahr and et al., eds.,
Cambridge, MA: MIT Press (1987)

[132] D. Steier, J. Laird, A. Newell, and P. Rosenbloom, Varieties of learning in
SOAR: 1987, Machine Learning Kluwer Academic Pub. {(1987) 300-311.

[133] R. Michalski, I. Mozetic, J. Hong, and N. Lavrac, The multi-purpose incre-
mental learning system AQ15 and its testing applications to three medical
domains., Proc. of the Fifth National Conference on Artificial Intelligence,
{Philadelphia, PA), Morgan Kaufmann (1986) 1041~1045.

T. M. Mitchell, Generalization as search, Artificial Intelligence 18 North Hol-
land (1982) 203-226.

R, €& Smith, T. M. Mitchell, R. A. Chestek, and B. G. Buchanan, A model
for learning systems, Proc. 5th Int’l Joint Conf. on Artificial Intelligence, (Los
Altos, CA), William Kaufman Aug. 1977 338-343.

T.-J. Lin, Self-improving reactive agents based on reinforcement learning, plan-
ning, and teaching, Machine Learning 8, no. 3/4 (Special Issue on Reinforce-
ment Learning) Kluwer Academic Publishers (1992) 293-322.

[137] S. F. Smith, Flexible learning of problem solving heuristics through edaptive
search, Proc. Int'l Joint Conf. on Artificial Intelligence, Morgan Kaufman

(1983) 422-5.

[138] L. B. Booker, D. E. Goldberg, and J. H. Holland, Classifier systems and
genetic algorithms, Machine Learning: Paradigm and Methads, J. Carbonetl,
ed., MIT press {1990)

550 P

[139]

[140]

[141]

(142]

[143]

[144]

Mehra & B. W. Wah

B. K. Ghosh and P. K. Sen, eds., Handbook of Sequential Analysis. New York,
NY: Marcel Dekker, inc., (1991).

L.-C. Chu, Algorithms for Combinatorial Optimization in Real Time and their
Automated Refinement by Genetic Programming. Urbana, IL: Ph.D. Thesis,
Dept. of Electrical and Computer Engineering, Univ. of Ilinois, May 1894,

S. R. Schwartz, Resource Constrained Porameter Tuning Applied fo Stereo
Vision. Urbana, IL: M.Sc. Thesis, Dept. of Electrical and Computer Engi-
neering, Univ. of Illlinois, Aug. 1991.

S. P. Singh, Transfer of learning by composing solutions of elemental tasks,
Machine Learning 8, no. 3/4 (Special Issue on Reinforcement Learning)
Kluwer Academic Publishers (1992) 323-340.

S. B. Thrun, Efficient exploration in reinforcement learning, Tech. Rep. CMU-
(C5-92-102, School of Computer Science, Carnegie-Mellon Univ., Pittsburgh,
PA, Jan. 1992.

S, Russell and E. Wefald, Principles of metareasoning, Artificial Intelligence
49 Blsevier (1991) 361-395.

