
Journal of Global Optimization 12: 61–99, 1998. 61
c
 1998 Kluwer Academic Publishers. Printed in the Netherlands.

A Discrete Lagrangian-Based Global-Search
Method for Solving Satisfiability Problems ?

YI SHANG
Department of Computer Engineering and Computer Science, University of Missouri, Columbia,
MO 65211, USA. email: yshang@cecs.missouri.edu

BENJAMIN W. WAH
Department of Electrical and Computer Engineering and the Coordinated Science Laboratory,
University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA. email: b-wah@uiuc.edu

(Received: 25 June 1996; accepted: 2 May 1997)

Abstract. Satisfiability is a class of NP-complete problems that model a wide range of real-world
applications. These problems are difficult to solve because they have many local minima in their
search space, often trapping greedy search methods that utilize some form of descent. In this paper,
we propose a new discrete Lagrange-multiplier-based global-search method (DLM) for solving
satisfiability problems. We derive new approaches for applying Lagrangian methods in discrete space,
we show that an equilibrium is reached when a feasible assignment to the original problem is found
and present heuristic algorithms to look for equilibrium points. Our method and analysis provides a
theoretical foundation and generalization of local search schemes that optimize the objective alone
and penalty-based schemes that optimize the constraints alone. In contrast to local search methods that
restart from a new starting point when a search reaches a local trap, the Lagrange multipliers in DLM
provide a force to lead the search out of a local minimum and move it in the direction provided by the
Lagrange multipliers. In contrast to penalty-based schemes that rely only on the weights of violated
constraints to escape from local minima, DLM also uses the value of an objective function (in this
case the number of violated constraints) to provide further guidance. The dynamic shift in emphasis
between the objective and the constraints, depending on their relative values, is the key of Lagrangian
methods. One of the major advantages of DLM is that it has very few algorithmic parameters to be
tuned by users. Besides the search procedure can be made deterministic and the results reproducible.
We demonstrate our method by applying it to solve an extensive set of benchmark problems archived
in DIMACS of Rutgers University. DLM often performs better than the best existing methods and
can achieve an order-of-magnitude speed-up for some problems.

Key words: Discrete Lagrangian methods, global optimization, satisfiability, NP-completeness.

1. Introduction

Satisfiability (SAT) problems belong to an important class of discrete constraint-
satisfaction problems (CSP). Many problems in artificial intelligence, logic, com-
puter aided design, database query and planning, etc., can be formulated as SAT

� This research was supported by National Science Foundation Grants MIP 92-18715 and MIP
96-32316. An early version of this paper was presented in the DIMACS Workshop on Satisfiability
Problem: Theory and Applications, Rutgers University, NJ, March 1996. The source code of DLM
is available at http://manip.crhc.uiuc.edu.

62 Y. SHANG AND B. W. WAH

problems. These problems are known to be NP-complete and require algorithms
of exponential complexity in the worst case to obtain a satisfying assignment.

Generally, a SAT problem is defined as follows. Given a set of n clauses fC1,
C2, � � �, Cng on m variables x = (x1; x2; � � � ; xm), xi 2 f0; 1g, where each clause
Ci consists of only logical-or _ connected variables or negations of variables, and
a Boolean formula in conjunctive normal form (CNF), where ^ is logical and.

C1 ^ C2 ^ � � � ^ Cn; (1)

find an assignment of values to the variables so that (1) evaluates to be true, or
derive its infeasibility if (1) is infeasible. A clause is satisfied if at least one of its
member is true. The entire Boolean expression is satisfied if all of its clauses are
simultaneously satisfied given a particular assignment to the variables.

Many search methods have been developed in the past for solving this problem.
These include resolution, constraint satisfaction, and backtracking. These methods
could be computationally expensive for large problem instances.

In addition to the formulation in (1), SAT problems can be formulated as
discrete or continuous, constrained or unconstrained, optimization problems. In
Section 2, we present five formulations, show the objective and/or constraints for
each formulation, and discuss approaches for solving each.

SAT algorithms can be classified as incomplete and complete, depending on
whether they can find a random solution or find all solutions. The advantage of
complete algorithms is that they can detect infeasibility when a SAT problem
is infeasible. However, they are generally computationally expensive for large
problem instances. On the other hand, incomplete methods are much faster, but
cannot conclude whether a SAT problem is feasible or infeasible when no solution
is found within a limited amount of time.

Recently, a class of local (incomplete) search methods were proposed, solving
a class of hard SAT problems with size of an order-of-magnitude larger than those
solved by complete methods. A major disadvantage of these methods is that they
require users to set some problem-specific parameters in order to find solutions
efficiently. For this reason, one of our goals in this paper is to design a fast search
method whose results can be reproduced easily.

In this paper, we formulate a SAT problem as a discrete constrained optimization
problem with a goal of minimizing N(x) subject to a set of constraints.

minx2f0;1gm N(x) =
nX
i=1

Ui(x) (2)

subject to Ui(x) = 0 8i 2 f1; 2; . . . ; ng;

where Ui = 0 if Ci is satisfied, and Ui = 1 if Ci is not satisfied. We then apply
Lagrange multiplier-based methods to solve this problem.

Traditionally, Lagrangian methods have been developed to solve continuous
constrained optimization problems. By doing descents in the original variable

LAGRANGIAN BASED GLOBAL SEARCH FOR SAT 63

space and ascents in the Lagrange-multiplier space, equilibrium is reached when
optimal solutions are found. To apply these methods to solve discrete SAT prob-
lems, we need to develop discrete Lagrangian operators that can work on dis-
crete values. Our algorithm, called Discrete Lagrangian method (DLM), moves a
search trajectory towards a local minimum in a direction defined by the Lagrangian
function and out of a local minimum in a direction provided by the Lagrange
multipliers, without restarting the search. We show that equilibrium is reached
when a feasible assignment to the original problem is found. Hence, our method
avoids random restarts that are used in existing local search methods, which may
bring a search to a completely new search space. It further relies on the balance
between the objective and the constraints to define a direction to move, rather
than just the weights of violated constraints alone as in existing penalty-based
schemes.

We apply DLM to solve SAT problems formulated as (2). Our Lagrangian
formulation is based on the objective used in local search schemes and the con-
straints used in clause-weight schemes. Hence, the analysis of DLM provides
a theoretical foundation and generalization of local search schemes and clause-
weight schemes. Our discrete formulation allows SAT problems to be solved
more efficiently by Lagrangian methods than a continuous constrained formu-
lation.

Our specific Lagrangian formulation of SAT problems can also be considered
as a specific form of clause-weight scheme as the objective and the constraints in
(2) are related, and the corresponding Lagrangian formula can be rewritten into a
clause-weight form. What we have shown in this paper is that it is advantageous
to consider the objective and the constraints separately and apply descents in the
original-variable space and ascents in the Lagrange-multiplier space to converge
to saddle points.

This paper is organized as follows. In Section 2, we summarize previous for-
mulations and algorithms to solve SAT problems. We review in Section 3 general
theory for solving continuous constrained optimization problems, and the corre-
sponding discrete optimization formulation and discrete Lagrangian algorithm. In
Section 4, we present issues and alternatives in implementing DLM. We show in
Section 5 experimental results in applying DLM to solve some SAT benchmark
problems from the DIMACS benchmark suite. Finally, concluding remarks are
drawn in Section 6

.

2. Previous Work

In this section, we review previous methods for solving SAT problems. We present
various discrete and continuous, constrained and unconstrained, formulations and
various algorithms for solving each.

64 Y. SHANG AND B. W. WAH

2.1. DISCRETE FORMULATIONS

These can be classified as unconstrained versus constrained, and complete versus
incomplete.

(a) Discrete Constrained Feasibility Formulation. This is the formulation defined
in (1). Methods to solve it can be either complete or incomplete, depending on their
ability to prove infeasibility. Complete methods for solving (1) include resolu-
tion [41, 10], backtracking [38] and consistency testing [14, 24, 21]. An important
resolution method is Davis-Putnam’s algorithm [6]. These methods enumerate the
search space systematically, and may rely on incomplete methods to find feasi-
ble solutions. Their disadvantage is that they are computationally expensive. For
instance, Selman et al. [44] and Gu [22, 19, 20] have reported that Davis-Putnam’s
algorithm cannot handle SAT problems with more than 150 variables, and better
algorithms today have difficulty in solving SAT problems with more than 400
variables.

(b) Discrete Unconstrained Formulation. In this formulation, the goal is to
minimize N(x), the number of unsatisfiable clauses. That is,

min
x2f0;1gm

N(x) =
nX
i=1

Ui(x) (3)

where Ui(x) equals 0 if the logical assignment x satisfies Ci, and 1 otherwise. In
this case, N(x) equals 0 when all the clauses are satisfied.

Many local search algorithms were designed for this formulation. These algo-
rithms can deal with large SAT problems of thousands of variables. However, they
may be trapped by local minima in the search space, where a local minimum is
a state whose local neighborhood does not include any state that is strictly better.
Consequently, steepest-descent or hill-climbing methods will be trapped there, and
random restarts merely bring the search to another local minimum.

Methods designed for (3) are usually incomplete methods, although some mech-
anisms like backtracking can make them complete. Incomplete methods are usually
random methods, relying on ad hoc heuristics to find random solutions quickly.
Those that have been applied include multi-start (restart) of descent methods,
stochastic methods such as simulated annealing (SA) [31, 2], and genetic algo-
rithms (GA) [27, 34]. They are discussed briefly as follows.

A pure descent method using multi-starts descends in the space of the objective
function from an initial point, and generates a new starting point when no further
improvement can be found locally. Examples include hill-climbing and steepest
descent [14, 51, 36, 44, 45, 35, 19, 54]. For large SAT problems, hill-climbing
methods are much faster than steepest descent because they descend in the first
direction that leads to improvement, whereas steepest descent methods find the best
direction. An example of an objective function suitable to be searched by descent
or hill-climbing methods is (3). Pure descent methods are not suitable when there
are constraints in the search space as formulated in (2).

LAGRANGIAN BASED GLOBAL SEARCH FOR SAT 65

Recently, some local search methods were proposed and applied to solve large
SAT problems [37, 11, 5, 39]. The most notable ones are those developed indepen-
dently by Gu and Selman.

Gu developed a group of local search methods for solving SAT and CSP prob-
lems. In his Ph.D thesis [14], he first formulated conflicts in the objective function
and proposed a discrete relaxation algorithm (a class of deterministic local search)
to minimize the number of conflicts in these problems. The algorithms he developed
subsequently focused on two components: methods to continue a search when it
reaches a local minimum, and methods for variable selection and value assignment.
In the first component, he first developed the so-called min-conflicts heuristic [14]
and showed significant performance improvement in solving large size SAT, n-
queen, and graph coloring problems [14, 52, 53, 51, 54]. His methods use various
local handlers to escape from local traps when a greedy search stops progress-
ing [15, 22, 23, 16, 24, 17]. Here, a search can continue without improvement
when it reaches a local minimum [22] and can escape from it by a combination of
backtracking, random restarts, and random swaps. In variable selection and value
assignment, Gu and his colleagues have developed random and partial random
heuristics [15, 52, 22, 53, 51, 23, 18, 16, 24, 19, 20]. These simple and effective
heuristics significantly improve the performance of local search algorithms.

Selman developed GSAT [48, 44, 45, 47, 42, 46] that starts from a randomly
generated assignment and performs local search iteratively by flipping variables.
Such flipping is repeated until either a satisfiable assignment is found or a pre-set
maximum number of flips is reached. When trapped in a local minimum, GSAT
either moves up-hill or jumps to another random point. To avoid getting stuck on
a plateau, which is not a local minimum, GSAT makes side-way moves.

In short, the objective function in (3) may have many local minima that trap
local search methods. Consequently, a search in a seemingly good direction may get
stuck in a small local minimum, and will rely on random restarts or hill climbing to
bring the search out of the local minimum. However, both schemes do not explore
the search space systematically, and random restarts may bring the search to a
completely different search space.

Stochastic methods, such as GA and SA, have more mechanisms to bring a
search out of a local minimum, but are more computationally expensive. Selman
et al. [45] reported that annealing is not effective for solving SAT problems. To
the best of our knowledge, there is no successful application of genetic algorithms
to solve SAT problems. In general, stochastic methods based on GA and SA are
much slower than descent methods.

(c) Discrete Constrained Formulation. There are various forms in this formula-
tion. One approach is to formulate SAT problems as 0-1 integer linear programming
(ILP) problems, and apply existing ILP algorithms to solve them [28, 29]. However,
this approach is generally computationally expensive.

66 Y. SHANG AND B. W. WAH

Another approach is to minimize an objective function N(x), subject to a set
of constraints, as defined in (2) and restated as follows.

minx2f0;1gm N(x) =
nX
i=1

Ui(x)

subject to Ui(x) = 0 8i 2 f1; 2; . . . ; ng:

This formulation is better than that in (3) because the constraints provide another
mechanism to bring the search out of a local minimum. When a search is stuck in
a local minimum, the objective value as formulated in (3) is a discrete integer, and
the vicinity of the local minimum may either be worse or be the same. On the other
hand, in formulating the problem as in (1), there is very little guidance given to the
search algorithm as to which variable to flip when a clause is not satisfied.

Our Lagrange multiplier-based method in this paper is based on formulating a
SAT problem as a discrete constrained optimization problem. We show efficient
heuristic algorithms that search in discrete space, while satisfying the constraints.

2.2. CONTINUOUS FORMULATIONS

In formulating a discrete SAT problem in continuous space, we transform discrete
variables in the original problem into continuous variables in such a way that
solutions to the continuous problem are binary solutions to the original problem.
This transformation is potentially beneficial because an objective in continuous
space may smooth out some infeasible solutions, leading to smaller number of local
minima explored. Unfortunately, continuous formulations require computationally
expensive algorithms, rendering them applicable to only small problems. In the
following, we show two such formulations.

(a) Continuous Unconstrained Formulation.

min
x2Em

f(x) =
nX
i=1

ci(x); (4)

where E is the set of real numbers, and ci(x) is a transformation of clause Ci:

ci(x) =
mY
j=1

ai;j(xj) (5)

ai;j(xj) =

8><
>:

(1� xj)
2 if xj in Ci

x2
j if �xj in Ci

1 otherwise
(6)

Values of x that make f(x) = 0 are solutions to the original problem in (1).
Note that the objective is a nonlinear polynomial function. Hence, there may

be many local minima in the search space, and descent methods, such as gradient

LAGRANGIAN BASED GLOBAL SEARCH FOR SAT 67

descent, conjugate gradient and Quasi-Newton, can be trapped by the local min-
ima [33, 17, 18, 19, 20]. Global search techniques, such as clustering methods,
generalized gradient methods, Bayesian methods and stochastic methods, can also
be applied; however, they are usually much more computationally expensive than
descent methods.

To overcome the inefficiency of continuous unconstrained optimization meth-
ods, Gu developed discrete bit-parallel optimization algorithms (SAT 14.5 and SAT
14.6) to evaluate continuous objective function [20] and have found significant per-
formance improvements.

(b) Continuous Constrained Formulation. This generally involves a heuristic
objective function that indicates the quality of the solution obtained (such as the
number of clauses satisfied). One formulation similar to (4) is as follows.

minx2Em f(x) =
nX
i=1

ci(x) (7)

subject to ci(x) = 0 8i 2 f1; 2; . . . ; ng

where ci(x) is defined in (5).
The key in this approach lies in the transformation. When the transformation

does not smooth out local minima in the discrete space or when the solution density
is low, continuous methods are much more computationally expensive to apply than
discrete methods.

Since (7) is a continuous constrained optimization problem with a nonlinear
objective function and nonlinear constraints, we can apply existing Lagrange-
multiplier methods to solve it. Our experience is that a Lagrangian transformation
does not reduce the number of local minima, and continuous Lagrangian methods
are an order-of-magnitude more expensive to apply than the corresponding discrete
algorithms [3].

3. Discrete Lagrangian Methods for Solving SAT Problems

As discussed in the last section, we formulate SAT problems as constrained opti-
mization problems (2) and solve them using Lagrangian methods. In a Lagrangian
method, the search tries to minimize the objective function, while relying on unsat-
isfied clauses in the constraints to provide a force to bring the search out of local
minima.

It is important to point out that in our specific formulation of SAT problems
in (2), all local minima in the feasible region are globally optimal. This is true
because all constraints are satisfied when a local minimum is reached. Hence,
Lagrangian methods are only used to find local minima in the feasible region.

In this section we first summarize past work on Lagrangian methods for solv-
ing continuous constrained optimization problems. We then extend continuous
Lagrangian methods so that they can be used to solve discrete constrained opti-

68 Y. SHANG AND B. W. WAH

mization problems. Finally, we show how discrete Lagrangian methods can be
applied to solve SAT problems.

3.1. EXISTING LAGRANGIAN METHODS FOR SOLVING CONTINUOUS PROBLEMS

Lagrangian methods are classical methods for solving continuous constrained opti-
mization problems [33, 56, 50]. We review briefly the theory of Lagrange multi-
pliers in this section.

Define an equality constrained optimization problem as follows.

minx2Em f(x) (8)

subject to g(x) = 0

where x = (x1; x2; � � � ; xm), and g(x) = (g1(x); g2(x); � � � ; gn(x)) are n con-
straints. Lagrangian function F is defined by

F (x; �) = f(x) +
nX
i=1

�igi(x) (9)

where � = (�1; � � � ; �n) are Lagrange multipliers. Here, Lagrange multipliers
appear as extra unknowns that transform the constrained problem into an uncon-
strained problem. Their values may, for example, be obtained through the solution
of a saddle-point problem that we introduce later in this section.

DEFINITION 3.1. A point x� satisfying the constraints g(x�) = 0 is said to be a
regular point of the constraints if the gradient vectors rgi(x�), i = 1; � � � ; n, are
linearly independent.

The tangent plane at regular points can be characterized in terms of the gradients
of the constraint functions.

First-order necessary conditions. Let x� be a local minimum of f subject to
constraints g(x) = 0, and x� be a regular point of these constraints. Then there
exists � 2 En such that

rxF (x
�; �) = 0 and r�F (x

�; �) = 0 (10)

The conditions in (10) are not sufficient to have the existence of a constrained
local minimum of f(x) unless second- or higher-order derivatives of f(x) also
satisfy certain conditions. An example is the following set of conditions.

Second-order sufficient conditions. Suppose there exists point x� and � 2 En

such that

rxF (x
�; �) = 0 and r�F (x

�; �) = 0 (11)

Suppose also that matrixr2
xF (x

�; �) is positive definite on M = fz : rg(x�)z =
0g. Then x� is a strict local minimum of f(x) subject to g(x) = 0.

LAGRANGIAN BASED GLOBAL SEARCH FOR SAT 69

The necessary conditions in (10) form a system of n + m equations with
n +m unknowns. Since the equations are nonlinear, it is difficult to solve them
analytically. In this case, a locally optimal solution can be obtained by finding a
saddle point of the Lagrangian function.

DEFINITION 3.2. A saddle-point (x�; ��) of Lagrangian function F (x; �) is
defined as one that satisfies the following condition.

F (x�; �) � F (x�; ��) � F (x; ��) (12)

for all (x�; �) and all (x; ��) sufficiently close to (x�; ��).

A saddle-point is a local minimum of Lagrangian functionF (x; �) in thex space
and a local maximum of F (x; �) in the � space. Hence, one natural way for finding
saddle points is to descend in the x space and ascend in the � space. Lagrange
multipliers � can also be viewed as penalties associated with constraints, and
Lagrangian function F corresponds to a penalty function. When certain constraints
are not satisfied, the sum of unsatisfied constraints, weighted by the corresponding
Lagrange multipliers, are added to the objective function to form a penalty function.
Ascents of F in the � space, therefore, correspond to increasing the penalties
associated with unsatisfied constraints. As F is to be minimized, the penalties will
eventually increase to a point that pushes the constraints to be satisfied. Likewise,
descents ofF in the x space find a local minimum when all constraints are satisfied.

In the following, we state a theorem on the relationship between local minima
and saddle points based on (8). Although similar proofs have been derived for
continuous problems with inequality constraints [33, 56, 50], we present the proof
for a special case with equality constraints. This proof will be used when we study
discrete optimization problems in Section 3.2.

Saddle-Point Theorem. x� is a local minimum to the original problem defined
in (8) if there exists�� such that (x�; ��) constitutes a saddle point of the associated
Lagrangian function F (x; �).

Proof. Since (x�; ��) is a saddle point, F (x�; �) � F (x�; ��) for � sufficiently
close to ��. From the definition of the Lagrangian function, this implies

nX
i=1

�igi(x
�) �

nX
i=1

��i gi(x
�):

Our proof is by contradiction. Suppose there exists some k, 1 � k � n,
gk(x

�) 6= 0. If gk(x�) > 0, then vector � = (��1; � � � ; �
�
k + �; � � � ; ��n) would

violate the inequality for a positive �. If gk(x�) < 0, then vector � = (��1; � � � ; �
�
k�

�; � � � ; ��n) would violate the inequality for a positive �. Therefore, g(x�) = 0, and
x� is a feasible solution to the problem.

70 Y. SHANG AND B. W. WAH

Since (x�; ��) is a saddle point, F (x�; ��) � F (x; ��) for x sufficiently close
to x�. From the definition of the Lagrangian function,

f(x�) � f(x) +
nX
i=1

��i gi(x):

Thus, for any feasible x, g(x) = 0, and we have

f(x�) � f(x):

So x� is a local minimum. E

Based on the first-order necessary conditions, numerical algorithms have been
developed to look for local minima in a search space. One first-order method is
to do descents in the original variable space of x and ascents in the Lagrange-
multiplier space of � [1, 33, 4, 57]. The method can be written as a set of ordinary
differential equations as follows.

dx

dt
= �rxF (x; �) and

d�

dt
= r�F (x; �) (13)

where t is an autonomous time variable. This dynamic system evolves over time
t and performs gradient descents in the original variable space of x and gradient
ascents in the Lagrange-multiplier space of �. When the system reaches an equi-
librium point where all gradients vanish, the point could be a local minimum, a
local maximum, or a reflex point subject to constraints. Equilibrium points of local
maxima and reflex points are not stable in the sense that a small pertubation will
bring the dynamic system away from these points and continue to evolve.

Lagrangian methods are local optimization methods for continuous optimiza-
tion problems in the sense that they only return a feasible local optimal solution.
Therefore, Lagrangian methods do not suffice as a general-purpose global opti-
mization method. The only exception is when there is only one local minimum in
the search space or when all local minima are global minima (the formulation of
SAT problems in (2)), then Lagrangian methods can find the global minimum.

3.2. LAGRANGIAN METHODS FOR SOLVING GENERAL DISCRETE PROBLEMS

Little work has been done in applying Lagrangian methods to solve discrete con-
strained combinatorial search problems [12, 26, 9]. The difficulty in traditional
Lagrangian methods lies in the requirement of a differentiable continuous space. In
order to apply Lagrangian methods to discrete optimization problems, we need to
develop a new gradient operator that works in discrete space. Before we introduce
the difference gradient operator, we first present some related definitions.

Consider the following equality-constrained optimization problem in discrete
space, which is similar to the continuous version in (8),

minx2Dm f(x) (14)

subject to g(x) = 0

LAGRANGIAN BASED GLOBAL SEARCH FOR SAT 71

where x = (x1; x2; � � � ; xm), g(x) = (g1(x); g2(x); � � � ; gn(x)), and D is the set
of integers.

DEFINITION 3.3. A local minimum x� to problem (14) is defined as g(x�) = 0
and f(x�) � f(x) for any feasible x, and x� and x differ in only one dimension
by a magnitude of 1.

For example, if x differs from x� in the kth dimension, then jx�k � xkj = 1.
Note that this definition can be extended to the case in which two points can differ
by more than one dimensions.

Lagrangian function F has the same form as in the continuous case and is
defined as follows.

F (x; �) = f(x) +
nX
i=1

�igi(x) (15)

where � are Lagrange multipliers that have real values.
A saddle point (x�; ��) of F (x; �) is reached when the following condition is

satisfied.

F (x�; �) � F (x�; ��) � F (x; ��) (16)

for all � sufficiently close to �� and all x that differ from x� in only one dimension
by a magnitude 1.

In a way similar to the continuous case, we derive the following theorem
specifying the relation between local minima and saddle points.

Discrete Saddle-Point Theorem for Discrete Problems. x� is a local minimum
solution to the discrete constrained problem in (14) if there exists �� such that
(x�; ��) constitutes a saddle point of the associated Lagrangian function F (x; �).

Proof. The proof is similar to that of the continuous case. E

In the continuous case, methods that look for local minimum subject to constraints
utilize gradient information. In order for these methods to work in the discrete
variable space x of discrete problems, we need to define the counterpart of the
gradient operator. Note that � can remain to be continuous even in the discrete
case. In the following, we define a discrete difference gradient operator�x. (Note
that this operator is not unique, and other operators can be defined to work in a
similar way.)

DEFINITION 3.4. Difference gradient operator�x is defined with respect to x in
such a way that �xF (x; �) = (�1; �2; � � � ; �m) 2 f�1; 0; 1gm,

Pm
i=1 j�ij = 1, and

(x��xF (x; �)) 2 f0; 1gm, and at most one �i is non-zero. For any x0 that differs
from x by at most value 1 in one dimension, i.e.,

Pm
i=1 jx

0
i � xij = 1,

F (x��xF (x; �); �) � F (x0; �):

Further, if 8x0; F (x; �) � F (x0; �), then �xF (x; �) = 0.

72 Y. SHANG AND B. W. WAH

Based on this definition, Lagrangian methods for continuous problems can be
extended to discrete problems. The basic idea is to descend in the original discrete
variable space of x and ascend in the Lagrange-multiplier space of �. We propose
a generic discrete Lagrangian method as follows.

Generic Discrete Lagrangian Method (DLM)

xk+1 = xk �D(xk; �k) (17)

�k+1 = �k + g(xk) (18)

whereD(xk; �k) is a heuristic descent direction for updatingx, and k is the iteration
index.

D(x; �) is not unique and can be defined by either steepest descent or hill
climbing. A steepest-descent approach chooses D(x; �) to be �xF (x; �), the
direction with the maximum gradient. A hill-climbing approach, on the other hand,
chooses the first point in the neighborhood of the currentx that reducesF . Although
both approaches have different descent trajectories, they both can reach equilibrium
that satisfies the saddle-point condition. Consequently, they can be considered as
alternative approaches to calculate �xF (x; �).

Given the difference gradient operator �xF (x; �), the difference equations in
discrete space used to seek saddle points are as follows.

xk+1 = xk ��xF (x
k; �k) (19)

�k+1 = �k + g(xk); (20)

where x and � evolve iteratively until a saddle point is reached. The following the-
orem establishes the relation between saddle points and the termination conditions
of (19) and (20).

Discrete Fixed-Point Theorem. A saddle point (x�, ��) of (15) is reached if and
only if (19) and (20) terminate.

Proof. “)” part: If (19) and (20) terminate at (x�; ��), then g(x�) = 0 and
�xF (x

�; ��) = 0. g(x�) = 0 implies that F (x�; �) = F (x�; ��). �xF (x
�; ��) =

0 implies that F (x�; ��) � F (x; ��) for any feasible x in the neighborhood of x�.
Therefore, (x�; ��) is a saddle point, and by the Discrete Saddle Point Theorem,
x� is a local minimum.

“(” part: If (x�, ��) is a saddle point, then g(x�) = 0. Further, the condition
that F (x�; ��) � F (x; ��) for any x in the neighborhood of x� implies that
�xF (x

�; ��) = 0. Therefore, (19) and (20) terminates at (x�; ��). E

DLM described in this paper is valuable in providing a theoretical framework for
better understanding of global search methods to solve general discrete constrained
optimization problems.

One of the important features of DLM is that it will continue searching until
a solution to the constrained problem is found, independent of its starting point.

LAGRANGIAN BASED GLOBAL SEARCH FOR SAT 73

Therefore, DLM does not involve random restarts. In contrast, other randomized
local search algorithms rely on randomized mechanisms to bring the search out of
local minima in the original variable space. When the search reaches a local mini-
mum, it is randomly restarted from a completely new starting point. Consequently,
the search may fail to explore the vicinity of the local minimum it has just reached,
and the number of unsatisfied constraints at the new starting point is unpredictable.

Another important feature of DLM is that it is a global search algorithm that
combines both local search and global search. Its local-search component is based
on a descent algorithm in the original variable space, similar to what is used in other
local search algorithms. When the search reaches a local minimum, DLM brings the
search out of the local minimum using its Lagrange multipliers. This mechanism
allows the search to continue in its present trajectory without any breaks. As a
result, we often see small fluctuations in the number of unsatisfied constraints as
the search progresses, indicating that DLM bypasses small “dents” in the original
variable space with the aid of Lagrange multipliers.

One final remark on DLM is that it is an incomplete search method because it
does not prove infeasibility. Hence, if there is no feasible solution in the search
space or if feasible solutions are very difficult to find, DLM may not terminate.
As in continuous Lagrangian methods, the time to find a saddle point can only be
determined empirically.

3.3. DISCRETE LAGRANGIAN METHOD FOR SOLVING SAT PROBLEMS

To apply DLM to solve a SAT problem, we introduce an artificial objective H(x)
and formulate the problem into a constrained optimization problem as follows.

minx2f0;1gm H(x) (21)

subject to Ui(x) = 0 8i 2 f1; 2; . . . ; ng;

where Ui = 0 if Ci is satisfied, and Ui = 1 if Ci is not satisfied. DLM searches for
a saddle point of the Lagrangian formulation of (21).

A saddle point (x�; ��) to the Lagrangian formulation of (21) consists of a
feasible solution x� to the SAT problem in (1). Given the saddle point (x�; ��),

F (x�; �) � F (x�; ��)) H(x�) + �TU(x�) � H(x�) + ��TU(x�)

) �TU(x�) � ��TU(x�)

for any � close to ��. The condition holds only when U(x�) = 0; i.e., x� is a
feasible solution to the SAT problem in (1).

In order for all feasible solutions to the SAT problem in (1) to become saddle
points of (21), the objective function H(x) must satisfy the following condition.

Necessary Condition for Objective function. If a feasible solution x� to the SAT
problem in (1) is a local minima of the objective function H(x), then (x�; ��) is a
saddle point of the Lagrangian formulation of (21) for any positive ��.

74 Y. SHANG AND B. W. WAH

Proof. The Lagrangian function of (21) is

F (x; �) = H(x) + �TU(x)

Given a feasible solution x� of (1), U(x�) = 0. For any positive ��,

F (x�; �) = H(x�) + �TU(x�) = H(x�) = H(x�) + ��TU(x�) = F (x�; ��)

for � close to ��. Since x� is a local minima of U(x), and U(x) � 0 for any x, and
�� is positive,

F (x�; ��) = H(x�) + ��TU(x�) = H(x�) � H(x) + ��TU(x) = F (x; ��)

for x close to x�. Therefore, we have

F (x�; �) = F (x�; ��) � F (x; ��)

and (x�; ��) is a saddle point. E

There are many functions that satisfy the necessary condition. Examples are

H(x) =
nX
i=1

Ui(x) (22)

H(x) =
nX
i=1

liUi(x) (23)

H(x) =
nX
i=1

(lmax + 1� li)Ui(x) (24)

where li is the number of variables appearing in clause Ci, and lmax = maxni=1 li.
The first function assigns uniform weights to all clauses. The second function
assigns more weights to longer clauses, whereas the third one is the opposite. A
feasible solution x� is a local minimum of these functions becauseUi(x�) = 0 and
H(x�) = 0. In this paper we use the first function as our objective function, and
formulate SAT problems as constrained optimization problems in (2).

The SAT problem defined in (2) is a special case of the discrete constrained
optimization problem defined in (14). An important property of the formulation
in (2) is that all local minima are also global minima. This is true because, based
on (2), x� is defined as a local minimum if U(x�) = 0, which implies thatN(x�) =
0 (a global minimum). This condition is stated more formally as follows.

Necessary and Sufficient Condition for Optimality. x� is a global minimum of
the SAT formulation in (2) if and only if U(x�) = 0.

Proof. Straightforward. E

Due to this property, a SAT problem formulated in (2) can be solved by the differ-
ence equations in (19) and (20) that find saddle points of a discrete Lagrangian func-
tion. In the rest of this subsection, we show how the general Discrete Lagrangian
method (DLM) can be applied to solve discrete SAT problems.

LAGRANGIAN BASED GLOBAL SEARCH FOR SAT 75

The discrete Lagrangian function for (2) is defined as follows.

L(x; �) = N(x) + �TU(x) =
nX
i=1

Ui(x) +
nX
i=1

�iUi(x)

=
nX
i=1

(1 + �i)Ui(x) (25)

where x 2 f0; 1gm, U(x) = (U1(x); . . . ; Un(x)) 2 f0; 1gn, and �T is the trans-
pose of � = (�1; �2; . . . ; �n) that denotes the Lagrange multipliers. ((25) gives
rise to two possible interpretations that will be discussed at the end of this section.)
Due to the specific domain of x, the neighborhood of x is more restricted and is
reflected in the definition of the saddle point.

A saddle point (x�; ��) of L(x; �) in (25) is defined as one that satisfies the
following condition.

L(x�; �) � L(x�; ��) � L(x; ��) (26)

for all � sufficiently close to �� and for all x whose Hamming distance between
x� and x is 1.

Discrete Saddle-Point Theorem for SAT. x� is a global minimum of (2) if and
only if there exists some �� such that (x�; ��) constitutes a saddle point of the
associated discrete Lagrangian function L(x; �).

Proof. The Discrete Saddle-Point Theorem discussed in Section 3.2 for discrete
problems can be applied here. A simpler proof is as follows.

“(” part: Since (x�; ��) is a saddle point, L(x�; �) � L(x�; ��) for � suffi-
ciently close to ��. From the definition of the Lagrangian function in (25), this
implies

nX
i=1

�iUi(x
�) �

nX
i=1

��iUi(x
�):

Suppose some Uk(x�) 6= 0, which means Uk(x�) = 1. Then � = (��1; � � � ; �
�
k +

�; � � � ; ��n) would violate the inequality for a positive �. Therefore, U(x�) = 0, and
x� is a global minimum.

“)” part: If x� is a global minimum, then U(x�) = 0, and L(x�; ��) =
L(x�; �) = 0. The vector �� � 0 makesL(x�; ��) � L(x; ��). Therefore, (x�; ��)
is a saddle point. E

COROLLARY. If a SAT problem formulated in (2) is feasible, then any algorithm
A that can find a saddle point of L(x; �) defined in (25) from any starting point
can find a feasible solution to the SAT problem.

Proof. If a SAT problem is feasible, then its solutions are global minima of (2).
These correspond to saddle points of L(x; �) defined in (25). IfA can find a saddle
point from any starting point, then A will find a solution to the problem. E

76 Y. SHANG AND B. W. WAH

Since a Lagrangian method only stops at saddle points, this corollary implies
that the method will find a saddle point regardless of its starting point (including the
origin) if the problem is feasible. Unfortunately, the corollary does not guarantee
that it will find a saddle point in a finite amount of time.

To apply DLM to solve SAT problems, we define the discrete gradient oper-
ator �xL(x; �) with respect to x such that �xL(x; �) points to state x0 in the
Hamming distance-1 neighborhood of the current state x that gives the maximum
improvement in L(x; �). If no state in the 1-neighborhood improves L(x; �), then
�xL(x; �) = 0.

Next, we propose a method to update (x; �) so that it will eventually satisfy the
optimality condition defined in (26).

Discrete Lagrangian Method (DLM) A for SAT.

xk+1 = xk ��xL(x
k; �k) (27)

�k+1 = �k + U(xk) (28)

It is easy to see that the necessary condition for algorithm A to converge is
when U(x) = 0, implying that x is optimal. If any of the constraints in U(x) is not
satisfied, then � will continue to evolve to handle the unsatisfied constraints.

The following theorem establishes the correctness of A and provides the con-
ditions for termination.

Discrete Fixed-Point Theorem for SAT. An optimal solution x� to the SAT prob-
lem defined in (2) is found if and only if A terminates.

Proof. “)” part: IfA terminates, thenU(x) = 0, which makes�xL(x; �) = 0.
Since this is a sufficient condition for optimality, the optimal solution is found.

“(” part: If an optimal solution x� is found, then according to the necessary
condition of optimality, U(x�) = 0, implying that �xL(x; �) = 0. Therefore,
neither x nor � will change, leading to the conclusion that A terminates. E

EXAMPLE. The following simple example illustrates the discrete Lagrangian
algorithm. The problem has four variables, fx1, x2, x3, x4g, 7 clauses,

(x1 _ x3 _ x4) ^ (x1 _ �x2 _ �x3) ^ (�x1 _ �x2 _ x4) ^ (�x1 _ �x3 _ �x4)
^(x2 _ x3 _ �x4) ^ (x2 _ �x3 _ x4) ^ (�x2 _ x3 _ �x4)g

and 2 solutions, f(1, 0, 0, 0), (0, 0, 1, 1)g,
Algorithm A works as follows.
(1) Initially,x0 = f(1, 1, 1, 1)g and�0 = f(0, 0, 0, 0, 0, 0, 0)g, andL(x0; �0) = 1.
(2) The L values of neighboring points of the initial point are

L((1; 1; 1; 0); �0) = L((1; 1; 0; 1); �0) = L((1; 0; 1; 1); �0) =
L((0; 1; 1; 1); �0) = 1.

�xL(x
0; �0) = 0 since L(x0; �0) is less than or equal to the values of neighboring

points. As the fourth clause is not satisfied, �1 is updated to be f0, 0, 0, 1, 0, 0, 0g.

LAGRANGIAN BASED GLOBAL SEARCH FOR SAT 77

Further, x is updated to be x1 = x0. Note that �4, the penalty for the fourth clause,
is increased in order to provide a force to pull the search out of the local minimum.

(3) L(x1; �1) = 2. The L values of x1’s neighboring points are

L((1; 1; 1; 0); �1) = L((1; 1; 0; 1); �1) = L((0; 1; 1; 1); �1) = 1 and
L((1; 0; 1; 1); �1) = 2.

There are three choices of �xL(x
1; �1).

� If we choose �xL(x
1; �1) = (0; 0; 0; 1), then x2 = (1; 1; 1; 0) and

�2 = (0; 0; 0; 2; 0; 0; 0).
� If we choose �xL(x

1; �1) = (0; 0; 1; 0), then x2 = (1; 1; 0; 1) and
�2 = (0; 0; 0; 2; 0; 0; 0).

� If we choose �xL(x
1; �1) = (1; 0; 0; 0), then x2 = (0; 1; 1; 1) and

�2 = (0; 0; 0; 2; 0; 0; 0).
Assume that we choose �xL(x

1; �1) = (1; 0; 0; 0) in this example.
(4) x2 = (0; 1; 1; 1) and L(x2; �2) = 1. The L values of neighboring points are

L((1; 1; 1; 1); �2) = 3, L((0; 0; 1; 1); �2) = 0, and L((0; 1; 0; 1); �2) =
L((0; 1; 1; 0); �2) = 1.

Therefore, �xL(x
2; �2) = (0; 1; 0; 0). x and � are updated to be x3 = (0; 0; 1; 1)

and �3 = (0; 0; 0; 2; 0; 1; 0), respectively.
(5) U(x3) = 0 implies that �xL(x

3; �3) = 0. Hence, A terminates and x3 is a
solution.

Note that � defined in (28) is non-decreasing. Ways to decrease � are considered
in Section 4.2.

There are two ways to interpret DLM when applied to solve SAT problems
defined in (2) and formulated in (25).

First, we can consider DLM to provide two counter-acting forces to bring the
search to a saddle point. To get out of local minima that do not satisfy all the con-
straints, DLM increases the penalties on constraints that are violated, recording the
history information on constraint violation in the Lagrange multipliers. Eventually
as time passes, the penalties on violated constraints will be very large, forcing
these constraints to be satisfied. This is similar to what is done in many existing
clause-weight schemes, such as Morris’ “break-out” strategy [37] and Selman and
Kautz’s GSAT [44, 45].

The other counter-acting force used in DLM is based on the value of the objective
function (in this case the number of violated constraints). When the number of
violated constraints is large, then it is important to reduce the number of violated
constraints by choosing proper variables to flip. In this case, the weights on the
violated constraints may be relatively small as compared to the number of violated
constraints and, hence, play a minor role in determining the variables to flip. The
advantage of the objective is more apparent in applications in which its value may
be large. For instance, in solving MAX-SAT problems, the objective representing
the weighted sum of the number of unsatisfied clauses can be large and can provide

78 Y. SHANG AND B. W. WAH

better guidance in the search [49]. This part of the search is similar to what is done
in many local search methods, such as Gu’s local-search methods [18, 19, 20] and
GSAT [48, 44, 45, 47, 42, 46], which descends into local minima in the objective
space based on (3). Existing local search methods generally use (less effective)
random perturbations to escape from local minima. For instance, GSAT uses uphill
movements and random restarts to get out of local minima, whereas Gu’s local-
minimum handler uses stochastic mechanisms to escape from local minima.

The second interpretation of DLM is that it can be treated as a clause-weight
scheme, as indicated in (25). This happens because the objective and the constraints
are related and can be rewritten into a clause-weight form. What we have shown in
this paper is that it is advantageous to consider them separately and apply descents
in the original-variable space and ascents in the Lagrange-multiplier space to
converge to saddle points.

In the next section, we study new techniques for controlling Lagrange multipliers
in order to obtain improved performance. The (new and existing) strategies we
consider in Section 4.2 include:
� strategies to determine variables to flip in an iteration;
� strategies based on flat moves [45] and tabu lists [13, 25] to handle plateaus;

and
� strategies to periodically reduce the Lagrange multipliers.

The last strategy is particularly critical in reducing the “ruggedness” of the search
space as the search progresses, which happens in difficult-to-satisfy but satisfiable
SAT problems. The strategy can be considered as systematic restarts (that do not
rely on random numbers) in the Lagrangian space.

4. Implementations of DLM to Solve SAT Problems

In this section we discuss issues related to the implementation of DLM and
three implementations of the algorithm. There are three components in apply-
ing a Lagrangian method: evaluating the derivative of the Lagrangian function,
updating the Lagrange multipliers, and evaluating the constraint equations. In the
continuous domain, these operations are computationally expensive, especially
when the number of variables is large and the function is complex. However, as
we show in this and the next sections, implementation in the discrete domain is
very efficient, and our method is often faster than other local-search methods for
solving SAT problems.

4.1. ALGORITHMIC DESIGN CONSIDERATIONS

The general structure of DLM is shown in Figure 1. It performs descents in the
original variable space of x and ascents in the Lagrange-multiplier space of �. In
discrete space, �xL(x; �) is used in place of the gradient function in continuous

LAGRANGIAN BASED GLOBAL SEARCH FOR SAT 79

Generic algorithmA

Set initial x and �
while x is not a solution, i.e., N(x) > 0

update x: x � x��xL(x; �)
if condition for updating � is satisfied then

update �: � � �+ c� U(x)
end if

end while

Figure 1. Generic discrete Lagrangian algorithm A for solving SAT problems.

space. We call one iteration as one pass through the while loop. In the following,
we describe the features of our implementation of A in Figure 1.

(a) Descent and Ascent Strategies. There are two ways to calculate �xL(x; �):
greedy and hill-climbing, each involving a search in the range of Hamming distance
one from the current x (assignments with one variable flipped from the current
assignment x).

In a greedy strategy, the assignment leading to the maximum decrease in the
Lagrangian-function value is selected to update the current assignment. Therefore,
all assignments in the vicinity need to be searched every time, leading to computa-
tion complexity of O(m), where m is number of variables in the SAT problem. In
hill-climbing, the first assignment leading to a decrease in the Lagrangian-function
value is selected to update the current assignment. Depending on the order of search
and the number of assignments that can be improved, hill-climbing strategies are
generally less computationally expensive than greedy strategies.

We have compared both strategies in solving SAT benchmark problems, and
have found hill-climbing to be orders of magnitude faster with solutions of com-
parable quality. Hence, we have used hill-climbing in our experiments.

(b) Updating �. The frequency in which � is updated affects the performance of
a search. The considerations here are different from those of continuous problems.
In a discrete problem, descents based on discrete gradients usually make small
changes in L(x; �) in each update of x because only one variable changes. Hence,
� should not be updated in each iteration to avoid biasing the search in the Lagrange-
multiplier space of � over the original variable space of x.

In our implementation, � is updated in two situations. One is when the search
reaches a local minimum; another is decided by parameter T that specifies the
number of iterations before � is updated. T can be changed dynamically according
to the value of L(x; �) or when �xL(x; �) = 0. In our experiments, we have
found that DLM works better when T is very large. Consequently, � will be
updated infrequently and most likely be updated when �xL(x; �) = 0. When
�xL(x; �) = 0, a local minimum in the original variable space is reached, and
the search can only escape from it by updating �. By setting T to infinity, the

80 Y. SHANG AND B. W. WAH

strategy amounts to pure descents in the original x variable space, while holding �
constant, until a local minimum is reached. This corresponds to Morris’ “break out”
strategy [37]. In the breakout algorithm, a state is a complete set of assignments
for variables. In SAT problems, each clause is associated a weight, and the cost
of a state is the sum of weights of unsatisfied clauses of the state. Initially all
weights are one. Iterative improvement of state continues until a local minimum
is reached. The weight of each current unsatisfied clause is then increased by unit
increments until breakout from the local minimum occurs. Iterative improvement
resumes afterwards.

A parameter c in the term c � U(x) in Figure 1 controls the magnitude of
changes in �. Different c’s for the whole run is different and is not equivalent
to setting c to 1 because the objective is not weighted by c. In general, c can
be a vector of real numbers, allowing non-uniform updates of � across different
dimensions and possibly across time. For simplicity, we have used a constant c in
our implementation for all �’s. Empirically, c = 1 has been found to work well
for most of the benchmark problems tested. However, for some larger and more
difficult problems, we have used a smaller c in order to reduce the search time.

The last point on � in Figure 1 is that it is always nondecreasing. This is not true
in continuous problems with equality constraints. In applying Lagrangian methods
to solve continuous problems, Lagrange multiplier � of a constraint g(x) = 0
increases when g(x) > 0 and decreases when g(x) < 0. In A shown in Figure 1,
� is nondecreasing becauseU(x) is either 0 or 1: when a clause is not satisfied, its
corresponding � is increased; and when a clause is satisfied, its corresponding � is
not changed. For most of the benchmark problems we have tested, this strategy does
not worsen search time as these problems are relatively easy to solve. However,
for difficult problems that require millions of iterations, � values can become very
large as the search progresses. Large �’s are generally undesirable because they
cause large swings in the Lagrangian-function value.

To overcome this problem, we develop in DLM A3 in Section 4.2 a strategy to
reduce � periodically. Using this strategy, we can solve some of the more difficult
benchmark problems that require longer time.

(c) Starting Points and Restarts. In contrast to other SAT algorithms that rely
on random restarts to bring a search out of a local minimum, DLM will continue to
evolve without restarts until a satisfiable assignment is found. This avoids restarting
from a new starting point when a search is already in the proximity of a good local
minimum. Another major advantage of DLM is that there are very few parameters
to be selected or tuned by users, including the initial starting point. This makes it
possible for DLM to always start from the origin or from a random starting point
generated by a fixed random seed, and find a feasible assignment if one exists.

(d) Plateaus in the Search Space. In discrete problems, plateaus with equal
values exist in the Lagrangian-function space. Our proposed discrete gradient
operator may have difficulties in plateaus because it only examines adjacent points
of L(x; �) that differ in one dimension. Hence, it may not be able to distinguish

LAGRANGIAN BASED GLOBAL SEARCH FOR SAT 81

a plateau from a local minimum. We have implemented two strategies to allow a
plateau to be searched.

First, we need to determine when to change � when the search reaches a
plateau. As indicated earlier, � should be updated when the search reaches a local
minimum in the Lagrangian space. However, updating � when the search is in a
plateau changes the surface of the plateau and may make it more difficult for the
search to find a local minimum somewhere inside the plateau. To avoid updating
� immediately when the search reaches a plateau, we have developed a strategy
called flat move. This allows the search to continue for some time in the plateau
without changing�, so that the search can traverse states with the same Lagrangian-
function value. How long should flat moves be allowed is heuristic and possibly
problem dependent. Note that this strategy is similar to Selman’s “sideway-move”
strategy [45].

Our second search strategy is to avoid revisiting the same set of states in a
plateau. In general, it is impractical to remember every state the search visits in a
plateau due to the large storage and computational overheads. In our implementa-
tion, we have kept a tabu list to maintain the set of variables flipped in the recent
past [13, 25] and to avoid flipping a variable if it is in the tabu list.

To summarize, we employ the following strategies and settings of parameters
in our implementations of the generic DLMA.
� A hill-climbing strategy is used for descents in the original variable space.
� T is infinity, which corresponds to updating � when the search reaches a local

minimum in the Lagrangian space.
� The initial � is 0.
� The initial starting point is either the origin or a randomly-generated starting

point obtained by calling random number generator drand48() (a publicly
available C library function that generates pseudo-random numbers using the
well-known linear congruence algorithm and 48-bit integer arithmetic).

� The random number generator uses a fixed initial seed of 101.
� To handle more difficult and complex problems, flat moves and tabu lists may

be used in a search to traverse plateaus.
Unless specified otherwise, these strategies and parameters settings are used in our
implementations in the following section.

4.2. THREE IMPLEMENTATIONS OF THE GENERIC DLM

Figures 2, 3, and 4 show three implementations of the general algorithm A with
increasing complexity.
A1, DLM Version 1 shown in Figure 2, is the simplest. It has two alternatives

to find a variable in order to improve the Lagrangian-function value: flip variables
one by one in a predefined order, or flip variables in unsatisfied clauses. Since
only variables appearing in unsatisfied clauses can potentially improve the current
Lagrangian-function value, it is not necessary to check variables that appear in

82 Y. SHANG AND B. W. WAH

DLM A1

Set initial x
Set � = 0
Set c = 1
Set # = 10
while x is not a solution, i.e., N(x) > 0

if number of unsatisfied clauses� #, then
Maintain a list of unsatisfied clauses
if 9 variable v in one of the unsatisfied clauses such that
L(x0; �) < L(x; �) when flipping v in x to get x0 then
x � x0

else
Update �: � � �+ c � U(x)

end if
else

if 9 variable v such that L(x0; �) < L(x; �) when flipping v
in a predefined order in x to get x0 then
x � x0

else
Update �: � � �+ c � U(x)

end if
end if

end while

Figure 2. Discrete Lagrangian Algorithm Version 1, A1, an implementation of A for solving
SAT problems.

currently satisfied clauses. The first alternative is fast when the search starts. By
starting from a randomly generated initial assignment, it usually takes a few flips to
find a variable that improves the current Lagrangian-function value. As the search
progresses, there are fewer variables that can improve the Lagrangian-function
value. At this point, the second alternative should be applied.
A1 uses parameter# to control switching from the first alternative to the second.

We found that # = 10 works well and used this value in all our experiments.
A2, DLM Version 2 shown in Figure 3, employs another strategy to make local

improvements. Initially, it is similar to A1. As the search progresses, the number
of variables that can improve the current Lagrangian-function value is greatly
reduced. At this point, a list is created and maintained to contain variables that can
improve the current Lagrangian-function value. Consequently, local descent is as
simple as flipping the first variable in the list.
A2 uses � to control the switching from the first strategy to the second. We

found that � = n=3 works well and used this value in our experiments. A2 also
has more efficient data structures to deal with larger problems.

LAGRANGIAN BASED GLOBAL SEARCH FOR SAT 83

DLM A2

Set initial x
Set � = 0
Set c = 1
Set � = n=3, where n is the number of variables
while x is not a solution, i.e., N(x) > 0

if number of iterations� � then
Maintain a list, l, of variables such that

if one of them is flipped, the solution will improve.
if l is not empty then

Update x by flipping the first element of l
else

Update �: � � �+ c � U(x)
end if

else
if 9 variable v such that L(x0; �) < L(x; �) when flipping v

in a predefined order in x to get x0 then
x � x0

else
Update �: � � �+ c � U(x)

end if
end if

end while

Figure 3. Discrete Lagrangian Algorithm Version 2, A2.

A3, DLM Version 3 shown in Figure 4, has more complex control mechanisms
and was introduced to solve some of the more difficult benchmark problems (such
as the “g,” “f” and large “par” problems in the DIMACS benchmarks) better than
A2. It is based on A2 and uses all of A2’s parameters. We have applied strategies
based on flat moves and tabu lists to handle plateaus [13, 25]. An important element
of A3 is the periodic scaling down of the Lagrange multipliers in order to prevent
them from growing to be very large. This strategy can be considered as systematic
restarts (that does not rely on random numbers) in the Lagrangian space. Further,
to get better performance, we may have to tune c for each problem instance.

Program efficiency is critical when dealing with SAT problems with a large
number of variables and clauses. Since DLM searches by constantly updating state
information (current assignment of x, Lagrange-multiplier values and Lagrangian-
function value), state update has to be very efficient. In our implementation, we
update state information incrementally in a way similar to that in GSAT. In large
SAT problems, each variable usually appears in a small number of clauses. There-
fore, state changes incurred by flipping a variable are very limited. When flipping
a variable, some clauses become unsatisfied while some others become satisfied.
The incremental update of the Lagrangian-function value is done by subtracting
the part of improvement and adding the part of degradation. This leads to very

84 Y. SHANG AND B. W. WAH

DLM A3

Set initial x
Set � = 0
Set � = n=3, where n is the number of variables
Set tabu length Lt, e.g., 50
Set flat-region limit Lf , e.g., 50
Set � reset interval I�, e.g., 10000
Set constant c, e.g., 1/2
Set constant r, e.g., 1.5
while x is not a solution, i.e., N(x) > 0

if number of iterations� � then
Maintain a list, l, of variables such that
if one of them is flipped, the solution will improve.

end if
if number of iterations� � and l is not empty then

Update x by flipping the first element of l
else if 9 variable v such that L(x0; �) < L(x; �) when flipping v

in a predefined order in x to get x0 then
x � x0

else if 9 v such that L(x0; �) = L(x; �) when flipping v in x to get x0

and number of consecutive flat moves� Lf

and v has not been flipped in the last Lt iterations then
x � x0 /* flat move */

else
Update �: � � �+ c � U(x),

end if
if iteration index mod I� = 0 then

Reduce � for all clauses, e.g. � � �=r
end if

end while

Figure 4. Discrete Lagrangian Algorithm Version 3, A3.

efficient evaluation of L(x; �). In a similar way, the computation of�xL(x; �) can
also be done efficiently.

In general Lagrangian methods, Lagrange multipliers introduced in the formu-
lation add extra overhead in computing the Lagrangian function as compared to
the original objective function. This overhead in DLM is not significant because
an update of � requires O(p) time, where p is the number of unsatisfied clauses,
and p� n when n is large.

4.3. REASONS BEHIND THE DEVELOPMENT OF A3

In our experiments, we found that A2 has difficulty in solving some of the hard
benchmark problems. By looking into the execution profiles ofA2 as illustrated in
Figure 5, we have the following interesting observations.

LAGRANGIAN BASED GLOBAL SEARCH FOR SAT 85

4

16

64

256

1024

4096

16384

0 100 200 300 400 500 600 700 800 9001000

L
a
g
r
a
n
g
i
a
n

a
n
d

O
b
j
e
c
t
i
v
e

V
a
l
u
e
s

Niter x 1000

Lagrangian Value
No. of Unsat Clauses

0

200

400

600

800

1000

1200

1400

1600

0 100 200 300 400 500 600 700 800 9001000

L
a
g
r
a
n
g
e

M
u
l
t
i
p
l
i
e
r

V
a
l
u
e

Niter x 1000

MIN
AVE
MAX

4

16

64

256

1024

4096

16384

0 5000 10000 15000 20000 25000

O
b
j
e
c
t
i
v
e
-
P
a
r
t

V
a
l
u
e

Niter

1

2

4

8

16

32

64

128

256

0 5000 10000 15000 20000 25000

L
a
g
r
a
n
g
i
a
n
-
P
a
r
t

V
a
l
u
e

Niter

Figure 5. Execution profiles ofA2 on problem “g125-17” starting from a random initial point.
The top left graph plots Lagrangian-function values and number of unsatisfied clauses against
number of iterations sampled every 1000 iterations. The top right graph plots the minimum,
average and maximum values of Lagrange multipliers sampled every 1000 iterations. The
bottom two graphs plot the iteration-by-iteration objective and Lagrangian-part values for the
first 25,000 iterations.

� The sampled Lagrangian-function values decrease rapidly in the first few
thousand iterations (bottom left graph of Figure 5), but keep increasing after-
wards to become very large at the end. The iteration-by-iteration plot of the
Lagrangian part (bottom right graph of Figure 5) shows the same increasing
trend.

� Some Lagrange multipliers become very large as indicated in the spread of
Lagrange multipliers. This large spread leads to large Lagrangian-function
values.

� The number of unsatisfied clauses is relatively stable, fluctuating around 20.

As the Lagrangian-function space is very rugged and difficult to search when
there is a large spread in Lagrange-multiplier values, we have developed three
strategies in A3 to address this problem.

First, we introduce in A3 flat moves to handle flat regions in the Lagrangian-
function space. In A2, Lagrange multipliers are increased whenever the search
hits a flat region. Since flat regions in hard problems can be very large, Lagrange
multipliers can increase very fast, making the search more difficult. Flat moves

86 Y. SHANG AND B. W. WAH

4

16

64

256

1024

4096

16384

0 100 200 300 400 500 600 700 800 9001000

L
a
g
r
a
n
g
i
a
n

a
n
d

O
b
j
e
c
t
i
v
e

V
a
l
u
e
s

Niter x 1000

Lagrangian Value
No. of Unsat Clauses

0

100

200

300

400

500

600

700

800

0 100 200 300 400 500 600 700 800 9001000

L
a
g
r
a
n
g
e

M
u
l
t
i
p
l
i
e
r

V
a
l
u
e

Niter x 1000

MIN
AVE
MAX

Figure 6. Execution profiles ofA3 using a tabu list of size 30 and flat moves of limit of 50 on
problem “g125-17” starting from a random initial point. See Figure 5 for further explanation.

allow the search to explore flat regions without increasing the Lagrange multipliers
and the Lagrangian-function value.

Second, we introduce a tabu list [13, 25] to store variables that have been flipped
in the recent past and to avoid flipping any of them in the near future. This strategy
avoids flipping the same set of variables back and forth and revisiting the same
state.

The result of applying these two strategies is shown in Figure 6. These graphs
show significant reduction in the growth of Lagrangian-function values and Lagrange
multipliers as compared to those of A2. However, these values still grow without
bound.

Third, we introduce periodic scale-downs of Lagrange multipliers to control
their growth as well as the growth of Lagrangian-function values. Figure 6 shows
the result when all Lagrange multipliers are scaled down by a factor of 1.5 every
10,000 iterations. These graphs indicate that periodic scaling, when combined
with a tabu list and flat moves, leads to bounded values of Lagrange multipliers
and Lagrangian-function values. The bottom right graph in Figure 6 shows the
reduction in the Lagrangian part after two reductions of its � values at 10,000 and
20,000 iterations.

By using these three strategies, A3 can solve successfully most of the hard
problems in the DIMACS benchmark suite.

5. Experimental Results

In this section, we evaluate DLM using SAT benchmarks in the DIMACS archive.
The archive is made up of a repository of hundreds of easy and hard SAT problems
with many variables and clauses.

Our DLM code was written in C. In our experiments, we have tested DLM on all
satisfiable problems in the DIMACS archive. We have compared the performance of
DLM with reported results in the literature on the following benchmark problems.

LAGRANGIAN BASED GLOBAL SEARCH FOR SAT 87

4

16

64

256

1024

4096

16384

0 100 200 300 400 500 600 700 800 9001000

L
a
g
r
a
n
g
i
a
n

a
n
d

O
b
j
e
c
t
i
v
e

V
a
l
u
e
s

Niter x 1000

Lagrangian Value
No. of Unsat Clauses

0

5

10

15

20

0 100 200 300 400 500 600 700 800 9001000

L
a
g
r
a
n
g
e

M
u
l
t
i
p
l
i
e
r

V
a
l
u
e

Niter x 1000

MIN
AVE
MAX

4

16

64

256

1024

4096

16384

0 5000 10000 15000 20000 25000

O
b
j
e
c
t
i
v
e
-
P
a
r
t

V
a
l
u
e

Niter

2

4

8

16

32

64

128

0 5000 10000 15000 20000 25000

L
a
g
r
a
n
g
i
a
n
-
P
a
r
t

V
a
l
u
e

Niter

Figure 7. Execution profiles ofA3 with tabu list of size 30, flat moves of limit 50, and periodic
scaling of � by a factor of 1.5 every 10,000 iterations on problem “g125-17” starting from
a random initial point. Note that the average Lagrange multiplier values are very close to 1
and, therefore, overlap with the curve showing the minimum Lagrange multiplier values. See
Figure 5 for further explanation.

� Circuit synthesis problems (ii) by Kamath et al. [30] — a set of SAT encodings
of Boolean circuit-synthesis problems;

� Circuit diagnosis problems (ssa) — a set of SAT formulas based on circuit
fault analysis;

� Parity learning problems (par) — a collection of propositional versions of
parity learning problems;

� Artificially generated 3-SAT instances (aim);
� Randomly generated SAT instances (jnh);
� Large random satisfiable 3-SAT instances (f);
� Hard graph coloring problems (g);
� An encoding of the Towers-of-Hanoi problems (hanoi); and
� Gu’s asynchronous-circuit synthesis benchmarks (as) and technology mapping

benchmarks (tm).
In this section, we show experimental results on the three versions of our DLM

implementation described in Section 4.2.
A1 sets all parameters constant throughout the runs in order to avoid introducing

random effects in the program and to allow easy reproduction of results. It works
well on the “aim” problems, but not as well on others.

88 Y. SHANG AND B. W. WAH

Table 1. Execution times of A2 in CPU seconds on a Sun SparcStation 10/51
for one run of A2 starting from x = 0 (origin) as the initial point on some
DIMACS benchmark problems.

Problem DLM A2 Problem DLM A2

Identifier Time # of Iter. Identifier Time # of Iter.

ssa7552-038 0.200 4126 ii16a1 2.100 756
ssa7552-158 0.167 3279 ii16b1 2.100 1313
ssa7552-159 0.167 3802 ii16c1 1.217 916
ssa7552-160 0.167 3409 ii16d1 1.067 595

aim-100-2 0-yes1-1 0.033 982 ii16e1 1.317 1224
aim-100-2 0-yes1-2 0.067 1680 ii32b3 0.883 529
aim-100-2 0-yes1-3 0.000 513 ii32c3 0.533 735
aim-100-2 0-yes1-4 0.367 8510 ii32d3 3.817 1589

par8-2-c 0.317 7841 ii32e3 0.650 518
par8-4-c 0.233 5784

A2 has no problem-dependent parameters to be tuned by users and generally
works well for all the benchmark problems. However, it has difficulty in solving
some larger and more difficult problems, including “g,” “f,” large “par,” and
“hanoi.”
A3 has some parameters to be tuned in its complex control mechanisms.

Although these parameters are problem dependent, we have tried a few sets of
parameters and have found one set that generally works well. Results reported are
based on the best set of parameters found. A3 solves some of the more difficult
problems better than A2.

Table 1 shows the experimental results when A2 was always started from the
origin. It shows execution times in CPU seconds and the number of iterations
corresponding to the number of flips in GSAT. In each iteration, either one variable
was flipped or the � values were updated. In each experiment, A2 succeeded
in finding a feasible assignment. For most of the test problems, we have found
the average time that A2 spent when started from the origin to be longer than
the average time when started from randomly generated initial points. A possible
explanation is that the distance between the origin and a local minimum is longer
than the average distance between a randomly generated starting point and a nearby
local minimum.

We have compared the performance ofA2 with respect to the best known results
on these benchmark problems. Most of our timing results were averaged over ten
runs with randomly generated initial points, starting from a fixed seed of 101 in our
random number generator drand48(). Consequently, our results can be reproduced
deterministically.

In Table 2, we compare A2 with WSAT, GSAT, and Davis-Putnam’s algorithm
in solving the circuit diagnosis benchmark problems. We present average execution

LAGRANGIAN BASED GLOBAL SEARCH FOR SAT 89

Table 2. Comparison ofA2’s execution times in seconds averaged over 10 runs with respect
to published results of WSAT, GSAT, and Davis-Putnam’s algorithm [46] on some of the
circuit diagnosis problems in the DIMACS archive. (A2: Sun SparcStation 10/51 and a
150-MHz SGI Challenge with MIPS R4400; GSAT, WSAT and DP: SGI Challenge with a
70 MHz MIPS R4400.)

Problem No. of No. of DLMA2 WSAT GSAT DP
Identifier Var. Clauses SUN SGI # Iter. SGI SGI SGI

ssa7552-038 1501 3575 0.228 0.235 7970 2.3 129 7
ssa7552-158 1363 3034 0.088 0.102 2169 2 90 *
ssa7552-159 1363 3032 0.085 0.118 2154 0.8 14 *
ssa7552-160 1391 3126 0.097 0.113 3116 1.5 18 *

Table 3. Comparison of A2’s execution times in seconds averaged over 10 runs with
published results on circuit synthesis problems from the DIMACS archive, including
the best known results obtained by GSAT, integer programming (IP), and simulated
annealing [46]. (A2: Sun SparcStation 10/51 and a 150-MHz SGI Challenge with
MIPS R4400; GSAT and SA: SGI Challenge with a 70 MHz MIPS R4400; Integer
Programming: VAX 8700.)

Problem No. of No. of DLMA2 GSAT IP SA
Identifier Var. Clauses SUN SGI # Iter. SGI Vax SGI

ii16a1 1650 19368 0.122 0.128 819 2 2039 12
ii16b1 1728 24792 0.265 0.310 1546 12 78 11
ii16c1 1580 16467 0.163 0.173 797 1 758 5
ii16d1 1230 15901 0.188 0.233 908 3 1547 4
ii16e1 1245 14766 0.297 0.302 861 1 2156 3

times and average number of iterations ofA2 as well as published average execution
times of WSAT, GSAT and Davis-Putnam’s method [46]. We did not attempt to
reproduce the reported results of GSAT and WSAT, since the results may depend
on initial conditions, such as the seeds of the random number generator and other
program parameters. We ran A2 on an SGI Challenge? so that our timing results
can be compared to those of GSAT and WSAT. Our results show that A2 is
approximately one order of magnitude faster than WSAT.

In Table 3, we compare A2 with the published results of GSAT, integer pro-
gramming and simulated annealing on the circuit synthesis problems [46]. Our
results show thatA2 performs several times faster than GSAT.

In Table 4, we compare the performance of the three versions of DLM with
some of the best known results of GSAT on circuit-synthesis, parity-learning,

� Based on a single-CPU 150-MHz SGI Challenge with MIPS R4400 at the University of Illinois
National Center for Supercomputing Applications, we estimate empirically that it is 15.4% slower
than a Sun SparcStation 10/51 for executingA2 to solve SAT benchmark problems. However, we did
not evaluate the speed difference between a 150-MHz SGI Challenge and a 70-MHz SGI Challenge
on which GSAT and WSAT were run.

90 Y. SHANG AND B. W. WAH

Table 4. Comparison of DLM’s execution times in seconds averaged over 10 runs with
the best known results obtained by GSAT [43] on the DIMACS circuit-synthesis, parity-
learning, artificially generated 3-SAT instances, and graph coloring problems. Results on
A3 were based on a tabu length of 50, flat region limit of 50, � reset interval of 10,000, and
� reset to be �=1:5 when the � reset interval is reached. For “g125-18” and “g250-15,”
c = 1=2; For “g125-17” and “g250-29,” c = 1=16. (A1; A2; A3: Sun SparcStation 10/51;
GSAT: SGI Challenge (model unknown))

Problem No. of No. of SUN Success SGI Success
Identifier Var. Clauses Sec. Ratio Sec. Ratio

DLMA1 GSAT

aim-100-2 0-yes1-1 100 200 0.19 10/10 1.96 9/10
aim-100-2 0-yes1-2 100 200 0.65 10/10 1.6 10/10
aim-100-2 0-yes1-3 100 200 0.19 10/10 1.09 10/10
aim-100-2 0-yes1-4 100 200 0.10 10/10 1.54 10/10

DLMA2 GSAT

ii32b3 348 5734 0.31 10/10 0.6 10/10
ii32c3 279 3272 0.12 10/10 0.27 10/10
ii32d3 824 19478 1.05 10/10 2.24 10/10
ii32e3 330 5020 0.16 10/10 0.49 10/10

par8-2-c 68 270 0.06 10/10 1.33 10/10
par8-4-c 67 266 0.09 10/10 0.2 10/10

DLMA3 GSAT

g125.17 2125 66272 1390.32 10/10 264.07 7/10
g125.18 2250 70163 3.197 10/10 1.9 10/10
g250.15 3750 233965 2.798 10/10 4.41 10/10
g250.29 7250 454622 1219.56 9/10 1219.88 9/10

some artificially generated 3-SAT, and some of the hard graph coloring problems.
The results on GSAT are from [43], which are better than other published results.
Our results show that DLM is consistently faster than GSAT on the “ii” and “par”
problems, and that A1 is an order-of-magnitude faster than GSAT on some “aim”
problems.

Table 5 also shows the results of A3 on some “g” problems. Recall that A3

was developed to cope with large flat plateaus in the search space that confuse
A2, which failed to find any solution within 5 million iterations. Hansen [25] and
later Selman [45] addressed this problem by using the tabu search strategy. In a
similar way, we have adopted this strategy in A3 by keeping a tabu list to prevent
flipping the same variable back and forth. This led to better performance, although
the performance is sensitive to the length of the tabu list. A3 performs comparably
to GSAT on these “g” problems.

LAGRANGIAN BASED GLOBAL SEARCH FOR SAT 91

Table 5. Comparison of DLM’s execution time in seconds over 10 runs with published results of
Grasp on the “aim” problems from the DIMACS archive [39]. (DLMA1,A2: Sun SparcStation
10/51; Grasp: SGI Challenge with a 150 MHz MIPS R4400; Success ratio for Grasp is always
10/10.)

DLM A2 DLM A1 Grasp

Problem Succ. Sun CPU Seconds Succ. Sun CPU Seconds Avg. SGI

Identifier Ratio Avg. Min. Max. Ratio Avg. Min. Max. Seconds

aim-50-1 6-yes1-1 10/10 0.032 0.000 0.150 10/10 0.042 0.017 0.100 1.12

aim-50-1 6-yes1-2 6/10 0.008 0.000 0.017 10/10 0.020 0.000 0.050 0.12

aim-50-1 6-yes1-3 10/10 0.010 0.000 0.017 10/10 0.027 0.000 0.050 0.49

aim-50-1 6-yes1-4 5/10 0.210 0.017 0.917 10/10 0.030 0.000 0.067 0.46

aim-50-2 0-yes1-1 10/10 0.012 0.000 0.033 10/10 0.035 0.017 0.083 3.67

aim-50-2 0-yes1-2 8/10 0.010 0.000 0.017 10/10 0.035 0.017 0.100 2.82

aim-50-2 0-yes1-3 10/10 0.007 0.000 0.017 10/10 0.077 0.000 0.533 1.76

aim-50-2 0-yes1-4 10/10 0.048 0.000 0.250 10/10 12.603 0.000 125.733 0.62

aim-50-3 4-yes1-1 10/10 0.025 0.000 0.067 10/10 1.528 0.017 13.400 0.39

aim-50-3 4-yes1-2 10/10 0.015 0.000 0.033 10/10 0.162 0.017 0.350 0.58

aim-50-3 4-yes1-3 10/10 0.012 0.000 0.033 10/10 0.142 0.033 0.317 0.49

aim-50-3 4-yes1-4 9/10 0.013 0.000 0.033 10/10 0.057 0.033 0.150 0.91

aim-50-6 0-yes1-1 10/10 0.010 0.000 0.033 10/10 0.027 0.000 0.067 0.06

aim-50-6 0-yes1-2 10/10 0.007 0.000 0.017 10/10 0.028 0.017 0.050 0.14

aim-50-6 0-yes1-3 10/10 0.007 0.000 0.017 10/10 0.035 0.000 0.100 0.05

aim-50-6 0-yes1-4 10/10 0.007 0.000 0.017 10/10 0.027 0.000 0.067 0.05

aim-100-1 6-yes1-1 10/10 0.068 0.033 0.117 10/10 0.092 0.033 0.200 320.40

aim-100-1 6-yes1-2 10/10 0.053 0.017 0.100 10/10 0.098 0.050 0.167 122.27

aim-100-1 6-yes1-3 10/10 0.095 0.050 0.333 10/10 0.142 0.033 0.333 157.15

aim-100-1 6-yes1-4 10/10 0.052 0.000 0.117 10/10 0.095 0.017 0.317 50.10

aim-100-2 0-yes1-1 9/10 0.854 0.017 2.700 10/10 0.193 0.050 0.383 391.79

aim-100-2 0-yes1-2 10/10 0.287 0.050 0.900 10/10 0.652 0.117 1.650 208.40

aim-100-2 0-yes1-3 10/10 0.100 0.017 0.333 10/10 0.187 0.067 0.400 118.22

aim-100-2 0-yes1-4 10/10 0.357 0.033 1.917 10/10 0.097 0.050 0.167 1352.38

aim-100-3 4-yes1-1 10/10 0.450 0.000 2.950 10/10 0.795 0.133 4.417 10.27

aim-100-3 4-yes1-2 10/10 0.195 0.017 1.383 10/10 0.362 0.133 0.817 34.71

aim-100-3 4-yes1-3 10/10 0.050 0.017 0.100 10/10 0.858 0.067 3.800 49.69

aim-100-3 4-yes1-4 10/10 0.038 0.000 0.100 10/10 0.170 0.000 0.317 24.62

aim-100-6 0-yes1-1 10/10 0.020 0.000 0.033 10/10 0.075 0.017 0.133 0.52

aim-100-6 0-yes1-2 10/10 0.018 0.000 0.033 10/10 0.142 0.033 0.467 0.77

aim-100-6 0-yes1-3 10/10 0.017 0.000 0.050 10/10 0.082 0.017 0.233 0.38

aim-100-6 0-yes1-4 10/10 0.018 0.000 0.033 10/10 0.093 0.017 0.267 0.84

aim-200-1 6-yes1-1 10/10 0.958 0.150 2.433 10/10 0.748 0.333 1.583

aim-200-1 6-yes1-2 6/10 0.786 0.417 1.283 10/10 0.635 0.150 2.350

aim-200-1 6-yes1-3 10/10 5.498 0.267 43.467 10/10 1.217 0.233 6.950

aim-200-1 6-yes1-4 2/10 70.042 6.300 133.783 10/10 2.308 0.333 7.183

aim-200-2 0-yes1-1 1/10 1.283 1.283 1.283 10/10 8.128 0.300 51.483

aim-200-2 0-yes1-2 4/10 0.538 0.150 1.350 10/10 6.132 0.317 30.000

aim-200-2 0-yes1-3 7/10 6.355 0.150 28.450 10/10 9.545 0.383 45.717

92 Y. SHANG AND B. W. WAH

Table 5. Continued.

DLM A2 DLM A1 Grasp

Problem Succ. Sun CPU Seconds Succ. Sun CPU Seconds Avg. SGI

Identifier Ratio Avg. Min. Max. Ratio Avg. Min. Max. Seconds

aim-200-2 0-yes1-4 0/10 10/10 2.102 0.300 6.950

aim-200-3 4-yes1-1 8/10 0.469 0.183 1.100 10/10 6.638 0.517 16.500

aim-200-3 4-yes1-2 10/10 0.547 0.050 3.417 10/10 29.117 0.917 213.467

aim-200-3 4-yes1-3 10/10 0.838 0.050 5.500 10/10 2.405 0.550 9.467

aim-200-3 4-yes1-4 9/10 3.122 0.050 22.433 9/10 6.520 0.917 27.150

aim-200-6 0-yes1-1 10/10 0.075 0.033 0.133 10/10 0.575 0.100 1.717 91.87

aim-200-6 0-yes1-2 9/10 0.209 0.050 0.583 10/10 0.350 0.117 0.933 108.21

aim-200-6 0-yes1-3 10/10 0.102 0.017 0.317 10/10 0.513 0.150 1.250 162.14

aim-200-6 0-yes1-4 10/10 0.218 0.017 0.717 10/10 0.415 0.050 1.000 134.01

In Tables 6, 7, 8 and 9, we compare the performance of DLM with the best
results of Grasp on the DIMACS benchmark problems [39]. Grasp is a greedy
randomized adaptive search procedure that can find good quality solutions for a
wide variety of combinatorial optimization problems [7, 32, 8, 40].

In [39], four implementations of Grasp were applied to solve five classes of
DIMACS SAT problems, “aim,” “ii,” “jnh,” “ssa7552,” and “par.” Comparing to
GSAT, Grasp did better on the “aim,” “ssa7552,” and “par” problems, and worse
on the “ii” and “jnh” problems. The results of the most efficient implementation of
Grasp, Grasp-A, are used in our comparison. Grasp was run on an SGI Challenge
computer with 150 MHz MIPS R4400. The average CPU time of 10 random runs
of Grasp are shown in the tables, in which Grasp succeeded in all 10 runs for each
problem.

In Table 5, we compare A1, A2 and Grasp in solving the whole set of “aim”
problems, which were randomly generated instances with a single satisfiable solu-
tion. For these problems,A1 performs better thanA2 on the average, and is usually
1 to 3 orders of magnitude faster than Grasp. Grasp does not have results on some
of the larger “aim-200” instances.

In Tables 6 and 7, we compare A2 with Grasp in solving the “ii,” “jnh,” “par”
and “ssa7552” problems. Except for some small instances that both DLM and
Grasp solve in no time, DLM is generally 1 to 3 orders of magnitude faster than
Grasp in solving the “ii,” “jnh” and “ssa7552” problems. For “par” problems, DLM
A2 obtains comparable results to Grasp in solving the “par8-x-c” instances, but is
worse in solving the “par8-x” instances.

In addition to the “par8-x” instances, DLMA1 andA2 have difficulty in solving
the “par16,” “par32,” “hanoi” and “f” problems. Tables 8 shows some preliminary
but promising results ofA3 on some of the more difficult but satisfiable DIMACS
benchmark problems. Comparing with Grasp, A3 is better in solving the “par16-
x-c” instances, but is worse in solving the “par8-x” and “par16-x” problems.

LAGRANGIAN BASED GLOBAL SEARCH FOR SAT 93

Table 6. Comparison of DLM A2’s execution time in sec-
onds over 10 runs with published results of Grasp on the
“ii” problems from the DIMACS archive [39]. (DLM A2:
Sun SparcStation 10/51; Grasp: SGI Challenge with a 150
MHz MIPS R4400, and success ratio for Grasp is always
10/10.)

DLM A2 Grasp

Problem Success Sun CPU Seconds Avg. SGI

Identifier Ratio Avg. Min. Max. Seconds

ii8a1 10/10 0.003 0.000 0.017 0.00

ii8a2 10/10 0.007 0.000 0.017 0.03

ii8a3 10/10 0.013 0.000 0.017 0.10

ii8a4 10/10 0.027 0.017 0.033 0.23

ii8b1 10/10 0.012 0.000 0.017 0.11

ii8b2 10/10 0.028 0.017 0.050 1.67

ii8b3 10/10 0.043 0.017 0.067 35.02

ii8b4 10/10 0.062 0.050 0.083 369.37

ii8c1 10/10 0.013 0.000 0.017 37.26

ii8c2 10/10 0.040 0.033 0.050 8.69

ii8d1 10/10 0.018 0.017 0.033 1.19

ii8d2 10/10 0.043 0.033 0.050 3.23

ii8e1 10/10 0.020 0.017 0.033 1.44

ii8e2 10/10 0.040 0.033 0.067 21.97

ii16a1 10/10 0.122 0.117 0.133 23.46

ii16a2 10/10 0.302 0.200 0.433 1970.58

ii16b1 10/10 0.265 0.217 0.350 449.99

ii16b2 10/10 0.377 0.183 0.717 58.41

ii16c1 10/10 0.163 0.133 0.200 20.83

ii16c2 10/10 0.667 0.133 1.350 43.30

ii16d1 10/10 0.188 0.167 0.217 36.09

ii16d2 10/10 0.618 0.250 1.333 56.32

ii16e1 10/10 0.297 0.267 0.367 74.62

ii16e2 10/10 1.273 0.183 3.350 28.06

ii32a1 10/10 0.337 0.133 1.000 68.36

ii32b1 10/10 0.028 0.017 0.033 0.98

ii32b2 10/10 0.130 0.050 0.517 8.08

ii32b3 10/10 0.305 0.150 0.767 8.21

ii32b4 10/10 0.460 0.167 1.033 28.21

ii32c1 10/10 0.022 0.000 0.033 1.79

ii32c2 10/10 0.050 0.033 0.083 0.41

ii32c3 10/10 0.118 0.083 0.233 2.01

ii32c4 10/10 2.940 0.567 6.217 200.97

ii32d1 10/10 0.065 0.017 0.167 2.04

ii32d2 10/10 0.202 0.083 0.833 17.92

ii32d3 10/10 1.047 0.333 2.750 666.73

ii32e1 10/10 0.022 0.017 0.033 17.67

ii32e2 10/10 0.097 0.050 0.183 1.89

ii32e3 10/10 0.160 0.100 0.450 6.04

ii32e4 10/10 0.190 0.150 0.233 11.53

ii32e5 10/10 0.402 0.250 1.450 16.47

94 Y. SHANG AND B. W. WAH

Table 7. Comparison of DLM A2’s execution time in seconds over
10 runs with published results of Grasp on the “jnh,” “par,” and “ssa”
problems from the DIMACS archive [39]. (DLMA2 : Sun SparcStation
10/51; Grasp: SGI Challenge with a 150 MHz MIPS R4400, and
success ratio for Grasp is always 10/10.)

DLMA2 Grasp
Problem Success Sun CPU Seconds Avg. SGI
Identifier Ratio Avg. Min. Max. Seconds

jnh1 10/10 0.068 0.017 0.150 11.87
jnh7 10/10 0.043 0.017 0.083 3.61

jnh12 10/10 0.155 0.067 0.250 0.84
jnh17 10/10 0.082 0.033 0.167 1.66
jnh201 10/10 0.028 0.017 0.050 1.48
jnh204 10/10 0.172 0.017 0.667 14.64
jnh205 10/10 0.103 0.050 0.183 6.17
jnh207 10/10 0.337 0.050 1.817 3.61
jnh209 10/10 0.433 0.067 2.000 7.45
jnh210 10/10 0.033 0.017 0.067 2.35
jnh212 10/10 5.442 0.033 51.250 70.92
jnh213 10/10 0.083 0.017 0.183 9.43
jnh217 10/10 0.060 0.000 0.133 5.76
jnh218 10/10 0.063 0.017 0.183 1.45
jnh220 10/10 0.387 0.033 2.033 10.17
jnh301 10/10 0.333 0.117 0.950 46.23
par8-1 6/10 3.311 0.033 13.117 0.59
par8-2 6/10 3.981 0.400 7.667 1.78
par8-3 4/10 6.012 0.317 18.017 2.69
par8-4 5/10 6.440 1.083 11.017 0.57
par8-5 6/10 11.478 5.850 18.633 0.86

par8-1-c 10/10 0.075 0.000 0.400 0.07
par8-2-c 10/10 0.058 0.000 0.267 0.14
par8-3-c 10/10 1.998 0.000 9.233 0.35
par8-4-c 10/10 0.088 0.017 0.367 0.55
par8-5-c 10/10 0.477 0.017 2.633 0.17

ssa7552-038 10/10 0.228 0.083 0.933 7.05
ssa7552-158 10/10 0.088 0.050 0.167 3.42
ssa7552-159 10/10 0.085 0.067 0.150 1.72
ssa7552-160 10/10 0.097 0.050 0.183 22.13

Finally, we show in Table 9 results of A2 on the “as” and “tm” problems in
the DIMACS archive. The average time over 10 runs is always under 1 second for
these problems.

LAGRANGIAN BASED GLOBAL SEARCH FOR SAT 95

Table 8. Comparison of DLM A3’s execution time in seconds over
10 runs with published results of Grasp on some of the more diffi-
cult DIMACS benchmark problems from the DIMACS archive [39].
(Success ratio of Grasp is always 10/10.) Program parameters: For
all problems, flat region limit = 50; � reset to �=1:5 every 10,000
iterations. For par-16-[1-5] problems: Tabu length = 100, � = 1. For
the rest of par problems:, Tabu length = 50, � = 1

2 . For f problems:
Tabu length = 50, � = 1

16 . For hanoi4 problem: Tabu length = 50,
� = 1

2 .
System configuration: DLMA3: Sun SparcStation 10/51; Grasp: SGI
Challenge with a 150 MHz MIPS R4400.

DLM A3 Grasp
Problem Succ. Sun CPU Seconds Average
Identifier Ratio Avg. Min. Max. SGI Sec.

par8-1 10/10 4.780 0.133 14.383 0.59
par8-2 10/10 5.058 0.100 13.067 1.78
par8-3 10/10 9.903 0.350 21.150 2.69
par8-4 10/10 5.842 0.850 16.433 0.57
par8-5 10/10 14.628 1.167 34.900 0.86
par16-1 5/10 11172.8 4630.6 20489.1 9643.38
par16-2 1/10 856.9 856.9 856.9 8993.89
par16-3 1/10 20281.6 20281.6 20281.6
par16-4 3/10 3523.1 1015.0 7337.9
par16-5 1/10 13023.4 13023.4 13023.4

par16-1-c 10/10 398.1 11.7 1011.9 2235.83
par16-2-c 10/10 1324.3 191.0 4232.3 2179.04
par16-3-c 10/10 987.2 139.8 3705.2 2035.23
par16-4-c 10/10 316.7 5.7 692.66 2071.30
par16-5-c 10/10 1584.2 414.5 3313.2 2566.35

hanoi4 1/10 476.5 476.5 476.5
f600 10/10 16.9 2.1 37.2
f1000 10/10 126.8 4.4 280.7
f2000 10/10 1808.6 174.3 8244.7

6. Conclusions

In this paper, we have presented a discrete Lagrangian method for solving satisfi-
ability (SAT) problems. Our method belongs to the class of incomplete methods
that attempts to find a feasible assignment if one exists, but will not terminate if
the problem is infeasible.

We first extend the theory of Lagrange multipliers for continuous problems to
discrete problems. With respect to problems in discrete space, we define the concept
of saddle points, derive the Discrete Saddle Point Theorem, propose methods to
compute discrete gradients, and develop the Discrete Lagrangian Method (DLM)

96 Y. SHANG AND B. W. WAH

Table 9. Execution times of DLM A2 in Sun SparcStation 10/51 CPU seconds over 10 runs on the
“as” and “tm” problems from the DIMACS archive.

Problem Success Sun CPU Seconds Problem Success Sun CPU Seconds
Identifier Ratio Avg. Min. Max. Identifier Ratio Avg. Min. Max.

as2 10/10 0.020 0.017 0.033 as10 10/10 0.103 0.067 0.150
as3 10/10 0.037 0.017 0.050 as11 10/10 0.047 0.017 0.067
as4 10/10 0.157 0.133 0.200 as12 10/10 0.038 0.017 0.067
as5 10/10 0.988 0.850 1.283 as13 10/10 0.085 0.067 0.117
as6 10/10 0.098 0.050 0.150 as14 10/10 0.017 0.017 0.033
as7 10/10 0.520 0.450 0.633 as15 10/10 0.157 0.117 0.200
as8 10/10 0.047 0.017 0.067
tm1 10/10 0.238 0.217 0.250 tm2 10/10 0.013 0.000 0.033

to look for saddle points. Finally, we show the Discrete Fixed Point theorem which
guarantees that DLM will continue to search until a saddle point is found.

We then apply the DLM to solve SAT problems. We formulate a SAT prob-
lem as a discrete constrained optimization problem in which local minima in the
Lagrangian space correspond to feasible assignments of the SAT problem. Search-
ing for saddle points, therefore, corresponds to solving the SAT problem. We further
investigate various heuristics in implementing DLM.

We have compared the performance of DLM with respect to the best exist-
ing methods for solving some SAT benchmark problems archived in DIMACS.
Experimental results show that DLM can solve these benchmark problems often
faster than other local-search methods. We are still working to solve the remaining
DIMACS benchmark problems that include

� par32-1 thru par32-5,

� par32-1-c thru par32-5-c, and

� hanoi5.

We have applied DLM to solve MAX-SAT and weighted MAX-SAT problems
and have obtained very positive results [49]. In this case, DLM is able to exploit
a more interesting combination of the weighted objective and the constraints. We
have also applied DLM to design multiplier-less QMF filter banks, which involves
solving highly nonlinear discrete constrained optimization problems whose objec-
tives and constraints are real functions [55].

To summarize, DLM is a generalization of local search schemes that optimize
the objective alone and clause-weight schemes that optimize the constraints alone.
When the search reaches a local minimum, the Lagrange multipliers in DLM lead
the search out of the local minimum and move it in the direction provided by the
multipliers. DLM also uses the value of an objective function (in this case the
number of violated constraints) to provide further guidance when the number of
violations is large. The dynamic shift in emphasis between the objective and the

LAGRANGIAN BASED GLOBAL SEARCH FOR SAT 97

constraints, depending on their relative values, is the key of Lagrangian methods.
DLM improves over existing discrete local- and global-search methods as follows.
� DLM can escape from local minima without random restarts. When a constraint

is violated but the search is in a local minimum, the corresponding Lagrange
multipliers in DLM provide a force that grows with the amount of time that the
constraint is violated, eventually bringing the search out of the local minimum.
DLM may rely on systematic restarts (that are not based on random numbers)
in the Lagrangian space when the Lagrange multipliers grow large and the
search space becomes rugged.

� DLM escapes from local minima in a continuous trajectory, hence avoiding a
break in the trajectory as in methods based on restarts. This is advantageous
when the trajectory is already in the vicinity of a local minimum, and a random
restart may bring the search to a completely different search space.

� DLM is more robust than other local-search methods and is able to find fea-
sible assignments irrespective of its initial starting points. In contrast, descent
methods have to rely on properly chosen initial assignments and on a good
sampling procedure to find new starting points or by adding noise in order to
bring the search out of local minima.

In short, the Lagrangian formulation and its discrete versions presented in this
paper are based on a solid theoretical foundation and can be used to develop better
heuristic algorithms for solving discrete constrained optimization problems.

References

1. K. J. Arrow and L. Hurwicz. Gradient method for concave programming, I: Local results. In
K. J. Arrow, L. Hurwica, and H. Uzawa, editors, Studies in Linear and Nonlinear Programming.
Stanford University Press, Stanford, CA, 1958.

2. V. Cerny. Thermodynamical approach to the traveling salesman problem: An efficient simulation
algorithm. Journal of Optimization Theory and Applications, 45:41–51, 1985.

3. Y.-J. Chang and B. W. Wah. Lagrangian techniques for solving a class of zero-one integer linear
programs. In Proc. Computer Software and Applications Conference, pages 156–161, Dallas,
TX, August 1995. IEEE.

4. A. Cichocki and R. Unbehauen. Switched-capacitor artificial neural networks for nonlinear
optimization with constraints. In Proc. of 1990 IEEE Int’l Symposium on Circuits and Systems,
pages 2809–2812, 1990.

5. A. Davenport, E. Tsang, C. Wang, and K. Zhu. Genet: A connectionist architecture for solving
constraint satisfaction problems by iterative improvement. In Proc. of the 12th National Conf.
on Artificial Intelligence, pages 325–330, Seattle, WA, 1994.

6. M. Davis and H. Putnam. A computing procedure for quantification theory. J. Assoc. Comput.
Mach., 7:201–215, 1960.

7. T. Feo and M. Resende. A probabilistic heuristic for a computationally difficult set covering
problem. Operations Research Letters, (8):67–71, 1989.

8. T. Feo and M. Resende. Greedy randomized adaptive search procedures. Technical report, AT&T
Bell Laboratories, Murray Hill, NJ 07974, February 1994.

9. B. Gavish and S. L. Hantler. An algorithm for optimal route selection in SNA networks. IEEE
Transactions on Communications, pages 1154–1161, 1983.

10. M. R. Genesereth and N. J. Nilsson. Logical Foundation of Artificial Intelligence. Morgan
Kaufmann, 1987.

98 Y. SHANG AND B. W. WAH

11. I. Gent and T. Walsh. Towards an understanding of hill-climbing procedures for SAT. In Proc.
of the 11th National Conf. on Artificial Intelligence, pages 28–33, Washington, DC, 1993.

12. A. M. Geoffrion. Lagrangian relaxation and its uses in integer programming. Mathematical
Programming Study, 2:82–114, 1974.

13. F. Glover. Tabu search — Part I. ORSA J. Computing, 1(3):190–206, 1989.
14. J. Gu. Parallel Algorithms and Architectures for Very Fast AI Search. PhD thesis, Dept. of

Computer Science, University of Utah, August 1989.
15. J. Gu. How to solve very large-scale satisfiability (VLSS) problems. Technical Report UCECE-

TR-90-002, Univ. of Calgary, Canada, October 1990.
16. J. Gu. Efficient local search for very large-scale satisfiability problems. SIGART Bulletin,

3(1):8–12, January 1992.
17. J. Gu. On optimizing a search problem. In N. G. Bourbakis, editor, Artificial Intelligence Methods

and Applications. World Scientific Publishers, 1992.
18. J. Gu. The UniSAT problem models (appendix). IEEE Trans. on Pattern Analysis and Machine

Intelligence, 14(8):865, Aug 1992.
19. J. Gu. Local search for satisfiability (SAT) problems. IEEE Trans. on Systems, Man, and

Cybernetics, 23(4):1108–1129, 1993.
20. J. Gu. Global optimization for satisfiability (SAT) problems. IEEE Trans. on Knowledge and

Data Engineering, 6(3):361–381, Jun 1994.
21. J. Gu. Constraint-Based Search. Cambridge University Press, New York, to appear.
22. J. Gu and Q.-P. Gu. Average time complexities of several local search algorithms for the

satisfiability problem (sat). Technical Report UCECE-TR-91-004, Univ. of Calgary, Canada,
1991.

23. J. Gu and Q.-P. Gu. Average time complexity of the sat1.3 algorithm. Technical report, Tech.
Rep., Univ. of Calgary, Canada, 1992.

24. J. Gu and W. Wang. A novel discrete relaxation architecture. IEEE Trans. on Pattern Analysis
and Machine Intelligence, 14(8):857–865, August 1992.

25. P. Hansen and R. Jaumard. Algorithms for the maximum satisfiability problem. Computing,
44:279–303, 1990.

26. M. Held and R. M. Karp. The traveling salesman problem and minimum spanning trees: Part II.
Mathematical Programming, 6:62–88, 1971.

27. J. H. Holland. Adaption in Natural and Adaptive Systems. University of Michigan Press, Ann
Arbor, 1975.

28. J. N. Hooker. Resolution vs. cutting plane solution of inference problems: some computational
results. Operations Research Letters, 7:1–7, 1988.

29. A. P. Kamath, N. K. Karmarkar, K. G. Ramakrishnan, and M. G. C. Resende. Computational
experience with an interior point algorithm on the satisfiability problem. Annals of Operations
Research, 25:43–58, 1990.

30. A. P. Kamath, N. K. Karmarkar, K. G. Ramakrishnan, and M. G. C. Resende. A continuous
approach to inductive inference. Mathematical Programming, 57:215–238, 1992.

31. S. Kirkpatrick, Jr. C. D. Gelatt, and M. P. Vecchi. Optimization by simulated annealing. Science,
220(4598):671–680, 1983.

32. J. Klincewicz. Avoiding local optima in the p-hub location problem using tabu search and
GRASP. Annals of Operations Research, (40):283–302, 1992.

33. D. G. Luenberger. Linear and Nonlinear Programming. Addison-Wesley Publishing Company,
1984.

34. Z. Michalewicz. Genetic Algorithms + Data Structure = Evolution Programs. Springer-Verlag,
1994.

35. S. Minton, M. D. Johnson, A. B. Philips, and P. Laird. Minimizing conflicts: a heuristic repair
method for constraint satisfaction and scheduling problems. Artificial Intelligence, 58:161–205,
Dec 1992.

36. D. Mitchell, B. Selman, and H. Levesque. Hard and easy distributions of SAT problems. In
Proc. of the 10th National Conf. on Artificial Intelligence, pages 459–465, 1992.

37. P. Morris. The breakout method for escaping from local minima. In Proc. of the 11th National
Conf. on Artificial Intelligence, pages 40–45, Washington, DC, 1993.

LAGRANGIAN BASED GLOBAL SEARCH FOR SAT 99

38. P. W. Purdom. Search rearrangement backtracking and polynomial average time. Artificial
Intelligence, 21:117–133, 1983.

39. M.G.C. Resende and T. Feo. A GRASP for satisfiability. In D. S. Johnson and M. A. Trick, editors,
Cliques, Coloring, and Satisfiability: Second DIMACS Implementation Challenge, volume 26,
pages 499–520. DIMACS Series on Discrete Mathematics and Theoretical Computer Science,
American Mathematical Society, 1996.

40. M.G.C. Resende, L.S. Pitsoulis, and P.M. Pardalos. Approximate solution of weighted MAX-
SAT problems using GRASP. In Satisfiability Problem: Theory and Applications. DIMACS
Series on Discrete Mathematics and Theoretical Computer Science. American Mathematical
Society, 1997.

41. J. A. Robinson. A machine-oriented logic based on the resolution principle. J. Assoc. Comput.
Mach., pages 23–41, 1965.

42. R. Sebastiani. Applying GSAT to non-clausal formulas. Journal of Artificial Intelligence
Research, 1:309–314, 1994.

43. B. Selman, 1995. private communication.
44. B. Selman and H. Kautz. Domain-independent extensions to GSAT: Solving large structured

satisfiability problems. In Proc. of the 13th Int’l Joint Conf. on Artificial Intelligence, pages
290–295, 1993.

45. B. Selman, H. Kautz, and B. Cohen. Local search strategies for satisfiability testing. In Proc.
of the Second DIMACS Challenge Workshop on Cliques, Coloring, and Satisfiability, Rutgers
University, pages 290–295, oct 1993.

46. B. Selman, H. Kautz, and B. Cohen. Noise strategies for improving local search. In Proc. of the
12th National Conf. on Artificial Intelligence, pages 337–343, Seattle, WA, 1994.

47. B. Selman and H. A. Kautz. An empirical study of greedy local search for satisfiability testing. In
Proc. of the 11th National Conf. on Artificial Intelligence, pages 46–51, Washington, DC, 1993.

48. B. Selman, H. J. Levesque, and D. G. Mitchell. A new method for solving hard satisfiability
problems. In Proc. of AAAI-92, pages 440–446, San Jose, CA, 1992.

49. Y. Shang and B. W. Wah. Discrete lagrangian-based search for solving MAX-SAT problems. In
Proc. Int’l Joint Conf. on Artificial Intelligence. IJCAI, (accepted to appear) Aug. 1997.

50. D. M. Simmons. Nonlinear Programming for Operations Research. Prentice-Hall, Englewood
Cliffs, NJ, 1975.

51. R. Socic and J. Gu. Fast search algorithms for the N-queen problem. IEEE Trans. on Systems,
Man, and Cybernetics, 21(6):1572–1576, November 1991.

52. R. Sosič and J. Gu. A polynomial time algorithm for the n-queens problem. SIGART Bulletin,
1(3):7–11, October 1990.

53. R. Sosič and J. Gu. 3,000,000 queens in less than one minute. SIGART Bulletin, 2(2):22–24,
April 1991.

54. R. Sosič and J. Gu. Efficient local search with conflict minimization: A case study of the n-queens
problem. IEEE Trans. on Knowledge and Data Engineering, 6(5):661–668, 1994.

55. B. W. Wah, Y. Shang, and Z. Wu. Discrete lagrangian method for optimizing the design of
multiplierless QMF filter banks. In Proc. Int’l Conf. on Application Specific Array Processors.
IEEE, (accepted to appear) July 1997.

56. G. R. Walsh. Methods of Optimization. John Wiley and Sons, 1975.
57. S. Zhang and A. G. Constantinides. Lagrange programming neural networks. IEEE Transactions

on Circuits and Systems-II: Analog and Digital Signal Processing, 39(7):441–452, 1992.

