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Discrete Lagrangian Methods for Optimizing
the Design of Multiplierless QMF Banks
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Abstract—In this paper, we present a new discrete Lagrangian
method for designing multiplierless quadrature mirror filter
banks. The filter coefficients in these filter banks are in powers-
of-two, where numbers are represented as sums or differences of
powers of two (also called canonical signed digit representation),
and multiplications are carried out as additions, subtractions, and
shifts. We formulate the design problem as a nonlinear discrete
constrained optimization problem, using reconstruction error as
the objective, and stopband and passband energies, stopband and
passband ripples, and transition bandwidth as constraints. Using
the performance of the best existing designs as constraints, we
search for designs that improve over the best existing designs
with respect to all the performance metrics. We propose a
new discrete Lagrangian method for finding good designs and
study methods to improve the convergence speed of Lagrangian
methods without affecting their solution quality. This is done by
adjusting dynamically the relative weights between the objective
and the Lagrangian part. We show that our method can find
designs that improve over Johnston’s benchmark designs using a
maximum of three to six ONE bits in each filter coefficient instead
of using floating-point representations. Our approach is general
and is applicable to the design of other types of multiplierless
filter banks.

Index Terms—Adaptive weighted Lagrangian search, canoni-
cal signed digit representation, discrete Lagrangian formulation,
global search, multiplierless filter banks, quadrature mirror fil-
tering, simulated annealing.

I. INTRODUCTION

DIGITAL filter banks have been applied in many en-
gineering fields. Fig. 1 summarizes the various design

objectives for measuring quality. In general, filter-bank design
problems are multiobjective, continuous, nonlinear optimiza-
tion problems.

Algorithms for designing filter banks are either optimiza-
tion based or nonoptimization based. In optimization-based
methods, a design problem is formulated as a multiobjective
nonlinear optimization problem [24], whose form may be
application- and filter-dependent. The problem is then con-
verted into a single-objective optimization problem and solved
by existing optimization methods, such as gradient-descent,
Lagrange-multiplier, quasi-Newton, simulated-annealing, and
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Fig. 1. Possible design objectives of filter banks and an illustration of the
design objectives of a single low-pass filter. ([0,!p] is the passband;[!s; �]
the stopband;[!p; !s]; the transition band.)

genetics-based methods [8], [10]. On the other hand, filter
bank-design problems have been solved by nonoptimization
algorithms, which include spectral factorization [12], [25] and
heuristic methods (as in infinite-impulse response (IIR)-filter
design). These methods generally do not continue to find better
designs once a suboptimal design has been found [25].

In this paper, we study discrete Lagrangian and global-
search methods for designing multiplierless quadrature mirror
filter (QMF) banks. These filter banks are an important class of
filter banks that have been studied extensively. In a two-band
QMF bank, the reconstructed signal is

(1)

where is the original signal, and and are,
respectively, the response of the analysis and synthesis filters.
To perfectly reconstruct the original signal based on we
have to eliminate aliasing, amplitude, and phase distortions.
QMF banks with finite-impulse response (FIR) filters im-
plement perfect reconstruction by setting

and leading to a filter
bank with one prototype filter linear phase, and no
aliasing distortions.

Traditional FIR filters in QMF banks use real or fixed-
point numbers as filter coefficients. Multiplications of such
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long floating-point numbers generally limit the speed of FIR
filtering. To overcome this limitation,multiplierless(powers-
of-two (PO2)) filters have been proposed. These filters use
filter coefficients that have only a few bits that are ones.
When multiplying a filter input (multiplicand) with one such
coefficient (multiplier), the product can be found by adding and
shifting the multiplicand a number of times corresponding to
the number of ONE bits in the multiplier. For example, the
multiplication of by 0100001001 can be written as the sum
of three terms, each of which can be
obtained by shifting . A limited sequence of shifts and adds
are usually much faster than full multiplications. Without using
full multiplications, each filter tap takes less area to implement
in VLSI, and more filter taps can be accommodated in a given
area to implement filter banks of higher performance.

The frequency response of a PO2 filter is

where

for all (2)

Here, is the length of the PO2 filter, is the maximum
number of ONE bits used in each coefficient, andis the
number of bits in each coefficient.

The design of multiplierless filters has been solved by
integer programming that optimizes filter coefficients with
restricted values of PO2. Other techniques used include
combinatorial search [17], simulated annealing [2], genetic
algorithms [18], linear programming [11], and continuous
Lagrange-multiplier methods in combination with a tree
search [20].

In this paper, we present a discrete Lagrange-multiplier
search for designing multiplierless QMF banks. In Section II,
we formulate the design problem as a single-objective con-
strained optimization problem. Section III summarizes the
principles behind discrete Lagrangian methods. In Section IV,
we present our discrete Lagrangian method, 1998 version
(DLM-98), that finds saddle points in discrete space and
examines the issues related to the implementation of DLM-
98 to design multiplierless filter banks. Finally, Section V
presents experimental results, and conclusions are drawn in
Section VI.

II. PROBLEM FORMULATION

The design of QMF banks can be formulated as a multi-
objective unconstrained optimization problem or as a single-
objective constrained optimization problem.

A. Multi-Objective Unconstrained Formulation

In a multiobjective formulation, the goals can be to:

1) minimize the amplitude distortion (reconstruction error)
of the overall filter bank;

2) optimize the individual performance measures of the
prototype filter .

One possible formulation using a subset of the measures in
Fig. 1 is as follows:1

Minimize and where

and

(3)

Unfortunately, optimal solutions to (3) are not necessarily
optimal solutions to the original problem that considers all
the performance measures. Often, performance measures not
included in the formulation are compromised.

In general, optimal solutions of a multiobjective problem
form a Pareto optimal frontiersuch that one solution on this
frontier is not dominated by another. One approach to find a
point on the frontier is to optimize a weighted sum of all the
objectives [3], [6], [10], [16], [24]. This approach has difficulty
when frontier points of certain characteristics are desired,
such as those with certain transition bandwidth. Different
combinations of weights must be tested by trial and error until
a desired solution is found. When the desired characteristics
are difficult to satisfy, trial and error is not effective in
finding feasible designs. Instead, constrained formulations
should be used.

B. Single-Objective Constrained Formulation

Another approach to solve a multiobjective problem is to
turn all but one objectives into constraints, and define the con-
straints with respect to a reference design. The specific mea-
sures constrained may be application and filter dependent [24].

Constraint-based methods have been applied to design QMF
banks in both the frequency [3], [5], [10], [21], [23] and time
domains [15], [22]. In the frequency domain, the most often
considered objectives are reconstruction error and (stop-
band ripple) . As stopband ripples cannot be formulated in
closed form, stopband attenuation is used instead (represented
as in Fig. 1). In the time domain, Nayebi [15] gave a time-
domain formulation with constraints in the frequency domain,
and designed filter banks using an iterative time-domain design
algorithm.

In this paper, we formulate the design of QMF banks in
the most general form as a nonlinear constrained optimization
problem using the reconstruction error as the objective, and
other measures (stopband ripple, stopband energy, passband
ripple, passband energy and transition bandwidth) as con-
straints

Minimize subject to

(4)

where and are constraint bounds found
in the best-known design (with possibly some bounds relaxed
or tightened in order to obtain designs of different tradeoffs).

1Note that in QMF banks,Er is nonzero. A multirate filter bank that
enforces perfect reconstruction (Er = 0) can be formulated as a constrained
optimization problem with a goal of minimizingEs [8], [9].
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The goal here is to find filter banks of a finite word length
whose performance measures are better than, or equal to, those
of the reference design. Since the objective and the constraints
are nonlinear, the problem is multimodal with many local
minima.

The original optimization problem with inequality con-
straints (4) can be transformed into an optimization problem
with equality constraints as follows:

Minimize (5)

subject to

(6)

where is a vector of discrete coefficients, is the recon-
struction error of the best-known design, and all functions have
been normalized with respect to the values of the best-known
design.

III. L AGRANGIAN FORMULATIONS AND METHODS

In this section, we first summarize past work on Lagrangian
formulations and methods for solving continuous constrained
optimization problems. We then extend them to discrete con-
strained optimization problems [19], [26], [29].

A. Continuous Lagrangian Formulations and Methods

Lagrangian methods are classical methods for solving con-
tinuous constrained optimization problems [14]. We first re-
view briefly the theory of Lagrange multipliers.

Define a continuous constrained optimization problem as
follows:

subject to

(7)

where is a vector of real numbers, is an objective
function, is a set of inequality
constraints, and is a set of
equality constraints. Further, and as well as
their derivatives, are continuous functions.

Since Lagrangian methods cannot deal directly with inequal-
ity constraints, we transform inequality constraint

into an equality constraint by adding a slack variable
transforming it into . The

transformation is done in such a way that guarantees the
existence of gradients in the space when . The

correspondingLagrangian functionis defined as follows:

(8)

where and are two
sets of Lagrange multipliers, and .

To eliminate from (8), we minimize with respect to
for a given . After substituting the result into (8) [14],

we have

(9)

Note that the derivation applies to both the continuous and the
discrete cases because the differentiation ofwith respect to

is for a fixed and is assumed continuous.
According to classical optimization theory [14], all the

extrema of (9) that satisfy the constraints and that are regular
points are roots of the following set of first-order necessary
conditions:

(10)

These conditions are necessary to guarantee the (local) opti-
mality of the solution to (7).2

There are many ways to find solutions that satisfy (10),
including sequential quadratic programming and first-order
search methods. Thefirst-order search methodexpresses the
search in a dynamic system of ordinary differential equations:

(11)

They performlocal searchinvolving simultaneous descents in
the original-variable space of and ascents in the Lagrange-
multiplier space of and . They evolve over time, and reach
a feasible local extremum when they stop at anequilibrium
point where all gradients are zeros.

B. Discrete Lagrangian Formulations and Methods

For discrete optimization problems, all the variables
take discrete values (e.g., integers). Little work

has been done in applying Lagrangian methods to solve
discrete constrained combinatorial optimization problems [7].
The difficulty in traditional Lagrangian methods lies in the
lack of a differentiable continuous space to find an equilibrium
point. In this subsection, we describe the theory of Lagrange-
multiplier methods in discrete space [19], [29].

2There are second-order conditions to guarantee that the extremum found
is a local minimum [14].
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For nonlinear discrete problems with inequality constraints
(similar to that in (7) where is now a vector of discrete
variables), we first transform inequality constraint
into an equality constraint . This transfor-
mation does not use a slack variable as in the continuous case
because searches in discrete Lagrangian space do not require
the existence of gradients in thespace when .

After transforming inequality constraints into equality con-
straints, the resulting discrete Lagrangian function is written
as follows:

(12)

where is a discrete variable andand can be continuous.
The discrete Lagrangian function defined in (12) cannot be

used to derive similar conditions in (10) because there are no
gradients and differentiation in discrete space. Without these
concepts, none of the mechanisms of calculus in continuous
space is applicable in discrete space.

An understanding of gradients in continuous space shows
that they define directions in a small neighborhood in which
function values decreases. To this end, we define in discrete
space adirection of maximum potential dropfor Lagrangian
function at point for fixed and as a vector3

that points from to a neighborhood point of with
the minimum value

where

(13)

Here, is the vector-subtraction operator for changingin
discrete space to one of its “user-defined” neighborhood points

. Intuitively, is a vector pointing from to the point
with the minimum value among all neighboring points of

including itself. That is, when itself has the minimum
then .

Having defined the direction of maximum
potential drop in the space, we define the concept ofsaddle
points in discrete space similar to those in continuous space
[14]. A point is a saddle point when

(14)

for all all possible and all possible .
Starting from (14), we can prove similar first-order necessary
conditions in discrete space that are satisfied by all saddle
points [29]

(15)
3We assume that points in thex space are represented as vectors without

explicitly denoting them using the vector notation, whereas� and � are
scalars.

Note that the notation in the first condition defines the direction
of maximum potential drop of in discrete space of for
fixed and whereas the differentiations in the last two
conditions are in continuous space ofand for fixed . For
brevity, the proofs showing the correctness of these conditions
are omitted here [29].

The first-order necessary conditions in (15) lead to the
following first-order search method in discrete space. Here, we
seek discrete equilibrium points similar to those of continuous
problems. The following equations are discrete approximations
to implement the first-order conditions in (15).

General Discrete First-Order Search Method:

(16)

(17)

(18)

where is the vector-addition operator (
), and and are positive real numbers

controlling how fast the Lagrange multipliers change.
It is easy to see that the necessary condition for the discrete

first-order method to converge is when and
implying that is a feasible solution to the original problem.

If any of the constraints is not satisfied, thenand on the
unsatisfied constraints will continue to evolve. Note that, as
in continuous Lagrangian methods, the first-order conditions
are only satisfied at saddle points, but does not imply that the
time to find a saddle point is finite, even if one exists.

IV. DLM-98: A N IMPLEMENTATION OF DISCRETE

FIRST-ORDER METHOD

Based on (5) and (6), the discrete Lagrangian function for
optimizing PO2 filter banks is

(19)

where is a vector of coefficients, each of which is in
canonical signed digit (CSD) form of the sum of several
signed binary bits, such as . Since we
have only equality constraints transformed from inequality
constraints, we use as our Lagrange multipliers in the
following discussion.

Fig. 2 shows an implementation of the discrete first-order
method (16) and (18) for designing PO2 filter banks formu-
lated as nonlinear discrete constrained minimization problems.
The procedure shows several aspects that can be tuned in order
to improve its performance.

• Starting Points (Line 3):we choose a starting point based
on a discrete approximation of an existing QMF bank
with real coefficients (Section IV-A).

• Initial Lagrange-Multiplier Values (Line 4):we initialize
all Lagrange multipliers to zero in order to allow our
results to be reproduced easily. An optimal initial setting
is difficult because it depends on the amount of constraint
violation.

• Time Constraint (Lines 2 and 6):this limits the number
of iterations through the loop.
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Fig. 2. An implementation of discrete first-order method for designing PO2 filter banks. (The initial values of parameters are indicated here unless
specified otherwise in the text.)

• Updating (Line 7): here, we evaluate all possible
neighboring points of in order to find improvements
in its Lagrangian value (Section IV-B).

• Updating (Lines 1 and 8):the Lagrange multipliers
are updated when the search reaches a local minimum
in the objective space. We do not update the multipli-
ers more frequently due to instability of the trajectory.
The amount of update is controlled by an application-
dependent constant and other filter-related parameters
(Section IV-C).

• Dynamic Weight Adaptation (Lines 5 and 9):weight adap-
tation adjusts the weight between the objective and the
constraints in order to adjust their relative importance and
to improve convergence (Section IV-D).

A. Generating a Starting Point

There are two alternatives to select a starting point (Line
3 in Fig. 2): using the parameters of an existing PO2 QMF
bank, or using a discrete approximation of an existing QMF
bank with real coefficients. The first alternative is not always
possible because not many such filter banks are available in
the literature. In this section, we discuss the second alternative.

In the second approach, we first transform the real coeffi-
cients of the best-known design to PO2 forms using a CSD
representation. Given a real coefficient andthe maximum
number of ONE bits to represent the coefficient, we apply
Booth’s algorithm [1] to represent consecutive 1’s using two
ONE bits and then truncate the least-significant bits of the
coefficients. This approach generally allows a number to be
represented in a few ONE bits. As an example, consider a
binary fixed-point number . After applying
Booth’s algorithm and truncation, we can represent the number
in two ONE bits

Previous work [4], [13], [17], shows that scaling has a
significant impact on the optimization of coefficients in PO2
filters. That is, if each coefficient is scaled properly before
the search starts (based on a heuristic objective), the quality
of the final design can be improved significantly. In our case,
the performance of a PO2 filter obtained by truncating its real

TABLE I
COMPARISON OF A PO2 FILTER BANK OBTAINED BY TRUNCATING THE

REAL COEFFICIENTS OFJOHNSTON’S 32e QMF BANK [10] TO THREE

BITS AND A SIMILAR PO2 FILTER BANK, WHOSE COEFFICIENTS

WERE SCALED BY 0.5565 BEFORE TRUNCATION

(Performance has been normalized with respect to the performance of
the original filter bank).

coefficients to a fixed maximum number of ONE bits is not as
good as one whose real coefficients were first multiplied by a
scaling factor. We illustrate this observation in the following
example.

Consider Johnston’s 32e filter bank [10] as a starting point.
Table I shows the metrics of two PO2 filters: Filter Bank A
was obtained by truncating each of the original coefficients to
a maximum of three ONE bits, whereas Filter Bank B was
obtained by multiplying each of the coefficients by 0.5565
before truncation. Filter Bank B performs better and is almost
as good as the original design with real coefficients. In fact,
a design that is better than Johnston’s 32e design can be
obtained by using Filter B as a starting point, but no better
designs were found using Filter A. This example illustrates that
multiplying the filter coefficients by a scaling factor changes
the bit patterns of the coefficients, which can improve the
quality of the starting point when the coefficients are truncated.

Experiments also show that it is possible to find good
designs without requiring the PO2 coefficients to have the
same degree of precision as that of continuous coefficients.
For instance, in our experiments, we restrict the minimum
exponent of the ONE bits in each coefficient (in the range
[ 1, 1]) to be 22, even though the real coefficients have a
minimum exponent of 31.

To find the best scaling factor, we enumerate over different
scaling constants and scale all the coefficients by a common
constant before the search begins. Fig. 3 shows a simple but
effective algorithm to find the proper scaling factor to be
multiplied before the coefficients are truncated. We evaluate
the quality of the resulting starting point by a weighted sum of
its performance metrics. Since, under most circumstances, the
constraint on transition bandwidth is more difficult to satisfy,
we give it a weight of 100 and a weight of 1 for the other
four metrics. Note that our objective in finding a good scaling



1184 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 46, NO. 9, SEPTEMBER 1999

Fig. 3. Algorithm for finding the best scaling factor, wherewi is the weight of constrainti.

factor is different from that in the previous work [4], [13],
[17]. Further, note that the filter output in the final design will
need to be divided by the same scaling factor.

Experimental results show that the algorithm in Fig. 3 works
fast and can complete in a few minutes, and that the scaling
factors chosen are reasonable and suitable. It is important to
point out that scaling does not help when the number of ONE
bits allowed to represent each coefficient is large. For instance,
when the maximum number of ONE bits allowed is larger than
six, the performance of all the filters is nearly the same for
all scaling factors.

As an illustration, consider the design of a PO2 QMF bank
[28] based on Johnston’s 32d design [10] as our constraints.
Assuming a minimum exponent of 22 in each ONE bit,
we enumerate and find the best scaling factor for all the
coefficients to be 0.9474.

B. Updating

The value of is updated in Line 7 in Fig. 2. There are
two ways in which can be updated: greedy update and hill
climbing. In greedy updates, the update ofleading to the
maximum improvement of is found before an update
is made. This approach is very time consuming and may not
lead to the best filter bank when DLM-98 stops. On the other
hand, in hill climbing, is updated as soon as an improvement
in is found. This approach is efficient and generally
leads to good designs. For this reason, we use hill climbing
as our update strategy.

We process all the bits of all the coefficients in a round-robin
manner. Suppose is the filter length, is maximum number
of ONE bits that can be used for each coefficient, and theth
coefficient is composed ofelements . We
process the elements in the following order repetitively:

For each element we perturb it to be that differs from
by either the sign or the exponent or both, while main-

taining to be not the same in exponent as another element
of the th coefficient. Using
while keeping other coefficients the same, we compute the
new value and accept the change if

.

C. Updating

Lines 1 and 8 in Fig. 2 are related to the condition when
should be updated. In traditional Lagrangian methods on

continuous variables, is updated in every iteration. This
approach does not work in DLM-98 because ifwere updated
after each update of then the search behaves like random
probing and restarts from a new starting point even before
a local minimum is reached. For this reason,for violated
constraints should be updated less frequently, only when no
further improvement in can be made in Line 7 of
DLM-98 for all the bits in all the coefficients. This is the
approach we have taken in solving satisfiability problems [19],
[26], [29]. However, we have found that more frequent updates
of may lead to better PO2 filters. In our implementation, we
update every time three coefficients have been processed.
Since is updated before all the filter coefficients have been
perturbed, the guidance provided bymay not be exact.

When updating before the search reaches a local minimum
of , we set in Line 8 of Fig. 2 to be a normalized
value as follows:

(20)

where is a real constant for controlling the speed of
increasing . Experimentally, we have determined to
be 0.6818.

When the search reaches a local minimum of
perturbing any single bit in any coefficient will result in no
improvement of . At this point, we need to update

differently in order to bring the search out of the local
minimum. This is done by choosing a proper value ofin
Line 8 of DLM-98. If is increased too fast, then the search
will restart from a random starting point. On the other hand, if

is increased too slowly, then the trajectory will remain in the
current local minimum, and updates ofin the next iteration
of DLM-98 will bring the search to the same local minimum!
Hence, we like to set so that it will bring the search out
of the current local minimum in one step, and local descents
in the next iteration will head to an adjacent local minimum.
This means that, after has been changed to there exists

in such that

and (21)

Replacing by in
(21), we get the condition before changes

(22)
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(a)

(b)

Fig. 4. Performance progress measured during the search of Problem 32e.
(a) Violation values ofTt. (b) Corresponding�T .

and that after is updated to

(23)

where is the new violation of theth constraint
at . After transformations, we get

(24)
When is large enough to satisfy (24) for all and

is increased according to Line 8 of DLM-98, we are assured
that there is new that will cause to decrease in the next
iteration.

As an example, consider in Fig. 4(a) the violation of transi-
tion bandwidth in a typical search based on the constraints
derived from Johnston’s 32e filter bank [10]. Fig. 4(a) shows
that the value of the violation on can be extremely small, on
the order of in the later part of the search. For such small
violation values, the update of using defined in (20) will
result in a large number of iterations before the violation can
be overcome. Using defined in (24) to increase we see
in Fig. 4(b) that jumps three times when the condition for
updating was satisfied. These saved at least half of the total
search time in order to find the solution.

TABLE II
MULTIPLIERLESS 32d QMF BANKS FOUND BY DLM-98 WITH STATIC AND

ADAPTIVE WEIGHTS (THE OBJECTIVE IS THE RECONSTRUCTIONERROREr)

D. Weighted Discrete First-Order Methods

As discussed in Section III-A, Lagrangian methods rely
on ascents in the Lagrange-multiplier space, and descents
in the objective space, in order to reach equilibrium. The
convergence speed and solution quality, however, depend
on the balance between objective and constraints
and . Although changes in lead to different balance
between ascents and descents, convergence can be improved
by introducing a weight on the objective function. These
considerations lead to a new Lagrangian function as follows:

(25)

where is a user-controlled weight on the objective.
By applying DLM-98 in Fig. 2 on (25) using different we
observe four possible behaviors of the search trajectory.

1) The trajectory converges without oscillations.
2) The trajectory gradually reduces in oscillations and

eventually converges.
3) The trajectory oscillates within some range but never

converges.
4) The magnitude of oscillations increases, and the trajec-

tory eventually diverges.

Obviously, the first two cases are desirable, and the latter two
are not. Moreover, we would like to reduce the amount of
oscillations and improve convergence time.

The second and third columns of Table II show the
objective-function values of the designs found and the
corresponding convergence times of DLM-98 with static
weights. DLM-98 does not converge when the static weight

is large. These results demonstrate that the choice ofis
critical in controlling both the convergence time and solution
quality. There is, however, no effective method for choosing
a fixed except by trial and error.

In the rest of this subsection, we present a strategy to
adapt based on run-time search progress in order to ob-
tain high-quality solutions and short convergence time. This
approach is more general than our previous approach [19]
that scales the Lagrange multipliers periodically in order
to prevent them from growing to be very large when all
constraint functions are positive. The Lagrange multiplier of
a nonnegative constraint may grow without limit because
its value is always nondecreasing according to (18), and a



1186 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 46, NO. 9, SEPTEMBER 1999

Fig. 5. Procedures for weight initialization and adaptation in Fig. 2. (The initial values of parameters are indicated here unless specified otherwise in the text.)

Lagrangian space with large Lagrange multipliers is more
rugged and more difficult to search. In our previous approach
[19], the period between scaling and the scaling factor are
application dependent and chosen in an ad hoc fashion. Our
current approach adjusts the weight between the objective and
the constraints, which is equivalent to scaling the Lagrange
multipliers. It is more general because it adjusts the weight
according to the convergence behavior of the search.

In general, changing may speed up or delay convergence
before a trajectory reaches an equilibrium point, and may bring
the trajectory out of equilibrium after it reaches there. In this
section, we design weight-adaptation algorithms to speed up
convergence. Strategies to bring a trajectory out of equilibrium
by modifying will be studied in the future.

Fig. 5 outlines the procedures for weight initialization and
adaptation. Its basic idea is to first estimate the initial weight

(Line 1), measure the performance of the search tra-
jectory periodically, and adapt to improve
convergence time or solution quality.

Let be the point of theth iteration, and be
its maximum violation over all the constraints in (25)

(26)

To monitor the progress of the search, we divide time
into nonoverlapping major windows of size iterations
(Line 2), each of which is then divided into minor windows
of iterations (Line 3). We further record some statistics,
such as and that will be used to calculate the
performance in each minor/major window (Line 5).

At the beginning of a minor window (Line 7), we test
whether the trajectory diverges or not (Line 8). Divergence
happens when is larger than an extremely large value
(say ). If it happens, we reduce say and
restart the window markers by resettingto zero.

At the beginning of a major window (Line 9), we compute
some metrics to measure the progress of the search relative
to that of previous major windows (Line 10). In general,
application-specific metrics, such as the number of oscillations
of the trajectory, can be used. In our current implementation,

we compute the averages (or medians) of and ob-
jective in the th major window ( ) as
follows:

or

median (27)

or

median (28)

Based on these measurements, we adjustaccordingly
(Line 11). Note that when comparing values between two
successive major windows and both must use the
same otherwise, the comparison is not meaningful because
the terrain may be totally different. Hence, after adapting
we should wait at least two major windows before changing
it again.

To understand how weights should be updated in Step 10,
we examine all the possible behaviors of the search trajectory
in successive major windows. We have identified four possible
cases.

First, the trajectory does not stay within a feasible region,
but goes from one feasible region to another through an
infeasible region. During this time, is zero when the
trajectory is in the first feasible region, increased when it
travels from the first feasible region to an infeasible region, and
decreased when going from the infeasible region to the second
feasible region. No oscillations will be observed because
oscillations normally occur around an equilibrium point in one
feasible region. In this case, is not changed.

Second, the trajectory oscillates around an equilibrium point
of a feasible region. This can be detected when the number
of oscillations in each major window is larger than a certain
threshold, the trajectory is not always in a feasible region,
and the trend of the maximum violation does not decrease. To
determine whether the oscillations will subside eventually, we
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(a) (b)

(c) (d)

Fig. 6. Comparison of convergence time and quality of solution between static weighting and dynamic weighting for multiplierless QMF-bank design
problems 32d and 48e, where quality is measured by the ratio of the reconstruction error of our design to that of Johnston’s design [10]. Hence,
better designs have smaller values of quality. (a) Problem 32d with static weights. (b) Problem 32d with dynamic weights. (c) Problem 48e with static
weights. (d) Problem 48e with dynamic weights.

compute the difference of the average values of
maximum violation for two successive major windows

and . If the difference is not reduced reasonably, then
we assume that the trajectory has not converged and decrease

accordingly.
Third, the search trajectory moves very slowly within a

feasible region. This happens when is very small, and
the constraints dominate the search process. As a result, the
objective value is improving very slowly and may eventually
converge to a poor value. This situation can be identified
when the trajectory remains within a feasible region in two
successive major windows and is improving in successive
major windows, but the improvement of the objective is not
fast enough and is below an upper bound. Obviously, we
need to increase in order to speed up the improvement of
the objective. If the objective remains unchanged, then the
trajectory has converged, and no further modification ofis
necessary.

Finally, the trajectory does not oscillate when it starts within
a feasible region, goes outside the region, and converges to a
point on the boundary. Here, a largemakes it more difficult
to satisfy the constraints, causing the trajectory to move slowly
to the feasible region. In this case, an appropriate decrease of

will greatly shorten the convergence time.
Table II illustrates the improvements in convergence times

using adaptive weights. For all the initial weights considered,
the adaptive algorithm is able to find converged designs in
a reasonable amount of time, although the solution quality is
not always consistent.

V. EXPERIMENTAL RESULTS

We have applied DLM-98 to solve the QMF-bank design
problems formulated by Johnston [10]. In this section, we
compare the performance of designs found by DLM-98 and
those by Johnston [10], Chenet al. [4], Novel [27], simulated
annealing (SA), and genetic algorithms (GA). All the exper-
iments were run on Pentium Pro 200 computers with Linux
unless specified otherwise.4

Our goal is to find designs that are better than the baseline
results across all six performance measures. Hence, we use
(5) with the constraint bounds defined by those of the baseline
designs.

A. Performance of Lagrangian Methods with Dynamic Weights

To design multiplierless QMF banks, we allow the maxi-
mum number of ONE bits to be six and the minimum exponent
to be 22 for each filter coefficient. The Lagrangian method
uses both static weights and dynamic weights to solve 32d
and 48e problems. We compare both the convergence time
and the quality of solution in terms of reconstruction error.
The starting points were obtained from Johnston’s design, and
the control parameters were the same as those used in the
previous subsection except that the window sizeis 10.

A comparison of DLM-98 with static weights and that
with dynamic weights is shown in Fig. 6. Even though the
initial weights have very large ranges, for 32d and

4Filter-bank coefficients [Online]. Available FTP: manip.crhc.uiuc.edu/pub/
papers/PostScript/J66/J66.coefficients
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TABLE III
EXPERIMENTAL RESULTS OFDLM-98 IN SOLVING MULTIPLIERLESS QMF-BANK

DESIGN PROBLEMS. THE INITIAL POINTS OF THE RUN WERE FROM SIX

ONE-BIT EXPRESSIONS OFSCALED JOHNSTON’S SOLUTIONS

for 48e, the dynamic weight-adaptation algorithm
converges in less than 300 min for the 32d problem and 510
min for 48e. However, using DLM-98 with static weights,
when the initial is larger than 1.0, the search cannot
converge within 15 h for 32d and 32 h for 48e.

Note that, for 48e, the solution quality of DLM-98 with
static weights is slightly better than our dynamic weight-
adaptation algorithm for some initial weights. This happens
because the latter may change the terrain during the search
and find different solutions.

Finally, Table III shows the results of solving all the John-
ston’s benchmarks using filter coefficients with a maximum
of six ONE bits. Our results show that we were able to find
designs that have better reconstruction errors, while the other
performance metrics are either the same or better.

B. Comparison of DLM-98 with Johnston’s Designs

In this section, we compare the performance of designs
found by DLM-98 and those by Johnston [10].

There are two parameters in a PO2 filter bank design: the
maximum number of ONE bits in each filter coefficient and the
number of filter taps. In our experiments, we have varied one
while keeping the other fixed when evaluating a PO2 design
with respect to a benchmark design.

We have used closed-form integration to compute the per-
formance values. In contrast, Johnston [10] used sampling
to compute energies. Hence, designs found by Johnston are
not necessarily at the local minima in a continuous sense. To
demonstrate this, we applied local search in a continuous for-
mulation of the 24D design, starting from Johnston’s design.
We found a design with a reconstruction error of 3.83E-05,
which is better than Johnston’s result of 4.86E-05. By applying
global search, we can further improve the design to have a
reconstruction error of 3.66E-05.

We have evaluated PO2 designs obtained by DLM-98
with respect to Johnston’s designs whose coefficients are 32-
bit real numbers. Using the performance of Johnston’s 32e
design as constraints [10], we ran DLM-98 from ten different
starting points obtained by randomly perturbing 1% of all the
coefficients of Johnston’s design [10]. Each run was limited
so that each ONE bit of the coefficient was processed in

(a)

(b)

Fig. 7. Normalized performance for PO2 filter banks with a maximum of
three ONE bits per coefficient and different number of filter taps. (a) Problem
32e. (b) Problem 48e.

a round-robin fashion 400 times. We then picked the best
solution of the ten runs and plotted the result in Fig. 7,
which shows the normalized performance of PO2 designs with
increasing number of filter taps, while each filter coefficient
has a maximum of three ONE bits. (The best design is one
with the minimum reconstruction error if all the constraints
are satisfied; otherwise, the one with the minimum violation is
picked.) Our results show a design with 32 taps that is nearly
as good as Johnston 32e’s design. For filters with 32, 36, 40,
and 44 taps, we used a starting point derived from Johnston’s
32e design with filter coefficients first scaled by 0.5565 and
truncated to a maximum of three ONE bits, and the filter
coefficients of the remaining taps set to zeros initially. Starting
points for filters with longer than 44 taps were generated
similarly, except that a scaling factor of 0.5584 was used
instead. Our results show that, as the filter length is increased,
all the performance metrics improve, except the transition
bandwidth, which remains close to that of the benchmark
design.

With respect to Johnston’s 48e design [10], we set a limit
so that each ONE bit of the coefficient was processed in a
round-robin fashion 800 times, and ran DLM-98 once from
the truncated Johnston’s 48e design. (The scaling factor was
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Fig. 8. Normalized performance with respect to Johnston’s 48e QMF bank
[10] for PO2 filters with 48 taps and different maximum number of ONE bits
per coefficient.

0.5584 for filters with 48, 52, 56, and 60 taps. The scaling
factor was 0.6486 for filters with 64 taps.) Our results show
that our 48-tap PO2 design is slightly worse than that of
Johnston’s, while PO2 designs with 52 taps or longer have
performance that are either the same or better than those of
Johnston’s 48e design. In particular, the reconstruction error of
our 52-tap PO2 design is 62% of Johnston’s 48e design, while
that of our 64-tap PO2 design is only 21% of Johnston’s 48e
design.

In the next set of experiments, we kept the same number
of taps as Johnston’s 48e design and increased the maximum
number of ONE bits in each coefficient from three to six.
We set a limit so that each ONE bit of the coefficient was
processed in a round-robin fashion 800 times, and ran DLM-98
once from the truncated Johnston’s 48e design. Fig. 8 shows
a design that is better than Johnston’s 48e design when the
maximum number of ONE bits per coefficient is six. In this
case, the reconstruction error is 91% of Johnston’s 48e design.
(The scaling factors used are 0.5584 for three bits, 0.8092 for
four bits, 0.7409 for five bits, and 1.0 for six bits.)

With respect to Johnston’s 64d and 64e designs, Table IV
shows improved PO2 designs obtained by DLM-98 using a
maximum of six ONE bits per coefficient and 64 taps. No
improvements were found when the maximum number of ONE
bits is less than six.

C. Comparison of DLM-98 with Other Optimization Methods

In this section, we compare the performance of designs
found by DLM-98 and those by Chenet al. [4], Novel[27], SA,
and GA. Table IV shows improved designs found by DLM-
98 with respect to Chenet al.’s designs with, respectively,
64 and 80 taps, all using a maximum of three ONE bits per
coefficient. In these designs, we used Chenet al.’s designs as
starting points and ran DLM-98 once with a limit so that each
ONE bit was processed in a round-robin fashion 1000 times.

We also compare in Table IV the performance of 32e
PO2 filter banks obtained by DLM-98 with a maximum
of three ONE bits per coefficient, and those obtained by

TABLE IV
COMPARISON OFNORMALIZED PERFORMANCE OFFILTER BANKS WITH DISCRETE

COEFFICIENTSDESIGNATED BY DLM-98 WITH RESPECT TOTHOSE WITH

CONTINOUS COEFFICIENTSDESIGNATED BY JOHNSTON, CHEN, NOVEL, SIMULATED

ANNEALING (SIMANN), AND GENETIC ALGORITHMS (EA-Ct AND EA-Wt).

(Columns 2–4 show the performance of dlm-98 using three ONE bits for
32-tap filters and six ONE bits for 64-tap filters normalized with respect to
that of Johnston’s 32e, 64d, and 64e filter banks [10]. Columns 5–6 show
the performance of dlm-98 using three ONE bits normalized with respect
to that of Chenet al.’s 64-tap and 80-tap filter banks [4]. Columns 7–10
show the performance of 32-tap filter bank and using johnston’s design
as constraints.)

Novel, simulated annealing (SA), and evolutionary algorithms
(EA’s). Novel uses a continuous trace function to bring a
search out of local minima rather than restarting the search
from a new starting point when the search finds a feasible
design. The SA we have used is SIMANN from netlib that
works on a weighted-sum formulation. The EA is Sprave’s
Lice (linear cellular evolution) that can be applied to both
constrained and weighted-sum formulations. SIMANN and
EA-Wt use weighted-sum formulations with weight 1 for the
reconstruction error and weight 10 for the remaining metrics.
EA-Ct works on the same constrained formulation defined in
(4). All methods were run significantly long with over 10 hours
on a SUN SS20 workstation in each run.

We have tried various parameter settings and report the best
solutions in Table IV.Novelimproves Johnston’s designs con-
sistently. SIMANN and EA-Wt have difficulty in improving
over Johnston’s design across all measures and have found
designs with larger transition bandwidth. EA-Ct found a design
that improves Johnston’s across all measures, although it is not
as good as the one found byNovel. Note that all these designs
have continuous coefficients that will need either a complex
carry-save adder or a 32-bit multiplier in each tap in their
hardware implementations. In contrast, DLM-98 obtained a
design that improves while the other metrics are either
exactly the same or slightly better than those of Johnston’s.
Moreover, the design uses a maximum of five additions in
each tap, leading to very cost-effective implementations.

Since existing optimization packages like SIMANN and
EA works in continuous space, we have also constructed our
own simulated annealing package calleddiscrete simulated
annealing(DSA) that works directly in discrete space. As SA
cannot handle constraints directly, we create a single objective
based on a weighted sum of the objective and the constraints
using static weights

(29)

DSA first defines an initial temperature , and selects a
starting point and scaling factor in the same way as that in
Section IV-A. It then generates a newin discrete space and
accepts the new point at the current temperatureaccording
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TABLE V
EXPERIMENTAL RESULTS OFDSA IN DESIGNING MULTIPLIERLESS

QMF-BANK PROBLEM 24c, STARTING FROM A SIX ONE-BIT

EXPRESSION OFSCALED JOHNSTON’S SOLUTIONS

to the following probability:

probability of accepting

where
if
otherwise.

(30)

Periodically, is scaled down by scalewhen the maximum
violation does not decrease over a period of time (set to ten
round-robins in our experiments). Finally, DSA reports the
best solution when the search converges.

In our experiments using DSA, we found it very difficult
to set scale and the static weights in (29) that lead to
better PO2 designs. A set of improperly chosen parameters will
lead to violations of certain constraints. This phenomenon is
obvious because the weights define the relative importance of
the constraints.

Our experience on DSA is illustrated in the search of a
better design of Johnston’s 24c filter bank. After extensive
experimentation, we initialized the weights to be

and
scale . We further set the scaling factor to be 0.6413,
the same as that in DLM-98 for 24c. Table V lists the eight
designs found by DSA. When the initial temperature was too
high ( ), DSA did not find any meaningful design, but
found near feasible designs when the initial temperature is
lower. When the initial temperature is 0.005, DSA found a
feasible PO2 design with six ONE bits that is slightly better
than Johnston’s 24c. Note that we did not find any feasible
design after trying many other combinations of parameters.

In short, we found it difficult to use global search strategies,
like SA and GA, to design PO2 filter banks formulated as
weighted sum of the objective and the constraints. Without
dynamically changing the weights as in DLM-98, it is hard
to choose a proper set of weights (except by trial-and-error)
that will allow SA or GA to converge to feasible designs.
The best that SA and GA can find are designs with tradeoffs
on different metrics. For this reason, the method studied in
this paper represents a significant advance in solving discrete
constrained optimization problems.

VI. CONCLUSION

We have presented a new discrete Lagrangian method
(DLM-98) for designing multiplierless PO2 QMF banks. Our
results show that DLM-98 can find better PO2 filter banks with
very few ONE bits in each filter coefficient than other discrete

and continuous optimization methods. Our design method is
unique because it starts from a constrained formulation, with
the objective of finding a design that improves over a bench-
mark design. In contrast, existing methods for designing PO2
filter banks can only obtain designs with different tradeoffs
among the performance metrics and cannot guarantee that the
final design is always better than the benchmark design with
respect to all the performance metrics.
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