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Discrete Lagrangian Methods for Optimizing
the Design of Multiplierless QMF Banks

Benjamin W. Wah Fellow, IEEE, Yi Shang,Member, IEEE,and Zhe Wu

Abstract—in this paper, we present a new discrete Lagrangian [ Filter | Minimization Objectives
method for designing multiplierless quadrature mirror filter Overall | Amplitude distortion
banks. The filter coefficients in these filter banks are in powers- Filter | Aliasing distortion
of-two, where numbers are represented as sums or differences of Bank | Phase distortion
powers of two (also called canonical signed digit representation), . Stopband ripplc (9
and multiplications are carried out as additions, subtractions, and Single | Passpand ripple (9,)
shifts. We formulate the design problem as a nonlinear discrete Filter iﬁgﬁ:ﬁg sy éf;
constraine_d optimization problem, using reconstfuction error as T;énsition ban%widﬁl )
the objective, and stopband and passband energies, stopband and
passband ripples, and transition bandwidth as constraints. Using @

the performance of the best existing designs as constraints, we
search for designs that improve over the best existing designs
with respect to all the performance metrics. We propose a
new discrete Lagrangian method for finding good designs and
study methods to improve the convergence speed of Lagrangian
methods without affecting their solution quality. This is done by
adjusting dynamically the relative weights between the objective
and the Lagrangian part. We show that our method can find
designs that improve over Johnston’s benchmark designs using a
maximum of three to six ONE bits in each filter coefficient instead
of using floating-point representations. Our approach is general
and is applicable to the design of other types of multiplierless (b)
filter banks.

Fig. 1. Possible design objectives of filter banks and an illustration of the
Index Terms—Adaptive weighted Lagrangian search, canoni- design objectives of a single low-pass filter. ({8,] is the passbandiws, ]
cal signed digit representation, discrete Lagrangian formulation, the stopbandfw,, ws], the transition band.)
global search, multiplierless filter banks, quadrature mirror fil-

tering, simulated ling. . )
ering. simuated annealing genetics-based methods [8], [10]. On the other hand, filter

bank-design problems have been solved by nonoptimization
I. INTRODUCTION algorithms, which include spectral factorization [12], [25] and

IGITAL filter banks have been applied in many enheuristic methods (as in infinite-impulse response (lIR)-filter
Dgineering fields. Fig. 1 summarizes the various desicﬂ?Sign)- These methods generally do not continue to find better
objectives for measuring quality. In general, filter-bank desig#fsigns once a suboptimal design has been found [25].
problems are multiobjective, continuous, nonlinear optimiza- In this paper, we study discrete Lagrangian and global-
tion problems. search methods for designing multiplierless quadrature mirror

Algorithms for designing filter banks are either optimizatilter (QMF) banks. These filter banks are an important class of
tion based or nonoptimization based. In optimization-baséHer banks that have been studied extensively. In a two-band
methods, a design problem is formulated as a multiobjecti@MF bank, the reconstructed signal is
nonl?negr optimizgtion problem [24], whose for_m may b%(z)z%[Ho(z)Fo(z)—|—H1(z)Fl(z)]X(z)—i—%[Ho(—z)Fo(z)
application- and filter-dependent. The problem is then con-
verted into a single-objective optimization problem and solved HH1(=2) 1 (2)] X (=2) 1)

by existing opFirr)ization methods, suph as gradient—ldescqwhereX(z) is the original signal, and{;(z) and F;(z) are,
Lagrange-multiplier, quasi-Newton, simulated-annealing, angspectively, the response of the analysis and synthesis filters.

_ _ , To perfectly reconstruct the original signal based J6n we
Manuscript received November 6, 1997; revised May 20, 1999. This

research was supported by the National Science Foundation under Grant M€ to el'mma_-te a_“{is”?g’ amplitude, and phase .d'Stort_'onS'
96-32316 and by a gift from Rockwell International. This paper was presentdMF banks with finite-impulse response (FIR) filters im-
in part at the 1997 I_EEE International Conference on Appllcatl(_)n-Spemf ement perfect reconstruction by Settilﬁ@(z) —_ H1(—z),
Array Processors. This paper was recommended by Associate Editor J. Astgla, H dH - H leadi fil

B. W. Wah and Z. Wu are with the Department of Electrical and Computdi1 (%) =- o(—2), an 1(2) = 0(—7:?)’ eading to a filter
Engineering and the Coordinated Science Laboratory, University of lllinois Bank with one prototype filteH (=), linear phase, and no
Ur\b(ansar;gr?;rigp\?vligt]r?'trl#erblgggén_miln?oolf L(J:?)’r‘;puter Engineering and Sciencae"asmg distortions.
University of Missouri, Columbia, MI 65211 USA. "Traditional FIR filters in QMF banks use real or fixed-

Publisher Item Identifier S 1057-7130(99)08038-6. point numbers as filter coefficients. Multiplications of such

1057-7130/99%$10.001 1999 IEEE



1180 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 46, NO. 9, SEPTEMBER 1999

long floating-point numbers generally limit the speed of FI®ne possible formulation using a subset of the measures in
filtering. To overcome this limitationmultiplierless(powers- Fig. 1 is as follows:

of-two (PO2) filters have been proposed. These filters use, . .

filter coefficients that have only a few bits that are oneMinimize £, and£, where

When multiplying a filter input (multiplicand) with one such /2

coefficient (multiplier), the product can be found by adding and E, = /
shifting the multiplicand a number of times corresponding tg,q *
the number of ONE bits in the multiplier. For example, the ~
multiplication of 4y by 0100001001 can be written as the sum g, = / | Ho(¢“)|*dw. (3)

of three termsy - 2% + y - 2% + 4 - 2°, each of which can be w

obtained by shifting,. A limited sequence of shifts and addynfortunately, optimal solutions to (3) are not necessarily
are usually much faster than full multiplications. Without usingptimal solutions to the original problem that considers all

full multiplications, each filter tap takes less area to implemefie performance measures. Often, performance measures not
in VLSI, and more filter taps can be accommodated in a givgi:juded in the formulation are compromised.

- ~(|H0(ejw) 2 + |Ho (ej(w—ﬂ—))|2 B 1)2dw

=W,

area to implement filter banks of higher performance. In general, optimal solutions of a multiobjective problem

The frequency response of a PO2 filtH( ) is form a Pareto optimal frontiersuch that one solution on this
o V=1 fd—1 frontier is not dominated by another. One approach to find a

H(z) = Z g2 = Z Z e 20 |27 point on the frontier is to optimize a weighted sum of all the

e = \iso ' objectives [3], [6],.[10], [16], [24_]. This apprqaqh has difficu]ty
where when frontier points of certain characteristics are desired,
d_1 such as those with certain transition bandwidth. Different
Z les, ;| <foralli, e ;=-1,0, 1. (2) combinations of weights must be tested by trial and error until

a desired solution is found. When the desired characteristics
are difficult to satisfy, trial and error is not effective in

Here, v is the length of the PO2 filter] is the maximum finging feasible designs. Instead, constrained formulations
number of ONE bits used in each coefficient, ahds the ghould be used.

number of bits in each coefficient.

The design of multiplierless filters has been solved by Single-Objective Constrained Formulation
integer programming that optimizes filter coefficients with

restricted values of PO2. Other techniques used include”nother approach to solve a multiobjective problem is to
combinatorial search [17], simulated annealing [2], geneﬁh‘m all but one objectives into constraints, and define the con-

algorithms [18], linear programming [11], and continuoustraints with r_espect to a refer_enc_e design_. The specific mea-
Lagrange-multiplier methods in combination with a tre&U'eS constrained may be application and filter dependent [24].
search [20]. Constraint-based methods have been applied to design QMF

In this paper, we present a discrete Lagrange-multipli@2nKS in both the frequency [3], [5], [10], [21], [23] and time

search for designing multiplierless QMF banks. In Section [ffomains [15], [22]. In the frequency domain, the most often
we formulate the design problem as a single-objective cof@nsidered objectives are reconstruction by and (stop-
strained optimization problem. Section Il summarizes tH&&Nd ripple)(é;). As stopband ripples cannot be formulated in
principles behind discrete Lagrangian methods. In Section 1¢/0Sed form, stopband attenuation is used instead (represented
we present our discrete Lagrangian method, 1998 versigpZs in Fig. 1). In the time domain, Nayebi [15] gave a time-

(DLM-98), that finds saddle points in discrete space arfipmain formulation with constraints in the frequency domain,
examines the issues related to the implementation of pLhd designed filter banks using an iterative time-domain design

98 to design multiplierless filter banks. Finally, Section \Rlgorithm.

presents experimental results, and conclusions are drawn i this paper, we formulate the design of QMF banks in
Section VI. the most general form as a nonlinear constrained optimization

problem using the reconstruction error as the objective, and
other measures (stopband ripple, stopband energy, passband

ripple, passband energy and transition bandwidth) as con-
The design of QMF banks can be formulated as a multitraints

objective unconstrained optimization problem or as a single- )
objective constrained optimization problem. Minimize E., subjectto
E,<0g,, Es<0g,, T, <0r, 6,<6s,,0 <05 (4)

=0

Il. PROBLEM FORMULATION

A. Multi-Objective Unconstrained Formulation :
wherebg, , 0k, , 0s,, 6s,, andéz, are constraint bounds found

In a multiobjective formulation, the goals can be to: in the best-known design (with possibly some bounds relaxed
1) minimize the amplitude distortion (reconstruction error tightened in order to obtain designs of different tradeoffs).

of the overall filter bank; 1 , . . .
2 timize the individual performance measures of t Note that in QMF banksE, is nonzero. A multirate filter bank that
) op p hﬁ]forces perfect reconstructiof’,( = 0) can be formulated as a constrained

prototype filter Ho(2). optimization problem with a goal of minimizing, [8], [9].
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The goal here is to find filter banks of a finite word lengticorrespondind-agrangian functionis defined as follows:
whose performance measures are better than, or equal to, those 1

of the reference design. Since the objective and the constraintsL,(z, A, p) = f(x) + A h(z) + pPp(x) + = | p(z) |2
are nonlinear, the problem is multimodal with many local 2 ®)
minima.

The original optimization problem with inequality con-herex = [\, -+, An|% and yu = [pg, -, w7 are two
straints (4) can be transformed into an optimization probleggts of Lagrange multipliers, aptiz) = [p1 (), - - -, pr(2)]%.
with equality constraints as follows: To eliminatez; from (8), we minimizeL. with respect to

E, — g z; for a givenz. After substituting the result into (8) [14],
Minimize f(z)=Vg, = —— = (5) we have

E,—06 = T
Subject to VEv — max <%7 0) =0 Lc(-T7 )\7 U) f(l') + A h(l')
EP

k
1 2
E. — by 5 2 [whx(0, g+ @) - 2] ©
Vi, = max <—S, 0) =0 i=1
O,
bp — 0s, Note that the derivation applies to both the continuous and the
Vs, = max < b5 0) =0 discrete cases because the differentiatioh ofvith respect to
5 _Pe z; is for a fixedx, and z; is assumed continuous.
Vs, = max< s b , 0) = According to classical optimization theory [14], all the
0s, extrema of (9) that satisfy the constraints and that are regular
Vi, = max <Tt — b, 0) _ (6) points are roots of the following set of first-order necessary
' br, conditions:
wherez is a vector of discrete coefficient8g, is the recon- VaoLle(z, A, 1) =0
struction error of thg best-known design, and all functions have VaLelz, A, 1) =0
been normalized with respect to the values of the best-known
design. VMLC(QZ, A, N) =0. (10)
These conditions are necessary to guarantee the (local) opti-
lll. L AGRANGIAN FORMULATIONS AND METHODS mality of the solution to (7f.

In thi . first _ N Kon L . There are many ways to find solutions that satisfy (10),
n this section, we Tirst summarize€ past work on agrang'qﬂ(ézluding sequential quadratic programming and first-order

formulations and methods for solving continuous constraingd. . methods. Thiirst-order search methodxpresses the

optimization problems. We then extend them to discrete COlsarch in a dvnamic svstem of ordinary differential equations:
strained optimization problems [19], [26], [29]. ! y ¢ 5y nary d 'al equations-

d
—a(t) = — v, Le(z(t), A(t), pu(t
A. Continuous Lagrangian Formulations and Methods dt ) (2(8), XD). 1%))

Lagrangian methods are classical methods for solving con- %)\(t) =VaLe(z(t), A1), u(t))
tinuous constrained optimization problems [14]. We first re- d
view briefly the theory of Lagrange multipliers. au(t) =V, Le(x(t), A1), () (11)
Define a continuous constrained optimization problem as
follows: They performlocal searchinvolving simultaneous descents in
the original-variable space af and ascents in the Lagrange-
min  f(x) multiplier space of andu.. They evolve over time, and reach
ek a feasible local extremum when they stop ateajuilibrium
subjectto g(z) <0 x=(x1, x2, -+, Tpn)

point where all gradients are zeros.
h(z) =0 (7
) ) o B. Discrete Lagrangian Formulations and Methods
where z is a vector of real numbers{(z) is an objective ) o ] )
function, g(z) = [g1(z), - -, gr(z)]T is a set ofk inequality For discrete optlmlzatmn problems, aII_ the varlabjb_@iz =
constraints, anth(z) = [hy(z), -+, hm(2)]% is a set ofm 1,2,.--,n) take <_j|screte yalues (e.g.,llntegers). Little work
equality constraints. Furthef(z), g(z), andh(z), as well as Nas been done in applying Lagrangian methods to solve
their derivatives. are continuous functions. discrete constrained combinatorial optimization problems [7].
Since Lagrangian methods cannot deal directly with inequdi® difficulty in traditional Lagrangian methods lies in the
ity constraints, we transform inequality constraip(z) < lack of a differentiable continuous space to find an equilibrium
0 into an equality constraint by adding a slack variabl@omf‘- I_n this subsec_:tioq, we describe the theory of Lagrange-
#(x), transforming it intop;(z) = gi(z) + 22(z) = 0. The multiplier methods in discrete space [19], [29].
tra.nSformation is .done. in such a way that guarantees theThere are second-order conditions to guarantee that the extremum found
existence of gradients in the space wheny;(z) = 0. The is a local minimum [14].
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For nonlinear discrete problems with inequality constraintdote that the notation in the first condition defines the direction
(similar to that in (7) wherer is now a vector of discrete of maximum potential drop of.4 in discrete space af for
variables), we first transform inequality constrainfz) < 0 fixed A and i, whereas the differentiations in the last two
into an equality constrainhax(g;(x), 0) = 0. This transfor- conditions are in continuous space’oind for fixed x. For
mation does not use a slack variable as in the continuous chsevity, the proofs showing the correctness of these conditions
because searches in discrete Lagrangian space do not recarieeomitted here [29].
the existence of gradients in thespace whery;(z) = 0. The first-order necessary conditions in (15) lead to the

After transforming inequality constraints into equality confollowing first-order search method in discrete space. Here, we
straints, the resulting discrete Lagrangian function is writteseek discrete equilibrium points similar to those of continuous
as follows: problems. The following equations are discrete approximations

k to implement the first-order conditions in (15).
Ly(z, A\, p) = f(z) + \'h(z) + Z“i max(0, g;(z)) (12) General Discrete First-Order Search Method:

o | . | 2k + 1) =2(k) & ApLa((k), MK), p(k))  (26)
wherez is a discrete variable andlandy can be continuous. Ak + 1) = \(k) + erh(z(k)) (17)
The discrete Lagrangian function defined in (12) cannot be o L
used to derive similar conditions in (10) because there are no ~ #(k +1) = u(k) + c2 max(0, g(x(k))) (18)
gradients and differentiation in discrete space. Without the\%l% ered

concepts, none of the mechanisms of calculus in continuous 's the vector-addition operatary = (z1+y1, z2+
PIS, . o Ya, -+, Tn + ypn)), @ande¢; andc, are positive real numbers
space is applicable in discrete space.

controlling how fast the Lagrange multipliers change.

th Atnthundgrs]}and(;ng ?f grafments |n”conpnhut:) ui sp;u_:e SEQWﬁt is easy to see that the necessary condition for the discrete
at tney detine directions in a smail neighborood 1 Wi o qer method to converge is whéfiz) = 0 andg(x) <

function yalugs decreasgs. To this epd, we define in Q'Scrﬁ'fefmplying thatz is a feasible solution to the original problem.
space adirection of maximum potential drofer Lagrangian If any of the constraints is not satisfied, tharand ;. on the

Iﬁ;f“%?nf;(ff(;r?ﬁc ’ig Ztnp;'ngsgﬁ:ggﬁedg‘min;“ aj[a Vev:/:;ﬁ unsatisfied constraints will continue to evolve. Note that, as
the r?w'n'm ML, value 9 P EN(z) in continuous Lagrangian methods, the first-order conditions
‘nimtm Lq vald are only satisfied at saddle points, but does not imply that the

ApLylx, N, p) =7, time to find a saddle point is finite, even if one exists.
_ _ _ _ IV. DLM-98: AN IMPLEMENTATION OF DISCRETE
= - @ g2 =@z o Yo = 20) FIRST-ORDER METHOD
where Based (5) and (6), the discrete L ian function fi
ased on an , the discrete Lagrangian function for
v € N(z) Uz} optimizing PO2 filter banks is
La(y, A, p) = min La(a’, A, ). (13)
g La(w, A ) = fl@)+ > Vi (19)
. . .. i€{Ep, Es,
Here, © is the vector-subtraction operator for changingn Ep, b3, Ty}

discrete space to one of its “user-defined” neighborhood pomtﬁ . - S
" g e . where z is a vector of coefficients, each of which is in
N(z). Intuitively, 7, is a vector pointing fronx to y, the point . . .
. S . : . canonical signed digit (CSD) form of the sum of several
with the minimumZ, value among all neighboring points of

. . . —1 -3 _ 96 i

x, including =z itself. That is, whene itself has the minimum signed binary b'.ts’ such ag +2 2 Smge we

L, then#, = 0. have o_nly equality constraints transformed f_ro_m m_equahty
Having definedA, Ly(z, A, 1), the direction of maximum ?;::)S\Lrii'mz;sgjes;;? as our Lagrange multipliers in the

potential drop in ther space, we define the conceptsafddle 9 '

pointsin discrete space similar to those in continuous spaceF'g' 2 shows an |mplementgt|c?n of the Q|screte first-order
[14]. A point (z*, X*, u*) is a saddle point when method (16) and (18) for designing PO2 filter banks formu-

lated as nonlinear discrete constrained minimization problems.

L(z*, A, ) < L(x™, A", ™) < Lz, A™, u*) (14) The procedure shows several aspects that can be tuned in order
to improve its performance.

 Starting Points (Line 3)we choose a starting point based

on a discrete approximation of an existing QMF bank

with real coefficients (Section IV-A).

for all z € N(z"), all possibleX, and all possible. > u*.
Starting from (14), we can prove similar first-order necessary
conditions in discrete space that are satisfied by all saddle

points [29] . L . S
« Initial Lagrange-Multiplier Values (Line 4)we initialize
AgLa(z, A, p) =0 all Lagrange multipliers to zero in order to allow our
VaLa(z, A, p) =0 results to be reproduced easily. An optimal initial setting
v, La(z, A, 1) =0. (15) is difficult because it depends on the amount of constraint

violation.
3We assume that points in thespace are represented as vectors without o Ti c . Li 2 d 6this limi h b
explicitly denoting them using the vector notation, wheréasnd p are ime Constraint ( Ines 2 an ) Is limits the number

scalars. of iterations through the loop.
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procedure DLM-98

1. set c (positive real constant for controlling the speed of change of Lagrange
multipliers);

set imee (maximum number of iterations);

set starting point z;

set initial value of u (set to 0 in the experiments);

if using dynamic weight adaptation then weight_initialization;

while search has not converged and number of iterations < i,,,, do {
update z to z’ only if this will result in Lg(z', 1) < Lg(z, p);
if condition for updating p is satisfied then y; + p; + ¢ - max(0, g;);

9. if using dynamic weight adaptation then dynamic_weight_adaptation }

e I

Fig. 2. An implementation of discrete first-order method for designing PO2 filter banks. (The initial values of parameters are indicated here unless
specified otherwise in the text.)

; ; . ; TABLE |
* Updating = (Line 7): here, we evaluate all possible CoMPARISON OF APO2 RLTER BANK OBTAINED BY TRUNCATING THE

neighboring points ofr in order to find improvements ReAL COEFFICIENTS OFJOHNSTON'S 32e QMF Bk [10] TO THREE
in its Lagrangian value (Section IV-B). BiTs AND A SMILAR PO2 RLTER BANK, WHOSE COEFFICIENTS

« Updating z« (Lines 1 and 8):the Lagrange multipliers WERE SCALED BY 0.5565 EEFORE TRUNCATION
are updated when the search reaches a local minimum Performance Metrics E. B, E_ & b5 T

s »
H H : . . Filter bank A with Truncated Coefficients  6.93 9.61 1.09 1.89 1.05 1.00
in the Ob]eCtlve space. We do not update the multlpll- Filter bank B with Scaling and Truncation 0.99 1.08 096 1.20 0.98 0.99

ers more frequently due_ to instability of the tra-j_ecu_)ry'(Performance has been normalized with respect to the performance of

The amount of update is controlled by an applicationthe original filter bank).

dependent constant and other filter-related parameters

(Section IV-C). - . . .
« Dynamic Weight Adaptation (Lines 5 and Qeight adap- coefficients to a fixed maximum number of ONE bits is not as

tation adjusts the weight between the objective and tl%’o‘?' as one Whosg real coeff|.C|ents were f|rs_t multiplied l_)y a

constraints in order to adjust their relative importance arﬁn}allng factor. We illustrate this observation in the following

to improve convergence (Section IV-D). example. , , ,
Consider Johnston’s 32e filter bank [10] as a starting point.

Table | shows the metrics of two PO?2 filters: Filter Bank A
was obtained by truncating each of the original coefficients to
There are two alternatives to select a starting point (Ling maximum of three ONE bits, whereas Filter Bank B was
3 in Fig. 2): using the parameters of an existing PO2 QM§htained by multiplying each of the coefficients by 0.5565
bank, or using a discrete approximation of an existing QMgefore truncation. Filter Bank B performs better and is almost
bank with real coefficients. The first alternative is not alwaysgs good as the original design with real coefficients. In fact,
possible because not many such filter banks are availableairuesign that is better than Johnston’s 32e design can be
the literature. In this section, we discuss the second alternatiygiained by using Filter B as a starting point, but no better
In the second approach, we first transform the real coeffjasigns were found using Filter A. This example illustrates that
cients of the best-known design to PO2 forms using a CSRyitiplying the filter coefficients by a scaling factor changes
representation. Given a real coefficient andhe maximum the pit patterns of the coefficients, which can improve the
number of ONE bits to represent the coefficient, we apply,ajity of the starting point when the coefficients are truncated.
Booth's algorithm [1] to represent consecutive 1's using two Experiments also show that it is possible to find good
ONE_ pits and Fhen truncate the least-significant bits of “Efesigns without requiring the PO2 coefficients to have the
coefficients. This approach generally allows a number t0 Rgme degree of precision as that of continuous coefficients.
represented in a few ONE bits. As an example, considergy instance, in our experiments, we restrict the minimum
binary fixed-point numbe.10011101100. After applying exponent of the ONE bits in each coefficient (in the range
Booth’s algorithm and truncation, we can represent the numt{e_rl, 1]) to be—22, even though the real coefficients have a

A. Generating a Starting Point

in two ONE bits minimum exponent of-31.
0.10011101100 To find the best scaling factor, we enumerate over different
Booth’sAlgorithm scaling constants and scale all the coefficients by a common
0.101 00010100 —— 2714273, constant before the search begins. Fig. 3 shows a simple but
Truncation effective algorithm to find the proper scaling factor to be

Previous work [4], [13], [17], shows that scaling has aultiplied before the coefficients are truncated. We evaluate
significant impact on the optimization of coefficients in PO#he quality of the resulting starting point by a weighted sum of
filters. That is, if each coefficient is scaled properly befongés performance metrics. Since, under most circumstances, the
the search starts (based on a heuristic objective), the quatipnstraint on transition bandwidth is more difficult to satisfy,
of the final design can be improved significantly. In our caseje give it a weight of 100 and a weight of 1 for the other
the performance of a PO2 filter obtained by truncating its refalur metrics. Note that our objective in finding a good scaling
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procedure find_scaling factor

1. LeastSum = +o0;

2. for ScaleFactor := 0.5000 to 1.0 step 0.0001 do {

3. Multiply each filter coefficient by ScaleFactor;

4 Get the PO2 form of the scaled coeflicients;

5 Compute the weighted sum of constraint violation: sum := Zi’:l Wi Gi;

6. if (sum < LeastSum) then { LeastSum = sum; BestScale := ScaleFactor }}
7. return BestScale

Fig. 3. Algorithm for finding the best scaling factor, whetg is the weight of constraint.

factor is different from that in the previous work [4], [13],continuous variablesy is updated in every iteration. This
[17]. Further, note that the filter output in the final design wilhpproach does not work in DLM-98 because ifvere updated
need to be divided by the same scaling factor. after each update of, then the search behaves like random
Experimental results show that the algorithm in Fig. 3 worksrobing and restarts from a new starting point even before
fast and can complete in a few minutes, and that the scaliggocal minimum is reached. For this reasenfor violated
factors chosen are reasonable and suitable. It is importanicifhgiraints should be updated less frequently, only when no

point out that scaling does not help when the number of ONF o, improvement inLy(x, 1) can be made in Line 7 of
bits allowed to represent each coefficient is large. Forinstanaf:ﬁ_,lvl_98 for all the bits in all the coefficients. This is the

when the maximum number of ONE bits allowed is larger tharEproach we have taken in solving satisfiability problems [19],

. . . a
six, the performance of all the filters is nearly the same f
all scaling factors. ? 6], [29]. However, we have found that more frequent updates

As an illustration, consider the design of a PO2 QMF barff # may lead to better PO2 filters. In our implementation, we

[28] based on Johnston’s 32d design [10] as our constrairf@date. every time three coefficients have been processed.
Assuming a minimum exponent o£22 in each ONE bit, Sincey is updated before all the filter coefficients have been

we enumerate and find the best scaling factor for all tierturbed, the guidance provided pymay not be exact.
coefficients to be 0.9474. When updating: before the search reaches a local minimum

of Ly(x, 1), we sete in Line 8 of Fig. 2 to be a normalized
B. Updatingx value as follows:

The value ofz is updated in Line 7 in Fig. 2. There are c= e’feed (20)
two ways in whichz can be updated: greedy update and hill maxgi

climbing. In greedy updates, the updatezofeading to the yhereg, ., is a real constant for controlling the speed of

maximum improvement aLq(x, 1) is found before an update e aging,,. Experimentally, we have determindeeq to
is made. This approach is very time consuming and may rlg) 0.6818

lead to the best filter bank when DLM-98 stops. On the other -
L : . When the search reaches a local minimumlIofx, 1),
hand, in hill climbing,z is updated as soon as an improvement

in La(z, 1) is found. This approach is efficient and generall erturbing any fsmgle bit in arr]l_y cogfﬂment Wllldresult |(rj1 no
leads to good designs. For this reason, we use hill climbi provement ofLy(z, 1«). At this point, we need to update

as our update strategy. 1 differently in order to bring the search out of the local
We process all the bits of all the coefficients in a round-robfRinimum. This is done by choosing a proper valuecoh
manner. Suppose is the filter length] is maximum number Line 8 of DLM-98. If 1. is increased too fast, then the search
of ONE bits that can be used for each coefficient, andithe Will restart from a random starting point. On the other hand, if
coefficient is composed dfelements; 1, b; 2, ---, b; ;. We pis increased too slowly, then the trajectory will remain in the
process the elements in the following order repetitively:  current local minimum, and updates ®fin the next iteration
of DLM-98 will bring the search to the same local minimum!
O I O S A S Hence, we like to set so that it will bring the search out

For each elemerit; ;, we perturb it to bé,  that differs from pf the current local minimum in one step, and local descents

b; ; by either the sign or the exponent7or both. while mairdD the next iteration will head to an adjacent local minimum.
taining ¥, ; to be not the same in exponent as another eleméftis means that, aftgr has been changed jd, there exists
of the ith coefficient. Usingb;, 1, ---, b;, j_1, b, ;, -+~ bi,; @ In N(z), such that
while keeping other coefficients the same, we compute the, (;: 1) < Ly(a/, ) and Ly(z', i) < Le(z, 1). (21)
new valueL,(z’, ;1) and accept the change I («', u) < _ n :
Lo, 1) ReplacingLa(z, 1) by f(x) + Y0_ - max (0, gi(x)) in

’ (21), we get the condition before changes

C.Updatinge @Y pmax(0, gi(e)) < S+ e max(0, gi(a'))
Lines 1 and 8 in Fig. 2 are related to the condition when i=1 i=1
i should be updated. In traditional Lagrangian methods on (22)
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9 0l ; . . . , . TABLE I
E MuLTiPLIERLESS 32d QMF Banks FounD BY DLM-98 wiTH STATIC AND
g 0.01 I ] ADAPTIVE WEIGHTS (THE OBJECTIVE IS THE RECONSTRUCTIONERROR E;.)
g — Weight Static Weight Adaptive Weight
< 0001 b i w “Objective  Time (minutes) Objective Time (minutes)
=] ’ ———
= — 10000.0 . 0.998 195.9
ks i ] 1000.0 - - 0.998 168.3
g 00001 —— 100.0 - - 0.885 277.2
32 10.00 - - 0.883 119.3
& 1e 05 . 1.00 - - 0.836 190.8
g 0.1 0.87 197.1 0.837 161.4
Z 1606 . . . . . . 0.01 0.87 115.2 0.87 124.3
0 100 200 300 ) 400 500 600 700 0.001 0.87 4.8 0.87 34.5
Tterations 0.0001 0.88 12.0 0.878 10.8
a 0.00001 0.9 23.7 0.924 12.0
(@)
1000
N :% I D. Weighted Discrete First-Order Methods
= - 4
? 700 | ] As discussed in Section Ill-A, Lagrangian methods rely
Qo . . .
2 600k - . on ascents in the Lagrange-multiplier space, and descents
EREL 1 in the objective space, in order to reach equilibrium. The
go “% 0 - 1 convergence speed and solution quality, however, depend
3 + -{ . . .
2 ol on the balance between objectiyéxr) and constraints(x)
" / ] and g(zx). Although changes in: lead to different balance
0 : : . . . . between ascents and descents, convergence can be improved
0 100 2000 300 A0S0 600 700 by introducing a weight on the objective function. These
) considerations lead to a new Lagrangian function as follows:
Fig. 4. Performance progress measured during the search of Problem 32e. k
(a) Violation values off%. (b) Corresponding:r, . LY (x, p) = wf(z) + Z [ max(0, g;(z))] (25)

=1

and that after. is updated tqu; = ;1; + ¢ - max(0, g;(z)) wherew > 0 is a user-controlled weight on the objective.

L By applying DLM-98 in Fig. 2 on (25) using different, we
f<$>+Z pi - max(0, gi(x)) observe four possible behaviors of the search trajectory.
=t " 1) The trajectory converges without oscillations.
> f(g:/)JrZ i - max(0, gi(z")) (23) 2) The trajectory gradually reduces in oscillations and
= eventually converges.
3) The trajectory oscillates within some range but never
converges.
4) The magnitude of oscillations increases, and the trajec-
tory eventually diverges.

La(@', ) — La(z, 1) Obviously, the first two cases are desirable, and the latter two
> — ar, # AN . are not. Moreover, we would like to reduce the amount of

Z max(0, g;(z)) - (max(0, g;(z)) — max(0, g;(z’))) oscillations and improvg convergence time.

Pt The second and third columns of Table Il show the

(24) objective-function values of the designs found and the

When ¢ is large enough to satisfy (24) for alf, and » corresponding convergence times of DLM-98 with static
is increased according to Line 8 of DLM-98, we are assuredkights. DLM-98 does not converge when the static weight
that there is new’ that will causeL, to decrease in the nextw is large. These results demonstrate that the choice &f
iteration. critical in controlling both the convergence time and solution

As an example, consider in Fig. 4(a) the violation of transguality. There is, however, no effective method for choosing
tion bandwidth?; in a typical search based on the constraints fixed w except by trial and error.
derived from Johnston’s 32e filter bank [10]. Fig. 4(a) shows In the rest of this subsection, we present a strategy to
that the value of the violation dfj, can be extremely small, on adaptw based on run-time search progress in order to ob-
the order ofL0~? in the later part of the search. For such smathin high-quality solutions and short convergence time. This
violation values, the update @f;, usingc defined in (20) will approach is more general than our previous approach [19]
result in a large number of iterations before the violation cahat scales the Lagrange multipliers periodically in order
be overcome. Using defined in (24) to increaser,, we see to prevent them from growing to be very large when all
in Fig. 4(b) thatur, jumps three times when the condition forconstraint functions are positive. The Lagrange multiplier of
updatingy: was satisfied. These saved at least half of the tofl nonnegative constraint may grow without limit because
search time in order to find the solution. its value is always nondecreasing according to (18), and a

wheremax(0, g;(z’)) is the new violation of théth constraint
at z’. After transformations, we get

C
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procedure weight_initialization

1. set w(0) (initial weight, set to 0.00001 in the experiments);

2. set N, (major window for changing w, set to 30 in the experiments);
3. set &; (minor window for changing w, set to 5 in the experiments);
4. j « 0 (number of iterations since last divergence)

procedure dynamic_weight_adaptation

5. record useful information for calculating performance;

6. j«—Jj+1;

7. if (j mod §; =0) then

8. if trajectory diverges then { reduce w; j « 0 }

9. if (j mod N, =0) then {

10. compute performance metrics based on data collected;

11.  change w when certain conditions are satisfied (see text) }

Fig. 5. Procedures for weight initialization and adaptation in Fig. 2. (The initial values of parameters are indicated here unless specifiedrotherteist.)

Lagrangian space with large Lagrange multipliers is mome compute the averages (or medians)uf.(¢) and ob-
rugged and more difficult to search. In our previous approagdttive f;(x) in the uth major window ¢ = 1,2, ---) as
[19], the period between scaling and the scaling factor ai@lows:

application dependent and chosen in an ad hoc fashion. Our 1 ul,
current approach adjusts the weight between the objective and Ty = — Z Umax(t) OF
the constraints, which is equivalent to scaling the Lagrange N i=(u—1) N, +1
multipliers. It is more general because it adjusts the weight Ty = median {vpa(i)} (27)
according to the convergence behavior of the search. (u—1)Ny+1
In general, changing: may speed up or delay convergence Sisul ]
before a trajectory reaches an equilibrium point, and may bring — 1 pal
the trajectory out of equilibrium after it reaches there. In this Fu= N, Z filw) or
section, we design weight-adaptation algorithms to speed up _ Zz_(ufl)N“H
convergence. Strategies to bring a trajectory out of equilibrium fu= ‘ mg?\!aﬂl{fi(i)} (28)
by modifying w will be studied in the future. Eguﬁru

dFIgt. i c;]ut:ltnes tr;e izroc?stjreﬁsr f?r V\;ﬁ:wgr;t I?r:tlailllzifim?\r/]v aindt Based on these measurements, we adjusaccordingly
adaptation. 1ts basic ldea IS 1o 1irst estimate he aWeldifine 11). Note that when comparing values between two
w(0) (Line 1), measure the performance of the search trg-

actor f ) periodically. and adapis(#) o improve ccessive major windows — 1 and «, both must use the
J y (2(b), “.( ) P aly, anc pio(t) P samew; otherwise, the comparison is not meaningful because
convergence time or solution quality.

X o . ) the terrain may be totally different. Hence, after adaptin
. Let (a.ji’ i) b.e th_e point of theth |terat|on., anql;11lax(z) be we should Wai)t/ at least }tlwo major windows before cfwan?ging
its maximum violation over all thé constraints in (25) it again.
. To understand how weights should be updated in Step 10,
Umanx(8) = 2% {g;(z:), O} (26)  \we examine all the possible behaviors of the search trajectory
in successive major windows. We have identified four possible
To monitor the progress of the search, we divide timeases.
into nonoverlapping major windows of siz&,, iterations First, the trajectory does not stay within a feasible region,
(Line 2), each of which is then divided into minor windowsut goes from one feasible region to another through an
of &, iterations (Line 3). We further record some statisticsnfeasible region. During this timej.,.. (i) is zero when the
such asuvmax(?) and f;(x), that will be used to calculate thetrajectory is in the first feasible region, increased when it
performance in each minor/major window (Line 5). travels from the first feasible region to an infeasible region, and
At the beginning of a minor window (Line 7), we testdecreased when going from the infeasible region to the second
whether the trajectory diverges or not (Line 8). Divergendeasible region. No oscillations will be observed because
happens whem,,,,x(?) is larger than an extremely large valueoscillations normally occur around an equilibrium point in one
(say 1029). If it happens, we reduce, sayw « w/10, and feasible region. In this case; is not changed.
restart the window markers by resettifigo zero. Second, the trajectory oscillates around an equilibrium point
At the beginning of a major window (Line 9), we computeof a feasible region. This can be detected when the number
some metrics to measure the progress of the search relat¥escillations in each major window is larger than a certain
to that of previous major windows (Line 10). In generalthreshold, the trajectory is not always in a feasible region,
application-specific metrics, such as the number of oscillatioaad the trend of the maximum violation does not decrease. To
of the trajectory, can be used. In our current implementatiotietermine whether the oscillations will subside eventually, we
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Fig. 6. Comparison of convergence time and quality of solution between static weighting and dynamic weighting for multiplierless QMF-bank design

problems 32d and 48e, where quality is measured by the ratio of the reconstruction error of our design to that of Johnston's design [10]. Hence,
better designs have smaller values of quality. (a) Problem 32d with static weights. (b) Problem 32d with dynamic weights. (c) Problem 48e with static
weights. (d) Problem 48e with dynamic weights.

computes,, — 7,41, the difference of the average values of V. EXPERIMENTAL RESULTS

maximum violationuy,« (¢) for two successive major windows \ye have applied DLM-98 to solve the QMF-bank design
w andu + 1. If the dlffer_ence is not reduced reasonably, theﬁ‘roblems formulated by Johnston [10]. In this section, we
we assume that the trajectory has not converged and decre&ﬁ*ﬁpare the performance of designs found by DLM-98 and
w ac_cordmgly. , .. those by Johnston [10], Chest al. [4], Novel[27], simulated
Third, the search trajectory moves very slowly within &pnesjing (SA), and genetic algorithms (GA). All the exper-

feasible region. This happens when is very small, and jments were run on Pentium Pro 200 computers with Linux
the constraints dominate the search process. As a result, .o specified otherwide.

objective value is improving very slowly and may eventually o, goal is to find designs that are better than the baseline

converge to a poor value. This situation can be identifigds,ts across all six performance measures. Hence, we use

when the trajectory remains within a feasible region in Wy yith the constraint bounds defined by those of the baseline
successive major windows and is improving in successiyRigns.

major windows, but the improvement of the objective is not

fast enough and is below an upper bound. Obviously, we Performance of Lagrangian Methods with Dynamic Weights

need to increasa in order to speed up the improvement of T . . :
_— L . o design multiplierless QMF banks, we allow the maxi-

the objective. If the objective remains unchanged, then t% g P Q

i i ) m number of ONE bits to be six and the minimum exponent
trajectory has converged, and no further modificationvab to be —22 for each filter coefficient. The Lagrangian method
necessary.

) . . . .. .uses both static weights and dynamic weights to solve 32d
Finally, the trajectory does not oscillate when it starts Wlthlgnd 48e problems. We compare both the convergence time

a feasible region, goes outside the region, and converges 23 the quality of solution in terms of reconstruction error.

{)omtt_o n t?he boun(tjar_y.tHere, a Iarg]errt\alfestn mtore d|ﬁ|cullt he starting points were obtained from Johnston’s design, and
0 satisfy the constraints, causing the trajectory to move slo control parameters were the same as those used in the

. X . . e

to the feasible region. In this case, an appropriate decreaSt?)l%fviouS subsection except that the window sieis 10

w will gre"ﬁ'y shorten the_ convergence _t|me. . A comparison of DLM-98 with static weights and that

Table Il illustrates the improvements in convergence tim th dynamic weights is shown in Fig. 6. Even though the
using adaptive weights. For all the initial weights considere%?itial weights have very large range0—>, 104] for 32d and

the adaptive algorithm is able to find converged designs In ’

a reasonable amount of time, althoth the solution qua“ty ISt Filter-bank coefficients [Online]. Available FTP: manip.crhc.uiuc.edu/pub/

not always consistent. papers/PostScript/J66/J66.coefficients
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TABLE 1l 12 -
EXPERIMENTAL RESULTS OFDLM-98 IN SOLVING MULTIPLIERLESS QMF-BANK
DESIGN PROBLEMS. THE INITIAL POINTS OF THE RUN WERE FROM SIX 4
ONE-BIT EXPRESSIONS OFSCALED JOHNSTON'S SOLUTIONS L% [P T
131
Fiter E. 6, E, &6 E, T, ScalingFactor Time (hrs) g 08 passband ripple ——
= 8 asshiand snerpy; s
16a 099 099 094 099 095 0.99 0.9747 16 E ansition bandwidtl -
16b 099 099 090 099 098 099 0.8524 2.1 5 H stopband ripple -a--
16¢ 096 0.99 098 099 099 0.99 .5967 3.0 % 0.6 | gtopband energy . ~#-
24b 097 0.99 087 096 099 099 0.9661 5.6 E nstruction eror 2
24¢ 0.89 0.99 0.58 099 099 0.99 0.6413 12.0 E 04|
244 0.81 0.99 083 099 099 099 0.5342 13.1 s
32¢ 096 099 075 099 099 099 0.5706 12.0 “
32d  0.83 0.953 0.61 099 099 0.99 0.6971 3.1 02 F e : b s A
32¢ 072 099 090 099 099 0.99 0.5019 7.2 T
18¢ 0.88 095 085 099 099 099 0.7914 18.0 : """\3?::-?:.1
48 095 0.99 0.75 099 099 0.99 0.7138 23.0 032 16 20 44 48 52 56 60 64
48 091 099 0.80 099 099 0.99 0.5793 8.0 Filter Length
64d 0.87 099 0.83 0.76 099 0.99 0.9955 9.5
64c 085 099 073 099 099 0.99 0.8026 24.1 (@)

[10~%, 10?] for 48e, the dynamic weight-adaptation algorithm
converges in less than 300 min for the 32d problem and 510
min for 48e. However, using DLM-98 with static weights,
when the initial w is larger than 1.0, the search cannot
converge within 15 h for 32d and 32 h for 48e.

Note that, for 48e, the solution quality of DLM-98 with

Normalized Performance

static weights is slightly better than our dynamic weight- Zi LT I o
adaptation algorithm for some initial weights. This happens ' passhand encrgy SN
because the latter may change the terrain during the search Bl I s i R
and find different solutions. Rl Rt e S
Finally, Table Il shows the results of solving all the John- 0-248 = " P o
ston’s benchmarks using filter coefficients with a maximum Filter Length
of six ONE bits. Our results show that we were able to find (b)
deSIQnS that have better reconstruction errors, while the O”I}?gr. 7. Normalized performance for PO2 filter banks with a maximum of

performance metrics are either the same or better. three ONE bits per coefficient and different number of filter taps. (a) Problem
32e. (b) Problem 48e.

B. Comparison of DLM-98 with Johnston’s Designs

In this section, we compare the performance of desigasround-robin fashion 400 times. We then picked the best
found by DLM-98 and those by Johnston [10]. solution of the ten runs and plotted the result in Fig. 7,

There are two parameter; ip a POZ' filter bank design: tiaich shows the normalized performance of PO2 designs with
maximum number of ONE bits in each filter coefficient and thigicreasing number of filter taps, while each filter coefficient
number of filter taps. In our experiments, we have varied Ofp@s a maximum of three ONE bits. (The best design is one
while keeping the other fixed when evaluating a PO2 desigith the minimum reconstruction error if all the constraints
with respect to a benchmark design. are satisfied; otherwise, the one with the minimum violation is

We have used closed-form integration to compute the pefirad ) Our results show a design with 32 taps that is nearly
formance values. In contrast, Johnston [10] used sampliag 4,44 as Johnston 32e’s design. For filters with 32, 36, 40,
to tcompute e_zlneriytehs. IHenlce,_ d_e5|g_ns foun(tj_ by Johnston d 44 taps, we used a starting point derived from Johnston’s
not necessarily at the local minima in a continuous Sense. 35, design with filter coefficients first scaled by 0.5565 and
demonstrate this, we applied local search in a continuous f?r—

mulation of the 24D design, starting from Johnston’s des‘grquncated to a maximum of ihree ONE bits, and ihe filter

We found a design with a reconstruction error of 3_83E_Og,oefﬂments of the remaining taps set to zeros initially. Starting

which is better than Johnston'’s result of 4.86E-05. By applyirﬁ;o"?ts for filters with Ionger. than 44 taps were generated
global search, we can further improve the design to haveS&nilarly, except that a scaling factor of 0.5584 was used
reconstruction error of 3.66E-05. instead. Our results show that, as the filter length is increased,
We have evaluated PO2 designs obtained by DLM-g8l the performance metrics improve, except the transition
with respect to Johnston’s designs whose coefficients are $andwidth, which remains close to that of the benchmark
bit real numbers. Using the performance of Johnston's 3ggsign.
design as constraints [10], we ran DLM-98 from ten different With respect to Johnston’s 48e design [10], we set a limit
starting points obtained by randomly perturbing 1% of all thgo that each ONE bit of the coefficient was processed in a
coefficients of Johnston’s design [10]. Each run was limitedund-robin fashion 800 times, and ran DLM-98 once from
so that each ONE bit of the coefficient was processed tine truncated Johnston’s 48e design. (The scaling factor was
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1.2 T TABLE IV
passband ripple —— CoMPARISON OF NORMALIZED PERFORMANCE OFFILTER BANKS wiTH DISCRETE
L15 o passband energy == COEFFICIENTS DESIGNATED BY DLM-98 WiTH RESPECT TOTHOSE WITH
transition bandwidth e~ CONTINOUS COEFFICIENTSDESIGNATED BY JOHNSTON, CHEN, NOVEL, SMULATED
1.1 F stopband-ripple - =we ANNEALING (SIMANN), AND GENETIC ALGORITHMS (EA-Ct AND EA-WH).
3 stopband energy -+-— ] S i _
= 105 b Trwe . reconstruction error. -*-- | Type Discrete Coctlicients Continuous Coeflicients
E o Method DLM-98 Novel SA EA-Ct EA-Wt
SR e — e Problem | J-32¢ J-64d J6dc C G4 C-80| J-32¢ J-32 J-32¢ )32
& E, |083 000 083 091 0.95]0712 0500 0.724 0.507
T 095 I E, |100 082 083 0.80 0.96]0.896 0.582 0.905 0.590
":': e ke Ey 1.00 1.00 1.00 1.00 0.86|1.000 1.000 1.000 0.999
g 009t} 2 op 1.00 0.97 1.00 1.00 1.00|1.000 1.000 1.000 0.997
g . Oy 0.99 0.75 1.00 1.00 1.00|1.000 1.000 1.000 0.999
“ 0.85 T, 1.00 1.00 1.00 1.00 1.00|1.000 1.013 1.000 1.013
(Columns 2-4 show the performance of dim-98 using three ONE bits for
0.8 | ; 32-tap filters and six ONE bits for 64-tap filters normalized with respect to
that of Johnston’s 32e, 64d, and 64e filter banks [10]. Columns 5-6 show
0.75 3 s ; 6 the performance of dim-98 using three ONE bits normalized with respect

to that of Cheret al’s 64-tap and 80-tap filter banks [4]. Columns 7-10
show the performance of 32-tap filter bank and using johnston’s design
Fig. 8. Normalized performance with respect to Johnston’s 48e QMF bafg constraints.)

[10] for PO2 filters with 48 taps and different maximum number of ONE bits

per coefficient.

Maximum Number of ONE bits in each Coefficient

Novel| simulated annealing (SA), and evolutionary algorithms
(EA’s). Novel uses a continuous trace function to bring a
0.5584 for filters with 48, 52, 56, and 60 taps. The scalingearch out of local minima rather than restarting the search
factor was 0.6486 for filters with 64 taps.) Our results shoom a new starting point when the search finds a feasible
that our 48-tap PO2 design is slightly worse than that @ksign. The SA we have used is SIMANN from netlib that
Johnston’s, while PO2 designs with 52 taps or longer hawrks on a weighted-sum formulation. The EA is Sprave’s
performance that are either the same or better than thoseLigke (linear cellular evolution) that can be applied to both
Johnston’s 48e design. In particular, the reconstruction errorg@nstrained and weighted-sum formulations. SIMANN and
our 52-tap PO2 design is 62% of Johnston’s 48e design, whité\-Wt use weighted-sum formulations with weight 1 for the
that of our 64-tap PO2 design is only 21% of Johnston’s 48econstruction error and weight 10 for the remaining metrics.
design. EA-Ct works on the same constrained formulation defined in
In the next set of experiments, we kept the same numb@). All methods were run significantly long with over 10 hours
of taps as Johnston’s 48e design and increased the maximuma SUN SS20 workstation in each run.
number of ONE bits in each coefficient from three to six. We have tried various parameter settings and report the best
We set a limit so that each ONE bit of the coefficient wasolutions in Table IVNovelimproves Johnston'’s designs con-
processed in a round-robin fashion 800 times, and ran DLM-8&tently. SIMANN and EA-Wt have difficulty in improving
once from the truncated Johnston’s 48e design. Fig. 8 shomer Johnston’'s design across all measures and have found
a design that is better than Johnston’s 48e design when thesigns with larger transition bandwidth. EA-Ct found a design
maximum number of ONE bits per coefficient is six. In thishat improves Johnston’s across all measures, although it is not
case, the reconstruction error is 91% of Johnston’s 48e desigs.good as the one found biovel Note that all these designs
(The scaling factors used are 0.5584 for three bits, 0.8092 fuave continuous coefficients that will need either a complex
four bits, 0.7409 for five bits, and 1.0 for six bits.) carry-save adder or a 32-bit multiplier in each tap in their
With respect to Johnston’s 64d and 64e designs, Table hdrdware implementations. In contrast, DLM-98 obtained a
shows improved PO2 designs obtained by DLM-98 usingdesign that improved’,., while the other metrics are either
maximum of six ONE bits per coefficient and 64 taps. Nexactly the same or slightly better than those of Johnston's.
improvements were found when the maximum number of ONHoreover, the design uses a maximum of five additions in
bits is less than six. each tap, leading to very cost-effective implementations.
Since existing optimization packages like SIMANN and
C. Comparison of DLM-98 with Other Optimization Method$EA works in continuous space, we have also constructed our
In this section, we compare the performance of desigf¥n simulated annealing package calldidcrete simulated
found by DLM-98 and those by Chest al.[4], Novel[27], SA, annealing(DSA) that works directly in discrete space. As SA
and GA. Table IV shows improved designs found by DLMcannot handle constraints directly, we create a single objective
98 with respect to Cheet al’s designs with, respectively, based on a weighted sum of the objective and the constraints
64 and 80 taps, all using a maximum of three ONE bits p&fing static weights
coefficient. In these designs, we used Cleeal’s designs as _ 3
starting points and ran DLM-98 once with a limit so that eachF = woVe, Fun Vs, +wa Vi, +uwsVr +uwaVs. +ws Ve, (29)
ONE bit was processed in a round-robin fashion 1000 times. DSA first defines an initial temperatufg,, and selects a
We also compare in Table IV the performance of 32starting point and scaling factor in the same way as that in
PO2 filter banks obtained by DLM-98 with a maximunSection IV-A. It then generates a nesvin discrete space and
of three ONE bits per coefficient, and those obtained laccepts the new point at the current temperaifir@ccording
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EXPERIMENTAL RESULTS OF DSA IN DESIGNING MULTIPLIERLESS
QMF-BaNK PROBLEM 24cC, SARTING FROM A SiXx ONE-BIT
EXPRESSION OFSCALED JOHNSTON S SOLUTIONS

Search Time

and continuous optimization methods. Our design method is
unique because it starts from a constrained formulation, with
the objective of finding a design that improves over a bench-
mark design. In contrast, existing methods for designing PO2

To E,. op E, O Es T, (Hours)
5.0 E - - - - - 1.5
1.0 0.81 081 0.65 1.04 083 094 0.9
0.5 0.99 1.008 0.99 099 099 0.99 1.0
0.1 091 076 072 1.01 094 1.01 1.5
0.05 096 097 088 1.009 090 101 1.6
0.01 0.88 091 075 1.006 097 0.99 1.2
0.005 098 096 093 099 099 099 2.4
0.001 087 091 070 1003 096 099 1.7

(1]

(2]
to the following probability:

7 3
probability of acceptingz’ =e (L&) —L@))"/T] Bl
where at :{ It a>0

a,

0, (4]

otherwise. (30)
Periodically, 7" is scaled down by scalewhen the maximum [5]
violation does not decrease over a period of time (set to ten
round-robins in our experiments). Finally, DSA reports thes)
best solution when the search converges.

In our experiments using DSA, we found it very difficult
to set7y, scale-, and the static weights in (29) that lead to
better PO2 designs. A set of improperly chosen parameters wifl
lead to violations of certain constraints. This phenomenon is
obvious because the weights define the relative importance i
the constraints.

Our experience on DSA is illustrated in the search of go
better design of Johnston's 24c filter bank. After extensive
experimentation, we initialized the weights to hg = 1.0,
w1 wo Wy 5.0, ws 15.0, ws 25.0, and
scalg- = 0.95. We further set the scaling factor to be 0.641312]
the same as that in DLM-98 for 24c. Table V lists the eight
designs found by DSA. When the initial temperature was tqo3]
high (>5.0), DSA did not find any meaningful design, but
found near feasible designs when the initial temperature [is;
lower. When the initial temperature is 0.005, DSA found a
feasible PO2 design with six ONE bits that is slightly bettet>]
than Johnston’s 24c. Note that we did not find any feasible
design after trying many other combinations of parameters.[16]

In short, we found it difficult to use global search strategies,
like SA and GA, to design PO2 filter banks formulated ag7)
weighted sum of the objective and the constraints. Without
dynamically changing the weights as in DLM-98, it is harqlg]
to choose a proper set of weights (except by trial-and-error)
that will allow SA or GA to converge to feasible designs
The best that SA and GA can find are designs with tradeoffs
on different metrics. For this reason, the method studied in
this paper represents a significant advance in solving discré&d
constrained optimization problems.

[21]
VL.

We have presented a new discrete Lagrangian meth[cz)czj]
(DLM-98) for designing multiplierless PO2 QMF banks. Our
results show that DLM-98 can find better PO2 filter banks witﬁ?’]
very few ONE bits in each filter coefficient than other discrete

CONCLUSION

filter banks can only obtain designs with different tradeoffs
among the performance metrics and cannot guarantee that the
final design is always better than the benchmark design with
respect to all the performance metrics.
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