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Abstract., Inthis paper, we present a new search method b

ased on the theory of discrete Lagrange multipliers for

designing multiplierless PR (perfect reconstruction) LP (linear phase) filter banks. To satisfy the PR constraints,
we choose a lattice structure that, under certain conditions, can guarantee the resulting two filters to be a PR pair.

Unlike the design of multiplierless QMF filter banks th
of-two) form (also called Canonical Signed Digit or

at represents filter coefficients directly using PO2 (powers-
CSD representation), we use PO2 forms to represent the

parameters associated with the lattice structure. By representing these parameters as sums or differences of powers
of two, multiplications can be carried out as additions, subtractions, and shifts. Using the lattice representation, we
decompose the design problem into a sequence of four subproblems. The first two subproblems find a good starting
point with continuous parameters using a single-objective, multi-constraint formulation. The last two subproblems
first transform the continuous solution found by the second subproblem into a PO2 form, then search for a design

in a mixed-integer space. We propose a new search meth
finding good designs, and study methods to improve its

od based on the theory of discrete Lagrange multipliers for
convergence speed by adjusting dynamically the relative

weights between the objective and the Lagrangian part. We show that our method can find good designs using at
most four terms in PO2 form in each lattice parameter. Our approach is unique because our results are the first
successful designs of multiplierless PR-LP filter banks. Tt is general because it is applicable to the design of other

types of multiplierless filter banks.

1., Iniroduction

Digital filter banks have been applied in many engi-
neering fields. Their design objectives consist of their
overall metrics and the metrics of each individual filter.
Figure 1 summarizes the various objectives for measur-
ing design quality. In general, filter bank-design prob-
lems are multi-objective, nonlinear, continuous apti-
mization problems.

Algorithms for designing filter banks are either
optimization-based or non-optimization based. In

optimization-based methods, a design problem is
formulated as a multi-objective nonlinear optimiza-
tion problem [1] whose form may be application-
and filter-dependent. The problem is then converted
into a single-objective optimization problem and
solved by existing optimization methods, such as
gradient-descent, Lagrange-multiplier, quasi-Newton,
simulated-annealing, and genetics-based methods
[2,3]. On the other hand, filter bank-design prob-
Jems have been solved by non-optimization-based al-
gorithms that include spectral factorization [4, 5] and
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Filter Design Objectives

Ovcrall Minimize ampiitude distortion

Filter  Minimize aliasing distortion

Bank  Minimize phase distortion
Minimize stopband ripple (&,)

Single Minimize passband ripple (4;)

Filter  Minimize transition bandwidth (1%)
Minimize stopband energy {E;}
Maximize passband flatness (Ep)
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Figure I. Possible design objectives of filter banks and an illustra-
tion of the design objectives of a single low-pass filter. ([0, w,] 15
the pass band; [w;, 7], the stop band; [wp, w;], the transition band.)

heuristic methods (as in IIR-filter design [6, 7]). These
methods generally do not continue to find better de-
signs once a suboptimal design has been found [5].

In this paper, we design new two-channel multiplier-
less PR (perfect-reconstruction) LP (linear-phase) filter
banks. In multiplierless filters, each filter coefficient or
parameter is represented by a limited number of terms
in PO2 form rather than by a full floating point number.
Such a representation is also called a Canonical Signed
Digit or powers-of-two (PO2) representation. Multi-
plying a filter input (multiplicand) by a multiplierless
coefficient (multiplier) is then carried out as a limited
number of adds and shifts of the multiplicand, corre-
sponding to the number of terms in the multiplier in
PO2 form. For example, multiplying y by 0100001001
(= 28 4+ 2% + 2% can be written as the sum of three
terms, vy x 28 4+ y x 23 -+ y x 29, each of which can
be obtained by shifting y. Besides faster, multiplier-
less operations take less area to implement in VLSI,
while allowing more stages of the filter to be imple-
mented in the same area. There is no previous study on
such designs, and all existing PR-LP designs in signal
processing are based on real coefficients [8-11].

In a general two-band filter bank, the reconstructed
signal is:

N X X (—
%) = -%[HO(Z)FO(Z) @R @]+ (2 2

» [Ho(—2)Fo(2) + Hi1(—2) F1(2)] N

where X (z) is the original signal, and H;(z) and F;(z)
are, respectively, the response of the analysis and syn-
thesis filters. Choosing Fy(z) = 2H(—z) and Fi(z} =
—2 Ho{~z) lead to a filter bank with only two prototype
filters Hy(z) and H;(z) and the following output:

() = [Ho(D Hi(—2) — Hy(—2) Hi(2)]X (2) (2)

Further, if we impose the pure-delay constraint as fol-
lows, where ¢ is a non-zero real coefficient:

PR Constraints:

Hy(z)Hi(—2) — Ho(=2) H) (2) = ez

— X(z2) = cz * X (2). (3)

In this way, perfect reconstruction is achieved be-
cause the output is a delayed replica of the input. To
reduce aliasing and phase distortions, we need to fur-
ther restrict Hy(z) and H(z) to be of linear phase as
follows:

LP Constraints:

Hy(n) = Hy(N —n +1); @
Hin)=—-H{N—-nr+1)

for all # € [1, N1, where N is the filter length. These
constraints can be enforced by choosing Hy(z) to be
symmetric and H;(z) to be antisymmetric.

There are two general approaches to the design of
PR-LP filter banks. One approach [3] begins from a
starting poini (represented by Hg(z) and H)(z)) and
tries to optimize some performance metrics, like pass-
band energy, stopband energy, and transition band-
width, while keeping constraints (3) and (4) satisfied.
This is not practical when the coefficients are multi-
plierless because the equality constraints (3) imposed
by the PR condition are very hard to satisfy when the
search space is discrete and a feasible design occurs at
only a few points in discrete space. Intuitively, this is
true because values represented by a small nomber of
terms in PO2 form are a proper subset of all floating
point values, and equality constraints generally have
less feasible solutions in the restricted space.

The second approach [12] formulates a PR-LP filter
bank in a lattice structure in order to enforce some con-
straints in its design. Figure 2 shows an example lattice
structure, where ki, ..., ky_1, By and B are unknown
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Figure 2. Two-channel lattice structure.

parameters. We state without proof [13] that when the
filter length N is even and &; = 0 for all even i, the
resulting filters Hy(z} and F1(z) in Fig. 2 are a PR pair
that satisfy (3). Moreover, the LP constraints (4) are
satisfied automatically. In short, the design a PR-LP
filter bank based on a lattice structure only involves
searching the space of variables ki, ky, ... . ky-1, By,
and B;.

In matrix form, Hy(z) and H(z) can be rewritten as
follows:

o [
Hl Lo Bl —1iléy 1

1 0 1 k1 01! S
[0 z—i]”'[kl 1][0 zl][l] ®)

The design of multiplierless PR-LP filter banks in this
paper is based on the second approach that represents
eachk;,,i=1,...,N— 1, usinga small, finite number
(say 3 or 4) of terms in PO2 form. This multiplierless
representation allows the lattice structure to be imple-
mented efficiently in hardware. We consider only the
design of two-channel filter banks with the same even
length N for both filters.

Existing designs of multiplierless filter banks have
been restricted to those with FIR filters due to lim-
itations in the available search methods. Optimiza-
tion methods that have been applied include integer
programming, combinatorial search [14], simulated
annealing [15], genetic algorithms [16], linear pro-
gramming {17], and continuous Lagrange-multiplier
methods in conjunction with a tree search [18]. In our
previous work, we have applied a search method based
on discrete Lagrange muitipliers to design mltipli-
erless QMF filter banks 119, 20]. This design prob-
lem is easier than our current design problem as it
involves only inequality constraints and discrete vari-
ables. In contrast, our current design problem involves
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+1 By

HO(Z)

mixed (integer as well as real) variables and equality
constraints, and cannot be solved without the develop-
ment of new search methods.

We extend our previous local-search method based
on the theory of discrete Lagrange multipliers to design
two-channel multiplierless PR-LP filter banks formu-
lated as single-objective nonlinear mixed optimization
problems with equality constraints (Section 2). Since
the original formulation is too hard to be solved, itis de-
composed into a sequence of four design subproblems.
Section 3 summarizes the theory of discrete Lagrange
multipliers. In contrast to pure descent methods,
Lagrangian methods have additional strategies to es-
cape from infeasible local minima once the search gets
there. Based on the theory of discrete Lagrange multi-
pliers, we then present a discrete local-search method
that finds equilibrium points in discrete space and show
that the equilibrium points found correspond to local
minima in the feasible space. The methods studied are
local search because they stop at feasible local minima
and do not have strategies to escape from the feasi-
ble local minima once they are found. Section 4 exam-
ines issues related to the implementation of our discrete
Lagrangian method (DEM-98) to design multiplieriess
PR-LP filter banks, discusses the convergence speed of
discrete Lagrangian methods, and presents our discrete
Lagrangian method with dynamic weight adaptation.
Section 5 presents experimental results, and conclu-
sions are drawn in Section 6.

2. Problem Formulation

The design of a two-channel PR-LP filter bank is a
multi-objective constrained optimization problem with
objectives measured by metrics in Fig. 1, the PR con-
straints defined in (3), and the LP constraints defined
in (4). As mentioned in the last section, the LP con-
straints are satisfied automatically by using a lattice
structure.
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2.1. General Formulation

Since there is no general method to solve multi-
objective constrained optimization problems, we first
transform our design problem into a single-objective
constrained optimization problem. There are two ways
for this transformation.

First, the multiple performance objectives are com-
bined into a single objective represented by a weighted
sum [1, 2, 21-23]. For instance, to minimize the pass-
band and stopband energies of the two filters in a two-
channel filter bank, one possible formulation using a
subset of the metrics is as follows:

min leg + sz}J + w3E? + wyE} (6)
where

@:fﬂm@m—mm
w={

and

T

El = f |H; (¢! dw, i=0,1
W=y

subject to PR and LP constraints.

Unfortunately, solutions obtained by solving (6) de-
pend heavily on the relative magnitudes of w,, w;, wz,
and wy. To obtain designs with certain characteristics,
different combinations of weights must be tested by
trial and error. It is difficult to find the right combina-
tion of weights to use in the objective when the required
characteristics of a feasible design are hard to satisfy.
Further, unless the formulation considers all possible
performance metrics, metrics not involved in the for-
mulation are generally compromised.

Another approach in solving a multi-objective prob-
lem is to turn all but one objectives into constraints, and
define the constraints with respect to a reference design.
The specific metrics constrained may be application-
and filter-dependent [3].

For instance, given a reference design with five per-
formance metrics for each filter, we can formulate the
design into a problem with ten constraints, in addition
to the PR and LP constraints:

min fx) = E) + E/ + E} + E},
subject to  Ef, < O s El < 0g,
8, < O, 8, < By, M
T: < QTIE, i=01

PR constraints, LP constraints

where x = {k, k3,...,ky_1} is a vector of N /2 dis-
crete coefficients, By and B, are two continuous para-
meters, and the 8’s are performance metrics of the
reference design.

2.2.  Four Design Subproblems

The problem formulated in (7) is difficult to be solved
directly because it is a nonlinear mixed integer opti-
mization problem involving integer and real variables.
The PR constraints in (3) are particularly hard to sat-
isfy in multiplierless designs because they are nonlinear
equality constraints involving mixed variables. In this
paper, we propose an approach that solves (7) using a
sequence of four subproblems specified in Table 1.
The goal of the first three subproblems is to find
designs that have proper “shapes” in their frequency
responses (Hy(z) in the form of a low-pass filter and
H\(z) in the form of a high-pass filter), while ignor-
ing ripples and transition bandwidth. Here, we focus
only on the energies because the original problem (7)
is too difficult to be solved when additional metrics are
included. The simplified problem involving only the
passband and stopband energies is as follows:

min ES 4 E) + E! + E]
subjectto ES <6p , E, <6p (8)
E) <63, E; =0y

where 63,07 ,0p and 8 are performance bounds of
the reference design.

The first subproblem involves a search space of
g + 2 continuous variables (k1, k3, ..., ky—1 and B,
and B;), and computes the energies from stopband and
passhand cutoff frequencies at % (i.e., w, = w; = %).
The reason for choosing such inaccurate cutoff fre-
quencies is that the initial filters we start with may not

Table 1. Specifications of the four subproblems solved. (The ob-
jective in subproblem 4 only considers E? + 1‘5.‘;l because we found
experimentally that the magnitudes of the passband energies are
much smaller than those of the stopband energies and do not play
any role in the final design.)

Sub- Formula- &y, &3, ...,

problem  tion Jey—1 By and B> w; and w,

1 Eq. (8) Continuous Continuous z

2 Eq. (8) Continuous Continuous From ref. design

3 Eg. (8) PO2 Continunous Comp. numerically
4 Eq.(7) PO2 Continnous Comp. numerically




be in proper shapes that allow the calculation of cutoff
frequencies.

The second subproblem is solved in the same search
space as the first, but have the stopband and passband
cutoff frequencies computed based on the reference de-
sign. The exact cutoff frequencies are not needed be-
cause they are expensive to evaluate and are not crucial
at this point.

The third subproblem has a mixed-integer space con-
sisting of & variables (k1. k3, ... ky-1) in PO2 form
and B, and B> in continuous form. It uses the solution
of the second subproblem as a starting point to find so-
lutions with parameters having a constrained number
of terms in PO?2 form. The solution to this subproblem
should be very close to the final desired solution.

The last subproblem uses the same variable space as
the third subproblem but uses the exact formulation in
(7) and computes all cutoff frequencies and energies
by either numerical methods or closed-form formulae.
These calculations are delayed until this point due to
their high computational costs.

3. Lagrange-Multiplier Methods

In this section, we extend Lagrangian methods to solve
the four subproblems described in the last section. We
first sunimarize existing work on Lagrangian methods
for solving continuous constrained optimization prob-
lems. We then present the theory of discrete Lagrange
multipliers and its application to solve discrete and
mixed optimization problems [24-26].

3.1, Continuous Lagrangian Methods

Lagrangian methods are classical methods for solving
continuous constrained optimization problems [27].
We first review briefly the theory of Lagrange mul-
tipliers.

Define a constrained optimization problem as fol-
lows:

minceg»  f(x)
subjectto  g(x) <0 x = (x1,%2..., %) )]
hix) =0

where x is a vector of real numbers, f (x) is an objective
function, g(x) = [g1{x} ..., gi(x)]7 is a set of k in-
equality constraints, and 2(x) = [h1{x}, ..., A ()17
is a set of m equality constraints. Further, fix), gx)
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and h(x), as well as their derivatives, are continuous
functions.

Lagrange-multiplier methods introduce Lagrange
multipliers to resolve constraints iteratively. It is an ex-
act method that optimizes the objective f(x) to meet
the Kuhn-Tucker conditions [27].

Since Lagrangian methods cannot directly deal
with inequality constraints g;(x) = 0 in general,
we transform inequality constraints into equality con-
straints by adding slack variables z;(x), which re-
sults in p; (x) = gi{x) + 27 (x) =0. The corresponding
Lagrangian function is defined as follows:

Lo, oy = f(x) +ATh() + " plxy  (10)

where A = [Als...,An) and p = (1, e s T
are two sets of Lagrange multipliers, and p(x) =
Epi(x), . pr(YT

To eliminate z; from (10}, we differentiate L. with
respect 1o z; for given x and set the result to zero.
After solving the equality and substituting the result
into (10) [271, the Lagrangian function becomes:

Le(x, ) = f(x) +2Th(x)
1 k
+3 Z:; [max?(0, u + 8:(x)) — #;]
(1D

Note that the derivation applies to both the continuous
and the discrete cases becavse the differentiation of L,
with respect to z; is for a fixed x, and z; is assumed
continuous.

First-Order Necessary Conditions. According to
classical optimization theory [27], all the (local and
global) extrema of (11) that satisfy the constraints and
that are regular points are roots of the following set of
first-order necessary conditions:

VILC(X5 l’ H‘) = 07
VALC(Is )‘-: ru‘) = Os (12)
v‘u,LC('xi }\‘s Ju') = 0-

These conditions are necessary to guarantee the (local)
optimality of the solution to (9)."

First-Order Methods. The set of points satisfying
the necessary conditions can be found by a first-order
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method that can be expressed as a system of ordinary
differential equations:

d
550 = = VaLelx(t), A1), p(2)),

d
El(f) = VyLe(x(0), (2}, (1)), (13)

d
E;LL(F) = ¥V Le(x (@), A1), i),

These perform simultaneous descents in the origi-
nal variable space of x and ascents in the Lagrange-
multiplier space of A and p. The dynamic system
evolves over time ¢, and reaches a feasible local ex-
tremum when it stops at an equilibrium point where all
gradients become zero. Since there is no strategies to
help escape from a feasible local extremum, first-order
methods are considered local-search methods. More-
over, they require a continuous differentiable space
in order to find equilibrium points satisfying the first-
order necessary conditions.

3.2.  Discrete Lagrangian Methods

In this section, we summarize the theory of discrete
Lagrange multipliers we have developed [24, 26] for
solving discrete optimization problems.

Since Tagrangian methods in discrete space only
handle problems with equality constraints, an in-
equality constraint must first be transformed into
an equality constraint. We transform g;(x) <0 info
max{g;{x)}, 0) = 0 without using a stack variable as in
the continuous case because searches in discrete space
do not require the existence of gradients in the x space.

The resulting discrete Lagrangian function is formu-
lated as follows [24]:

La(x,a, 1) = f(x) +aTh(x)

k
+ 2 wimax(0, gi(x)),  (14)
i=1

where x is the space of discrete variables x;, i =
1,...,n, and A and p are Lagrange multipliers that
can be continuous.

The discrete Lagrangian function defined in (14)
cannot be used to derive first-order necessary condi-
tions similar to those in continuous space [27] because
there are no gradients and differentiation in discrete
space. Without these concepts, none of the mechanisms

of calculus in continuous space is applicable in discrete
space.

An understanding of gradients in continuous space
shows that they define directions in a small neighbor-
hood in which function values decrease. To this end,
[24] defines in discrete space a direction of maximum
potential drop (DMPD) for Ly(x, &, @) at point x for
fixed A and p as a vector” that points from x to a
neighbor of x € A (x) with the minimum E;:

Ade(I,A., nu‘) = EX = y ex

:(yl_x]:"-:yn_xn) (is)

where
y € N(x) U {x}
and

La(y.hop) = mmin Ly’ d, ).

x €N (x
Uix}

Here, © is the vector-subtraction operator for changing
x in discrete space to one of its “user-defined” neigh-
borhood points A/(x). Intuitively, ¥, is a vector point-
ing from x to y, the point with the minimum L; value
among all neighboring points of x, including x itself.
That is, if x itself has the minimum L4, then v, = 0.

Having defined DMPD A, L;{x, A, 1) in the x
space, we define the concept of saddle points in dis-
crete space [24, 26] similar to those in continuous space
[27]. A point {x™, A¥, 11™) is a saddle point when:

L(x*, A, ) < L(x* A%, pw*)y =< L{x, A%, n*), (16)

for all (x*, A, i) and all (x, A*, w*) sufficiently close
o (x*, A%, u*). Starting from (16), we prove stronger
necessary and sufficient conditions that are satisfied by
all saddle points in discrete space [26].

Necessary and Sufficient Conditions for Saddle Points
in Discrete Space.

A.tLd(x! )"! }u’) = 07
Vi Lalx, A, ) =0 or max(0,g(x) =0, (I7)
VyplLlalx,a,0) =0 (orh(x) =0).

Note that the first condition defines the DMPD of L,
in discrete space of x for fixed A and p, whereas the
differentiations in the last two conditions are in contin-
uous space of A and u for fixed x. Readers should refer



to the proofs in [24, 26] for the correctness of these
counditions.

When all the constraints are non-negative, we have
proved the following results.

Necessary and Sufficient Conditions for Feasible
Local Minima in Discrete Space [26].  When all con-
straint functions are non-negative, the set of saddle
points is the same as the set of feasible local minima.
Hence the conditions defined in (17) are necessary and
sufficient.

The first-order necessary and sufficient conditions
in (17) lead to the following first-order method in
discrete space that seeks discrete saddle points. The
following equations are discrete approximations to im-
plement (17).

General Discrete First-Order Method.

2k + 1) =x(k) @A Lyx(k), Ak))  (18)
Ak + 1) = Atk + crh(x(k)) (19)
wik + 1) = p(k) + comax(0, g(x (k) 20

where @ is the vector-addition operator (x & y =
(X1 4 Y1, ... Xe +¥a)),and ¢ and c¢; are positive real
numbers controlling how fast the Lagrange multipliers
change.

It is easy to see that the necessary condition for the
discrete first-order method Lo converge is when {x) =
0 and g(x) < 0, implying that x is a feasible solution
to the original probiem. If any of the constraints is not
satisfied, then A and p on the unsatisfied constraints
will continue to evolve. Note that, as in continuous
Lagrangian methods, the first-order conditions are only
satisfied at saddle points, but do not imply that the time
to find a saddle point is finite, even if one exists.

4. DLM-98: An Implementation of Discrete
First-Order Method

By transforming the inequality constraints in (7) into
equality constraints, the design of multiplierless PR-LP
filter banks is formulated as follows:
min fix)=E'+E!'+ES+E,
subjectto Vg = max{E}, — O, 0)=0
VE: = max(E{ - QE;: 0) =0
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Vi, = max(S; — G5, O) =0

Vs = max(8] — 85,0} =0

Vi = max(7] — 67;,0) =0

PR constraints,

LP constraints, {=0,1 @49

In a similar way, the inequality constraints in (8} can
be converted into equality constraints.

The discrete Lagrangian function corresponding to
(21) is as follows:

Lote,py=f+ Y, wuxVi (2D

iglEp Eedp,85.Th)

where x is a vector of coefficients, each of which is
in CSD form of the sum of several signed binary bits,
such as 27! 4+ 273 — 2% Since we have only equal-
ity constraints transformed from inequality constraints,
we use 4 as our Lagrange multipliers in the following
discussion.

Figure 3 shows an implementation of the discrete
first-order method (18) and (20) for designing PO2 fil-
ter banks formulated as nonlinear discrete constrained
minimization problems. The procedure shows several
aspects that can be tuned in order to improve its per-
formance.

4.1. Generating Starting Points
and Initial Constraints

As discussed in Section 2, the design problem is broken
into a sequence of four subproblems. We only need to

procedure DLM-38

1. set ¢ (positive Teal constant for controlling the speed

of change of Lagrange multipliers);

88t imaz (Maximum number of iterations);

set, starting point z;

set initial value of 4 (set to 0 in the experiments);

if using dynamic weight adaptation then
weight_initialization;

while not converged and no. iterations < éma= do {
update z to o’ iff La(z', u) < Lalz, p);

8. if condition for updating p is satisfied then
i 4 g + ¢ - max(D, g:);

if using dynamic weight adaptation then
dynamie_weight_adaptation }

S SR

e

w

Figure 3. DLM-98: An implementation of discrete first-order
method for designing PO2 filter banks. (The initial values of para-
meters are indicated here unless specified otherwise in the text.)
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generate starting points for the first subproblem, as the
remaining subproblems take their starting points from
the solutions of the previous subproblem,.

To find a starting point for the first subproblem, the
easiest way is to start from an existing lattice struc-
tured PR-LP filter bank. This approach is not practical
because not many such filter banks exist in the liter-
ature. Hence, we need to start from scratch without
assuming an initial feasible design.

Our approach to generate an initial PR-LP filter bank
consisting of a pair of low-pass and high-pass filters has
the following steps:

(a) Generate an initial filter bank by using a symmet-
ric low-pass filter Gp(z) in one QMF filter bank and an
antisymmetric high-pass filter G (z) in another QMF
filter bank. These are called the “base” pair of filters
because they are the very initial point of our design
procedure. For instance, Gy{z) can be the symmetric
low-pass filter in 32C [2], and G (z) be the antisymmet-
ric high-pass filter in 32D (after changing 32D to anti-
symmetric using #’'(n) = (~1Y"h{n)) (Fig. 4(a)). Note
that we cannot use the low-pass and high-pass filters
in the same QMF fiter bank as our starting point be-
cause they are mirrors of each other at Z, resulting in
ki = ks = --- = ky_1 = 0 and the failure of the next
two steps of the procedure.

(b) Compute parameters kg, k1, . .., ky—| of thefilter
bank using the iterative procedure in [3]. Given an ini-
tial pair of LP filters G(z) and G1(2), where Gy (2) is
symmetric and G (z) is antisymmetric, we set initially
B{ = B> = 1.0 and compute a pair of z transforma-
tions Ty_1(z), Uxy_1(2) as follows:

Tw_ 171 1 G
|: N 1(2)]2_[ :|[ o(z):| 23)
Un_1(2) 211 —1 Gi{(2)
For j=2,..., N — L, let Ty_;41(2) be represented by

N—j+1 _ T o
S’ Ttz Compute ky 41 = 252 and Ty—;(2)

and Uy_;{(z) based on Ty_;41(z) and Upy_;41(2) as
follows:

Ty_i(2)
2 Un-j(2)
_ 1 1 Ky _j11
(E—ky_j) [ —Aweg l

N Ty jr1(2) (24
Uiyt ()

10 r
= HO —
= H1
3
k=
B
-

. 2.5 3
Frequency
(@
100 T r r . . ;
S
=
B
80 L : : : :
0 0.5 1 1.5 2
Frequency
(b)

Figure4. Generaling astarting pointin subproblem 1: (a) frequency
responses Gofz) and G (z) of the initial non-PR filter bank and (b)
Hy(z) and Hfy(z) of the PR filter bank supplied to subproblem | as
its starting point.

Finally, let T;{z) be of the form > i1=0 w;z ¢, and com-
pute k; = 2+, Tt can be proved [3] easily that if Gp(z)
is symmetric and G| (z) is antisymmetric, then 7; and
U/; are in the jth order. Further, to ensure that the de-
nominator is nonzero, we can apply a strategy in [3] to
ensure that k; is not 1.0,

(c)Force k, ky, . . ., ky_» tobe zero in order to guar-
antee the PR property in the lattice structure. The result-
ing filters Ho(z) and H,(z) are a PR-LP pair satisfying
(3) and (4), although their behaviors can be far from
desirable. Figure 4(b) plots Ha(z) and H(z) after ap-
plying steps 2 and 3. Obviously, it is difficult to iden-
tify the passband cutoff frequency in Hy(z) and the



stopband cutoff frequency in H:(z) based on the de-
sign in Fig. (b).

In addition to generating starting points, we also need
to define initial constraints in ail the subproblems. To
this end, we use a reference (possibly non-PR) filter
bank R(z) from an existing design. This reference filter
bank serves as a guide and provides some performance
metrics like transition bandwidth, energies, and ripples.
Since the PR-LP filter banks designed by our procedure
may not have the same quality as R(z), our procedure
should only aim to minimize the maximam violation
of the constraints defined. Tn our experiments, we used
one of Johnston’s QMF filter bank as our reference
filter bank.

In generating a starting point for the third sub-
problem, we need to transform the real coefficients
ki, k3, ..., ky— found in the second subproblem to
PO2 forms. Given a real parameter and b, the maxi-
mum number of terms in PO2 form to represent the
parameter, we apply Booth’s algorithm [28] to repre-
sent a consecutive sequence of 17s using two terms in
PO?2 form and truncate the least significant bits of the
parameter so that the number of terms in PO2 form is
within a fixed limit.

As an example, consider a binary fixed-point number
0.10011101100. After applying Booth’s algorithm and
truncation, we can represent the number in 2 terms in
PO2 form:

010011101100 Zeon=AlEot™® 4 16100010100

Truncarian ~— —
Lranedial 5=1 4 273,

4.2, Updating x

The value of x is updated in Line 7 of DLM-98 in
Fig. 3. There are two ways to update x: greedy update
and hill climbing. Tn greedy updates, the update of x
leading to the maximum improvement of Ly(x, i) in
(26) is found before an update is made. This approach
is very time consuming and may not lead to the best
filter bank when DLM-98 stops. On the other hand, in
hill climbing, x is updated as soon as an improvement
in La(x, p) is found. This approach is efficient and
generally leads to good designs. For this reason, we
use hill climbing as our update strategy.

Our update strategy examines all the coefficients
(k1, ka, ks, . .., ky—1, Brand Bz)in apredefined round-
robin order, first evaluating changes to k1 and last eval-
uating changes to B, before returning to & again.
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For a given variable x at X, we search its neigh-
borhood for possible improvements in the Lagrangian
value. Bach of the four subproblems to be solved
has a different definition of neighborhood, depend-
ing on whether its variable are continuous or discrete.
In the first two subproblems with continuous vari-
ables, we define the neighborhood of a continuous
variable x at £ to be a finite number of discretized
points around £, with more sample points closer to
% than further away while keeping all the other vari-
ables fixed. For instance, we define the neighborhood
of & #0 to be the set {-+&p, —ip}, where p € {8, 7.5,
7. 6.5, 6}U([5.75,5.5, 5.25, ..., 2.01U{1.5, 1.498,
1.496, ..., 0.666}. (X is set heuristically to 1077 if %
were zero initially.) The reason for using a variable den-
sity is to limit the search complexity, while providing
finer coverage of the space closer to .

It is important to point out that we are not discretizing
the variables of a subproblem but rather the neighbor-
hood points of a point. After discretizing the neigh-
borhood points, we can apply DLM-98 to solve the
subproblems. Experimentally, we found littie differ-
ence in execution time and solution quality between
using DI.M-98 and algorithms that search in continu-
ous space.

Tn the last two subproblems, we have % discrete vari-
ables in PO2 form and two continuous variables. The
neighborhood points of a specific point in continuous
space are similar to those in the first two subproblems.
For discrete variable &;, let  be the maximum number
of terms in PO?2 form, and k; be composed of f elements
biy,bigy ... hig. We define the neighborhood points
of k; as aset {b] ,}, where by ; differs from b; ; by either
the sign or the exponent or both, while maintaining &; ;
{o be different in sign and exponent to another elements
of ki .

4.3, Initializing and Updating 1

The value of y is initialized in Line 4 of DLM-98 in
Fig. 3. To allow our experiments to be repeated and our
results reproducible, we always initialize u to be zero.

Line 8 of DLM-98 in Fig. 3 is related to the condition
when p should be updated. In traditional Lagrangian
methods on continuous variables, p is updated in every
iteration. This approach does not work in DLM-98
because if p were updated after each update of x, then
the search behaves like random probing and restarts
from a new starting point even before a local minimum
is reached. For this reason, o for violated constraints
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should be updated less frequently, only when no fur-
ther improvement in L {x, @) can be made in Line 8 of
DIM-9§ for all its neighborhood points. This is the ap-
proach we have taken in solving satisfiability problems
[24, 25}. However, we have found that more frequent
updates of p may lead to better designs here. In our im-
plementation, we update @ after every six round robins.
Since i is updated before all the lattice parameters have
been perturbed, the guidance provided by p may not
be accurate.

When updating p before the search reaches a local
minimum of Ly(x, 1), we set ¢ in Line 8 of DLM-98
to be a normalized value as follows:

o,
e= A (25)
max;_, &

where Gpeq is a real constant used to control the speed
of increasing . Experimentally, we have determined
Bipeed to be 0.6818.

4.4. Weighted Discrete First-Order Methods

Lagrangian methods rely on ascents in the Lagrange-
multiplier space and descents in the objective space in
order to reach equilibrium. The convergence speed and
solution quality, however, depend on the balance be-
tween objective f(x) and constraints £(x) and g(x).
Althongh changes in p lead to different balance be-
tween ascents and descents, convergence can be im-
proved by introducing a weight on the objective func-
tion. These considerations lead to a new Lagrangian
function as follows.

k
LY (e, ) = wfx) + Y[ max(0, g: ()] (26)
i=l

where w > ( is a user-controlled weight on the ob-
jective. By applying DLM-98 on (26) using different
w, we observe four possible behaviors of the search
trajectory:

e The trajectory converges without oscillations.

e The trajectory gradually reduces in oscillations and
eventually converges.

e The trajectory oscillates within some range but never
converges.

e The magnitude of oscillations increases, and the tra-
jectory eventually diverges.

Tuble 2. The design of multiplierless PR-LP filter
banks with 24 taps by DLM-98 using static and adaptive
weights. (Time is measured by the number of times each
variable is examined in the search. The base filters are
from Johnston’s 24 and 24D QMF filter banks [2], and
the reference filter bank is Johnston’s 24E QMF filter
bank. Each lattice parameter has a maximum of 4 terms

in PO2 form.)
Static weight Adaptive weight
Weight, w  Objective  Time  Objective  Time
0.01 0.836 44 0.836 44
0.1 0.836 44 0.836 44
1.0 0.833 a4 0.838 64
10.0 0.835 932 0.844 654
100.0 0.839 586 0.837 249
1000.0 0.814 2692 0.819 175
2000.0 — — 0.828 386
4000.0 — — 0.846 398

Obviously, the first two cases are desirable, and the lat-
ter two are not. Moreover, we would like to reduce the
amount of oscillations and improve convergence time.

The second and third columns of Table 2 show the
objective-function values of the designs found and the
corresponding convergence times with static weights.
DLM-98 does not converge when the static weight w is
large. Note that time is measured by number of round
robins (the number of times a variable is examined in
the search), an architecture-independent metric. On a
Pentium PRO 200 MHz computer, it takes one minute
of CPU time to perform 10 round robins.

These results demonstrate that the choice of w is
critical in controlling both the convergence time and
solution queality. There is, however, no effective method
for choosing a fixed w except by trial and error.

In the rest of this subsection, we present a strat-
egy to adapt w based on run-time search progress in
order to obtain high-quality solutions and short con-
vergence time. This approach is more general than
our previous approach [24] that scales the Lagrange
multipliers periodically in order to prevent them from
growing to be very large when all constraint func-
tions are positive. The Lagrange multiplier of a non-
negative constraint may grow without limit because its
value is always non-decreasing according to (20), and
a Lagrangian space with large Lagrange multipliers is
more rugged and more difficult to search. In our pre-
vious approach [24], the period between scaling and
the scaling factor are application dependent and are



chosen in an ad hoc fashion. Our current approach ad-
justs the weight between the objective and the con-
straints, which is equivalent to scaling the Lagrange
muitipliers. It is more general because it adjusts the
weight according to the convergence behavior of the
search.

In general, changing w may speed up or delay con-
vergence before a trajectory reaches an equilibrium
point, and may bring the trajectory out of equilibrium
after it reaches there. In this section, we design weight-
adaptation algorithms to speed up convergence. Strate-
gies to bring a trajectory out of equilibrivm by modi-
fying w will be studied in the future,

Figure 5 outlines the procedures for weight initializa-
tion and adaptation, Its basic idea is to first estimate the
initial weight w{0) (Line 1), measure the performance
of the search trajectory (x (1), () periodically, and
adapt w(z) to improve convergence time or solution
quality.

Let (x;, &;) be the point of the ith iteration, and
Vmax (i) be its maximum violation over the m con-
straints:

Upmax () = max[ lllza}m{k max(0, & (x(enM )
e @
<j<k

To monitor the search progress, we divide time into
non-overlapping major windows of size N, iterations

procedure weight.initiolization
1. set w(0) (initial weight, set to 0.00001
in the experiments);
2. set N, (major window for changing w,
set to 30 in the experiments},
3. set d; (minor window for changing w,
get to 5 in the experiments);
4. j + 0 (number of iterations since last divergence)

procedure dyremic.weight_cdaptation

5. record useful information for calculating performance;
6. j+F+1L

7. if {(j mod & =0} then

8. if trajectory diverges then { reduce w; j + 0}

9. if {j mod N, =0) then {

10. compute performance based on data collected;

11. change w when certain conditions are satisfied

(see text) }

Figure 5. Procedures for weight initiafization and adaptation in
Fig. 3. (The initial values of parameters are indicated here unless
specified otherwise in the texi)
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(Line 2}, each of which is divided into minor windows
of 8, iterations (Line 3). We further record statistics
like v (1) and f; (x) that will be used to calculate the
performance in each minor/major window (Line 3).

At the beginning of a minor window (Line 7), we test
whether the trajectory diverges or not {Line 8). Diver-
gence happens when vpax (7) is larger than an extremely
large value (say 10%°). If it happens, we reduce w, say
W < and restart the window markers by resetting
jto 0.

At the beginning of a major window (Line 9), we
compute some metrics to measure the progress of
the search relative to that of previous major windows
(Line 10). In general, application-specific metrics, such
as the number of oscillations of the trajectory, can be
used. In our current implementation, we compute the
averages (or medians) of vimax (i) and objective f;(x) in
the wth major window (v = 1,2, .. .y as follows:

n
10°

1 uNy
Uy = — Umax (8} OT
N, i=(u—1)N,+1
Y, = (E‘?g&gfl{vm&x(i)} (28)
<i<uN,
B 1 whN,
fo=v 3> fik) o
i=(u—1)N,+]
Jfu = (ung%fﬂl{ﬁ(ﬂ} (29
=i=ul,

Based on these measurements, we adjust w accord-
ingly (Line 11). Note that when comparing values be-
tween two successive major windows ¢ — 1 and u, both
must use the same w; otherwise, the comparison is not
meaningful because the terrain may be totally different.
Hence, after adapting w, we should wait at least two
major windows before changing it again.

To understand how weights should be updated in step
10, we examine all the possible behaviors of the search
trajectory in successive major windows. We have iden-
tified four possible cases.

First, the trajectory does not stay within a feasible
region, but goes from one feasible region to another
through an infeasible region. During this time, Yyax (i)
is zero when the trajectory is in the first feasible re-
gion, increased when it travels from the first feasible re-
gion to an infeasible region, and decreased when going
from the infeasible region to the second feasible region.
No oscillations will be observed because oscillations
normally occur around an equilibrium point in one fea-
sible region. [n this case, w should not be changed.
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Second, the trajectory oscillates around an equili-
brium point of a feasible region. This can be detected
when the number of oscillations in each major win-
dow is Iarger than a certain threshold, and the trajec-
tory is not always in a feasible region, and the trend
of the maximum violation does not decrease. To deter-
mine whether the oscillations will subside eventually,
we compute ¥, — ¥,41, the difference of the average
values of maximum violation vy, (/) for two succes-
sive major windows z and i + 1. If the difference is not
reduced reasonably, then we assume that the trajectory
has not converged and decrease w accordingly.

Third, the search trajectory moves very slowly within
a feasible region. This happens when w is very smali,
and the constraints dominate the search process. As a
result, the objective value is improving very slowly and
may eventually converge to a poor value. This situation
can be identified when the trajectory remains within a
feasible region in two successive major windows and
is improving in successive major windows, but the im-
provement of the objective is not fast enough and is
below an upper bound. Obviously, we need to increase
w in order to speed up the improvement of the ob-
jective. If the objective remains unchanged, then the
trajectory has converged, and no further modification
of w is necessary.

Finally, the trajectory does not oscillate when it starts
within a feasible region, goes outside the region, and
converges (o a point on the boundary. Here, a large w
makes it more difficult to satisfy the constraints, caus-
ing the trajectory to move slowly to the feasible region.
In this case, an appropriate decrease of w will greatly
shorten the convergence time.

Table 2 illustrates the improvements in convergence
times using adaptive weights. For all the initial weights
considered, the adaptive algorithm is able to find con-
verged designs in a reasonable amount of time, al-
though the solution quality is not always consistent.

5. Experimental Results

In this section, we present the designs of four PR-LP
filter banks, To help readers understand the design pro-
cess, we present more details in the first design and
summarize the results of the others.

Design Case 1. 'The base pair of filters is Johnston’s
low-pass filter in 32C and high-pass filter in 32D [2]
(after changing it to antisymmetric). The reference fil-
ter bank K(z) is Johnston’s 32E.

In the first subproblem, we generate its starting point
based on the procedure in Section 4.1. We then compute
the passband and stopband energies of R(z) and use
the values as constrainis. We define the objective as the
sum of the passband and stopband energies of Hy(x)
and H,(z), using 7 /2 as the passband and stopband
cutoff frequencies.

Since there is no guarantee that we can find a design
of Hy(z) and H,(z) that have the same passband and
stopband energies as R{z), we pick the solution with
the minimum of the maximum violation after a fixed
number of round robins. This subproblem takes less
than 2 h (3000 round robins) to solve on a Pentium Pro
200 MHz computer, The frequency responses of the
PR pair found (Fig. 6(a)) are much better than those in
Fig. 4(b).

The second subproblem used the result of the first
subproblem as its starting point and took less than 5 h
(6500 round robins) to complete. It uses fixed pass-
band and stopband cutoff frequencies defined by the
reference filter bank R(z). As before, we pick the so-
lution with the minimum of the maximum vielation.
Figure 6(b) shows that the ripples and energics are
much smaller than those in Fig. 6(a).

In the third subproblem, we first change £k,
ka, ..., kn_) into PO2 forms with a fixed maximum
number (3 or 4) of terms in each &;, The mixed-integer
problem took less than 2 h of CPU time (3000 round
robins) to complete. Figure 6(c) (resp. 6(e)) plots the
frequency responses of the PR-LP design with only
three (resp. four) terms in PO2 form in any &;. The rip-
ples are slightly betier when more terms in PO2 form
are allowed in each parameter.

The last subproblem solved uses the complete for-
mulation defined in (7) in order to get a high-quality
design in all respects. The progress in this search is
much slower than the other three subproblems because
the ripples and transition bandwidth are expensive
to be evaluated numerically. However, the solution
of this subproblem took a relatively short amount of
time (less than 2 h for 1500 round robins) because
its starting point supplied by solving the third sub-
problem is already very good. Figure 6(d) (resp. 6(f))
shows the frequency responses of the multiplierless
PR-LP designs with three {resp. four) terms in PO2
form in each k;. Table 3 lists all the lattice parame-
ters k;. By, and B, both in floating point as well as
in PO2 form. Figure 7 compares the frequency re-
sponses of the designs found and those of the reference
design.
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Figure 6. Design case 1; Frequency responses of the designs found by solving the four subproblems, using Johnston’s 32C and 32D as the base
pair and Johnston’s 32E as the reference: (a) after solving subproblem 1; (b) after solving subproblem 2; () after solving subproblem 3 (3 terms
in PO2); (d) after solving subproblem 4 (3 werms in PO2); () after solving subproblem 3 (4 terms in PO2) and (f) after solving subproblem 4

(4 terms in PO2).

Design Case 2. Using Johnston’s 32C and 32D as
our base pair and 32C as the reference, the filters all
have proper shapes after solving the first subproblem
(Fig. 6(a)). Figure 8(a) and (b) plot the frequency re-
sponses after solving the second and the third subprob-
lems, respectively, using a maximum of 4 terms in PO2
form in each %;. The performance of the final design
is shown in Fig. 8(c) and compared with respect to

the reference 32C in Fig. 8(d). Our design has simi-
lar transition bandwidth as the reference but has worse
energies and ripples.

If we further limit the number of terms in PO2 form
0 be 3 in each k;, the resulting filter bank performs
slightly worse. Figure 8(e) and (f) show the frequency
responses after solving subproblems 3 and 4, respec-
tively.
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Jable 3. Lattice parameters (both in real and PO2 forms) and the 16 lattice parameters (B =
0.0001951010603248444, B2 = 0,00010619094167652789).

m Lattice kopo PO2 ho{m) hi(m)
o —1.375 -2t 2-! 23 0.000015242270281 0.000204085715984
1 42.0 2’ 23 2! —0.000020958121637 0.000280617859478
2 1.140625 20 2-3 275 0.00021607:379982 —(0.003065275681529
3 0.09765625 273 a3 278 —0.000273058025229 0.003419327251431
4 —1.375 —2! 21 273 0.00044 16437049353 0.011091595601248
5 7.5625 23 -2l 2-¢ 0.001847200986083  —0.024054212199478
6 0.78125 2° —22 273 0.003383148582433  —0.007544528934661
7 2.625 2! 2! 273 0.001610769396968 0.035890465697903
8 0.091796875 7% 25 2% 0.014350771362619 0.012097807744450
9 (0.982421875 20 —2-%  _27%  _0.028832464597731  —0.041720969306460
o —127.25 —27 20 ~272 0.019550976540926 0.007821887696226
il —0.935546875 20 24 2-° 0.050236848223581 0.065778721213968
12 —0.75390625 —20 272 =% _(.052502845341496  —0.032907418059305
13 —7.94140625 23 -4 278 _0.095110664539566  —0.108146999185062
14 0.421875 27l 274 Lp® 0.152366364065811 0.110672911111743
15 —0.921875 —20 274 26 0.473859657541803 0.472154047535480
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Figure 7. Comparison of the frequency responses of the multiptierless PR-T.P filter bank designed with 32E, the reference LP filter bank [2]:
(2) comparing He(z) and Gg(z) and (b) comparing H; (z) and G| (z). (Each lattice parameter is represented using 4 terms in PO2 form).

Design Case 3. Using Johnston’s 32C and 32D as
our base pair of filters and 32D as the reference, the
frequency response after solving the first subproblem
is the same as that of Design Case 1, since the two base
filters are the same. Figure 9(a) and (b) plot the fre-
quency responses after solving the second and third
subproblems, respectively. Note that the number of
terms in PO2 form in each each k; is 4. Figure 9(c)
shows the performance of the final design, and Fig. 9(d)
compares the performance with that of the refe-
rence.

After limiting the number of terms in PO2 form in
each lattice parameter to be 3, Fig. 9(e) and (') plot the

frequency responses of the filter banks designed. As
before, the ripples and energies are worse than those of
the reference.

Design Case 4. Using Johnston’s 24C and 24D as the
base pair of filters and 24C as the reference, Fig. 10(a)
shows that reasonable performance is obtained after
solving the first subproblem. Figure 10(b—d) plot the
frequency responses after solving, respectively, the sec-
ond, third, and fourth subproblems. The experiments
are then repeated by using 3 terms in PO2 form in
each k;. Figure 10(e) and {f) plot the corresponding
frequency responses.
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Figure 8. Design case 2: Frequency responses of the two-channel PR-LP filter banks after solving (a) subpreblem 2, (b) subproblem 3, (¢)
subproblem 4, using 32C and 32D as the base pair, 32C as the reference, and 4 terms in PO?2 form in each lattice parameter. (d) Comparison aof

the filter bank designed (Ho(z) and H) (2)) with respect to the referel
in PO2 form in each lattice parameter and the results after solving su

6. Conclusions

In this paper, we have presented a new discrete
Lagrangian method (DLM-98) for designing multi-
plierless perfect-reconstruction (PR) linear-phase (LP)
filter bariks. Such designs have not been attempted be-
fore because the design problem is a highly nonlinear
discrete optimization problem with many equality con-
straints imposed by the PR conditions. Such constraints

nce filter bank {Go(z) and G{z)). Experiments ar¢ repeated using 3 terms
bproblems 3 and 4 are shown in (e) and (), respectively.

are especially hard to satisfy when the variable space
is discrete. Moreover, some of the performance met-
rics used in the objective and the constraints are not in
closed forms and require expensive numerical methods
to evaluate.

We have chosen a lattice structure in our PR-LP filter
bank because the PR and LP conditions are automat-
ically satisfied in the structure by suitable choices of
the lattice parameters. This allows us to eliminate the
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Figure 9. Design case 3: Frequency responses of designs under similar conditions as in Design case 2 (Fig. 8) except a different reference filter
bank {32D): (a) after solving subproblem 2; (b) after solving subproblem 3 (4 terms in PO?); {¢) after solving subproblem 4 (4 terms in PO2);
{d) comparison with reterence filter bank 32D; (e) after solving subproblem 3 (3 terms in PO2) and {f) after solving subproblem 4 (3 terms in

PO2).

equality constraints imposed by the PR conditions in
our formulation.

We have described a discrete Lagrangian method
and the first-order necessary and sufficient conditions
for convergence. The derivation of these conditions re-
quires a new definition of gradients in discrete space
and the observation that traditional calculus in con-

tinuous space does not work in discrete space. These
conditions lead to the first-order discrete Lagrangian
method (DL.M-98) that we use in this paper.

We have studied and evaluated efficient weight-
adaptation algorithms in DLM-98 and have illustrated
through examples that such a balance is very sensitive
to the relative weights between the objective and the
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Figure 10. Design case 4: Frequency 1¢sponses of the designs found by solving the four subproblems, using Johnston’s 24C and 24D as the
base pair and Johnston’s 24D as the reference. (a) after solving subproblem 1 {b) after solving subprablem 2; (c) after solving subproblem 3
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subproblem 4 (3 terms in PO2).

constraint part in the Lagrangian function. Withourt a
good balance, the search trajectory may not converge.
To cope with this problem, we have proposed adynamic
weight-adaptation algorithm that adjusts the weight of
the objective relative to the constraiats based on statis-
tics collected during the search. Our experience in de-
signing multiplierless PR-LP filter banks shows that

our adaptive method leads to fast convergence with
similar solution quality.

We have applied DL.M-98 to design four PR-LP fil-
ter banks, starting from an initial non-PR filter bank.
Qur designs were based on a non-PR filter bank
with continuous coefficients as a reference. In each
case, we have obtained feasible multiplierless PR-LP
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lattice-structured designs that perform slightly worse
than the non-PR reference. Such degradations are ex-
pected because we have imposed the PR and the mul-
tiplierless conditions on the reference design. Overall,
our design method is effective because it finds designs
with very few terms in PO2 form in each filter co-
efficient, while allowing a cost-effective design to be
implemented.
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Notes

1. There are second-order conditions to gnarantee that the extremum
found is a local minimum [27].

2. To simplify our symbols, we represent points in the x space
without the explicit vector notation.
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