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Abstract

Nonlinear constrained optimization problems in discrete and continuous spaces are

an important class of problems studied extensively in arti®cial intelligence and opera-

tions research. These problems can be solved by a Lagrange-multiplier method in

continuous space and by an extended discrete Lagrange-multiplier method in discrete

space. When constraints are satis®ed, these methods rely on gradient descents in the

objective space to ®nd high-quality solutions. On the other hand, when constraints are

violated, these methods rely on gradient ascents in the Lagrange-multiplier space in

order to increase the penalties on unsatis®ed constraints and to force the constraints

into satisfaction. The balance between gradient descents and gradient ascents depends

on the relative weights between the objective function and the constraints, which indi-

rectly control the convergence speed and solution quality of the Lagrangian method. To

improve convergence speed without degrading solution quality, we propose an algo-

rithm to dynamically control the relative weights between the objective and the con-

straints. Starting from an initial weight, the algorithm automatically adjusts the weights

based on the behavior of the search progress. With this strategy, we are able to eliminate
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divergence, reduce oscillation, and speed up convergence. We show improved conver-

gence behavior of our proposed algorithm on both nonlinear continuous and discrete

problems. Ó 2000 Elsevier Science Inc. All rights reserved.
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1. Introduction

Many applications in engineering, decision science and operations research
are formulated as optimization problems. These applications include digital
signal processing, structure optimization, engineering design, neural-network
learning, computer-aided design for VLSI, and chemical control processing.
High-quality solutions in these applications may have signi®cant economical
impacts, leading to lower implementation and maintenance costs while im-
proving solution quality of outputs.

The nonlinear constrained optimization problems studied in this paper take
the following form:

Min f �X �;
s:t: g�X �6 0; X � �x1; x2; . . . ; xn�; �1�

h�X � � 0;

where X is a vector of real variables in continuous problems or a vector of
discrete numbers in discrete problems, f �X � is an objective function,
g�X � � �g1�X �; . . . ; gk�X ��T is a set of k inequality constraints, and
h�X � � �h1�X �; . . . ; hm�X ��T is a set of m equality constraints. Note that f ; g,
and h can be either continuous or discrete functions.

The problem de®ned in (1) can be solved by a large number of existing
approaches [4], which are classi®ed into local- and global-search. Local-search
algorithms include gradient descent, Newton's method, conjugate-gradient
method, and Lagrange-multiplier method. Starting from some initial point,
they stop at a local minimum. Since the local minima found by local-search
methods may be much worse than the global minimum for nonlinear problems,
global-search methods have been studied to perform both global-exploration
and local-re®nement. The global-exploration component goes through the
possible search space and identi®es some promising points for regions that may
have good solutions, whereas the local-re®nement component uses these
promising points as starting points and employs a local-search algorithm to
®nd local minima.
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In this paper, we focus on the Lagrange-multiplier method as a local-search
method to ®nd satis®able solutions and show how its convergence speed can be
improved. In Section 2, we describe the Lagrange-multiplier method in con-
tinuous space and show its extension in discrete space. In Section 3, we show
that the convergence speed and solution quality can be a�ected by adjusting the
weight of the objective function, and that it is di�cult to select a proper static
weight for each problem instance. In Section 4, we describe the algorithm to
dynamically adjust the weight of the objective function and tailor it to con-
tinuous and discrete problems. We illustrate in Section 5 the application of the
algorithm on continuous and discrete problems and show in Section 6 further
experimental results. (All our experiments were run on 200 MHz Pentium Pro
processors with the Linux operating system and gcc and f 77 compliers.) Fi-
nally, Section 7 concludes the paper.

2. Lagrange-multiplier methods

Lagrange-multiplier methods introduce Lagrange-multipliers to gradually
resolve constraints iteratively. It is an exact method that optimizes the objective
f �X � to meet the Kuhn±Tucker conditions [4].

2.1. Lagrangian methods in the continuous space (CLM)

For continuous problems, we assume that in (1), every variable
xi �i � 1; 2; . . . ; n� takes a value from R, and that f �X �; g�X � and h�X �, as well
as their derivatives are continuous functions.

Since Lagrangian methods cannot directly deal with inequality constraints
gi�X �6 0 in general cases, we transform inequality constraints into equality
constraints by adding slack variables zi�X �, which results in pi�X � � gi�X ��
z2

i �X � � 0. The corresponding Lagrangian function and augmented Lagrangian
function are de®ned as follows:

Lc�X ; k; l� � f �X � � kTh�X � � lTp�X �; �2�
Lc�X ; k; l� � f �X � � kTh�X � � d1

2
kh�X �k2

2 � lTp�X � � d2

2
kp�X �k2

2; �3�
where k � �k1; . . . ; km�T and l � �l1; . . . ; lk�T are two sets of Lagrange multi-
pliers, and p�X � � �p1�X �; . . . ; pk�X ��T. We use the augmented Lagrangian
function in this paper since it provides better numerical stability. After sim-
pli®cation [4], the augmented Lagrangian function becomes:

Lc�X ; k; l� � f �X � � kTh�X � � d1

2
kh�X �k2

2

� 1

2d2

Xk

i�1

max
2 �0; d2li

h
� gi�X �� ÿ l2

i

i
: �4�
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According to classical optimization theory [4], all the (local and global)
extrema of (4) that satisfy the constraints and that are regular points are roots
of the following set of ®rst-order necessary conditions:

rX Lc�X ; k; l� � 0; rkLc�X ; k; l� � 0; rlLc�X ; k; l� � 0: �5�
These conditions are necessary to guarantee the (local) optimality of the so-
lution to (2) and (3). 1

The set of points satisfying the necessary conditions can be found by a ®rst-
order search method that can be expressed in a dynamic system of equations

d

dt
X �t� � ÿrX Lc�X �t�; k�t�;l�t��; d

dt
k�t� � rkLc�X �t�; k�t�; l�t��; �6�

d

dt
l�t� � rlLc�X �t�; k�t�; l�t��;

which perform descents in the original-variable space of X and ascents in the
Lagrange-multiplier space of k and l. The dynamic system evolves over time t,
and reaches a feasible local extremum when it stops at an equilibrium point
where all gradients vanish. In this sense, ®rst-order methods can be considered
as local-search methods that perform gradient descents in the original-variable
space and gradient ascents in the Lagrange-multiplier space to reach equilib-
rium.

2.2. Lagrangian methods in discrete space (DLM)

For discrete optimization problems, variable xi �i � 1; 2; . . . ; n� takes dis-
crete values (e.g., integers). Little work has been done in applying Lagrangian
methods to solve discrete constrained combinatorial optimization problems
[2]. The di�culty in traditional Lagrangian methods lies in the lack of a
di�erentiable continuous space to ®nd an equilibrium point. In this section,
we describe an extension of the Lagrange-multiplier method in discrete space
[5].

For nonlinear discrete problems with inequality constraints (1), where X is
a vector of discrete variables, we ®rst transform inequality constraint
gi�X �6 0 into an equality constraint max�gi�X �; 0� � 0. This transformation
does not use a slack variable as in the continuous case because searches in the
discrete Lagrangian space does not require the existence of gradients when
gi�X � � 0.

After transforming inequality constraints into equality constraints, the
resulting optimization problem can be considered as one with equality

1 There are second-order conditions to guarantee that the extremum found is a local minimum [4].
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constraints only. For simplicity in representation, we show the corresponding
Lagrangian funtion with only equality constrains

Ld�X ; k; l� � f �X � � kTh�X �: �7�
Given the discrete Lagrangian function, we de®ne the discrete gradient of the

Lagrangian function Ld�X ; k; l� in the original-variable subspace of X as fol-
lows: 2

rX Ld�X ; k; l� � dX � Y 	 X ; �8�
where 	 is an operator for changing point X in discrete space to one of its
``user-de®ned'' neighborhood points N�X �, an example of 	 is the exclusive-
OR operator. Intuitively, dX is a vector pointing from X to Y, the point with
the minimum value of Ld among all neighboring points of X, including X itself.
That is,

Ld�Y ; k; l� � min
X 02N�X �[fXg

Ld�X 0; k; l�:

When X itself has the minimum Ld, then dX �~0.
Having de®ned rX Ld�X ; k; l� in the X space, we seek discrete equilibrium

points similar to those of continuous problems. The iterative equations are as
follows:

X �k � 1� � X �k� 	 rX Ld�X �k�; k�k�; l�k��; �9�
k�k � 1� � k�k� � c1h�X �k��;

where c1 is a positive real number controlling how fast the Lagrange-multi-
pliers change. These points are actually saddle points in discrete space that
satisfy the following condition:

L�X �; k; l�6L�X �; k�; l��6L�X ; k�; l�� �10�
for all �X �; k; l� and all �X ; k�; l�� su�ciently close to �X �; k�; l��. For brevity,
the proofs showing the correctness of DLM and (9) are omitted here [5].

3. Convergence speed of Lagrangian methods

Lagrangian methods rely on two counteracting forces to resolve constraints
and ®nd high-quality solutions. When constraints are satis®ed, Lagrangian

2 We do not need to de®ne gradients in Lagrange-multiplier space because descents in that space

is done di�erently, as shown in (9).
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methods rely on gradient descents in the objective space to ®nd high-quality
solutions. On the other hand, when constraints are violated, they rely on
gradient ascents in the Lagrange-multiplier space in order to increase the
penalties on the unsatis®ed constraints and to force the constraints into sat-
isfaction. The balance between gradient descents and gradient ascents depends
on the relative magnitudes of the Lagrange multipliers k and l with respect to
the objective value, which play a role in balancing the objective f �X � and
constraints h�X � and g�X � and in controlling indirectly the convergence speed
and solution quality of the Lagrangian method. At an equilibrium point, the
forces due to descent and ascent reach a balance through appropriate
Lagrange-multiplier values.

We show in this section that the convergence speed and/or the solution
quality can be a�ected by an additional weight w in the objective part of the
Lagrangian function. After abstracting weights d1 and d2 in (4) into w, we have
a new Lagrangian function in continuous space as follows:

Lc0 �X ; k; l� � wf �X � � kTh�X � � kh�X �k2
2

�
Xk

i�1

max2�0; li

h
� gi�X �� ÿ l2

i

i
; �11�

where w > 0 is a static weight on the objective. When w � 1;
Lc0 �X ; k; l� � Lc�X ; k; l�, which is the original Lagrangian function.

The corresponding weighted Lagrangian function in discrete space is as
follows:

Ld0 �X ; k; l� � wf �X � � kTh�X �: �12�
In general, adding a weight to the objective changes the Lagrangian func-

tion, which in turn may cause the dynamic system to settle at a di�erent
equilibrium point with di�erent solution quality. This is especially true when
the equilibrium point is on the boundary of a feasible region. In this section, we
show that the solution quality and convergence time can be in¯uenced greatly
by the choice of the initial static weight.

3.1. Nonlinear continuous optimization

Starting from an initial point �X �0�; k�0�; l�0��, the dynamic system to ®nd
equilibrium points is based on (6) in which Lc is replaced by Lc0

d

dt
X �t� � ÿrX Lc0 �X �t�; k�t�; l�t��; d

dt
k�t� � rkLc0 �X �t�; k�t�; l�t��;

d

dt
l�t� � rlLc0 �X �t�; k�t�; l�t��: �13�
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We solve this dynamic system using an ordinary di�erential equation solver
LSODE 3 and observe a search trajectory �X �t�; k�t�; l�t��. When an equilib-
rium point is on the boundary of the feasible region (which is true for most
problems studied), the dynamic equation approaches it from both the inside
and outside of the feasible region. We observe four possible behaviors of the
trajectory:
· The trajectory converges without oscillations.
· The trajectory gradually reduces its oscillations and eventually converges.
· The trajectory oscillates within some range but never converges.
· The magnitude of oscillations increases, and the trajectory eventually

diverges.
Obviously, the ®rst two cases are desirable, and the other two are not.

Moreover, we would like to reduce the amount of oscillations and improve the
convergence time by proper control of w.

To illustrate the ®rst behavior, consider the following simple example.

Min: x2; �14�
s:t: x6 ÿ 10:

When we start from the initial point X �t � 0� � ÿ20 with l�t � 0� � 0 using
w � 1, we obtain a trajectory without oscillations, as shown in Fig. 1.

To illustrate the last three behaviors (divergence, oscillations without con-
vergence, and reduction of oscillations until convergence), consider [1, Problem
2.3]. This problem is used as a running example in this paper and de®ned as
follows:

Min: 5x2 � 5x3 � 5x4 � 5x5 ÿ x6 ÿ x7 ÿ x8 ÿ x9 ÿ x10 ÿ 8x11 ÿ 8x12

ÿ 8x13 ÿ x14 ÿ 5x2
2 ÿ 5x2

3 ÿ 5x2
4 ÿ 5x2

5;

s:t: 2x2 � 2x3 � 8x11 � 8x126 10:0;

06 xi6 1:0; i � 2; 3; . . . ; 14;

2x2 � 2x4 � 8x11 � 8x136 10:0; �15�
2x3 � 2x4 � 8x12 � 8x136 10:0;

8x11 ÿ 8x26 0:0; 8x12 ÿ 8x36 0:0;

8x13 ÿ 8x46 0:0; ÿ2x5 ÿ x6� 8x116 0:0;

ÿ 2x7 ÿ x8� 8x126 0:0; ÿ2x9 ÿ x10� 8x136 0:0;

where the middle point of the search space is xi � 0:5; i � 2; 3; . . . ; 14.

3 LSODE is a solver for ®rst-order ordinary di�erential equations, a public-domain package

available from http://www.netlib.org.
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We set the initial point at t � 0 as follows: X �t � 0� is set at the middle of the
search space, and k�t � 0� � l�t � 0� � 0. The total time used for LSODE is
tmax � 105, which is divided into small units of Dt � 1:0, resulting in a maxi-
mum of 105 iterations (� tmax=Dt). The stopping condition for (13) is when

kdX �t�=dtk2 � kdk�t�=dtk2 � kdl�t�=dtk26 d � 10ÿ25: �16�
The dynamic system stops when it converges or when it reaches the maximum
number of iterations.

When w � 1, (13) diverges quickly into in®nity, meaning that the original
Lagrangian method governed by (6) will diverge. If we scale the objective by 10
(i.e., w � 1=10), then the objective value f �X �t�� oscillates within the range ÿ17
and ÿ10, while the maximum violation vmax�t� is between 0 and 0:4, as shown
in Fig. 2. Here, vmax�t� at time t is de®ned as

vmax�t� � max
16 i6m;
16 j6 k

jhi�X �t��j;max 0; gj�X �t��
� �� 	

: �17�

If we further reduce w to 1=15, then the oscillations subside, and the trajectory
eventually converges (see Fig. 3).

Fig. 2. The objective function and maximum violation oscillate.

Fig. 1. The objective function and maximum violation converge without oscillations.
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Intuitively, the occurrence of oscillations can be explained as follows.
Suppose we start from an infeasible point initially (t � 0) where an inequality
constraint gi�X �t � 0�� is violated, i.e., gi�X �t � 0�� > 0. As the search pro-
gresses, the corresponding li�t� increases and pushes the trajectory towards a
feasible region. At some time t, the inequality constraint gi�X �t��6 0 is satis®ed
for the current point X �t�. At this point, dli�t�=dt � max�0; gi�X � � li� ÿ li,
and is negative when gi�X � < 0. Hence, the trajectory decelerates but continues
to move into the feasible region even when the corresponding constraint,
gi�X �t��, is satis®ed. The movement of the trajectory inside the feasible region
eventually stops because the local minimum is on the boundary, and the cor-
responding force due to descents in the objective space pushes the trajectory
outside the feasible region. Likewise, when the trajectory is outside the feasible
region, a force due to the constraints pushes the trajectory inside the feasible
region. If these two forces are not well balanced, the search may diverge or
oscillate without convergence.

To understand the e�ect of w on convergence, we randomly generated 20
starting points X �t � 0� uniformly distributed in the search space of Problem
2.3 with all Lagrange-multipliers k�t � 0� � l�t � 0� � 0. For each starting
point, we tried di�erent static weight w. In addition, for cases that converged,
we report the average convergence time and the solution quality.

Table 1 shows the results. When w6 1=3, the trajectory diverges for every
starting point. When w is between 1=5 and 1=9, the trajectories always oscillate
without convergence. For w � 1=11, half of the trajectories ®nally converge,
and the remaining oscillate. When w6 1=15, all the trajectories converge. For
cases that converge, the number of oscillations gradually reduces to zero as w is
reduced. Hence, it is possible to eliminate all the oscillations at the expense of
longer convergence time (e.g., 2875.1 s). The convergence behavior when
w � 1=30 seems to be good because both the number of oscillations and the
convergence time are small.

Fig. 3. The objective function and maximum violation converge after oscillations subsided.
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3.2. Nonlinear discrete optimization

For discrete problems, the iterative equation to seek discrete equilibrium
points of (12) is given by (9) where Ld is replaced by Ld0 .

X �k � 1� � X �k� 	 rX Ld0 �X �k�; k�k�; l�k��; �18�
k�k � 1� � k�k� � c1h�X �k��:

Although discrete problems have discrete variables and require decrete gradi-
ents in DLM, their convergence behaviors are very similar to those of con-
tinuous problems and exhibit the same four behaviors discussed in Section 3.1.
For e�ciency reasons, we implement our discrete gradient de®ned in (8) with
Ld replaced by Ld0 using hill climbing (by ®nding the ®rst direction rather than
the best direction that improves the value of the Lagrangian function).

To illustrate the di�erent behaviors, we generate a discrete problem from a
continuous version [1, Problem 2.6]. The original continuous problem has
variables de®ned in �0; 1�. We multiply the range by 1000 and restrict the values
of variables to be integers in �0; 1000�. Note that the discretized problem may
not have the same optimal solutions as the original continuous problem.

Fig. 4 shows the ®rst behavior when the trajectory converges without os-
cillations (w � 10ÿ5). The trajectory starts from an infeasible point and moves
into a feasible region, while the maximum violation decreases. Fig. 5 shows the
third behavior when the trajectory oscillates within some range without con-
vergence (w � 103). Finally, when w is 105 or larger, the trajectory diverges.
The second behavior in which oscillations will subside gradually may also
occur but cannot be demonstrated by this problem.

Table 1

E�ect of w on convergence time and solution quality for [1, Problem 2.3]a

Weight w # Convergence

behavior

Average time

(s)

Best solution Average solution

1 20/0/0 ± ± ±

1/3 20/0/0 ± ± ±

1/5 0/20/0 ± ± ±

1/7 0/20/0 ± ± ±

1/9 0/20/0 ± ± ±

1/11 0/10/10 ± ± ±

1/15 0/0/20 2.88 ÿ15:0 ÿ12:67

1/30 0/0/20 1.72 1ÿ5:0 ÿ12:67

1/60 0/0/20 1.76 ÿ15:0 ÿ12:67

1/150 0/0/20 1.87 ÿ15:0 ÿ12:67

1/500 0/0/20 1.98 ÿ15:0 ÿ12:67

1/1000 0/0/20 2.20 ÿ15:0 ÿ12:67

1/10000 0/0/20 3.90 ÿ15:0 ÿ12:67

1/100000 0/0/20 2875.1 1ÿ5:0 ÿ12:67

a The convergence behavior is measured by three integers: the number of diverged trajectories, the

number of oscillating trajectories, and the number of converged trajectories.
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Table 2 shows the detailed results of the discretized Problem 2.6 [1] under
di�erent static weights. For each weight, we ran DLM from 20 randomly
generated starting points. When w is small, all the trajectories converge but
may have worse average solution quality. As w is increased, the number of
converged trajectories drop gradually, and eventually none converges when w
is 104 or larger. Note that the average solution quality improves as w is in-
creased to 100 and 1000.

The examples in this and the last sections illustrate that the convergence can
be a�ected dramatically by the choice of w. Moreover, the best choice is
problem-instance dependent and cannot be selected a priori. Hence, we pro-
pose next a scheme to adapt w dynamically so that the convergence behavior is
robust and predictable, irrespective of the choice of the static w.

4. Dynamic weight adaptation

In this section, we propose a strategy to adapt weight w based on the
behavior of the continuous version (13) and the discrete version (18) of the

Fig. 4. The objective and maximum violation converge without oscillations when w � 10ÿ5.

Fig. 5. The objective and maximum violation oscillate when w � 103.
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dynamic system in order to obtain high-quality solutions with short conver-
gence time. In general, before a trajectory reaches an equilibrium point,
changing the weight of the objective may speed up or delay convergence.
Further, when the trajectory is at an equilibrium point, changing the weight
of the objective may bring the trajectory out of the equilibrium point. In this
paper, we exploit the ®rst property by designing weight-adaptation algorithms
so that we can speed up convergence without a�ecting solution quality. We
plan to exploit the second property to bring a trajectory out from an equi-
librium point in our future work. In this section, we present a general
strategy, followed by the re®nements of the algorithm for continuous and
discrete problems.

4.1. General weight-adaptation strategy

Fig. 6 outlines the algorithm. Its basic idea is to ®rst estimate the initial
weight w�t � 0� (Step 1), measure the performance metrics of the search tra-
jectory �X �t�; k�t�; l�t�� periodically, and adapt w�t� to improve convergence
time or solution quality.

Let tmax be the total (logical) time for the search, and tmax be divided into
small units of time Dt so that the maximum number of iterations is tmax=Dt.
Further, assume a stopping condition if the search were to stop before tmax

(Step 4). Given a starting point X �t � 0�, we set the initial values of the Lag-
range multipliers to be zero, i.e., k�t � 0� � l�t � 0� � 0. Let �Xi; ki; li� be the
point of the ith iteration, and vmax�i� be its maximum violation de®ned in (17).

To monitor the progress of the search trajectory, we divide time into non-
overlapping windows of size Nu iterations each (Step 2). In each window, we
compute some metrics to measure the progress of the search relative to that of

Table 2

E�ect of w on convergence time and solution quality from 20 randomly generated starting points

for the discretized Problem 2.6 de®ned in [1]

Weight w # Converged

trajectories

Average time

(s)

Best solution Average solution

100000 0 ± ± ±

10000 0 ± ± ±

1000 0 ± ± ±

100 8 6310 ÿ39:0 ÿ34:8
10 15 2777 ÿ39:0 ÿ27:8

1 18 1757 ÿ39:0 ÿ27:4

0.1 20 1267 ÿ39:0 ÿ28:3

0.01 20 1254 ÿ39:0 ÿ29:4
0.001 20 1249 ÿ39:0 ÿ29:3

0.0001 20 1247 ÿ39:0 ÿ29:4

0.00001 20 1099 ÿ39:0 ÿ24:7
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previous windows. For the uth window (u � 1; 2; . . .), we calculate the average
(or median) of vmax�i� over all the iterations in the window,

�vu � 1

Nu

XuNu

j��uÿ1�Nu�1

vmax�j� or �vu � median
�uÿ1�Nu�1
6 j6 uNu

fvmax�j�g; �19�

and the average (or median) of the objective fi�X �.

�fu �
1

Nu

XuNu

j��uÿ1�Nu�1

fj�X � or �fu � median
�uÿ1�Nu�1
6 j6 uNu

ffj�X �g: �20�

During the search, we apply an algorithm to solve the dynamic system (13)
and (18), and advance the trajectory by time interval Dt in each iteration in
order to arrive at point �Xj; kj; lj� (Step 5).

At this point, we test whether the trajectory diverges or not (Step 6). Di-
vergence happens when the maximum violation vmax�j� is larger than an ex-
tremely large value (e.g., 1020). If it happens, we reduce w by a large amount,
say w w=10, and restart the algorithm. In each iteration, we also record
some statistics, such as vmax�j� and fj�X �, that will be used to calculate the
performance metrics for each window (Step 7).

Fig. 6. Framework of a new dynamic weight-adaption algorithm.
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At the end of each window or every Nu iterations (Step 8), we decide whether
to update w based on the performance metrics (19) and (20) (Step 9). In our
current implementation, we use the averages (or medians) of maximum vio-
lation vmax�i� and objective fj�X �. In general, other application-speci®c metrics
can be used, such as the number of oscillations of the trajectory in nonlinear
continuous problems. Based on these measurements, we adjust w accordingly
(Step 10).

In the next section, we discuss the speci®c weight-adaptation algorithm in
Step 10 for continuous and discrete problems.

4.2. Dynamic weight adaptation for continuous and discrete problems

To understand how weights should be updated in Step 10, we examine all
the possible behaviors of the resulting search trajectory in successive windows.
We have identi®ed four possible cases.

First, the trajectory does not stay within a feasible region, but goes from one
feasible region to another through an infeasible region. During this time, the
maximum violation vmax�i� is zero when the trajectory is in the ®rst feasible
region, increased when it travels from the feasible region to an infeasible re-
gion, and decreased when going from the infeasible region to the second fea-
sible region. No oscillations will be observed because oscillations normally
occur around an equilibrium point in one feasible region, as explained in
Section 3. In this case, no change of w is required.

Second, the search trajectory oscillates around an equilibrium point of a
feasible region. This can be detected when the number of oscillations in each
window is larger than some threshold. Figs. 2 and 3 show two typical types of
oscillations. To determine whether the oscillations will subside eventually, we
compute �vu ÿ �vu�1, the di�erence of the average values of the maximum vio-
lation vmax�i�, for two successive windows u and u� 1. If the di�erence is not
reduced reasonably, then we assume that the trajectory does not converge, and
decrease w accordingly.

Third, the search trajectory moves very slowly within a feasible region. This
happens when w is very small, and the constraints dominate the search process.
As a result, the objective value is improved very slowly and may eventually
converge to a poor value. This situation can be identi®ed when the trajectory
remains within a feasible region in two successive windows, and there is little
improvement in the objective. Obviously, we need to increase w in order to
speed up the improvement of the objective. If the objective remains unchanged,
then the trajectory has converged, and no further modi®cation of w is neces-
sary.

Finally, the trajectory does not oscillate when it is started from a point in a
feasible region, but rather goes outside the feasible region and then converges
to a point on the boundary of the feasible region (see Fig. 1 for example). In
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this case, a large w on the objective makes it more di�cult to satisfy the
constraints, causing the trajectory to move slowly back to the feasible region.
At this time, it is desirable to reduce w to accelerate convergence. This situation
happens frequently when we solve the QMF ®lter-bank design problem (to be
discussed in Section 5.2), and appropriate decrease of w will greatly shorten the
convergence time.

Given the four convergence behaviors, Table 3 shows a comprehensive list
of conditions to change w for both continuous and discrete problems. Scaling
factors 0 < a0; a1 < 1 represent how fast w is updated. Because we use nu-
merical methods to solve the dynamic system de®ned in (13), a trajectory in
window u is said to satisfy all the constraints when vu < d, where d is related to
the convergence condition and the required precision. Parameters 0 < b0;
b1 < 1 control, respectively, the degrees of improvement over the objective and
the reduction of the maximum violation. Note that when comparing values
between two successive windows uÿ 1 and u, both must use the same weight w;
otherwise, the comparison is not meaningful because the terrain may be totally
di�erent. Hence, after adapting w, we should wait at least two windows before
changing it again.

Weight w should be increased when we observe the third convergence be-
havior. At this time, the trajectory is within a feasible region, and the objective
is improved in successive windows (Condition a1 in Table 3). Further, the
improvement of the objective in the feasible region is not fast enough and is
below an upper bound (Condition a2).

Weight w should be decreased when we observe the second convergence
behavior (the trajectory oscillating around an equilibrium point) or the fourth
convergence behavior (the trajectory moving slowly back to the feasible re-
gion). In this case, the trajectory is either oscillating or not oscillating (Con-
dition b3), is not in a feasible region (Condition b1), and the trend of the
maximum violation does not decrease (Condition b2).

Table 3

Conjunctive conditions under which weights will be changed in Step 10 of Fig. 6, given perfor-

mance measurements in the uth window: �mu; �fu, and NOu (number of oscillations) and application-

speci®c constants a0; a1;b0;b1; d, and �

ID Conditions to

increase w to

w=a0

ID Condition to decrease w to w� a1

a1 �muÿ1�mu < d b1 �mu P d
a2 b0 j �fuÿ1 j

> �fuÿ1 ÿ �fu

> b1 j �fuÿ1 j

b2 �m� uÿ 1ÿ �mu6b0�muÿ1

b3
NOu < � �for continuopus QMF design problems�
NOu P � �for other continuous and discrete problems�

�
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5. Illustrations of the dynamic weight-adaptation strategy

In this section, we illustrate our weight-adaptation algorithm in solving both
nonlinear continuous and discrete optimization problems. The continuous
problems include a set of benchmark problems [1,6] and the design of QMF
®lter banks [7], the discrete problems include nonlinear integer programming
problems [1] and the design of multiplierless QMF ®lter banks [8]. (Although
we have studied these application problems before, we did not apply weight
adaptation there.) These problems cover cases in which variables can be con-
tinuous or discrete, and the objectives and constraints can be in closed form or
have to be evaluated numerically.

5.1. Nonlinear continuous benchmark problems

In these problems [1], all the variables are real, and the objectives and
constraints, as well as their derivatives, are continuous closed-form functions.
After some experimentation, we pick time unit Dt � 1 in LSODE, and set the
window size to be Nu � 100.

Recall in Fig. 2 that the trajectory oscillates when w � 1=10 for [1, Problem
2.3]. Fig. 7 shows the resulting trajectory and the maximum violation when the
dynamic weight-adaptation algorithm is applied on the same problem. We
started with w�t � 0� � 1=5; a0 � a1 � 1=2; d � 10ÿ8; b0 � 10ÿ2, and b1 � 10ÿ3.
In the ®rst window (®rst Nu � 100 iterations), the average �v1 � 4:11, which
increases slightly to �v2 � 4:2 in the second window. In addition, �v2 P d and
NO2 P 5. According to the conditions in Table 3, w is updated to 1=10. This
change in w leads to signi®cant reduction in the maximum violation in the third
window. Weight w remains unchanged between the third and the ®fth win-
dows. At the end of the ®fth window, the maximum violation changes very
little. Hence, the algorithm reduces w to 1=20, causing the trajectory to con-
verge quickly.

Fig. 7. The objective function and maximum violation ®rst oscillate and then converge using dy-

namic weight-adaptation.
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To illustrate the improvement due to dynamic weight-adaptation, we apply
the algorithm on the same problem studied in Table 1 from 20 randomly
generated starting points. Table 4 shows the results, indicating the convergence
of the search trajectory for each initial weight w. For cases that converge using
static weights, dynamic weight adaptation can reduce the convergence time,
especially when the choice of the initial weight is poor. For instance, when the
initial weight is 1=100000, the search converges with the ®nal weight in the
range �1=6250; 1=781:25� and an average convergence time of 3:85 s, much less
than the 2875:1 sec. required before. If the initial weight chosen is good (e.g.
w � 1=60), then the algorithm is able to maintain the original weight during the
search and gets good convergence behavior. This shows the stability and ro-
bustness of our dynamic weight-adaptation algorithm, irrespective of the
choice of the initial weight.

5.2. Design of QMF ®lter banks as nonlinear continuous optimization

In the second set of experiments, we consider the optimization of QMF ®lter
banks. Filter banks are important components in digital signal processing and
have been applied in modems, data transmission, digital audio broadcasting,
speech and audio coding, and image and video coding. Without loss of gen-
erality, we choose to study QMF ®lter banks because they are amongst the
simplest ®lter banks with de®ned benchmarks. They are also di�erent from
benchmarks studied in the last section because some constraints in the design
problem are not in closed forms and need to be evaluated numerically.

Two-band QMF ®lter banks decompose input signals into two frequency
subbands. Due to the particular way of selecting ®lter pairs, the design of a

Table 4

E�ects of weight adaption on convergence time and solution quality for Problem 2.3 in [1]

Starting weight

w

Final weight range

�w1;w2�
Average conver-

gence time (s)

Best solution Average

solution

1 1/20 19.14 ÿ15:0 13:55

1/3 1/15 10.70 ÿ15:0 ÿ12:67

1/5 1/20 43.36 ÿ15:0 ÿ12:67

1/7 [1/28, 1/14] 27.43 ÿ15:0 ÿ12:67

1/9 1/18 19.97 ÿ15:0 ÿ12:67

1/11 1/22 4.22 ÿ15:0 ÿ12:67

1/15 1/15 2.88 ÿ15:0 ÿ12:67

1/30 1/30 1.72 ÿ15:0 ÿ12:67

1/60 1/60 1.76 ÿ15:0 ÿ12:67

1/150 1/150 1.87 ÿ15:0 ÿ12:67

1/5000 [1/500, 1/1000] 1.95 ÿ15:0 ÿ12:67

1/1000 [1/1000, 1/500] 2.15 ÿ15:0 ÿ12:67

1/10000 [1/5000, 1/625] 3.34 ÿ15:0 ÿ12:67

1/100000 [1/6250, 1/781.25] 3.85 ÿ15:0 ÿ12:67
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two-band QMF ®lter bank becomes the design of only one prototype ®lter X.
This design problem is a multi-objective nonlinear optimization problem,
whose objectives consist of performance metrics of both the overall ®lter bank
and the single prototype low-pass ®lter. The performance metrics of the overall
®lter-bank include amplitude distortion Er�X �, aliasing distortion Ea�X �, and
phase distortion Ef�X �, whereas the performance metrics of the single low-pass
®lter include stopband ripple ds�X �, passband ripple dp�X �, transition band-
width Tt�X �, stopband energy Es�X �, and passband ¯atness Ep�X �. A two-band
QMF ®lter bank with a symmetric prototype lowpass ®lter has the nice
properties of linear phase and no aliasing distortion.

In designing a QMF ®lter bank, we formulate it as a constrained optimi-
zation problem

min Er�X �=hEr
;

s:t: Ep�X �=hEp
6 1; Es�X �=hEs

6 1; �21�
dp�X �=hdp

6 1; ds�X �=hds
6 1;

Tt�X �=hTt
6 1;

where hEr
, hEp

, hEs
, hdp

, hds
, and hTt

are performance values of the baseline de-
sign. Reconstruction error Er�X � is the objective to be minimized, and all other
metrics of a single ®lter are used as constraints. This formulation allows us to
improve on the best existing design (such as designs reported by Johnston [3])
with respect to all performance metrics. Existing methods generally optimize a
subset of the performance metrics in constrained form or a weighted sum of the
metrics.

The constrained optimization in (21) has nonlinear objective and con-
straints. Some constraints, such as stopband and passband ripples and tran-
sition bandwidth, do not have closed-form formulas. In our experiments, we
use numerical methods (Newton's method) to evaluate these function values,
and use ®nite-di�erence methods to approximate the derivatives and gradients.
Errors introduced in function evaluation force LSODE to choose very small
step sizes, e.g., 10ÿ5, in order to keep the results within a certain error toler-
ance.

Depending on the weights between the objective and the constraints, the
convergence speeds of Lagrangian methods vary signi®cantly in solving a
QMF design problem, ranging from minutes to hours, even days. There is no
good method to select the appropriate weights for a given problem. Our pro-
posed dynamic weight-adaptation algorithm adjusts the weights between the
objective and the constraints dynamically based on the search pro®le. It avoids
the need to select appropriate weights in the beginning, and achieves faster and
robust convergence than using static weights.

We use the 48e QMF ®lter-bank design problem [3] to illustrate the im-
provement of our dynamic weight-adaptation method as compared to that of
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using static weights. We use Johnston's solution as our starting point. This
point is feasible as we use its performance measures as our constraints.
However, it is not a local minimum of the objective function. To avoid the
di�culty in choosing the initial weight, we choose the starting weight w�t � 0�
using a two-step method.
1. Set the initial weight based on the maximum-gradient component of the

starting point and the number of variables, w�t � 0� � 1=�n max16 i6 n

f�dLc=dxi��X �t � 0�; k � 0; l � 0�g�.
2. Perform the Lagrangian search for a small amount of time, e.g., dt � 10ÿ5.

Adjust the weight w�t � 0� based on the decrement Df of the objective-func-
tion value: w�t � 0�  �w�t � 0� dt=Df �.

Experimentally, using static w of 10ÿ4; 10ÿ5, and 10ÿ6 illustrates the three
convergence behaviors: objective over-weighted, balanced objective and con-
straints, and constraints over-weighted.

For static weight w � 10ÿ4, Fig. 8 shows the dynamic changes of the ob-
jective, the Lagrangian-function value, and the maximum violation as the
search progresses. Note that the trajectories of the objective and the Lagran-
gian-function values are overlapped because constraint violations are small. As
the starting point is not a local minimum of the objective, the search descends
in the original-variable X space as the objective value decreases. In the
meantime, the constraints are getting violated. As constraint violations become
large, the Lagrangian part slowly gains ground and pushes the search back
towards the feasible region, leading to increases in the objective value and
decreases in constraint violations. Eventually, all constraint violations become
0, and the objective value stabilizes. The overall convergence speed to the
equilibrium point is slow (949:0 CPU min at t � 2:819). Note that ¯uctuations
of the maximum violation as well as the objective are due to inaccuracy in
numerical estimation of the function values and gradients.

Fig. 8. Search pro®le with static weight w � 10ÿ4 in designing a 48e QMF ®lter bank. The objective

is over-weighted, and its values are reduced quickly in the beginning. Later, the Lagrangian part

slowly gains ground and pushes the search back into the feasible region. The convergence time to

the equilibrium point is long (949:0 CPU min at t � 2:819).
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Fig. 9 shows the search pro®le using static weight w � 10ÿ5. The objective
and the constraints are more balanced in this case, and the convergence time to
the equilibrium point is shorter (125:7 CPU min at t � 1:577 time units).

Fig. 10 shows the search pro®le using static weight w � 10ÿ6. The con-
straints are over-weighted in this case, and constraint satisfaction dominates
the search process. The trajectory is kept inside or very close to the feasible
region. However, due to the small weight on the objective, improvements of the
objective is slow, causing slow overall convergence to the equilibrium point
(293:8 CPU min at t � 7:608).

Fig. 11 shows the search pro®le of our Lagrangian method with adaptive
weight control in solving the 48e QMF ®lter-bank problem. We have used a
time unit Dt � 10ÿ4, window size Nu � 10; a0 � a1 � 0:9; d � 10ÿ5; b0 � 10ÿ2,
and b1 � 10ÿ3. As shown in the search pro®les, the objective value was im-
proved fairly quickly in the beginning, and the trajectory was then pushed into

Fig. 9. Search pro®le with static weight w � 10ÿ5 in designing a 48e QMF ®lter bank. The objective

and the constraints are balanced, and the convergence speed to the equilibrium point is faster (125:7

CPU min at t � 1:577).

Fig. 10. Search pro®le with static weight w � 10ÿ6 in designing a 48e QMF ®lter bank. The con-

straints are over-weighted, and constraint satisfaction dominates the search process. The trajectory

is kept inside or very close to the feasible region. However, the improvement of the objective value

is slow, causing slow overall convergence to the equilibrium point (293:8 CPU min at t � 7:608).
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a feasible region quickly. Our adaptive method converges at t � 0:142
(35.1 CPU min), much faster than the Lagrangian method with static weight.

5.3. Nonlinear discrete integer programming problems

In this section, we apply our adaptive DLM on discretized constrained
optimization problems. The discretization process was discussed in Section 3.2
in which we expand each variable into range �0;N � and restrict each variable to
integers in the range, where N is a positive integer.

Fig. 12 shows the search pro®le in solving the discretized Problem 2.6 dis-
cussed in Section 3.2 when dynamic weight adaptation is applied. Using an
initial weight w � 104, oscillations ®nally die down, and the trajectory con-
verges to an equilibrium point. In comparison, if w is statically set to 104, the
search trajectory will diverge (see Table 2).

Table 5 shows the results corresponding to those in Table 2 when dynamic
weight adaptation is applied. Using the same 20 randomly generated starting

Fig. 11. Pro®le with adaptive changes of w in designing a 48e QMF ®lter bank. The search con-

verges much faster (35:1 CPU min in t � 0:142) than those using static weights.

Fig. 12. The objective and maximum violation oscillate but eventually converge for discretized

Problem 2.6 [1].
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points and the same set of initial w, our results show that all the searches
converge with similar or better average solutions.

5.4. Multiplierless QMF ®lter-bank design as nonlinear discrete optimization

In the last set of experiments, we study the design of multiplierless QMF
®lter banks. These ®lter banks are similar to those studied in Section 5.2, except
that ®lter coe�cients are powers-of-two (PO2) numbers (also called Canonical-
Signed-Digit (CSD)). The ®lter coe�cients are represented as sums or di�er-
ences of powers of two so that multiplications can be carried out by additions,
subtractions and shifting.

We formulate the design problem as a nonlinear discrete constrained opti-
mization problem, using the reconstruction error as the objective, and other
performance metrics as constraints (21). The frequency response of a PO2
®lter, H�z�, is:

H�z� �
Xcÿ1

i�0

xizÿi

�
Xcÿ1

i�0

Xdÿ1

j�0

ei;j2
j

 !
zÿi where

Xdÿ1

j�0

jei;jj6 l for all i; ei;j� ÿ1; 0; 1:

�22�
Here, c is the length of the PO2 ®lter, l is the maximum number of ONE bits
used in each coe�cient, and d is the number of bits in each coe�cient.

In formulating the problem and in applying DLM to solve it, we must ®rst
transform the real coe�cients of the best-known design to PO2 forms using a
CSD representation. Experiments show that if each coe�cient is scaled

Table 5

Improved convergence and solution quality using dynamic weight adaptation from 20 randomly

generated starting points for the discretized Problem 2.6 de®ned in [1]

Initial w # Converged

trajectories

Average time (s) Best solution Average

solution

100000 20 2289 ÿ39:0 ÿ33:3

10000 20 2182 ÿ39:0 ÿ38:4

1000 20 1409 ÿ39:0 ÿ38:5

100 20 1902 ÿ39:0 ÿ29:3
10 20 1377 ÿ39:0 ÿ28:1

1 20 1289 ÿ39:0 ÿ27:4

0.1 20 1265 ÿ39:0 ÿ28:8

0.01 20 1249 ÿ39:0 ÿ29:3
0.001 20 1248 ÿ39:0 ÿ29:3

0.0001 20 1249 ÿ39:0 ÿ29:0

0.00001 20 1249 ÿ39:0 ÿ29:0
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properly before the search starts (based on a heuristic objective), the quality of
the ®nal design can be improved signi®cantly. Hence, we enumerate over dif-
ferent scaling constants and scale all the coe�cients by a common constant
before the search begins. Experiments also show that it is possible to ®nd good
designs without requiring the PO2 coe�cients to have the same degree of
precision as that of continuous coe�cients. For instance, in our experiments,
we restrict the minimum exponent of the ONE bits in each coe�cient (in the
range [ÿ1; 1�) to be ÿ22, even though the real coe�cients have a minimum
exponent of ÿ31.

In our DLM implementation, we process all the bits in the coe�cients in a
prede®ned order. We perturb the sign and the exponent of each ONE bit to see
if they would reduce the Lagrangian-function value (2), and accept the changes
if they do. We update the Lagrange multipliers after processing each coe�-
cient.

As an illustration, consider the design of a PO2 QMF ®lter bank [8] based
on Johnston's 32d design [3] as our constraints. Assuming a minimum expo-
nent of ÿ22 in each ONE bit, we enumerate and ®nd the best scaling factor for
all the coe�cients to be 0.9474. After multiplying each coe�cient by this
scaling factor and restricting each coe�cient to a PO2 form with a maximum of
6 ONE bits, we apply DLM with both static and dynamic weights to ®nd the
best PO2 designs.

Table 6 compares the objectives of the designs found and the corresponding
convergence times of DLM. Using the adaptive DLM, all the searches con-
verge, and most designs have better reconstruction errors. Fig. 13 illustrates the
convergence behavior when the search starts with w � 1:0. Using weight ad-
aptation, the search converged after some oscillations and found a PO2 design
with reconstruction error of 83.6% of Johnston's original 32d design (with real

Table 6

Multiplierless 32d QMF ®lter banks found by DLM with static and adaptive weightsa

Weight w Static weights Adaptive weights

Objective Time (min) Objective Time (min)

10000.0 ± ± 0.998 195.9

1000.0 ± ± 0.998 168.3

100.0 ± ± 0.885 277.2

10.00 ± ± 0.883 119.3

1.00 ± ± 0.836 190.8

0.1 0.87 197.1 0.837 161.4

0.01 0.87 115.2 0.87 124.3

0.001 0.87 4.8 0.87 34.5

0.0001 0.88 12.0 0.878 10.8

0.00001 0.9 23.7 0.924 12.0

a The objective is the reconstruction error Er.
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coe�cients), while all the other performance metrics are either better than or
equal to those of Johnston's.

6. Experimental results

In this section we show further experimental results in applying our adaptive
algorithm to the four nonlinear continuous and discrete optimization problems
described in the last section. We also compare our results to those obtained by
Lagrangian methods with static weights.

6.1. Nonlinear continuous benchmark problems

These constrained benchmark problems [1] were derived from a variety of
engineering applications. We selected ®ve problems (with identi®ers 2.6, 3.4,
4.6, 5.4 and 6.4) from di�erent classes to test our algorithm. In each problem,
we randomly generated 20 starting points X �t � 0� uniformly distributed in its
search range, and set the initial values for the Lagrange-multipliers to be zero
(k�t � 0� � l�t � 0� � 0). For each starting point, we applied the Lagrangian
method using both static weights and dynamically changed weights under the
same convergence condition de®ned in (16). Hence, the Lagrangian method
stops when it either reaches the maximum iteration count imax or satis®es the
convergence condition.

We chose our static weights in the range between 10ÿ6 and 102, which were
also used as initial weights w�t � 0� in the adaptive algorithm. The weights
were chosen from a wide range in order to test the robustness of our weight-
adaptation algorithm. We would like our algorithm to adjust the weight so that
the search will converge faster with a solution that is at least as good as that
with static weights. In our experiments, we used the following control

Fig. 13. The objective and maximum violation oscillate but eventually converge in the design of a

multiplierless QMF ®lter bank.
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parameters: time unit 4t � 1, window size Nu � 100; a0 � a1 � 1=2;
d � 10ÿ8; b0 � 10ÿ2, and b1 � 10ÿ3.

We used two performance metrics, convergence time and solution quality, in
our experiments, where convergence time was measured by the average con-
vergence time (in seconds) from 20 starting points, and solution quality was
measured by the average objective value when the search converged.

From the experimental results shown in Fig. 14, we have the following
observations. First, di�erent problems require di�erent ranges of static weights
in order to get fast convergence. For example, Problem 2.6 (Fig. 14(a)) con-
verges the fastest using w � 10ÿ4, whereas Problem 5.4 (Fig. 14(d)) converges
the fastest using w � 1. These weights di�er by four orders of magnitude.
Hence, it is di�cult to choose a good static weight for a given problem instance
in advance.

Fig. 14. Comparison of the Lagrangian method with static weights and the adaptive Lagrangian

method in terms of convergence time and solution quality.
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Second, our adaptive algorithm outperforms the Lagrangian method with
static weights. For example, in Problem 2.6 (Fig. 14(a)), the Lagrangian
method with a static weight is unable to converge (either diverge or oscillate
forever) when w � 10ÿ2 or larger. However, our adaptive algorithm can detect
this misbehavior and adjust w to allow the search to converge in 27:62 seconds
on the average. Likewise, the Lagrangian method with static weight w � 10ÿ6

converges using an average of 765.0 s, but the adaptive algorithm converges
using an average of 5.64 s and with the same solution quality. These results
show that our weight-adaptation algorithm is robust and insensitive to the
initial weights w�t � 0� in comparison to the Lagrangian method with a static
weight. In fact, our adaptive algorithm can get even better solutions in shorter
time when the initial weight is small.

Third, when all the constraints are equality constraints, w is unchanged in
the adaptive algorithm, resulting in the same performance for both methods.
This is demonstrated in Problem 5.4 (Fig. 14(d)). In some cases, w is unchanged
in the adaptive algorithm when there are both inequality and equality

Fig. 14. (continued).
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constraints, such as Problem 6.4 (Fig. 14(e)). This happens when the Lagrange
multipliers already take care of the balance between the objective and the
constraints.

6.2. QMF ®lter-bank design

We have applied our adaptive Lagrangian method to solve the 14 QMF
®lter-bank design problems formulated by Johnston [3]. These include 16a,
16b, 16c, 24b, 24c, 24d, 32c, 32d, 32e, 48c, 48d, 48e, 64d, and 64e, where the
integer in each identi®er represents the number of ®lter taps, and types ``a'' to
``e'' represent prototype ®lters with increasingly sharper (shorter) transition
bands.

Our goal is to ®nd designs that are better than Johnston's results across all six
performance measures. Hence, we use (21) with the constraint bounds de®ned
by those of Johnston's designs. In our experiments, we started our search from
Johnston's solutions as starting points. Note that Johnston used sampling in
computing energy values, whereas we use closed-form integration. As a result,
Johnston's designs may not be locally optimal in a continuous formulation.

Fig. 15 compares the performance of our adaptive Lagrangian method with
that of the Lagrangian method with static weight. It shows the convergence
times of the Lagrangian method with static weight normalized with respect to
those of the adaptive method in solving the 24d and 48e design problems. For
the method with static weights, we have used, respectively, weight values of
10ÿ4; 5� 10ÿ5; 10ÿ5; 5� 10ÿ6, and 10ÿ6 in our experiments. For the method
with adaptive weights, we have used the weight-initialization algorithm de-
scribed in Section 5.2 to set the initial weights. In solving the 24d problem, our
adaptive Lagrangian method takes 6.6 min to converge to an equilibrium point
with an objective value of 0.789, whereas the Lagrangian method with static

Fig. 15. Comparison of the average convergence speeds of Lagrangian methods with and without

adaptive weight control for 24d (left) and 48e (right) QMF ®lter-bank design problems. The av-

erage convergence times of the Lagrangian method using di�erent static weights are normalized

with respect to the time spent by the adaptive Lagrangian method.
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weights converges to the same equilibrium point most of the time, but with
vastly di�erent convergence times. Similarly, the adaptive method takes
35.1 min in solving the 48e design problem, but the static method takes vastly
di�erent and longer times for di�erent initial weights.

Table 7 shows the experimental results for all the design problems found
using the adaptive method, normalized with respect to Johnston's solutions. A
value less than 1 for a performance metric means that our design is better on
this metric as compared to Johnston's design. The table shows that the
adaptive method improves the objective value (second column), while satisfy-
ing all the design constraints (columns 3±7). The execution times to ®nd the
solutions vary signi®cantly from a few minutes to several hours.

6.3. Nonlinear integer programming

To test the adaptive strategy, we selected three problems 2.3, 2.6 and 3.4
from the benchmark collection [1]. We ®rst transformed them to discrete in-
teger programming problems, generated 20 random discrete starting points,
and set the initial value of the Lagrange-multipliers to be zero. We further set
the initial weight w in the range �10ÿ5; 105�, which was large enough to test the
robustness of our strategy. The parameters for our algorithm were as follows:
Nu � 320; a0 � 0:8; a1 � 0:5; d � 10ÿ8; b0 � 10ÿ3, and b1 � 10ÿ4. From each
starting point, we applied the Lagrangian method using both static weights and
adaptive weights, and stopped the search when either the convergence condi-
tion was satis®ed or the maximal number of iterations was reached.

Table 7

Experimental results of the adaptive Lagrangian method in solving QMF ®lter-bank design

problems, using Johnston's solutions as starting points

Filter

type

Er dp Ep ds Es Tr CPU time

(min)

Time

unit

16a 0.990 0.997 0.785 0.999 1.000 1.000 89.8 0.156

16b 0.995 0.962 0.806 1.000 1.000 1.000 16.5 0.278

16c 0.826 1.000 0.916 1.000 1.000 1.000 16.3 0.213

24b 0.966 0.994 0.820 0.999 1.000 1.000 119.0 0.107

24c 0.910 1.000 0.768 1.000 1.000 1.000 11.4 0.148

24d 0.789 1.000 0.835 1.000 1.000 1.000 6.6 0.175

32c 0.959 0.999 0.735 0.999 1.000 1.000 111.8 0.115

32d 0.870 0.999 0.800 1.000 1.000 1.000 15.4 0.136

32e 0.735 1.000 0.924 1.000 1.000 1.000 17.5 0.194

48c 0.793 1.000 0.810 0.945 0.999 1.000 2899.1 0.123

48d 0.948 0.999 0.752 0.999 1.000 1.000 250.5 0.106

48e 0.852 1.000 0.840 1.000 1.000 1.000 35.1 0.142

64d 0.784 0.991 0.787 0.591 0.997 1.000 3143.5 0.021

64e 0.845 1.000 0.764 1.000 1.000 1.000 118.9 0.138

268 B.W. Wah et al. / Information Sciences 124 (2000) 241±272



As in continuous problems, we use as performance metrics the average
convergence time from 20 starting points and the average objective value when
the search converges. Fig. 16 summaries the results, showing that the adaptive
method improves a lot in convergence times over the static method. For

Fig. 16. Comparison of Lagrangian methods with static weights and adaptive weights in terms of

the average convergence time and average solution quality for discrete benchmark problems.
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instance, for Problem 2.6, when w was larger than 100.0, the static method was
unable to converge after 10 h, whereas the adaptive method converged in less
than one hour for all di�erent initial weights.

6.4. Multiplierless QMF ®lter-bank design

In our experiments on designing multiplierless QMF ®lter banks, we set the
maximum number of ONE bits to be 6 and the minimum exponent to be ÿ22
for each ®lter coe�cient. We further set our starting points of the search based
on Johnston's design, and assigned the same control parameters as those in the
previous subsection except that Nu was 10.

Figs. 17 and 18 compare the average convergence times and average solution
quality in terms of reconstruction error in designing the 32d and 48e multi-
plierless QMF ®lter banks. Our results show that the adaptive algorithm
converged in less than 300 (resp. 510) CPU min for the 32d (resp. 48e) problem,
even though the initial weights were in a very large range �10ÿ5; 104� (resp.
�10ÿ4; 102�). In contrast, the Lagrangian method with static weights could not

Fig. 17. Comparison of average convergence times and average solution quality between using

static weights and adaptive weights in designing multiplierless QMF ®lter bank 32d.

Fig. 18. Comparison of average convergence times and average solution quality between using

static weights and adaptive weights in designing multiplierless QMF ®lter bank 48e.
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converge in 15 (resp. 32) h in designing the 32d (resp. 48e) multiplierless ®lter
bank when w was larger than 1.0.

Note that in designing the 48e ®lter banks, the average solutions of the static
method are slightly better than those of the adaptive method under some initial
weights. This happens because the latter may change the terrain during the
search and ®nds di�erent solutions.

7. Conclusions

In this paper, we have studied and evaluated e�cient weight-adaptation
algorithms for Lagrangian methods. We have shown that Lagrangian methods
are useful for solving continuous as well as discrete constrined optimization
problems. These methods rely on the balance between descents in the objective
space and ascents in the Lagrange-multiplier space in order to arrive at an
equiliblirum point. We have illustrated through numerous examples that such a
balance is very sensitive to the relative weights between the objective and the
Lagrangian part in the Lagrangian function. Without a good balance, the
search trajectory may converge very slowly, oscillate forever, or diverge. To
cope with these problems, we propose a dynamic weight-adaptation algorithm
that adjusts the relative weight of the objective based on statistics collected
during the search. We have applied the adaptive Lagrangian method on two
classes of continuous constrained optimization problems and two classes of
discrete constrained problems. In each case, we have shown that the adaptive
method always converge quickly with either the same or better solutions. Our
results show that our proposed adaptive Lagrangian method is roburst, works
for both continuous and discrete constrained optimization problems, and ex-
hibits consistent and good convergence behavior.
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