World Scientific

Vol. 13, No. 4 (2004) 767-790 s
www.worldscientific.com

®© World Scientific Publishing Company

International Journal on Artificial Intelligence Tools \p

SUBGOAL PARTITIONING AND GLOBAL SEARCH
FOR SOLVING TEMPORAL PLANNING PROBLEMS
IN MIXED SPACE*

BENJAMIN W. WAH

Department of Electrical and Computer Engineering
and the Coordinated Science Laboratory
University of Illinois, Urbana-Champaign

Urbana, IL 61801
United States of America
wah@uiuc.edu
hittp://manip.crhc.uiuc. edu

YIXIN CHEN

Department of Computer Science
and the Coordinated Science Laboratory
University of Illinois, Urbana-Champaign

Urbana, IL 61801
United States of America
chen@manip.crhec.utuc.edu

Received 3 November 2003
Revised 27 February 2004
Accepted 1 May 2004

We study in this paper the partitioning of the constraints of a temporal planning prob-
lem by subgoals, their sequential evaluation before parallelizing the actions, and the
resolution of inconsistent global constraints across subgoals. Using an £1-penalty formu-
Jation and the theory of extended saddle points, we propose a global-search strategy that
Jooks for local minima in the original-variable space of the £1-penalty function and for
local maxima in the penalty space. Our approach improves over a previous scheme that
partitions constraints along the temporal horizon. The previous scheme leads to many
global constraints that relate states in adjacent stages, which means that an incorrect
assignment of states in an earlier stage of the horizon may violate a global constraint in
a later stage of the horizon. To resolve the violated global constraint in this case, state
changes will need to propagate sequentially through multiple stages, often leading to a
search that gets stuck in an infeasible point for an extended period of time. In this paper,
we propose to partition all the constraints by subgoals and to add new global constraints
in order to ensure that state assignments of a subgoal are consistent with those in other
subgoals. Such an approach allows the information on incorrect state assignments in
one subgoal to propagate quickly to other subgoals. Using MIPS as the basic planner

*Research supported by the National Aeronautics and Space Administration Grant NCC 2-1230
and the National Science Foundation Grant IIS 03-12084.

767

768 B. W. Wah & Y. Chen

in a partitioned implementation, we demonstrate significant improvements in time and
quality in solving some PDDL2.1 benchmark problems.

Keywords: Extended saddle point; global search; mixed-integer nonlinear programming
problem; nonlinear constraint; partitioning; subgoal; temporal planning.

1. Introduction

A temporal planning problem involves arranging actions and assigning resources
order to accomplish a given set of tasks over a period of time and to optimize one
more objectives. It can be defined loosely by a set of states whose variables may
discrete, continuous, or mixed; a discrete or continuous temporal horizon; a set
actions defining valid transitions between states; a set of effects to be evaluated
each state or action; a set of constraints to be satisfied in each state or througho
an action; and a set of goals to be achieved.2®
Our goal in this paper is to study the partitioning of temporal planning pro
lems and effective global search strategies for finding locally optimal feasible plan
In our approach, we formulate a planning problem as a mized-integer (involving di
crete and continuous variables) nonlinear programming (MINLP) problem. Base
on the subgoals of a planning problem, we partition those constraints related t
a subgoal into a subset (called a stage). We 1dent1fy a local constraint to involv
state variables related to a subgoal in one stage and a global constraint to involv
state variables across two or more stage_s Using formal mathematical condition
that govern constrained local minima, we develop efficient search algorithms fo
resolving unsatisfied local and global constraints and for optimizing objectives.
The success of our approach depends on the ab111ty to partition the constraints
of a large planning problem into subproblems in such a way that each can be solvec
easily and that global constraints relatmg subproblems can be resolved quickly.
Although many of the constraints in a temporal plannmg problem are related to
activities and events with temporal locahtles and can be partitioned in such a way
that a majority of the constraints are tempor yl‘loca,l such a partitioning does not
always lead to the most efficient evaluat1
As an example, Figure 1a shows the JJ,ZO constraints of an initial (infeasible)
schedule generated by MIPS? in solvmg zeno Trave TimeNumeric20.** The problem
involves transporting people in planes, using the fast and slow modes of movement.
The duration of a move is computed from its dlsta,nce and speed. By partitioning the
horizon into six stages,3! there are 642 local constraints and 78 global constraints.
We have found that the part1t10n1ngof L ts in PDDL2.1 benchmarks
along the temporal horizon often ,l;eads:‘ftgo‘ﬁl ny al constraints that only relate
states in adjacent stages (as illl‘istxfaﬁédj As a result, when a violated
subgoal is caused by an incorrect é;ss'i”g'n) ates in an early stage of the
horizon, the change of the incorrect a,SSIgnmer W1II have to propagate sequentially
through multiple stages. Oftentimes, the prop atlon of such information may lead
to a search getting stuck in an infeasible poi or an extended period of time.3! To

Strategies for Solving Partitioned Temporal Planning Problems 769

v ik
2 k<
fé Q«
e \\l\\ ‘
2 \«
2 !
7] 1
Time Horizon

a) Partitioning of constraints by temporal horizon
:
c
=
Q
£
=

G12
Sub Goals

b) Partitioning of constraints by subgoals

Fig. 1. Two ways to partition the constraints in an initial infeasible schedule generated by MIPS
in solving zeno Trave TimeNumeric20. In (a), each of the 720 constraint is shown as a line that
relates two states (labeled in the y-axis) scheduled at two times in the horizon (z-axis). The
partitioning of the horizon into six stages (separated by bold vertical lines) leads to 642 local
constraints and 78 global constraints. In (b), the 720 constraints are partitioned into 24 stages
according to the 24 subgoals. Each constraint, after parallelizing the actions, is shown as a line
that relates two states in a subgoal (z-axis) scheduled at two times in the horizon (y-axis), where
each stage includes all the states in the schedule. In addition, —Z-i’—éﬂ binary global constraints are
added, each enforcing the consistency of the state assignments in one subgoal to those of another.
The figure only shows the 21 violated global constraints.

address this issue, we propose in this paper to partition the constraints according to
subgoals (see Figure 1b), evaluate the subgoals sequentially, resolve any inconsistent
state assignments among them, and parallelize their actions. New global constraints
are added to ensure that state assignments of all subgoals are consistent.

Our approach partitions all the constraints of a planning problem into N+1
stages, where stage t, t = 0,..., N, has local state vector 2(t) = (z1(t), .-, Zu,)
of u; mixed variables, m; local equality constraints, and r; local inequality con-
straints. Here, z(t) includes all variables that appear in any of the local con-
straints in stage t. Since the partitioning is by constraints, the N + 1 state vec-
tors z(0),...,z(N) may overlap with each other. The MINLP formulation of the
partitioned problem is as follows:

(Pt) : mzin J(Z)

subject to h®(2(t)) =0, g?(2(t)) <0, (local constraints) (1)
and H(z) =0, G(z) <0. (global constraints)

70 B. W. Wah & Y. Chen

General Constraints H(z) = 0 and G(z) <0 General Objective J(z)

Pruned dominated
states™~~

Dominating states

due to ESPC (extended
saddle-point conditions)

Dominating states _ - -
due to local
constraints

Fig. 2. The pruning of states that do not satisfy local constraints and ESPC in each stage lez
to a significant reduction in the joint search space for resolving violated global constraints acrc
the stages.

Here, AV = (hgt), ey h%{)ff’ and ¢g® = (ggt) Yiaey gﬁf))T are local-constraint fune
tions in stage ¢ that involve z(t); and H = (Hy,...,Hp)T and G = (G4, ..., Gy)
are global-constraint functions that involve z € Z, the variables of the origin:
problem. We assume that J is continuous and differentiable with respect to its con
tinuous variables, that f is lower bounded, and that g and h are general function
that are not necessarily continuous or differentiable and that can be unbounded. £
solution to (1) is a plan that consists of an assignment of 2.

The partitioning of constraints allows us to divide a large problem into smaller
subproblems, solve each independently, and resolve those violated global constraints
afterwards. One of the major benefits of our approach is that each partitioned sub-
problem is much easier to solve than the original problem because it involves a
substantially smaller number of constraints. Further, the joint search space across
all the subproblems in which violated global constraints must be resolved is reduced
dramatically because it is made up of subspaces that must satisfy the local con-
straints in each subproblem (the first inner ellipse in each stage of Figure 2). In this
paper, we propose new conditions that allow the search space of each subproblem
to be further reduced (the second inner ellipse in each stage of Figure 2) before
resolving violated global constraints.

In addition to reducing the problem complexity, another benefit of constraint
partitioning is that it leads to smaller subproblems of a similar nature. As a re-
sult, existing solvers can be employed to solve these subproblems with little or no
modification. Without the need to develop new solvers for each subproblem, search
techniques in existing solvers can be employed. Further, new and better solvers
developed in the future can be integrated easily in our approach.

The multi-stage problem in (1) cannot be solved by dynamic programming be-
cause its states in different stages may overlap, and a partial feasible plan that
dominates another partial feasible plan in one stage will fail to hold when the
dominating plan violates a global constraint in a later stage.

Strategies for Solving Partitioned Temporel Planning Problems 771

The problem formulated cannot be solved by existing penalty-based methods
because they have no effective way for resolving violated global constraints after
solving the partitioned subproblems. Without resolving the violated local and global
constraints together, these methods will have to rely on expensive trial and error .
to find the correct penalty for each global constraint after solving the subproblems.

For a similar reason, existing planners do not exploit constraint partitioning.
Existing Al planning and scheduling methods can be classified based on their state
and temporal representations and the search techniques used.

a) Discrete-time discrete-state methods consist of systematic searches, heuristic
searches, local searches, and transformation methods.

Systematic searches that explore the entire state space are complete solvers. Ex-
amples include UCPOP,?* Graphplan,* STAN,?! PropPLAN,!® and System R.?
Systematic solvers explore a search space by partitioning it into subspaces and by
exploring each as a complete planning problem. They are not amenable to con-
straint partitioning because they have no means for resolving inconsistent global
constraints after solving the subproblems.

Local searches employ heuristic guidance functions to search in discrete path
space. Examples include HSP,® FF,* AltAlt,2> GRT,?*” and ASPEN.” Similar to
systematic searches, these heuristic solvers explore a partitioned subspace repre-
sented as a complete planning problem and employ guidance heuristics that are
evaluated over the entire temporal horizon in order to estimate the distance from
a state to the goal state. They do not have means to resolve inconsistent global
constraints when subproblems are partitioned by constraints.

Last, transformation methods convert a problem into a constrained optimiza-
tion or satisfaction problem before solving it by existing solvers. Examples in-
clude SATPLAN,'® Blackbox,!” and ILP-PLAN.!® Transformation methods are
not amenable to constraint partitioning because they rely on SAT and ILP solvers
that do not support such partitioning.

b) Discrete-time mized-state methods employ systematic searches, heuristic
searches, and transformation methods. Examples include SIPE-2,33 O-Plan2,°
Metric-FF,'4 GRT-R,?” and LPSAT.3* The search methods employed by these
planners are not amenable to constraint partitioning for reasons similar to those in
discrete-time discrete-state methods.

¢) Continuous-time mized-state methods can be classified into systematic,
heuristic, and local searches. Examples include LPG,'? MIPS,® Sapa,?® ZENO,?
SHOP2,22 TALplanner,® and Europa.!® For reasons similar to those in discrete-time
discrete-state methods, the methods in these planners do not have means to resolve
inconsistent global constraints when subproblems are partitioned by constraints.

In the next section, we review existing mathematical programming techniques.
In Section 3, we present the necessary and sufficient extended saddle-point condi-
tion (ESPC) that governs the correctness of algorithms for solving (1). Since ESPC
allows (1) to be solved under an extensive range of penalties for each constraint,
it simplifies the resolution of inconsistent global constraints across partitioned sub-

772 B. W. Wah & Y. Chen

problems. Moreover, the application of ESPC in each subproblem leads t¢
reduction in its search space, which limits the search space in which glo
straints need to be evaluated. In Section 4, we show some global-search s:
in the ¢;-penalty-function space in order to help a search escape from infea
cal minima. Finally, we present in Section 5 an application of the search st
on the MIPS planner and the solution of some PDDL2.1 planning benchm
The results in this paper extend our previous work on variable partitic
discrete space and time.® Qur previous work is based on the partitioning of v
of a discrete planning problem into disjoint subsets. It can be considered a
case of constraint partitioning in which the variable sets after partitioning .
disjoint. The ESPC presented in this paper are also more general becau
applicable to continuous and mixed problems as well as to discrete problen

2. Mathematical Programming Background

Consider the following continuous nonlinear programming (CNLP) proble:
continuous and differentiable f, A = (h1,...,hy,)T, and g = (g1,---,9-)F
in real space:

(Pe): min f(x) where z = (z1,...,2,)T € RY
47
subject to h(z) =0 and g(z) <0.
The goal of solving P, is to find a constrained local minimum z* with r

to Ne(z*) = {2’ : |&' — z*| < € and € — 0}, the continuous neighborhood of :

Definition 2.1. Point z* is a CLM,, a constrained local minimum with r
to the continuous neighborhood of z*, of P, if z* is feasible and f (z*) < f(
all feasible z € N,(z*).

Based on Lagrange-multiplier vectors A = (Aq,..., Am)T € R™ and
(p1,.--,pur)T € R7, the Lagrangian function of P, is defined as:

L(z, A\, p) = f(z) + ATh(z) + u"g(x).

a) Karush-Kuhn-Tucker (KKT) necessary condition.3 Assuming z* is a C
and a regular point,® then there exist unique * and ©* such that:

VeL(z*, *, u*) = 0,

where u; =0 V j ¢ A(z*) = {i | gi(z*) = 0} (the set of active constraints),
t; > 0 otherwise.

The unique A and u that satisfy (4) can be found by solving a system of .
linear equations in A, 4, and z or by iterative procedures. The latter approac

*Point z is a regular point if gradient vectors of equality constraints Vhi(z),-.., Vhm(z)
active inequality constraints Vga, (z),..., Vga,(x),a; € A(z) (the set of active constraints,
linearly independent.

Strategies for Solving Partitioned Temporal Planning Problems 773

taken in existing sequential quadratic programming (SQP) solvers, such as SNOPT
and LANCELOT. For instance, SNOPT solves the system of nonlinear equations
iteratively by first forming a quadratic approximation, solving the quadratic model,
and updating estimates of z, A, and u, until unique z, A, and u are found. Since,
in general, the system of equations in (4) must be solved together, inconsistent
assignments across subproblems cannot be resolved easily when each partitioned
subproblem is solved beforehand.

A recent approach called the interior-point ¢;-penalty method!3 does not require
finding unique A and pu. However, the approach is limited to solving CNLPs with
continuous and differentiable functions and without partitioning, and cannot be
applied to solve partitioned MINLP planning problems studied in this paper.

b) Sufficient saddle-point condition.? The concept of saddle points has been
studied extensively in the past. Here, z* is a saddle point of P, if there exist unique
A* and p* such that:

Lz, A p) < L(z", A", ™) < Lz, A", p7) (5)

for all z that satisfies ||z — z*|| < € and all A € R™ and p € R". This condition
is only sufficient but not necessary because there may not exist feasible A* and p*
that satisfy (5) for each z*.

In practice, (5) is not used to find unique z, A, and p that satisfy (4) because
it is difficult to solve for unique A* and p* using a system of nonlinear inequalities.

c) Penalty formulations. A penalty function is the summation of the objective
and the constraint functions weighted by penalties. In a penalty formulation, the
goal is to find suitable penalties in such a way that the x that minimizes the penalty
function corresponds to the CLM, of P.. In general, the minimum of a penalty
function is only necessary but not sufficient to be a C LM, of the constrained model
because suitable penalties may not exist. Unless the penalties are chosen properly,
the minimization of a penalty function does not always lead to a CLM..

Stronger necessary and sufficient conditions also exist for penalty formulations.
A static-penalty approach®?® transforms P, into the following unconstrained mini-

~mization problem:

Ly(z,7, %) = f(z) + 77 |h(=)* + " max(0, g(z))", (6)

where p > 0. By choosing p = 1, there exist finite and sufficiently large penalty
vectors y € R™ and 9 € R" such that z*, a global minimum of L,(z,7,), cor-
responds to a constrained global minimum (CGM.) of P.. Although such penalties
always exist, there is no systematic method for choosing them.

To overcome the difficulty of finding v in (6), a dynamic-penalty approach®®
increases penalties gradually and solves for the optimal solution of a sequence of
unconstrained problems. Although it is easier to apply than a static-penalty ap-
proach, it does not guarantee a feasible solution eventually when each unconstrained
problem is solved suboptimally.

774 B. W. Wah & Y. Chen

In contrast to methods for solving continuous problems, MINLP methods gene:
ally decompose the search space (rather than the constraints) of a MINLP into sut
problems in such a way that, after fixing a subset of the variables, each subproble:
is convex and easily solvable, or can be relaxed and approximated. There are sev
eral types of these algorithms, including generalized Benders decomposition, oute
approximation, generalized cross decomposition, and branch-and-reduce methods
All those methods require the functions of subproblems to be convex or factorable
which is a condition difficult to meet in planning problems.

In short, existing theory based on KKT and saddle points applies only to CNLP
and generally requires the solution of unique Lagrange multipliers. The theory doe;
not apply in solving MINLPs because unique Lagrange multipliers may not exis
for each MINLP solution. In the next section, we present a new theory of extendec
saddle points that does not require finding unique penalties and can be applied tc
solve partitioned MINLPs.

3. Theory of Extended Saddle Points

Given planning problem (1), we describe our theory of extended saddle points in
mixed space based on an £;-penalty function. We show a necessary and sufficient
condition that is satisfied for a large range of penalty values and the decomposition
of the necessary and sufficient condition for partitioned problems.

3.1. Extended saddle-point condition (ESPC) for mized

optimization
Consider the following MINLP:
(Pn) : 12’1;1 f(z,y), € R’ and y e D¥ (7)
subject to h(z,y) =0 and g(z,y) <0,
where f is continuous and differentiable with respect to z, and g = (g1,...,9-)7
and h = (hy,...,hm)T are general functions that are not necessarily continuous or

differentiable. We further assume that f is lower bounded, while g and A can be
unbounded. ‘

The goal of solving P, is to find a constrained local minimum (z*,y*) with
respect to Ny, (z*, %), the mixed neighborhood of (z*,y*). To define Ny, (z,y), we
need to specify its continuous and discrete counterparts. Although a continuous
neighborhood is well defined, there is no accepted definition of a discrete neighbor-
hood. We define it as follows:

Definition 3.1. A user-defined discrete maz'ghbor‘h,,oocl1 Na(y) of y € DY is a finite
user-defined set of points {y’ € D"}, where y’ is reachable from y in one step,
Y € Nya(y) <= y € Na(y'), and every y”' can be reached from any y in one or more
steps through neighboring points. h

Strategies for Solving Partitioned Temporal Planning Problems 775

Intuitively, Ng(y) represents points that are perturbed from y, with no require-
ment that there be valid state transitions from y. Next, we define a mixed neigh-
borhood and a constrained local minimum in this neighborhood:

Definition 3.2. A user-defined mized neighborhood Ny, (z,y) in mixed space R? x |
D% is:

Nim(@,9) = {(w',wlz’e/vc(z)} u {(w,y’)ly'emy)}. (®)

Definition 3.3. Point (z*,y*) is a CLM,, (a constrained local minimum in a
mized neighborhood) of Py, if (z*,y*) is feasible and f(z*,y*) < f(z,y) for all
feasible (z,y) € N (z*, y*).

There are two distinct features of CLM,,. First, the set of CLM,, of a problem
is neighborhood dependent because it depends on the user-defined discrete neigh-
borhood; that is, (z,y) may be CLM,, with respect to Nn(z,y) but may not be
with respect to NV, (z,y). Although the choice of neighborhoods does not affect the
validity of a search as long as a consistent definition is used throughout, it may af-
fect the time to find a CLM,,. Second, a discrete neighborhood has a finite number
of points. As a result, the verification of a point to be CLM,, with respect to its
discrete neighborhood can be done by comparing its objective value against those
of the finite number of discrete neighboring points. This feature allows the search of
a descent direction in discrete neighborhood to be done by enumeration or greedy
search, rather than by differentiation.

Next, we state the following two concepts used in our theory.

Definition 3.4. The ¢;-penalty function of P, in (7) is defined as follows:

Lin(z,y,0,8) = f(z,y) + o |h(z,y)| + BT max(0,g(z,y)), (9)

where o € R™ and € R" are penalty vectors.

Definition 3.5. D(f(z',y’), D), the subdifferential of function f at (z',y’) € X xY
along direction g € X in the x subspace, represents the rate of change of f(z',y")
under an infinitely small perturbation along p. That is,

’ AN !’
flz +ep,y€) i@y (10)

Dm(f($/7y,)aﬁ) - glj;%

Since we define our mixed neighborhood to be the union of points perturbed
in either the discrete or the continuous subspace, but not both, we can develop
our theory for the two subspaces separately. In the continuous subspace, we need
the following constraint qualification condition in order to rule out the special case
in which all continuous constraints have zero subdifferential along a direction. A
similar concept is not needed in the discrete subspace because constraint functions
are not changing continuously there.

776 B. W. Wah & Y. Chen

Definition 3.6. Constraint qualification for ESPC. Solution (z*,y*) € X x Y
of P, meets the constraint qualification if there exists no direction 7 € X along
which the subdifferentials of continuous equality and continuous active 1nequahty
constraints are all zero. That is,

AP € X such that D;(h;(z”,y*),p) = 0 and D;(g;(z*,y*),5) =0
for all i € Cp and j € Cg,

where C and Cy are, respectively, the sets of indices of continuous equality and
continuous active inequality constraints.

The intuitive meaning of constraint qualification can be explained as follows.
Consider a feasible point (z’,y') and a nearby infeasible neighboring point (z’ +
7,Y'), where the objective function f at (z',y’) decreases along § and all active
constraints at (', y') have zero subdifferentials along 7. In this case, it is not possible
to find finite penalty values that penalize the violated constraints at (z’ + ;%) in
order to have a local minimum of the ¢;-penalty function at (z’,%y’) with respect
to (z' + p,%’). In short, if the above scenario is true for any direction 7 at (z',3'),
then there does not exist finite penalty values that lead to a local minimum of the
penalty function at (x/,y/).

Our constraint-qualification condition requires the subdifferential of at least
one active constraints to be non-zero along all directions § in the z subspace.
For CNLPs, the condition rules out the case in which there exists a direction g
along which all active constraints are continuous and have zero subdifferentials.
Our condition is different from the regularity condition in KKT in that, it requires
at least one of the continuous constraints to have non-zero subdifferential, whereas
the regularity condition requires the gradients of constraint functions to be all non-
zero and linearly independent. Our condition is less restricted than the regularity
condition because we can penalize an infeasible point in our £;-penalty function
using only one (rather than all) violated constraint.

Next, we state our main theorem.

Theorem 3.1. Necessary and sufficient ESPC on CLM,,of P,,. Suppose
(z*,y*) € RY x D¥ of P, satisfies the constraint qualification condition, then
(z*,y*) is a CLM,, of P, if and only if there exist finite a* > 0 and #* > 0 such
that the following is satisfied:

Lm(x*’y*’a, 5) S Lm(x*,y*,a**’lg**) S Lm(x’ y, a**’ﬁ**) (11)
where o™ > o* and §** > §*

for all (z,y) € Mn(z*,y*), a € R™, and B € R".

The proof consists of three parts. The first part proves that ESPC is necessary
and sufficient for continuous problems. The necessity proof starts from the KKT
condition, applies a Taylor-series expansion of the #;-penalty function around z*,
and proves the inequalities in (11). The sufficiency proof is done by construction.

Strategies for Solving Partitioned Temporal Planning Problems 777

The second part of the proof for ESPC of discrete problems is extended from our
previous work.?? Finally, the proof of ESPC for mixed problems is based on the
definition of mixed neighborhoods in Definition 3.2, which allows continuous and
discrete subspaces to be considered separately. We omit the details of the proof due
to space limitation.

The following corollary facilitates the implementation of (11) and is stated with-
out proof. It follows directly from Definition 3.2 on N (x,y), which allows (11) to
be partitioned into two independent necessary conditions. It allows thresholds of
penalties to be found in the discrete and continuous subspaces separately, and the
maximum values taken to be the final thresholds in mixed space. Note that such
partitioning cannot be accomplished if a mixed neighborhood based on the Carte-
sian product of N (x) and Ny4(y) were used.

Corollary 3.1. Given Np,(z,y), ESPC in (11) can be rewritten into two necessary
conditions that, collectively, are sufficient:

Lm(w*’y*aaoﬁ) S Lm(m*,y*,a**,ﬁ**) S Lm(sc*,y,a**,ﬂ**) (12)
Ln(z*, 9, ™, 8%) < Ln(z,y", o™, %) (13)

where y € Ny(y* | for given z*) and z € Nc(z* | for given y*).

3.2. ESPC for partitioned problems

Based on the results in the last section, we can now solve P; in (1) by partitioning
it into subproblems. We first show that plan z, a CLM,, with respect to its mixed
neighborhood Ny, (z), satisfies the ESPC in Theorem 3.1. To solve (1) efficiently, we
define a mixed neighborhood for partitioned problems and decompose the ESPC in
(11) into a set of necessary conditions that collectively are sufficient. The partitioned
conditions can then be implemented by finding local saddle points in each stage of
P, and by resolving the unsatisfied global constraints using appropriate penalties.

To simplify our discussion, we do not partition z(t) in stage ¢ into discrete and
continuous parts in the following derivation, although it is understood that each
stage will need to be further decomposed in the same way as in (8). To enable the
partitioning of the ESPC into independent necessary conditions, we define Ny(2),
the neighborhood of 2 for a partitioned problem, as follows.

Definition 3.7. N,(z), the mized neighborhood of z for a partitioned problem, is:

N N
Ny(z) = | JN#(2) = | {z
t=0

t=0

2'(t) € Nin(2(¢)) and Vz; ¢ 2(t), 2, = zz-}, (14)

where N (z(t)) is the mixed neighborhood of variable vector z(t) in stage ¢.

Intuitively, NVp(z) is separated into N +1 neighborhoods, each perturbing z in
one of the stages of P;, while keeping the overlapped variables consistent across

778 B. W. Wah & Y. Chen

multiple stages. The size of Np(z) defined in (14) is smaller than the Cartesia:
product of the neighborhoods across all stages.

By considering P, as an MINLP and by defining the corresponding €1—penalt
function, we can apply Theorem 3.1 as follows.

Definition 3.8. The ¢;-penalty function for P, in (1) is

N
Lin(z,0,8,7,m) = J(2) + Z{a(t)Tlh(t)(Z(t))l + B(t)" max(0, g(t)(Z(t))}

t=0
+4T|H(2)| + T max(0,G(z)), (15,
where a(t) = (a1(t),. .., am, (t))T € R™* and B(t) = (b1(t), ..., Br, ()T € R™ are
vectors of penalties for the local constraints in stage ¢, and v = (71,...,7p)" € RF
and n = (m,...,n,)T € RY are vectors of penalties for the global constraints.

Lemma 3.1. Assuming z* of P; satisfies the constraint qualification condition in
Definition 3.6, then 2* is a CLM,, of (1) with respect to Np(z) if and only if
there exist finite nonnegative o™, 8*, v* and n* such that the following condition is
satisfied:

Lin(2%, 0, 8,7,m) < Lin (2%, ™", 8", v, 1™*) < L (2, 0™, ", 7", n™*), (16)
where ™ > o*, 3" > B*,7** > 4" and n** > 7n*

TN om: SN or *
foral a e R™*=°"", BeR™™°", vy RP, n € RY, and z € Np(z*).

Next, we show that (16) can be partitioned into a set of necessary conditions
that collectively are sufficient.

Theorem 3.2. Partitioned necessary and sufficient ESPC on CLM,, of P;. Given
Np(2), ESPC in (16) can be rewritten into /N + 2 necessary conditions that collec-
tively are sufficient:

TP (2%, at), B(t), 7™, m*) < TR, alt)™, Bt)™, v, n*)
< TR (z,a(t)™, BE)™ 7™, 0™), (17)
Lm(Z*’a**’ﬁ**)W’n) S Lm(z*7a**318**’ry**’n**)’ (18)

for all z € Nét)(z*), alt) € R™, B(t) € R, v € RP, and € RY, where t =
0,...,N and

T (2, a(t), B(t), v, m) = J(2) + o(t)T|hO (2(2))| + B(t)T max(0, 99 (2(2)))
+77|H(2)] + 1" max(0, G(2)). (19)
Theorem 3.2 shows that the original ESPC in Theorem 3.1 can be partitioned

into multiple necessary conditions, each of which corresponds to finding an extended
saddle point in a stage. With fixed v and 7, we are actually finding z(t) that solves

Strategies for Solving Partitioned Temporal Planning Problems 779

the following MINLP in stage t whose objective is biased by the global constraints:
min J(z) + Y H(2) + 7" G(2) (20)
z
subject to h(t,z(t)) =0 and g(¢,2(t)) <O0.

As a result, the solution of the original problem is now reduced to solving multiple
smaller subproblems. The bias due to the global constraints is important because
it provides better guidance in solving the subproblem in stage t.

4. Global Search Implementing ESPC

An important aspect of Theorem 3.1 over the original saddle-point condition in (5)
is that, instead of solving a system of nonlinear equations to find unique A* and
p* that minimize L(z, *, u*) at z*, it suffices to find any a** > o* and §** > §*.
Such a property allows the solution of Pp, to be implemented iteratively by looking
for any a** > o* and §** > $* in an outer loop, and for a local minimum (z*, y*)
of Liy(z,y, o, B) with respect to points in Ny, (z*,y*) in an inner loop.

Figure 3a shows the pseudo code implementing the conditions in Corollary 3.1.
The two inner loops look for local minima of L.,(z,y, ®,3) in the continuous and
discrete neighborhoods, whereas the outer loop performs ascents on a and 3 for
unsatisfied global constraints. The algorithm ends when a CLM,, has been found.

The iterative search can be extended to the partitioned conditions in Theo-
rem 3.2. One approach is to solve (20) in stage ¢ directly as a planning problem.
Since this is a well-defined MINLP, any existing solver with little modification can
be used. We have studied this approach in discrete planning domains by using
ASPEN to solve subproblems partitioned by a discrete version of Theorem 3.2.°

A more general approach for solving (20) is to look for a local saddle point of
Pgﬁ)(z,a(t),ﬂ(t),fy,n) that satisfies (17), using fixed v and 7 associated with the
global constraints. The process is shown in the two inner nested loops in Figure 3b.
After performing the local searches, the penalties on unsatisfied global constraints
are increased in the outer loop. The search iterates until a constrained local mini-
mum has been found.

Because our proposed approach does not require a unique penalty value for
each global constraint, we can separate their updates from those of z and imple-
ment the search iteratively. Such an approach cannot be used when the traditional
Lagrangian theory is applied. In the traditional theory, each global constraint must
be associated with a unique Lagrange-multiplier value when the search converges.
Without resolving all the local constraints and the global constraints together, it
will be difficult for any iterative search to converge to a unique Lagrange-multiplier
value for each global constraint.

A search based on our iterative approach may get stuck in an infeasible region
when the objective is too small or when the penalties and/or constraint violations
are too large. In this case, increasing the penalties will further deepen the infeasible
region, making it impossible for a descent algorithm to escape from this region.

780 B. W. Wah & Y. Chen

a—0; 8 — 0;
repeat
increase a; by §; if h;(x,y) # 0 for all i;
increase B; by &; if gj(z,y) £ 0 for all j;
repeat
perform descent of L (x,y, o,) with respect to x for given y;
until a local minimum of L, (z, ¥, o, 3) with respect
to z for given y has been found;
repeat
perform descent of Ly {(z,y, o, 3) with respect to y for given z;
until a local minimum of Ly (z,y, &, 8) with respect
to y for given x has been found;
until & CLMm, of P has been found or (o > &* and 8 > §*);

a) Implementation of Corollary 3.1

b) Implementation of Theorem 3.2

Fig. 3. Iterative implementation of ESPC to look for C LMy, of Pp, and that of partitioned ESPC
to look for CLMm of Pi.

To address this issue, we can change either the ascent algorithm in the two
outer loops of Figure 3b or its descent algorithm in the innermost loops. The ascent
algorithm can be changed to allow increases as well as decreases of penalties a, 3, -,
and 7. The goal of decreases is to “lower” the barrier in the penalty function in order
for local descents in the innermost loops to escape from an infeasible region. For
the same reason as in dynamic penalty methods, «, 3, 7, and 7 should be increased
gradually in order to help the search escape from local minima of L., (z,v, @, 8,7, 7).
Once a, B, v, and 7 reach their maximum thresholds, they can be scaled down, and
the search is repeated.

In a similar way, the descent algorithm in the innermost loops can be changed
to allow descents as well as ascents. Descent algorithms used in temporal plan-
ning problems can get stuck in infeasible local minima easily because functions in
planning problems may not be in closed form and their exact gradients are not avail-
able. To cope with this issue, probes generated may be accepted based on stochastic

Strategies for Solving Partitioned Temporal Planwing Problems 781

‘criteria. For example, the descent algorithm in our partitioned implementation of
ASPEN® accepts probes with larger penalty values according to the Metropolis
probability in order to allow occasional ascents. In degenerate cases, restarts may
be needed in order to escape from deep infeasible regions. :
In this paper, we only implement the first strategy, namely, the periodic de-
_creases of penalties in addition to ascents in the ¢i-penalty-function space with
respect to the penalties. It is not necessary to implement both strategies because
they offset each other in their effects.
" Yet another strategy that helps identify promising regions to explore is to re-
“lax the constraints initially and to tighten them gradually as feasible solutions to
the relaxed problem have been found. The approach allows potentially promising
starting points to be found, at a cost much lower than that of solving the original
problem. If a feasible local minimum is not found after the constraints have been
tightened, the constraints can be relaxed again in order to allow the search to move
to a different region in the search space. By relaxing and tightening the constraints
repeatedly, a search can move from one region to another. We plan to study this
strategy in the future.

5. Partitioned Implementation of MIPS

In this section, we describe briefly our extensions of the mixed-space MIPS planner,
the PDDL 2.1 benchmarks tested, and our experimental results. For comparison,
results on applying our approach on the discrete-space ASPEN planner has been
reported elsewhere.®

MIPS? is a heuristic planner that performs static analysis of a problem instance
in mixed space and continuous time, searches for an optimized sequential plan, and
performs a critical path analysis called PERT to generate optimal parallel plans
from a sequence of operators and their precedence relations. Using a weighted A*
algorithm, it finds an optimal feasible path from initial state s; to goal state sq € G
in a state space of propositional facts and numeric variables.

MIPS can handle the STRIPS subset of PDDL and can cope with numeric
quantities and durations in PDDL 2.1. We use MIPS in our experiments because
it performs well on PDDL 2.1 benchmarks and its source code is readily available.

5.1. Implementation details

Figure 4 shows SGPlang(MIPS), our planner for resolving partitioned subgoals,
using MIPS as the basic planner. SGPlang(MIPS) generates an ordered list of
goals, decomposes the £1-penalty formulation of a problem into multiple subprob-
lems, solves each locally, and resolves unsatisfied global constraints by updating
their penalties. We have made significant changes to our previous implementation
SGPlan (MIPS)® that partitions a planning problem by dividing its temporal hori-
zon into stages and that groups the problem variables based on their temporal
bindings. In SGPlan; (MIPS), the only global constraints are those that relate two

782 B. W. Wah & Y. Chen

1. procedure SGPlang(MIPS)

2 compute the relevant actions for each goal fact;

3 compute the partial orders among goal facts;

4. generate an initial ordered goal list of goal facts;

5. set iter «— O

6 repeat

7 for each goal fact in the goal list

8. call modified MIPS to solve the subproblem;
9. end_for

10. if (feasible plan found)
11. call PERT to generate & evaluate a parallel plan;
12. decrease some penalties;
13. else increase penalties v on unsatisfied
global constraints;
14. iter «— iter + 1;
15. if (iter % T == 0) dynamically re-order the goals;
16. until no change on 2z and « in an iteration;

17. end_procedure

Fig. 4. SGPlang(MIPS): Our planner for resolving partitioned subgoals using MIPS as the basic
planner.

states across stage boundaries. Since MIPS is a heuristic planner that always finds
a feasible path up the final state, such a partitioned search often pushes inconsis-
tencies to the last stage, thereby getting the search stuck in an infeasible path that
is sometimes difficult to escape. Also, the propagation of information on constraint
violations is inefficient because it is done stage-by-stage sequentially.

In our current implementation, we partition the search space based on the goal
state instead of the temporal horizon. Specifically, we formulate a subproblem for a
goal fact in such a way that there is only one goal state in each stage. We then order
the goals into a sequence and find a feasible subplan for each goal fact iteratively.

In each stage, we use local constraints to enforce valid transitions from the initial
state to the goal state. We also add global constraints to enforce the solutions of
all subproblems to be conflict-free; that is, the solution plan of a subproblem will
not invalidate the goal fact of another subproblem.

Note that our approach is different from incremental planning schemes ° that
use a goal agenda. In incremental planning, a set of target facts are maintained, and
goal states are added incrementally into the target set. The planner then extends
the solution incrementally using an enlarged target set. As a result, once a goal
state is satisfied, it will always be satisfied in subsequent extended plans. Such an
approach is deficient because the search space is increasingly larger as more goal
states are added. Moreover, it is difficult to tell which goals should be satisfied
before others.

In contrast, our planner always tries to resolve one goal fact in a stage at a time,
while incorporating related global constraints in the objective of the local problem
(see (20)). As a result, the search space of subsequent stages is not increasing,
and a substantial portion of irrelevant actions in each stage can be eliminated.

Strategies for Solving Partitioned Temporal Planning Problems 783

Moreover, we add global constraints to relate each pair of goal facts and resolve
their inconsistencies in the #;-penalty formulation and the global search. Violated
global constraints are also incorporated during each local search because they act
as biases in the objective of each local problem.

The following is a summary of the key techniques studied in this paper.

a) Search-space reduction for a subproblem (Steps 2 of Figure 4). Since there
is only one goal state for each subproblem, the relevant actions and facts can be
reduced substantially beforehand. We perform a backward relevance analysis to
exclude some irrelevant actions before applying MIPS to solve a subproblem. We
maintain an open list of unsupported facts, a close list of relevant facts, and a
relevance list of relevant actions. At the beginning, the open list contains a single
goal fact, and the relevance list is empty. In each iteration, for each fact in the open
list, we find all the actions supporting that fact and not already in the relevance list.
‘We then add these actions to the relevance list, and add the action preconditions
that are not in the close list to the open list. We move a fact from the open list to the
close list when it is processed. The analysis ends when the open list is empty. At that
point, the relevance list will contain all possible relevant actions, while excluding
those irrelevant actions. Notice that such a reduction analysis is not tight in the
‘'sense that there may still be some irrelevant actions in the relevance list.

The relevance list can be further reduced if we perform a forward analysis to
find applicable actions from the initial states before the backward analysis. However,
such forward analysis is not helpful because MIPS is a forward heuristic planner.

This analysis takes polynomial time and only needs to be performed once before
the search starts. The relevance list for each goal fact is stored and will be used
throughout the search.

b) Ordering of goals. In order to resolve more difficult goals before easier ones
during our search, we define heuristically some partial orders among goal facts (Step
3) and a random order otherwise. Based on the backward relevance analysis, we
compute the number of irrelevant actions of each goal fact, and order A before B
if A has less irrelevant actions. For goal facts with the same number of irrelevant
actions, we apply a second level of partial ordering. Specifically, for A and B with
the same number of irrelevant actions, we order A before B if ny(A) > ny(B). Here,
‘np(A) is the minimum number of preconditions of those supporting actions defined
-as follows:

np(4) = aglgi&) Tpre(@), (21)
where S(A) is the set of all actions that support goal fact A, and npre is the number
of preconditions of action a. The idea is to first resolve more difficult goals, with
less irrelevant actions and larger n,.

At the beginning of a search, we randomly generate a total ordering of the goal
facts that satisfy the partial orders (Step 4). We also periodically generate new
“total orders during the search (Step 15).

784 B. W. Wah & Y. Chen

c) Modified MIPS (Step 8). MIPS carries out a standard A* heuristic search,
where state s is evaluated by heuristic function H(s) based on a relaxed plan
extracted from s to the goal state. In SGPlang(MIPS), we use a modified MIPS
with two important changes in order to adapt it to our formulation.

First, to guide descents in the £;-penalty space of each subproblem, we modify
the heuristic function for state s as follows:

Ng
H'(s) = H(s)+ D(s) + Y _ (mia: + Cihs), (22)
i=1
where H(s) is the original heuristic function of MIPS, D(s) is a heuristic function for
penalizing action dependencies, Ng is the number of goals in the original planning
problem, 7; and (; are the penalties for the 5** goal fact G;, a; is 1 when the action
to reach s makes G; invalid and 0 otherwise, and h; is 1 when the relaxed plan in
MIPS from s to the goal state of s makes ; invalid and 0 otherwise.

Second, in expanding a node in MIPS, we refer to the relevance list generated
before and prune all actions not in the relevance list of the goal fact.

d) Heuristic objective. We include a heuristic objective D(s) in (22) to measure
solution quality:

D(s) = ap * ng, (23)

where ap is a weighting factor (0.01 in our experiments), and ng is the number of
actions in the relaxed plan of s that are dependent on actions in other subplans.
The idea here is to favor solution plans with less dependencies because independent
actions can be scheduled in parallel by PERT, leading to solution plans with shorter
durations and higher quality. In the future, we plan to study better objective func-
tions. One possibility is to apply PERT and compute the objective function at each
s and define D(s) to be the resulting quality.

e) Penalty updates. For goal fact i, we assign penalties ; and ¢; as in (22).
When a feasible plan is not found in an iteration (Steps 7-9), we increase (but
may periodically decrease) the penalties for those unsatisfied goal facts (Step 13).
Further, when a feasible plan has been found, we reduce some of the penalties,
randomly select one goal fact, and reset its penalties to zero. This allows the search
to move quickly from one local minimum to another (Step 12).

5.2. Ezperimental results

We show that SGPlang(MIPS) improves significantly over the original MIPS on
a set of PDDL2.1 benchmarks used in the Third International Planning Competi-
tion. The problems studied include DriveLogNumeric, DriveLogSim, DriveLogTime,
ZenoTravelNumeric, ZenoTravelSim, and Zeno Travel Time.

We have used the most recent executable of MIPS downloaded from its Web
site and ran it with default parameters and a maximum time limit of 107ms. All
experiments were done on an AMD Athlon MP2000 PC with Linux Redhat 7.2.

Strategies for Solving Partitioned Temporal Planning Problems 785

Distribution

0 L 1 1
0 0.5 1 1.5 2

Normalized Quality of SGPlang(MIPS) at the Same Time as MIPS (Smaller is Better)

a) Distribution of the quality of solutions found by SGPlang(MIPS), normalized with respect to
those of MIPS. Each problem evaluated by SGPlang(MIPS) was limited by the same amount of
time taken by MIPS for that problem.

Distribution

0 1] i
0 0.5 1 1.5 2

‘ Normalized Time of SGPlang(MIPS) at the Same or Better Quality as MIPS

b) Distribution of the normalized times taken by SGPlang(MIPS) to find solutions of the same or
better quality as those found by MIPS. SGPlang(MIPS) was allowed to evaluate a problem until
a solution with the same or better quality with respect to that of MIPS had been found.

Fig. 5. Normalized times and qualities of SGPlang(MIPS) with respect to MIPS on the 33
problems solvable by MIPS in more than 1 sec. but less than 10% sec. The times and qualities of
MIPS are normalized to one in both plots.

For the 114 problems studied (see Table 1), we divide them into three sets: a)
63 solvable by MIPS in 1 second; b) 33 solvable by MIPS in 10® seconds; and c)
18 unsolvable by MIPS in 10% seconds. For problems in class (a), SGPlang (MIPS)
usually takes longer time due to its overhead but can find better-quality plans in 60
problems. For those in class (b), Figure 5 plots the distribution of normalized quality
(resp. normalized time) of solutions found by SGPlang(MIPS). The results show
that SGPlang (MIPS) is able to improve over MIPS in 80.5% of the cases in quality
or 80.1% in time. For problems in class (c), SGPlang(MIPS) can solve 11 of them
in 103 seconds. There is no problem solvable by MIPS but not by SGPlang(MIPS).

786 B. W. Wah & Y. Chen

Table 1: Results on MIPS and SGPlang(MIPS) in solving some PDDL2.1 benchmark prob-
lems. All timing results are in milliseconds. Both solvers were ran with 2 maximum time
limits of 10%ms. ”-” means that no solution was found at the time limit. For MIPS, Time
and Sol list the solution time and quality (lower is better). For SGPlang(MIPS), Time;
and Soly list the time and quality of the first solution found, and Timey and Soly list
the time and quality of the final solution found within the time limit. For each problem,
a boxed number indicates the better quality between MIPS and SGPlang(MIPS).

Probiem MIPS SGPlang (MIPS)
ID Time Sol Time; Soly Timey Sols
DriveLogTimel 65 303 120 303 9360 302
DriveLogTime2 80 310 120 330 41200 253
DriveL.ogTime3 75 173 130 207 430
DriveLogTime4 75 392 130 332 7340
DriveLogTime5 103 112 130 342 15180
DriveLogTime6 124 260 130 239 121390
DriveLogTime7 123 268 130 307 91890
DriveLogTime8 235 313 150 351 9560
DriveLogTime9 233 980 230 725 13550
DriveLogTimel0 287 340 250 452 16760
DriveLogTimell 343 391 240 500 37530
DriveLogTimel2 1530 611 340 2173 18220
Drivel.ogTime13 1256 558 420 658 46350
DriveLogTimel4 2303 1049 1260 1113 92420
DriveLogTime15 9853 893 1010 703 108550
DriveLogTimel6 - - - - -
DriveLogTimel7 236244 954.94 3720 2425 264040
DriveLogTimel8 - - 33440 1809 400050
DriveLogTimel9 - - - - -
DriveLogTime20 - - 95490 1745 465300
DriveLogSim1 90 92.07 120 93 6540
DriveLogSim2 90 120 104 230
DriveLogSim3 98 40.07 120 48 340
DriveLogSim4 99 89.16 130 97 2120
DriveLogSim5 112 51.19 130 113 10430
DriveLogSim6 117 64.13 130 90 26800
DriveLogSim7 122 40.09 130 50 170
DriveLogSim8 279.1 111.26 240 127 226260
DriveLogSim9 202 264.31 240 185 85870
DriveLogSim10 269.1 61.21 230 49 450
DriveLogSim11 351 99.21 240 82 397190
DriveLogSim12 1772 252.41 370 564 319680
DriveLogSim13 1734 104.29 330 269 53760
DriveLogSim14 2403 226.44 2050 1587 289930
DriveLogSim15 13620 265.43 690 319 228280
DriveLogSim16 - - - - -
DriveLogSim17 549119 4110 875 260770
DriveLogSim18 - - 66930 702 214540
continued on next page

Strategies for Solving Partitioned Temporal Planning Problems

787

continued from |

previous page

Problem MIPS SGPlang(MIPS)
1D Time Sol Time; Soly Times Solg
DriveLogSim19 - - 54560 1006 61680
DriveLogSim20 - - 173190 771 274660
DriveLogNumericl 90 1099 120 953.07 132170
DriveLogNumeric2 89 1497 120 2025.57 22250
DriveLogNumeric3 92 907 110 1234.75 5580
DriveLogNumeric4 112 715 130 1055.4 4930
DriveLogNumeric5 124 878 130 1330.12 258770
DriveLogNumeric6 130.1 1667 220 976.76 150890
DriveLogNumeric7 123.1 866 220 100938.82 138940 895.31
DriveLogNumeric8 19680 3273 230 2242.08 1510
DriveLogNumeric9 629 3002 240 316472 37660 [1772.58
DriveLogNumeric10 278 402 250 334.16 12190
DriveL.ogNumericl1 7250 616 260 562.58 137320
DriveLogNumeric12 14320 3227 240 5015.88 7810
DriveLogNumeric13 2521 2148 380 2023.86 87080
DriveLogNumeric14 34433.1 3347 1210 11115.07 57000
DriveLogNumeric15 12421 1753 600 1593.36 298880
DriveLogNumeric16 - - - - - -
DriveLogNumeric17 - - 20580 19689.35 631190
DriveLogNumeric18 - - 10450 12836.92 264460
DriveLogNumeric19 - - 64680 26282.09 471550
DriveLogNumeric20 - - 207710 18601.27 504830
ZenoTravelTimel 50 27.257 110 28.14 130
ZenoTravel Time2 50 120 31.7 140
ZenoTravel Time3 78 18.1527 130 32.52 14380
ZenoTravel Time4 82 153.294 130 223.08 14210
ZenoTravel Time5 99 37.7473 140 22.74 230
ZenoTravel Time6 93 51.7826 120 66.65 118150
ZenoTravel Time7 112 142.179 240 115.76 48800
ZenoTravel Time8 201 160.639 210 243.91 457680
ZenoTravelTime9 223 119.82 280 109.14 221920
ZenoTravel Time10 221 181.68 240 246.85 76090
ZenoTravel Timel1l 276 155.308 210 173.99 153040
ZenoTravel Time12 353 126.007 340 209.92 195060
ZenoTravelTimel3 455 90.28 210 134.16 244140
ZenoTravelTimel4 7823 375.056 | 1920 754.95 358380
ZenoTravelSim1 80 180.01 110 173.32 130
ZenoTravelSim2 78 643.06 210 1019 68920
ZenoTravelSim3 1431 683.09 120 1048 127740
ZenoTravelSim4 124 936.11 120 1333 76590
ZenoTravelSim5 234 690.13 180 2664 10580
ZenoTravelSimé 330.1 480.12 230 849 15450
ZenoTravelSim7 213 716.16 180 1557 16380

continued on next page

788 B. W. Wah & Y. Chen

continued from previous page
Problem MIPS SGPlang(MIPS)

ID Time Sol Timey Soly Timey
ZenoTravelSim8 1243 846.13 130 923 405430
ZenoTravelSim9 1376 1256.24 | 260 1965 8960
ZenoTravelSim10 1523 1432.29 250 2163 299780
ZenoTravelSim11 3734.1 1219.19 | 240 1741 67670
ZenoTravelSim12 3551 1179.20 | 370 2055 146260
ZenoTravelSim13 3603 913.31 300 2565 122150
ZenoTravelSim14 || 1245184 1099.36 | 6060 1758 33210
ZenoTravelSim15 233530 17584 | 31000 1921 99690
ZenoTravelSim16 - - 22400 2132 251730
ZenoTravelSim17 - - 791450 5388 821840
ZenoTravelSim18 - - - - - -
ZenoTravelSim19 - - - - - -
ZenoTravelSim20 - - - - - -

ZenoTravelNumericl 72 13564 | 100 1410166 120
ZenoTravelNumeric2 70 150 17363.04 4320 6881.55
ZenoTravelNumeric3 92 7505 130 11049.28 310990
ZenoTravelNumeric4 91 16964 120 19063.51 122370
ZenoTravelNumeric5 100 19916 120 12957.98 227850
ZenoTravelNumeric6 112 35282 130 126461.99 105150
ZenoTravelNumeric? || 103.1 16472 130 14950.24 393460
ZenoTravelNumeric8 183 33543 140 52760.33 494050
ZenoTravelNumeric9 192 28047 170 20192.73 363850
ZenoTravelNumericl0 || 214.1 79564 170 95806.62 521700
ZenoTravelNumeric11 252 55480 350 135540.76 173460
ZenoTravelNumeric12 306 41310 400 63680.37 150250
ZenoTravelNumeric13 || 413 82230 340 136451.66 371210
ZenoTravelNumeric14 || 6247 233381 | 1110 234779.58 175790
ZenoTravelNumericl5 || 15890 147618 | 3100 152545.52 375150
ZenoTravelNumeric16 || 31652 143282 | 13990 134016.82 246200
ZenoTravelNumericl7 || 64438 208350 221784.16 625040 187502.56
ZenoTravelNumeric18 || 123543.4 58610 164832.79 447350 155460.01
ZenoTravelNumeric19 || 135935 212097 | 89970 324208.44 544790
ZenoTravelNumeric20 || 245335 | 89937 | | 235460 689010.03 945640 526116.64

6. Conclusions

In this paper, we have presented the theory of extended saddle points in mixed
space. By defining a mixed neighborhood in partitioned variable space, we show a
set of necessary conditions, one for each partition, that collectively are sufficient.
The theory leads to an efficient iterative scheme for resolving global constraints
across subproblems partitioned by constraints and for finding extended saddle
points in each partitioned subproblem. Using the mixed-space MIPS planner to
solve partitioned planning problems, we have demonstrated significant improve-

Strategies for Solving Partitioned Temporal Planning Problems 789

ments on some PDDL2.1 benchmark problems, both in terms of the quality of the
plans generated and the execution times to find these plans.

The partitioning approach presented is important for reducing the exponen-

tial complexity of nonlinear constrained optimization problems. By partitioning a
problem into subproblems and by reducing the search space of each partitioned
subproblem using our proposed theory, we can reduce the complexity of the over-
all problem. Further, since constraint partitioning leads to planning subproblems
of similar nature but of smaller scale, we can exploit existing planners and their
efficient pruning techniques to further reduce the search space of these subproblems.

References

1.

2.

3.

10.

11.

12.

13.

14.

15.

E. Aarts and J. Korst. Simulated Annealing and Boltzmann Machines. J. Wiley and
Sons, 1989.

M. Avriel. Nonlinear Programming: Analysis and Methods. Prentice-Hall, Inc., Engle-
wood Cliffs, NJ., 1976.

D. P. Bertsekas. Nonlinear Programming. Athena Scientific, Belmont, Massachusetts,
1999.

A. L. Blum and M. L. Furst. Fast planning through planning graph analysis. Artificial
Intelligence, 90:281-300, 1997.

B. Bonet and H. Geffner. Planning as heuristic search. Artificial Intelligence, Special
issue on Heuristic Search, 129(1), 2001.

Y. X. Chen and B. W. Wah. Automated planning and scheduling using calculus of
variations in discrete space. In Proc. Int’l Conf. on Automated Planning and Schedul-
ing, pages 2-11, June 2003.

S. Chien, et al. ASPEN - Automating space mission operations using automated
planning and scheduling. In Proc. SpaceOps. Toulouse, France, 2000.

P. Doherty and J. Kvarnstrm. Talplanner: An empirical investigation of a temporal
logic-based forward chaining planner. Proc. Sizth Int’l Workshop on Temopral Logic-
based Forword Chaining Planner, pages 47-54, 1999.

S. Edelkamp. Mixed propositional and numerical planning in the model checking in-
tegrated planning system. Proc. AIPS Workshop on Planning for Temporal Domains,
2002.

M. P. Fourman. Propositional planning. Proc. Workshop on Model Theoretic Ap-
proaches to Planning, AIPS 2000, 2000.

M. Fox and D. Long. PDDL2.1: An extension to PDDL for expressing temporal plan-
ning domains. Tech. Rep., Dept. of Computer Science, Univ. of Durham, Durhan,
UK, February 2002.

A. Gerevini and I. Serina. LPG: a planner based on local search for planning graphs
with action costs. Proc. of the Sizth Int. Conf. on Al Planning and Scheduling, pages
12-22, 2002.

N. I. M. Gould, D. Orban, and Ph. L. Toint. An interior-point L1-penalty method
for nonlinear optimization. Technical Report RAL-TR-2003-022 Rutherford Appleton
Laboratory Chilton, Oxfordshire, UK, 2003.

J. Hoffmann and B. Nebel. The FF planning system: Fast plan generation through
heuristic search. J. of Artificial Intelligence Research, 14:253-302, 2001.

A. K. Jonsson, P. H. Morris, N. Muscettola, and K. Rajan. Planning in interplanetary
space: Theory and practice. In Proc. 2nd Int’l NASA Workshop on Planning and
Scheduling for Space. NASA, 2000.

790 B. W. Wah & Y. Chen

16.

17.

18.

19.

20.
21.

22.

23.

24.

25.
26.
27.
28.
29.
30.

31.

32.

33.

34.

H. Kautz and B. Selman. Pushing the envelope: planning, propositional logic, ar
stochastic search. Proceedings of the 13th Nationael Conference on Artificial Intell
gence (AAAI-96), pages 11941201, 1996.

H. Kautz and B. Selman. Unifying SAT-based and graph-based planning. In Pro
Int’l Joint Conf. on Artificial Intelligence. IJCAI, 1999. '

H. Kautz and J. P. Walser. Integer optimization models of Al planning problems. T7
Knowledge Engineering Review, 15(1):101-117, 2000.

J. Koehler and J. Hoffmann. On reasonable and forced goal ordering and their use i
an agenda-driven planning algorithm. J. of AT Research, 12:339-386, 2000.

F. Lin. A planner called R. Al Magazine, pages 7376, 2001.

D. Long and M. Fox. Efficient implementation of the plan graph in STAN. J. of 4
Research (JAIR), 1998.

D. Nau, H. Muoz-Avila, Y. Cao, A. Lotem, and S. Mitchell. Total-order planning wit.
partially ordered subtasks. In Proc. Int’l Joint Conf. on Artificial Intelligence, page
425-430. IJCAI, 2001.

R. S. Nigenda, X. Nguyen, and S. Kambhampati. AltAlt: Combining the advantage
of Graphplan and heuristic state search. Technical report, Arizona State University
2000.

J. Penberethy and D. Weld. UCPOP: A sound, complete, partial order planner fo
ADL. In Proc. 3rd Int. Conf. on Principle of Knowledge Representation and Reason
ing, pages 103-114, 1992.

J. Penberethy and D. Weld. Temporal planning with continuous change. In Proc. 12t}
National Conf. on Al pages 1010-1015. AAAI, 1994.

R. L. Rardin. Optimization in Operations Research. Prentice Hall, 1998.

I. Refanidis and 1. Vliahavas. The GRT planner. A Magazine, pages 63-66, 2001.

D. Smith, J. Frank, , and A. Jonsson. Bridging the Gap between Planning and
Scheduling. Konwledge Engineering Review, 15(1):47-83, 2000.

M. B. D. Subbarac and S. Kambhampati. Sapa: A domain-independent heuristic
metric temporal planner. Technical report, Arizona State University, 2002.

A. Tate, B. Drabble, and R. Kirby. O-Plan2: an open architecture for command,
planning and control. Intelligent Scheduling, pages 213-239, 1994.

B. W. Wah and Y. X. Chen. Partitioning of temporal planning problems in mixed
space using the theory of extended saddle points. In Proc. IEEE Int’l Conf. on Tools
with Artificial Intelligence, pages 266-273, November 2003.

B. W. Wah and Z. Wu. The theory of discrete Lagrange multipliers for nonlinear
discrete optimization. Principles and Practice of Constraint Programming, pages 28—
42, October 1999.

D. Wilkins. Can Al planners solve practical problems? Computational Intelligence,
pages 232-246, 1990.

S. Wolfman and D. Weld. Combining linear programming and satisfiability solving
for resource planning. The Knowledge Engineering Review, 15(1), 2000.

