
 Distributed and Parallel Databases , 2005
c© 2005 Springer Science + Business Media, Inc. Manufactured in The Netherlands.

DOI: 10.1007/s10619-005-3296-1

Stream Cube: An Architecture1

for Multi-Dimensional Analysis of Data Streams2

JIAWEI HAN hanj@cs.uiuc.edu3
University of Illinois4

YIXIN CHEN chen@cse.wustl.edu5
Washington University, St. Louis6

GUOZHU DONG gdong@cs.wright.edu7
Wright State University8

JIAN PEI jpei@cs.sfu.ca9
Simon Fraser University, B. C., Canada10

BENJAMIN W. WAH b-wah@uiuc.edu11
University of Illinois12

JIANYONG WANG jianyong@tsinghua.edu.cn13
Tsinghua University, Beijing, China14

Y. DORA CAI ycai@ncsa.uiuc.edu15
University of Illinois16

Recommended by: Ahmed Elmagarmid17

Published online: xx xx18

Abstract. Real-time surveillance systems, telecommunication systems, and other dynamic environments often19
generate tremendous (potentially infinite) volume of stream data: the volume is too huge to be scanned multiple20
times. Much of such data resides at rather low level of abstraction, whereas most analysts are interested in relatively21
high-level dynamic changes (such as trends and outliers). To discover such high-level characteristics, one may need22
to perform on-line multi-level, multi-dimensional analytical processing of stream data. In this paper, we propose23
an architecture, called stream cube, to facilitate on-line, multi-dimensional, multi-level analysis of stream data.24

For fast online multi-dimensional analysis of stream data, three important techniques are proposed for efficient25
and effective computation of stream cubes. First, a tilted time frame model is proposed as a multi-resolution model26
to register time-related data: the more recent data are registered at finer resolution, whereas the more distant data27
are registered at coarser resolution. This design reduces the overall storage of time-related data and adapts nicely28
to the data analysis tasks commonly encountered in practice. Second, instead of materializing cuboids at all levels,29
we propose to maintain a small number of critical layers. Flexible analysis can be efficiently performed based on30
the concept of observation layer and minimal interesting layer. Third, an efficient stream data cubing algorithm31
is developed which computes only the layers (cuboids) along a popular path and leaves the other cuboids for32
query-driven, on-line computation. Based on this design methodology, stream data cube can be constructed and33
maintained incrementally with a reasonable amount of memory, computation cost, and query response time. This34
is verified by our substantial performance study.35

2 HAN ET AL.

Stream data cube architecture facilitates online analytical processing of stream data. It also forms a preliminary36
data structure for online stream data mining. The impact of the design and implementation of stream data cube in37
the context of stream data mining is also discussed in the paper.38

1. Introduction39

With years of research and development of data warehousing and OLAP technology [9,40
15], a large number of data warehouses and data cubes have been successfully constructed41
and deployed in applications, and data cube has become an essential component in most42
data warehouse systems and in some extended relational database systems and has been43
playing an increasingly important role in data analysis and intelligent decision support.44

The data warehouse and OLAP technology is based on the integration and consolidation45
of data in multi-dimensional space to facilitate powerful and fast on-line data analysis.46
Data are aggregated either completely or partially in multiple dimensions and multiple47
levels, and are stored in the form of either relations or multi-dimensional arrays [1, 29]. The48
dimensions in a data cube are of categorical data, such as products, region, time, etc., and49
the measures are numerical data, representing various kinds of aggregates, such as sum,50
average, variance of sales or profits, etc.51

The success of OLAP technology naturally leads to its possible extension from the52
analysis of static, pre-integrated, historical data to that of current, dynamically changing53
data, including time-series data, scientific and engineering data, and data produced in other54
dynamic environments, such as power supply, network traffic, stock exchange, telecommu-55
nication data flow, Web click streams, weather or environment monitoring, etc.56

A fundamental difference in the analysis of stream data from that of relational and57
warehouse data is that the stream data is generated in huge volume, flowing in-and-out58
dynamically, and changing rapidly. Due to limited memory or disk space and processing59
power available in today’s computers, most data streams may only be examined in a60
single pass. These characteristics of stream data have been emphasized and investigated by61
many researchers, such as [6, 7, 12, 14, 16], and efficient stream data querying, clustering62
and classification algorithms have been proposed recently (such as [12, 14, 16, 17, 20]).63
However, there is another important characteristic of stream data that has not drawn enough64
attention: Most of stream data resides at rather low level of abstraction, whereas an analyst65
is often more interested in higher and multiple levels of abstraction. Similar to OLAP66
analysis of static data, multi-level, multi-dimensional on-line analysis should be performed67
on stream data as well.68

The requirement for multi-level, multi-dimensional on-line analysis of stream data,69
though desirable, raises a challenging research issue: “Is it feasible to perform OLAP70
analysis on huge volumes of stream data since a data cube is usually much bigger than the71
original data set, and its construction may take multiple database scans?”72

In this paper, we examine this issue and present an interesting architecture for on-73
line analytical analysis of stream data. Stream data is generated continuously in a dynamic74
environment, with huge volume, infinite flow, and fast changing behavior. As collected, such75
data is almost always at rather low level, consisting of various kinds of detailed temporal76
and other features. To find interesting or unusual patterns, it is essential to perform analysis77
on some useful measures, such as sum, average, or even more sophisticated measures, such78

STREAM CUBE: AN ARCHITECTURE FOR MULTI-DIMENSIONAL ANALYSIS 3

as regression, at certain meaningful abstraction level, discover critical changes of data, and79
drill down to some more detailed levels for in-depth analysis, when needed.80

To illustrate our motivation, let’s examine the following examples.81

Example 1. A power supply station can watch infinite streams of power usage data, with82
the lowest granularity as individual user, location, and second. Given a large number of83
users, it is only realistic to analyze the fluctuation of power usage at certain high levels,84
such as by city or street district and by quarter (of an hour), making timely power supply85
adjustments and handling unusual situations.86

Conceptually, for multi-dimensional analysis, one can view such stream data as a virtual87
data cube, consisting of one or a few measures and a set of dimensions, including one time88
dimension, and a few other dimensions, such as location, user-category, etc. However, in89
practice, it is impossible to materialize such a data cube, since the materialization requires a90
huge amount of data to be computed and stored. Some efficient methods must be developed91
for systematic analysis of such data.92

Example 2. Suppose that a Web server, such as Yahoo.com, receives a huge volume of93
Web click streams requesting various kinds of services and information. Usually, such94
stream data resides at rather low level, consisting of time (down to subseconds), Web page95
address (down to concrete URL), user ip address (down to detailed machine IP address),96
etc. However, an analyst may often be interested in changes, trends, and unusual patterns,97
happening in the data streams, at certain high levels of abstraction. For example, it is98
interesting to find that the Web clicking traffic in North America on sports in the last99
15 minutes is 40% higher than the last 24 hours’ average.100

From the point of view of a Web analysis provider, given a large volume of fast changing101
Web click streams, and with limited resource and computational power, it is only realistic102
to analyze the changes of Web usage at certain high levels, discover unusual situations,103
and drill down to some more detailed levels for in-depth analysis, when needed, in order to104
make timely responses.105

Interestingly, both the analyst and analysis provider share a similar view on such stream106
data analysis: instead of bogging down to every detail of data stream, a demanding request is107
to provide on-line analysis of changes, trends and other patterns at high levels of abstraction,108
with low cost and fast response time.109

In this study, we take Example 2 as a typical scenario and study how to perform efficient110
and effective multi-dimensional analysis of stream data, with the following contributions.111

1. For on-line stream data analysis, both space and time are critical. In order to avoid im-112
posing unrealistic demand on space and time, instead of computing a fully materialized113
cube, we suggest to compute a partially materialized data cube, with a tilted time frame114
as its time dimension model. In the tilted time frame, time is registered at different levels115
of granularity. The most recent time is registered at the finest granularity; the more116
distant time is registered at coarser granularity; the level of coarseness depends on the117
application requirements and on how old the time point is. This model is sufficient for118
most analysis tasks, and at the same time it also ensures that the total amount of data to119
retain in memory or to be stored on disk is small.120

4 HAN ET AL.

2. Due to limited memory space in stream data analysis, it is often too costly to store121
a precomputed cube, even with the tilted time frame, which substantially compresses122
the storage space. We propose to compute and store only two critical layers (which123
are essentially cuboids) in the cube: (1) an observation layer, called o-layer, which is124
the layer that an analyst would like to check and make decisions for either signaling125
the exceptions or drilling on the exception cells down to lower layers to find their126
corresponding lower level exceptions; and (2) the minimal interesting layer, called127
m-layer, which is the minimal layer that an analyst would like to examine, since it is128
often neither cost-effective nor practically interesting to examine the minute detail of129
stream data. For example, in Example 1, we assume that the o-layer is user-region,130
theme, and quarter, while the m-layer is user, sub-theme, and minute.131

3. Storing a cube at only two critical layers leaves a lot of room at what to compute and132
how to compute for the cuboids between the two layers. We propose one method, called133
������������ 	�
��, which rolls up the cuboids from the m-layer to the o-layer, by134
following one popular drilling path, materializes only the layers along the path, and135
leave other layers to be computed only when needed. Our performance study shows136
that this method achieves a reasonable trade-off between space, computation time, and137
flexibility, and has both quick aggregation time and exception detection time.138

The rest of the paper is organized as follows. In Section 2, we define the basic concepts139
and introduce the research problem. In Section 3, we present an architectural design for140
online analysis of stream data by defining the problem and introducing the concepts of tilted141
time frame and critical layers. In Section 4, we present the popular-path cubing method,142
an efficient algorithm for stream data cube computation that supports on-line analytical143
processing of stream data. Our experiments and performance study of the proposed methods144
are presented in Section 5. The related work and possible extensions of the model are145
discussed in Section 6, and our study is concluded in Section 7.146

2. Problem definition147

In this section, we introduce the basic concepts related to data cubes, multi-dimensional148
analysis of stream data, and stream data cubes, and define the problem of research.149

The concept of data cube [15] was introduced to facilitate multi-dimensional, multi-level150
analysis of large data sets.151

Let D be a relational table, called the
��� ��
��, of a given cube. The set of all attributes152
A in D are partitioned into two subsets, the dimensional attributes DIM and the measure153
attributes M (so DIM ∪ M = A and DIM ∩ M = φ). The measure attributes functionally154
depend on the dimensional attributes inDB and are defined in the context of data cube using155
some typical aggregate functions, such as ������ ���� ���, or some more sophisticated156
computational functions, such as standard deviation, regression, etc.157

A tuple with schema A in a multi-dimensional space (i.e., in the context of data cube)158
is called a cell. Given three distinct cells c1, c2 and c3, c1 is an ancestor of c2, and c2 a159
descendant of c1 iff on every dimensional attribute, either c1 and c2 share the same value,160
or c1’s value is a generalized value of c2’s in the dimension’s concept hierarchy. c2 is a161

STREAM CUBE: AN ARCHITECTURE FOR MULTI-DIMENSIONAL ANALYSIS 5

sibling of c3 iff c2 and c3 have identical values in all dimensions except one dimension A162
where c2[A] and c3[A] have the same parent in the dimension’s domain hierarchy. A cell163
which has k non-∗ values is called a k-d cell. (We use “∗” to indicate “all”, i.e., the highest164
level on any dimension.)165

A tuple c ∈ D is called a base cell. A base cell does not have any descendant. A cell c166
is an aggregated cell iff it is an ancestor of some base cell. For each aggregated cell c, its167
values on the measure attributes are derived from the complete set of descendant base cells168
of c. An aggregated cell c is an iceberg cell iff its measure value satisfies a specified iceberg169
condition, such as measure ≥val1. The data cube that consists of all and only the iceberg170
cells satisfying a specified iceberg condition I is called the iceberg cube of a database D171
under condition I.172

Notice that in stream data analysis, besides the popularly used SQL aggregate-based173
measures, such as ������ ���� ���� ���, and ���, regression is a useful measure.174
A stream data cell compression technique LCR (linearly compressed representation) is175
developed in [10] to support efficient on-line regression analysis of stream data in data176
cubes. The study [10] shows that for linear and multiple linear regression analysis, only a177
small number of regression measures rather than the complete stream of data need to be178
registered. This holds for regression on both the time dimension and the other dimensions.179
Since it takes a much smaller amount of space and time to handle regression measures in180
a multi-dimensional space than handling the stream data itself, it is preferable to construct181
regression (-measured) cubes by computing such regression measures.182

A data stream is considered as a huge volume, infinite flow of data records, such as Web183
click streams, telephone call logs, and on-line transactions. The data is collected at the184
most detailed level in a multi-dimensional space, which may represent time, location, user,185
theme, and other semantic information. Due to the huge amount of data and the transient186
behavior of data streams, most of the computations will scan a data stream only once.187
Moreover, the direct computation of measures at the most detailed level may generate a188
huge number of results but may not be able to disclose the general characteristics and189
trends of data streams. Thus data stream analysis will require to consider aggregations and190
analysis at multi-dimensional and multi-level space.191

Our task is to support efficient, high-level, on-line, multi-dimensional analysis of such192
data streams in order to find unusual (exceptional) changes of trends, according to users’193
interest, based on multi-dimensional numerical measures. This may involve construction194
of a data cube, if feasible, to facilitate on-line, flexible analysis.195

3. Architecture for on-line analysis of data streams196

To facilitate on-line, multi-dimensional analysis of data streams, we propose a stream cube197
architecture with the following features: (1) tilted time frame, (2) two critical layers: a198
minimal interesting layer and an observation layer, and (3) partial computation of data199
cubes by popular-path cubing. The stream data cubes so constructed are much smaller than200
those constructed from the raw stream data but will still be effective for multi-dimensional201
stream data analysis tasks.202

6 HAN ET AL.

Figure 1. Three models for tilted time windows.

3.1. Tilted time frame203

In stream data analysis, people are usually interested in recent changes at a fine scale, but204
long term changes at a coarse scale. Naturally, one can register time at different levels of205
granularity. The most recent time is registered at the finest granularity; the more distant time206
is registered at coarser granularity; and the level of coarseness depends on the application207
requirements and on how old the time point is (from the current time).208

There are many possible ways to design a titled time frame. We adopt three kinds of209
models: (1) natural tilted time window model (figure 1(a)), (2) logarithmic scale tilted210
time window model (figure 1(b)), and (3) progressive logarithmic tilted time window model211
(figure 1(c)).212

A natural tilted time window model is shown in figure l(a), where the time frame is213
structured in multiple granularity based on natural time scale: the most recent 4 quarters214
(15 minutes), then the last 24 hours, 31 days, and 12 months (the concrete scale will be215
determined by applications). Based on this model, one can compute frequent itemsets in216
the last hour with the precision of quarter of an hour, the last day with the precision of hour,217
and so on, until the whole year, with the precision of month.1 This model registers only 4 +218
24 + 31 + 12 = 71 units of time for a year instead of 366 × 24 × 4 = 35,136 units, a saving219
of about 495 times, with an acceptable trade-off of the grain of granularity at a distant time.220

The second choice is logarithmic tilted time model as shown in figure l(b), where the time221
frame is structured in multiple granularity according to a logarithmic scale. Suppose the222
current window holds the transactions in the current quarter. Then the remaining slots are223
for the last quarter, the next two quarters, 4 quarters, 8 quarters, 16 quarters, etc., growing at224
an exponential rate. According to this model, with one year of data and the finest precision225
at quarter, we will need � log2(365 × 24 × 4) + 1� = 17 units of time instead of 366 ×226
24 × 4 = 35,136 units. That is, we will just need 17 time frames to store the compressed227
information.228

The third choice is a progressive logarithmic tilted time frame, where snapshots are stored229
at differing levels of granularity depending upon the recency. Snapshots are classified into230
different frame number which can vary from 1 to max frame, where log2(T) − max-capacity231
≤ max frame ≤ log2(T), max-capacity is the maximal number of snapshots held in each232
frame, and T is the clock time elapsed since the beginning of the stream.233

STREAM CUBE: AN ARCHITECTURE FOR MULTI-DIMENSIONAL ANALYSIS 7

Each snapshot is represented by its timestamp. The rules for insertion of a snapshot t234
(at time t) into the snapshot frame table are defined as follows: (1) if (t mod 2i) = 0 but235
(t mod 2i+1)
= 0, t is inserted into frame number i if i ≤ max frame; otherwise (i.e., i >236
max frame), t is inserted into max frame; and (2) each slot has a max capacity (which is 3237
in our example of figure l(c)). At the insertion of t into frame number i, if the slot already238
reaches its max capacity, the oldest snapshot in this frame is removed and the new snapshot239
inserted. For example, at time 70, since (70 mod 21) = 0 but (70 mod 22)
= 0, 70 is inserted240
into frame-number 1 which knocks out the oldest snapshot 58 if the slot capacity is 3. Also,241
at time 64, since (64 mod 26) = 0 but max frame = 5, so 64 has to be inserted into frame 5.242
Following this rule, when slot capacity is 3, the following snapshots are stored in the tilted243
time window table: 16, 24, 32, 40, 48, 52, 56, 60, 62, 64, 65, 66, 67, 68, 69, 70, as shown244
in figure l(c). From the table, one can see that the closer to the current time, the denser are245
the snapshots stored.246

In the logarithmic and progressive logarithmic models discussed above, we have247
assumed that the base is 2. Similar rules can be applied to any base α, where α is an248
integer and α > 1. The tilted time models shown above are sufficient for usual time-related249
queries, and at the same time it ensures that the total amount of data to retain in memory250
and/or to be computed is small.251

Both the natural tilted window model and the progressive logarithmic tilted time window252
model provide a natural and systematic way for incremental insertion of data in new253
windows and gradually fading out the old ones. To simplify our discussion, we will only254
use the natural titled time window model in the following discussions. The methods derived255
from this time window can be extended either directly or with minor modifications to other256
time windows.257

In our data cube design, we assume that each cell in the base cuboid and in an aggregate258
cuboid contains a tilted time frame, for storing and propagating measures in the computation.259
This tilted time window model is sufficient to handle usual time-related queries and mining,260
and at the same time it ensures that the total amount of data to retain in memory and/or to261
be computed is small.262

3.2. Critical layers263

Even with the tilted time frame model, it could still be too costly to dynamically compute264
and store a full cube since such a cube may have quite a few dimensions, each containing265
multiple levels with many distinct values. Since stream data analysis has only limited266
memory space but requires fast response time, a realistic arrangement is to compute and267
store only some mission-critical cuboids in the cube.268

In our design, two critical cuboids are identified due to their conceptual and computational269
importance in stream data analysis. We call these cuboids layers and suggest to compute270
and store them dynamically. The first layer, called m-layer, is the minimally interesting271
layer that an analyst would like to study. It is necessary to have such a layer since it272
is often neither cost-effective nor practically interesting to examine the minute detail of273
stream data. The second layer, called o-layer, is the observation layer at which an analyst274
(or an automated system) would like to check and make decisions of either signaling the275

8 HAN ET AL.

Figure 2. Two critical layers in the stream cube.

exceptions, or drilling on the exception cells down to lower layers to find their lower-level276
exceptional descendants.277

Example 3. Assume that “(individual-user, URL, second)” forms the primitive layer of the278
input stream data in Example 1. With the tilted time frame as shown in figure 1, the two279
critical layers for power supply analysis are: (1) the m-layer: (user group, URL group,280
minute), and (2) the o-layer: (∗, theme, quarter), as shown in figure 2.281

Based on this design, the cuboids lower than the m-layer will not need to be computed282
since they are out of the minimal interest of users. Thus the minimal interesting cells that283
our base cuboid needs to compute and store will be the aggregate cells computed with284
grouping by user group, URL group, and minute. This can be done by aggregations (1) on285
two dimensions, user and URL, by rolling up from individual user to user group and from286
URL to URL group, respectively, and (2) on time dimension by rolling up from second to287
minute.288

Similarly, the cuboids at the o-layer should be computed dynamically according to the289
tilted time frame model as well. This is the layer that an analyst takes as an observation290
deck, watching the changes of the current stream data by examining the slope of changes291
at this layer to make decisions. The layer can be obtained by rolling up the cube (1) along292
two dimensions to ∗ (which means all user category) and theme, respectively, and (2) along293
time dimension to quarter. If something unusual is observed, the analyst can drill down to294
examine the details and the exceptional cells at low levels.295

3.3. Partial materialization of stream cube296

Materializing a cube at only two critical layers leaves much room for how to compute the297
cuboids in between. These cuboids can be precomputed fully, partially, not at all (i.e., leave298
everything computed on-the-fly), or precomputing exception cells only. Let us first examine299
the feasibility of each possible choice in the environment of stream data. Since there may300

STREAM CUBE: AN ARCHITECTURE FOR MULTI-DIMENSIONAL ANALYSIS 9

be a large number of cuboids between these two layers and each may contain many cells,301
it is often too costly in both space and time to fully materialize these cuboids, especially302
for stream data. Moreover, for the choice of computing exception cells only, the problem303
becomes how to set up an exception threshold. A too low threshold may lead to computing304
almost the whole cube, whereas a too high threshold may leave a lot of cells uncomputed305
and thus not being able to answer many interesting queries efficiently. On the other hand,306
materializing nothing forces all the aggregate cells to be computed on-the-fly, which may307
slow down the response time substantially. Thus, it seems that the only viable choice is to308
perform partial materialization of a stream cube.309

According to the above discussion, we propose the following framework in our compu-310
tation.311

Framework 3.1 (Partial materialization of stream data). The task of computing a stream312
data cube is to (1) compute two critical layers (cuboids): (i) m-layer (the minimal interest313
layer), and (ii) o-layer (the observation layer), and (2) materialize only a reasonable fraction314
of the cuboids between the two layers which can allow efficient on-line computation of315
other cuboids.316

Partial materialization of data cubes has been studied in previous works [9, 19]. With317
the concern of both space and on-line computation time, the partial computation of stream318
data cube poses more challenging issues than its static counterpart: partial computation of319
nonstream data cubes, since we have to ensure not only the limited size of the precomputed320
cube and limited precomputation time, but also efficient online incremental updating upon321
the arrival of new stream data, as well as fast online drilling to find interesting aggregates322
and patterns. Obviously, such partial computation should lead to the computation of a rather323
small number of cuboids, fast updating, and fast online drilling. We will examine how to324
design such a stream data cube in the next section.325

4. Stream data cube computation326

From the above analysis, one can see that in order to design an efficient and scalable stream327
data cube, it is essential to lay out clear design requirements so that we can ensure that the328
cube can be computed and maintained efficiently in the stream data environment and can329
provide fast online multidimensional stream data analysis. We have the following design330
requirements.331

1. � ������ ���� 	�
� ������
� ��������� ���
�� �� ��!� "��� �����	� �� ��#����� ���� ������332
��$ Since a stream data cube takes a set of potentially infinite data streams as inputs,333
if the size of the base-cuboid grows indefinitely with the size of data streams, the size334
of stream data cube will grow indefinitely. It is impossible to realize such a stream data335
cube. Fortunately, with tilted time frame, the distant time is compressed substantially336
and the very distant data beyond the specified time frame are faded out (i.e., removed)337
according to the design. Thus the bounded time frames transform infinite data streams338
into finite, compressed representation, and if the data in the other dimensions of the base339
cuboid are relatively stable with time, the entire base-cuboid (with the time dimensions340
included) should be relatively stable in size.341

10 HAN ET AL.

2. � ������ ���� 	�
� ������
� ��	��������� �������
�� "��� �����	� �� ��#����� ���� ����342
����$ Since a stream data cube takes potentially infinite data streams as inputs, it is343
impossible to construct the cube from scratch and the cube must be incrementally344
updatable. Any cube design that is not incrementally updatable cannot be used as the345
architecture of a stream cube.346

3. ��� ���� ��%�� #�� ��	�������� 	���������� �# � ������ ���� 	�
� ������
� ����������347
��� �� ��� ��!� �# ��� ��	�������� ������� �# ���
��� 	�
��� �# ��� 	�
�$ To incremen-348
tally update a stream data cube, one must start from the incremental portion of the349
base cuboid and use an efficient algorithm to compute it. The time to compute such an350
incremental portion of the cube should be proportional (desirably, linear) to the size of351
the incremental portion of the base cuboid of the cube.352

4. ��� ������ ���� 	�
� ������ #�	������� ��� #��� ������ ������� ���� �� ����� ���������353
�� ���� ��� 	��
������� �# � ����� ���
�� �# ����������$ Although it is impossible354
to materialize all the cells of a stream cube, it is expected that the drilling along a355
single dimension or along the combination of a small number of dimensions be fast.356
Materialization of some portion of the cube will facilitate such fast online presentation.357

Based on the above design requirements, we examine the methods for the efficient358
computation of stream cubes.359

4.1. Design of stream cube architecture: A popular path architecture360

According to our discussion in Section 3, there are three essential components in a stream361
data cube: (1) tilted time frame, (2) two critical layers: a minimal interesting layer and an362
observation layer, and (3) partial computation of data cubes.363

In data cube computation, iceberg cube [8] which stores only the aggregate cells that364
satisfy an iceberg condition has been used popularly as a data cube architecture since it may365
substantially reduce the size of a data cube when data is sparse. In stream data analysis,366
people may often be interested in only the substantially important or exceptional cube367
cells, and such important or exceptional conditions can be formulated as typical iceberg368
conditions. Thus it seems that iceberg cube could be an interesting model for stream cube369
architecture. Unfortunately, iceberg cube cannot accommodate the incremental update with370
the constant arrival of new data and thus cannot be used as the architecture of stream data371
cube. We have the following observation.372

Framework 4.1 (No iceberg cubing for stream data). The iceberg cube model does not fit373
the stream data cube architecture. Nor does the exceptional cube model.374

Rationale. With the incremental and gradual arrival of new stream data, as well as the375
incremental fading of the obsolete data from the time scope of a data cube, it is required376
that incremental update be performed on such a stream data cube. It is unrealistic to377
constantly recompute the data cube from scratch upon incremental updates due to the378
tremendous cost of recomputing the cube on the fly. Unfortunately, such an incremental379
model does not fit the iceberg cube computation model due to the following observation:380
Let a cell “〈di,. . ., dk〉: mik” represent a k − i + 1 dimension cell with di, . . . , dk as its381
corresponding dimension values and mik as its measure value. If SAT(mik, iceberg cond) is382

STREAM CUBE: AN ARCHITECTURE FOR MULTI-DIMENSIONAL ANALYSIS 11

false, i.e., mik does not satisfy the iceberg condition, the cell is dropped from the iceberg383
cube. However, at a later time slot t′, the corresponding cube cell may get a new measure384
m′

ik related to t′. Since mik has been dropped at a previous instance of time due to its385
inability to satisfy the iceberg condition, the new measure for this cell cannot be calculated386
correctly without such information. Thus one cannot use the iceberg architecture to model a387
stream data cube unless recomputing the measure from the based cuboid upon each update.388
Similar reasoning can be applied to the case of exceptional cell cubes since the exceptional389
condition can be viewed as a special iceberg condition.390

Since iceberg cube cannot be used as a stream cube model, but materializing the full391
cube is too costly both in computation time and storage space, we propose to compute only392
a popular path of the cube as our partial computation of stream data cube, as described393
below.394

Based on the notions of the minimal interesting layer (the m-layer) and the tilted time395
frame, stream data can be directly aggregated to this layer according to the tilted time396
scale. Then the data can be further aggregated following one popular drilling path to397
reach the observation layer. That is, the popular path approach computes and maintains a398
single popular aggregation path from m-layer to o-layer so that queries directly on those399
(layers) along the popular path can be answered without further computation, whereas400
those deviating from the path can be answered with minimal online computation from401
those reachable from the computed layers. Such cost reduction makes possible the OLAP-402
styled exploration of cubes in stream data analysis.403

To facilitate efficient computation and storage of the popular path of the stream cube,404
a compact data structure needs to be introduced so that the space taken in the compu-405
tation of aggregations is minimized. A data structure, called &�����, a hyper-linked tree406
structure introduced in [18], is revised and adopted here to ensure that a compact structure407
is maintained in memory for efficient computation of multi-dimensional and multi-level408
aggregations.409

We present these ideas using an example.410

Example 4. Suppose the stream data to be analyzed contains 3 dimensions, A, B and C, each411
with 3 levels of abstraction (excluding the highest level of abstraction “∗”), as (A1, A2, A3),412
(B1, B2, B3), (C1, C2, C3), where the ordering of “∗ > Al > A2 > A3” forms a high-to-low413
hierarchy, and so on. The minimal interesting layer (the m-layer) is (A2, B2, C2), and the414
o-layer is (A1, ∗, C1). From the m-layer (the bottom cuboid) to the o-layer (the top-cuboid415
to be computed), there are in total 2 × 3 × 2 = 12 cuboids, as shown in figure 3.416

Suppose that the popular drilling path is given (which can usually be derived based on417
domain expert knowledge, query history, and statistical analysis of the sizes of intermediate418
cuboids). Assume that the given popular path is 〈(A1, ∗, C1) → (A1, ∗, C2) → (A2, ∗, C2)419
→ (A2, B1, C2) → (A2, B2, C2)〉, shown as the darkened path in figure 3. Then each path of420
an H-tree from root to leaf is ordered the same as the popular path.421

This ordering generates a compact tree because the set of low level nodes that share the422
same set of high level ancestors will share the same prefix path using the tree structure.423
Each tuple, which represents the currently in-flow stream data, after being generalized to424
the m-layer, is inserted into the corresponding path of the H-tree. An example H-tree is425
shown in figure 4. In the leaf node of each path, we store relevant measure information of426

12 HAN ET AL.

Figure 3. Cube structure from the m-layer to the o-layer.

Figure 4. H-tree structure for cube computation.

the cells of the m-layer. The measures of the cells at the upper layers are computed using427
the H-tree and its associated links.428

An obvious advantage of the popular path approach is that the nonleaf nodes represent429
the cells of those layers (cuboids) along the popular path. Thus these nonleaf nodes naturally430
serve as the cells of the cuboids along the path. That is, it serves as a data structure for431
intermediate computation as well as the storage area for the computed measures of the432
layers (i.e., cuboids) along the path.433

Furthermore, the H-tree structure facilitates the computation of other cuboids or cells in434
those cuboids. When a query or a drill-down clicking requests to compute cells outside the435
popular path, one can find the closest lower level computed cells and use such intermediate436
computation results to compute the measures requested, because the corresponding cells437
can be found via a linked list of all the corresponding nodes contributing to the cells.438

4.2. Algorithms for cube measure computation439

With popular path stream data cube design and the H-tree data structure, the popular-path-440
based stream data cubing can be partitioned into three stages: (1) the initial computation of441
(partially materialized) stream data cube by popular-path approach, (2) incremental update442

STREAM CUBE: AN ARCHITECTURE FOR MULTI-DIMENSIONAL ANALYSIS 13

of stream data cube, and (3) online query answering with the popular-path-based stream443
data cube.444

Here we present the three corresponding algorithms, one for each stage of the popular-445
path-based stream data cubing.446

First, we present an algorithm for computation of initial (partially materialized) stream447
data cube by popular-path approach.448

Algorithm 1 (Popular-path-based stream cube computation). Computing initial stream449
cube, i.e., the cuboids along the popular-path between the m-layer and the o-layer, based450
on the currently collected set of input stream data.451
������ (1) multi-dimensional multi-level stream data (which consists of a set of tuples, each452
carrying the corresponding time stamps), (2) the m and o-layer specifications, and (3) a453
given popular drilling path.454
������$ All the aggregated cells of the cuboids along the popular path between the m- and455
o- layers.456

����	
�457

1. Each tuple, which represents a minimal addressing unit of multi-dimensional multilevel458
stream data, is scanned once and generalized to the m-layer. The generalized tuple is then459
inserted into the corresponding path of the H-tree, increasing the count and aggregating460
the measure values of the corresponding leaf node in the corresponding slot of the tilted461
time frame.462

2. Since each branch of the H-tree is organized in the same order as the specified popular463
path, aggregation for each corresponding slot in the tilted time frame is performed from464
the m-layer all the way up to the o-layer by aggregating along the popular path. The465
step-by-step aggregation is performed while inserting the new generalized tuples in the466
corresponding time slot.467

3. The aggregated cells are stored in the nonleaf nodes in the H-tree, forming the computed468
cuboids along the popular path.469

�������. The H-tree ordering is based on the popular drilling path given by users or470
experts. This ordering facilitates the computation and storage of the cuboids along the path.471
The aggregations along the drilling path from the m-layer to the o-layer are performed472
during the generalizing of the stream data to the m-layer, which takes only one scan of473
stream data. Since all the cells to be computed are the cuboids along the popular path, and474
the cuboids to be computed are the nonleaf nodes associated with the H-tree, both space475
and computation overheads are minimized.476

Second, we discuss how to perform incremental update of the stream data cube in the477
popular-path cubing approach. Here we deal with the “always-grow” nature of time-series478
stream data in an “on-line,” continuously growing manner.479

The process is essentially an incremental computation method illustrated below, using the480
tilted time frame of figure 1. Assuming that the memory contains the previously computed481
m and o-layers, plus the cuboids along the popular path, and stream data arrive every second.482
The new stream data are accumulated (by generalization) in the corresponding H-tree leaf483
nodes. If the time granularity of the m-layer is minute, at the end of every minute, the data484

14 HAN ET AL.

will be aggregated and be rolled up from leaf to the higher level cuboids. When reaching485
a cuboid whose time granularity is quarter, the rolled measure information remains in the486
corresponding minute slot until it reaches the full quarter (i.e., 15 minutes) and then it rolls487
up to even higher levels, and so on.488

Notice in this process, the measure in the time interval of each cuboid will be accumulated489
and promoted to the corresponding coarser time granularity, when the accumulated data490
reaches the corresponding time boundary. For example, the measure information of every491
four quarters will be aggregated to one hour and be promoted to the hour slot, and in the492
mean time, the quarter slots will still retain sufficient information for quarter-based analysis.493
This design ensures that although the stream data flows in-and-out, measure always keeps494
up to the most recent granularity time unit at each layer.495

We outline the incremental algorithm of the method as follows.496

Algorithm 2 (Incremental update of popular-path stream cube with incoming stream497
data). Incremental computing stream cube, i.e., the cuboids along the popular-path between498
the m-layer and the o-layer, based on the previously computed cube and the newly input499
stream data.500

�����$ (1) a popular path-based stream data cube, which also includes (i) the m and o-layer501
specifications, and (ii) a given popular drilling path, and (2) a set of input multi-dimensional502
multi-level stream data (which consists of a set of tuples, each carrying the corresponding503
time stamps).504
������ An updated stream data cube (i.e., the updated popular-path cuboids (between the505
m- and o-layers).506
������$507

1. Each newly coming tuple, which represents a minimal addressing unit of multi-508
dimensional multi-level stream data, is scanned once and generalized to the m-layer. The509
generalized tuple is then inserted into the corresponding path of the H-tree. If there exists510
a corresponding leaf node in the tree, increase the count and aggregating the measure511
values of the corresponding leaf node in the corresponding slot of the tilted time frame.512
If there exists no corresponding leaf node in the tree, a new leaf node is created in the513
corresponding path of the H-tree.514

2. Since each branch of the H-tree is organized in the same order as the specified popular515
path, aggregation for each corresponding slot in the tilted time frame is performed516
from the m-layer all the way up to the o-layer by aggregating along the popular path.517
The step-by-step aggregation is performed while inserting the new generalized tuples518
finishes.519

3. If it reaches the time when a sequence of data in the lower-level time slots should be520
aggregated to a new slot in the corresponding higher level titled time window, such521
aggregation will be performed at each level of the popular path. If it reaches the time522
when the data in the most distant time slot should be dropped from the valid time scope,523
the slot in the corresponding time window will be cleared.524

4. The so computed aggregated cells are stored in the nonleaf nodes in the H-tree, forming525
the computed cuboids along the popular path.526

STREAM CUBE: AN ARCHITECTURE FOR MULTI-DIMENSIONAL ANALYSIS 15

���� ���$ Based on our design of the tilted time window, such incremental computation can527
be performed along the popular path of the H-tree. Moreover, the aggregations along the528
drilling path from the m-layer to the o-layer are performed when the input stream data come529
to the m-layer, which takes only one scan of stream data. Since all the cells in the titled530
time windows in the cuboids along the popular path are incrementally updated, the cuboids531
so computed are correctly updated stream cube, with minimal space and computation532
over-heads.533

Finally, we examine how fast online computation can be performed with such a partially534
materialized popular-path data cube. Since the query inquiring the information completely535
contained in the popular-path cuboids can be answered by directly retrieving the informa-536
tion stored in the popular-path cuboids, our discussion here will focus on retrieving the537
information involving the aggregate cells not contained in the popular-path cuboids.538

A multi-dimensional multi-level stream query usually provides a few instantiated con-539
stants and inquires information related to one or a small number of dimensions. Thus one540
can consider a query involving a set of instantiated dimensions, {Dci, . . . , Dcj}, and a set541
of inquired dimensions, {Dql, . . . , Dqk}. The set of relevant dimensions, Dr, is the union542
of the sets of instantiated dimensions and the inquired dimensions. For maximal use of543
the precom-puted information available in the popular path cuboids, one needs to find the544
highest-level popular path cuboids that contains Dr. If one cannot find such a cuboid in the545
path, one will use the base cuboid at the m-layer to compute it. Then the computation can be546
performed by fetching the relevant data set from the so found cuboid and then computing547
the cuboid consisting of the inquired dimensions.548

The online OLAP stream query processing algorithm is presented as follows.549

Algorithm 3 (Online processing of stream OLAP query). Online processing of stream550
OLAP query given the precomputed stream data cube, i.e., the cuboids along the popular-551
path between the m-layer and the o-layer.552

�����$ (1) a popular path-based stream data cube, which includes (i) the m and o-layer553
specifications, and (ii) a given popular drilling path, and (2) a given query whose relevant554
dimension set is Dr, which in turn consists of a set of instantiated dimensions, {Dci, . . . ,555
Dcj}, and a set of inquired dimensions, {Dqi, . . . , Dqk}.556
������$ A computed cuboid related to the stream OLAP query.557
������$558

1. Find the highest-level popular path cuboids that contains Dr. If one cannot find such a559
cuboid in the path, one will use the base cuboid at the m-layer to compute it. Let the560
found cuboid be S.561

2. Perform selection on S using the set of instantiated dimensions as set of constants,562
and using the set of inquired dimensions as projected attributed. Let Sc be the set of563
multidimensional data so selected.564

3. Perform on line cubing on Sc and return the result.565

���� ���$ Based on our design of the stream data cube, the highest-level popular path566
cuboid that contains Dr should contain the answers we want. Using the set of instantiated567
dimensions as set of constants, and using the set of inquired dimensions as projected568

16 HAN ET AL.

attributed, the so-obtained Sc is the minimal set of aggregated data set for answering the569
query. Thus online cubing on this set of data will derive the correct result. Obviously, such570
a computation process makes good use of the precomputed cuboids and will involve small571
space and computation overheads.572

5. Performance study573

To evaluate the effectiveness and efficiency of our proposed stream cube and OLAP com-574
putation methods, we performed an extensive performance study on synthetic datasets. Our575
result shows that the total memory and computation time taken by the proposed algorithms576
are small, in comparison with several other alternatives, and it is realistic to compute such577
a partially aggregated cube, incrementally update them, and perform fast OLAP analysis578
of stream data using such precomputed cube.579

Here we report our performance studies with synthetic data streams of various580
characteristics.2 The data stream is generated by a data generator similar in spirit to the581
IBM data generator [5] designed for testing data mining algorithms. The convention for582
the data sets is as follows: D3L3C10T 400K means there are 3 dimensions, each dimen-583
sion contains 3 levels (from the m-layer to the o-layer, inclusive), the node fan-out factor584
(cardinality) is 10 (i.e., 10 children per node), and there are in total 400 K merged m-layer585
tuples.586

Notice that all the experiments are conducted in a static environment as a simulation of587
the online stream processing. This is because the cube computation, especially for full cube588
and top-k cube, may take much more time than the stream flow allows. If this is performed589
in the online streaming environment, substantial amount of stream data could have been590
lost due to the slow computation of such data cubes. This simulation serves our purpose591
since it clearly demonstrates the cost and the possible delays of stream cubing and indicates592
what could be the realistic choice if they were put in a dynamic streaming environment.593

All experiments were conducted on a 2 GHz Pentium PC with 1 GB main memory,594
running Microsoft Windows-XP Server. All the methods were implemented using Sun595
Microsystems’ Java 2 Platform, Standard Edition, version 1.4.2.596

Our design framework has some obvious performance advantages over some alternatives597
in a few aspects, including (1) tilted time frame vs. full non-tilted time frame, (2) using598
minimal interesting layer vs. examining stream data at the raw data layer, and (3) computing599
the cube up to the apex layer vs. computing it up to the observation layer. Consequently,600
our feasibility study will not compare the design that does not have such advantages since601
they will be obvious losers.602

Since a data analyst needs fast on-line response, and both space and time are critical in603
processing, we examine both time and space consumption. In our study, besides presenting604
the total time and memory taken to compute and store such a stream cube, we compare the605
two measures (time and space) of the popular path approach against two alternatives: (1)606
the full-cubing approach, i.e., materializing all the cuboids between the m- and o-layers,607
and (2) the top-k cubing approach, i.e., materializing only the top-k measured cells of the608
cuboids between the m- and o-layers, and we set top-k threshold to be 10%, i.e., only top609
10% (in measure) cells will be stored at each layer (cuboid). Notice that top-k cubing cannot610

STREAM CUBE: AN ARCHITECTURE FOR MULTI-DIMENSIONAL ANALYSIS 17

Figure 5. Cube computation: time and memory usage vs. no. tuples at the m-layer for the data set D5L3C10.

Figure 6. Cube computation: Time and space vs. no. of dimensions for the data set L3C10I 100K .

be used for incremental stream cubing. However, since people may like to pay attention611
only to top-k cubes, we still put it into our performance study (as initial cube computation).612
From the performance results, one can see that if top-k cubing cannot compete with the613
popular path approach, with its difficulty at handling incremental updating, it will not likely614
be a choice for stream cubing architecture.615

The performance results of stream data cubing (cube computation) are reported from616
figures 5 to 7.617

Figure 5 shows the processing time and memory usage for the three approaches, with618
increasing size of the data set, where the size is measured as the number of tuples at the619
m-layer for the data set D5L3C10. Since full-cubing and top-k cubing compute all the cells620
from the m-layer all the way up to the o-layer, their total processing time is much higher621
than popular-path. Also, since full-cubing saves all the cube cells, its space consumption is622
much higher than popular-path. The memory usage of top-k cubing falls in between of the623
two approaches, and the concrete amount will depend on the k value.624

18 HAN ET AL.

Figure 7. Cube computation: Time and space vs. no. of levels for the data set D5C10T 50K . (a)Time vs. no.
levels. (b) Space vs. no. levels.

Figure 6 shows the processing time and memory usage for the three approaches, with625
an increasing number of dimensions, for the data set L3C10T 100K . figure 7 shows the626
processing time and memory usage for the three approaches, with an increasing number627
of levels, for the data set D5C10T 50K . The performance results show that popular-path628
is more efficient than both full-cubing and top-k cubing in computation time and memory629
usage. Moreover, one can see that increment of dimensions has a much stronger impact on630
the computation cost (both time and space) in comparison with the increment of levels.631

Since incremental update of stream data cube carries the similar comparative costs632
for both popular-path and full-cubing approaches, and moreover, top-k cubing is in-633
appropriate for incremental updating, we will not present this part of performance634
comparison. Notice that for incrementally computing the newly generated stream data,635
��� 	���������� ���� ������
� ������� than that shown here due to less number of cells636
involved in computation although the total memory usage may not reduce due to the need637
to store data in the layers along the popular path between two critical layers in the main638
memory.639

Here we proceed to the performance study of stream query processing with four different640
approaches: (1) full-cubing, (2) top-k cubing, (3) popular-path, and (4) no precomputation,641
which computes the query and answer it on the fly. The reason that we added the fourth one642
is because one can compute query results without using any precomputed cube but using643
only the base cuboid: the set of merged tuples at the m-layer.644

Figure 8 shows the processing time and memory usage vs. the size of the base cuboid,645
i.e., the number of merged tuples at the m-layer, for the data set D5L3C10, with the data646
set grows from 50 to 200 K tuples. There are 5 dimensions in the cube, and the query647
contains two instantiated columns and one inquired column. The performance results show648
that popular-path costs the least amount of time and space although top-k cubing could649
be a close rival. Moreover, no precomputation, though more costly then the previous two,650
still costs less in both time and space than the fully materialized stream cube at query651
processing.652

STREAM CUBE: AN ARCHITECTURE FOR MULTI-DIMENSIONAL ANALYSIS 19

Figure 8. Stream query processing: Time and space vs. no. of tuples at the m-layer.

Figure 9. Stream query processing: Time and space vs. no. of levels.

Figure 9 shows the processing time and memory usage vs. the number of levels from653
the m to o layers, for the data set D5C10T50K, with the number of levels grows from 3654
to 6. There are 5 dimensions in the cube, and the query contains two instantiated columns655
and one inquired column. The performance results show that popular-path costs the least656
amount of time and space and its query processing cost is almost irrelevant to the number657
of levels (but mainly relevant to the size of the tuples) with slightly increased memory658
usages. Moreover, top-k cubing and no precomputation takes more time and space when659
the number of levels increases. However, full-cubing takes the longest time to respond to a660
similar query although its response time is still in the order of 200 millisecond.661

Finally, figure 10 shows the processing time and memory usage vs. the number of662
instantiated dimensions where the number of inquired dimensions maintains at one (i.e.,663
single dimension) for the data set D5L3C10T 100K . Notice that with more instantiated664
dimensions, the query processing cost for popular-path and no precomputation is actually665

20 HAN ET AL.

Figure 10. Stream query processing: Time and space vs. no. of instantiated dimension.

dropping because it will search less space in the H-tree or in the base cuboid with more666
instantiated constants. Initially (when the number of instantiated dimensions is only one, the667
full-cubing and top-k cubing are slightly faster than popular-path since the latter (popular-668
path) still needs some online computation while the former can fetch from the precomuted669
cubes.670

From this study, one can see that popular-path is an efficient and feasible method for671
computing multi-dimensional, multi-level stream cubes, whereas no precomputation which672
computes only the base cuboid at the m-layer, could be the second choice. The full-cubing673
is too costly in both space and time, whereas top-k cubing is not a good candidate because674
it cannot handle incremental updating of a stream data cube.675

6. Discussion676

In this section, we compare our study with the related work and discuss some possible677
extensions.678

6.1. Related work679

Our work is related to: (1) on-line analytical processing and mining in data cubes, and (2)680
research into management and mining of stream data. We briefly review previous research681
in these areas and point out the differences from our work.682

In data warehousing and OLAP, much progress has been made on the efficient support683
of standard and advanced OLAP queries in data cubes, including selective cube materi-684
alization [19], iceberg cubing [8, 18, 26, 28], cube gradient analysis [11, 21], exception685
[24], intelligent roll-up [25], and high-dimensional OLAP analysis [22]. However, previous686
studies do not consider the support for stream data, which needs to handle huge amount687
of fast changing stream data and restricts that the a data stream can be scanned only once.688
In contrast, our work considers complex measures in the form of stream data and studies689
OLAP and mining over partially materialized stream data cubes. Our data structure, to690

STREAM CUBE: AN ARCHITECTURE FOR MULTI-DIMENSIONAL ANALYSIS 21

certain extent, extend the previous work on H-tree and H-cubing [18]. However, instead691
of computing a materialized data cube as in H-cubing, we only use the H-tree structure692
to store a small number of cuboids along the popular path. This will save a substantial693
amount of computation time and storage space and lead to high performance in both cube694
computation and query processing. We have also studied whether it is appropriate to use695
other cube structures, such as star-trees in StarCubing [28], dense-sparse partitioning in696
MM-cubing [26] and shell-fragments in high-dimensional OLAP [22]. Our conclusion is697
that H-tree is still the most appropriate structure since most other structures need to either698
scan data sets more than once or know the sparse or dense parts beforehand, which does699
not fit the single-scan and dynamic nature of data streams.700

Recently, there have been intensive studies on the management and querying of stream701
data [7, 12, 14, 16], and data mining (classification and clustering) on stream data [2–4,702
13, 17, 20, 23, 27]. Although such studies lead to deep insight and interesting results703
on stream query processing and stream data mining, they do not address the issues of704
multidimensional, online analytical processing of stream data. Multidimensional stream705
data analysis is an essential step to understand the general statistics, trends and outliers as706
well as other data characteristics of online stream data and will play an essential role in707
stream data analysis. This study sets a framework and outlines an interesting approach to708
stream cubing and stream OLAP, and distinguishes itself from the previous work on stream709
query processing and stream data mining.710

In general, we believe that this study sets a new direction: extending data cube technology711
for multi-dimensional analysis of data streams. This is a promising direction with many712
applications.713

6.2. Possible extensions714

There are many potential extensions of this work towards comprehensive, high performance715
analysis of data streams. Here we outline a few.716

First, �������� ��� ������
���� ���	����� can be used to extend the proposed algorithms717
in this promising direction to further enhance the processing power and the performance of718
the system. All of the three algorithms proposed in this study: initial computation of stream719
data cubes, incremental update of stream data cube, and online multidimensional analysis720
of stream data, can be handled by different processors and processed in a parallel and/or721
distributed manner. In the fast data streaming environment, it is desirable or sometimes722
required to have at least one processor dedicated to stream query processing (on the723
computed data cube) and at least another one dedicated to incremental update of data724
streams. Moreover, both incremental update and query processing can be processed by725
parallel processors as well since the algorithms can be easily transformed into parallel726
and/or distributed algorithms.727

Second, although a stream cube usually retains in main memory for fast computa-728
tion, updating, and accessing, it is important to have its important or substantial portion729
������ �� �������� �� disk, which may enhance data reliability and system performance.730
There are several ways to do it. Based on the design of the tilted time frame, the distant731
time portion in the data cube can be stored on the disk. This may help reduce the total main732

22 HAN ET AL.

memory requirement and the update overhead. The incremental propagation of data in such733
distant portion can be done by other processors using other memory space. Alternatively,734
to ensure the data is not lost in case of system error or power failure, it is important to keep735
a mirror copy of the stream data cube on disk. Such a mirroring process can be processed in736
parallel by other processors. In addition, it is possible that a stream cube may miss a period737
of data due to software error, equipment malfunction, system failure, or other unexpected738
reasons. Thus a robust stream data cube should build the functionality to run despite the739
missing of a short period of data in the tilted time frame. The data so missed can be treated740
by special routines, like data smoothing, data cleaning, or other special handling so that the741
overall stream data can be interpreted correctly without interruption.742

Third, although we did not discuss the computation of 	�����' ��������743
in the data cube environment, it is obvious that complex measures, such as744
���� ��� ���� ��'� ����� �������� ���������� ������ ��������� and many other measures745
can be handled for the stream data cube in the same manner as discussed in this study.746
However, it is not clear how to handle �������	 �������� [15] in the stream data cubing en-747
vironment. For example, it is still not clear how some holistic measures, such as quantiles,748
rank, median, and so on, can be computed efficiently in this framework. This issue is left749
for future research.750

Fourth, the stream data that we discussed here are of simple numerical and categorical data751
types. In many applications, stream data may contain �������������� ��� ���������� ����.752
For example, monitoring moving vehicles and the flow of people in the airport may need753
to handle spatiotemporal and multimedia data. It is an open problem how to perform754
online analytical processing of multidimensional spatiotemporal and multimedia data in the755
context of data streams. We believe that spatiotemporal and multimedia analysis techniques756
should be integrated with our framework in order to make good progress in this direction.757

Fifth, this study has been focused on multiple dimensional analysis of stream data.758
However, the framework so constructed, including tilted time dimension, monitoring the759
change of patterns in a large data cube using an m-layer and an o-layer, and paying special760
attentions on exception cells, is applicable to the ���� ��� �# ���������� ����������� ����761
as well.762

Finally, this study is on multidimensional OLAP stream data analysis. Many data mining763
tasks require deeper analysis than simple OLAP analysis, such as classification, clustering764
and frequent pattern analysis. In principle, the general framework worked out in this study,765
including tilted time frame, minimal generalized layer and observation layers, as well as766
partial precomputation for powerful online analysis, will be useful for in-depth data mining767
methods. It is an interesting research theme on how to extend this framework towards online768
������ ���� mining.769

7. Conclusions770

In this paper, we have promoted on-line analytical processing of stream data, and proposed a771
feasible framework for on-line computation of multi-dimensional, multi-level stream cube.772

We have proposed a general stream cube architecture and a stream data cubing method773
for on-line analysis of stream data. Our method uses a tilted time frame, explores minimal774

STREAM CUBE: AN ARCHITECTURE FOR MULTI-DIMENSIONAL ANALYSIS 23

interesting and observation layers, and adopts a popular path approach for efficient775
computation and storage of stream cube to facilitate OLAP analysis of stream data. Our776
performance study shows that the method is cost-efficient and is a realistic approach777
based on the current computer technology. Recently, this stream data cubing methodology778
has been successfully implemented in the MAIDS (Mining Alarming Incidents in779
Data Streams) project at NCSA (National Center for Supercomputing Applications) at780
University of Illinois, and its effectiveness has been tested using online stream data sets.781

Our proposed stream cube architecture shows a promising direction for realization of782
on-line, multi-dimensional analysis of data streams. There are a lot of issues to be explored783
further. For example, besides H-cubing [18], there are other data cubing methodologies,784
such as multi-way array aggregation [29], BUC [8], and Star-cubing [28], it is interesting to785
examine other alternative methods for efficient online analysis of stream data. Furthermore,786
we believe that a very important direction is to further develop data mining methods to take787
advantage of multi-dimensional, multi-level stream cubes for single-scan on-line mining to788
discover knowledge in stream data.789

Acknowledgments790

The work was supported in part by research grants from U.S. National Science Foundation791
grants IIS-02–9199 and IIS-03-08215, Office of Naval Research, Natural Science and792
Engineering Research Council of Canada, and the University of Illinois. Any opinions,793
findings, and conclusions or recommendations expressed in this paper are those of the794
authors and do not necessarily reflect the views of the funding agencies. This paper is a795
substantially revised and major value-added version of a paper, “Multi-Dimensional Re-796
gression Analysis of Time-Series Data Streams,” by Yixin Chen, Guozhu Dong, Jiawei Han,797
Benjamin W. Wah, and Jianyong Wang, in VLDB’2002, Hong Kong, China, August, 2002.798

Notes799

1. We align the time axis with the natural calendar time. Thus, for each granularity level of the tilt time frame,800
there might be a partial interval which is less than a full unit at that level.801

2. We also tested it for some industry data sets and got similar performance results. However, we cannot discuss802
the results here due to the confidentiality of the data sets.803

References804

1. S. Agarwal, R. Agrawal, P.M. Deshpande, A. Gupta, J.F. Naughton, R. Ramakrishnan, and S. Sarawagi, “On805
the computation of multidimensional aggregates,” in Proc. 1996 Int. Conf. Very Large Data Bases (VLDB’96),806
Bombay, India, Sept. 1996, pp. 506–521.807

2. C. Aggarwal, J. Han, J. Wang, and P.S. Yu, “A framework for projected clustering of high dimensional data808
streams,” in Proc. 2004 Int. Conf. Very Large Data Bases (VLDB’04). Toronto, Canada, Aug. 2004, pp.809
852–863.810

3. C. Aggarwal, J. Han, J. Wang, and P.S. Yu, “On demand classification of data streams,” in Proc. 2004 Int.811
Conf. Knowledge Discovery and Data Mining (KDD’04), Seattle, WA, Aug. 2004, pp. 503–508.812

4. C.C. Aggarwal, J. Han, J. Wang, and P.S. Yu, “A framework for clustering evolving data streams,” in Proc.813
2003 Int. Conf. Very Large Data Bases (VLDB’03), Berlin, Germany, Sept. 2003.814

24 HAN ET AL.

5. R. Agrawal and R. Srikant, “Mining sequential patterns,” in Proc. 1995 Int. Conf. Data Engineering (ICDE’95),815
Taipei, Taiwan, March 1995, pp. 3–14.816

6. B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom, “Models and issues in data stream sys-817
tems,” in Proc. 2002 ACM Symp. Principles of Database Systems (PODS’02), Madison, WI, June 2002,818
pp. 1–16.819

7. S. Babu and J. Widom, “Continuous queries over data streams,” SIGMOD Record, vol. 30, pp. 109–120,820
2001.821

8. K. Beyer and R. Ramakrishnan, “Bottom-up computation of sparse and iceberg cubes,” in Proc. 1999 ACM-822
SIGMOD Int. Conf. Management of Data (SIGMOD’99), Philadelphia, PA, June 1999, pp. 359–370.823

9. S. Chaudhuri and U. Dayal, “An overview of data warehousing and OLAP technology,” SIGMOD Record,824
vol. 26, pp. 65–74, 1997.825

10. Y. Chen, G. Dong, J. Han, B.W. Wah, and J. Wang, “Multi-dimensional regression analysis of time-series826
data streams,” in Proc. 2002 Int. Conf. Very Large Data Bases (VLDB’02), Hong Kong, China, Aug. 2002,827
pp. 323–334.828

11. G. Dong, J. Han, J. Lam, J. Pei, and K. Wang, “Mining multi-dimensional constrained gradients in data cubes,”829
in Proc. 2001 Int. Conf. on Very Large Data Bases (VLDB’01), Rome, Italy, Sept. 2001, pp. 321–330.830

12. J. Gehrke, F. Korn, and D. Srivastava, “On computing correlated aggregates over continuous data streams,” in831
Proc. 2001 ACM-SIGMOD Int. Conf. Management of Data (SIGMOD’01), Santa Barbara, CA, May 2001,832
pp. 13–24.833

13. C. Giannella, J. Han, J. Pei, X. Yan, and P.S. Yu, “Mining frequent patterns in data streams at multiple time834
granularities,” in H. Kargupta, A. Joshi, K. Sivakumar, and Y. Yesha (eds), Data Mining: Next Generation835
Challenges and Future Directions. AAAI/MIT Press, 2004.836

14. A.C. Gilbert, Y. Kotidis, S. Muthukrishnan, and M. Strauss, “Surfing wavelets on streams: One-pass summaries837
for approximate aggregate queries,” in Proc. 2001 Int. Conf. on Very Large Data Bases (VLDB’01), Rome,838
Italy, Sept. 2001, pp. 79–88.839

15. J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart, M. Venkatrao, F. Pellow, and H. Pirahesh, “Data840
cube: A relational aggregation operator generalizing group-by, cross-tab and sub-totals,” Data Mining and841
Knowledge Discovery, vol. 1, pp. 29–54, 1997.842

16. M. Greenwald and S. Khanna, “Space-efficient online computation of quantile summaries,” in Proc.843
2001 ACM-SIGMOD Int. Conf. Management of Data (SIGMOD’01), Santa Barbara, CA, May 2001,844
pp. 58–66.845

17. S. Guha, N. Mishra, R. Motwani, and L. O’Callaghan, “Clustering data streams,” in Proc. IEEE Symposium846
on Foundations of Computer Science (FOCS’00), Redondo Beach, CA, 2000, pp. 359–366.847

18. J. Han, J. Pei, G. Dong, and K. Wang, “Efficient computation of iceberg cubes with complex measures,” in848
Proc. 2001 ACM-SIGMOD Int. Conf. Management of Data (SIGMOD’01), Santa Barbara, CA, May 2001,849
pp. 1–12.850

19. V. Harinarayan, A. Rajaraman, and J.D. Ullman, “Implementing data cubes efficiently,” in Proc. 1996 ACM-851
SIGMOD Int. Conf. Management of Data (SIGMOD’96), Montreal, Canada, June 1996, pp. 205–216.852

20. G. Hulten, L. Spencer, and P. Domingos, “Mining time-changing data streams,” in Proc. 2001 ACM SIGKDD853
Int. Conf. Knowledge Discovery in Databases (KDD’01), San Fransisco, CA, Aug. 2001.854

21. T. Imielinski, L. Khachiyan, and A. Abdulghani, “Cubegrades: Generalizing association rules,” Data Mining855
and Knowledge Discovery, vol. 6, pp. 219–258, 2002.856

22. X. Li, J. Han, and H. Gonzalez, “High-dimensional OLAP: A minimal cubing approach,” in Proc. 2004 Int.857
Conf. Very Large Data Bases (VLDB’04), Toronto, Canada, Aug. 2004, pp. 528–539.858

23. G. Manku and R. Motwani, “Approximate frequency counts over data streams,” in Proc. 2002 Int. Conf. Very859
Large Data Bases (VLDB’02), Hong Kong, China, Aug. 2002, pp. 346–357.860

24. S. Sarawagi, R. Agrawal, and N. Megiddo, “Discovery-driven exploration of OLAP data cubes,” in Proc. Int.861
Conf. of Extending Database Technology (EDBT’98), Valencia, Spain, March 1998, pp. 168–182.862

25. G. Sathe and S. Sarawagi, “Intelligent rollups in multidimensional OLAP data,” in Proc. 2001 Int. Conf. on863
Very Large Data Bases (VLDB’01), Rome, Italy, Sept. 2001, pp. 531–540.864

26. Z. Shao, J. Han, and D. Xin, “MM-Cubing: Computing iceberg cubes by factorizing the lattice space,” in Proc.865
2004 Int. Conf. on Scientific and Statistical Database Management (SSDBM’04), Santorini Island, Greece,866
June 2004, pp. 213–222.867

STREAM CUBE: AN ARCHITECTURE FOR MULTI-DIMENSIONAL ANALYSIS 25

27. H. Wang, W. Fan, P.S. Yu, and J. Han, “Mining concept-drifting data streams using ensemble classifiers,” in868
Proc. 2003 ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining (KDD’03), Washington, DC,869
Aug. 2003.870

28. D. Xin, J. Han, X. Li, and B.W. Wah, “Star-cubing: Computing iceberg cubes by top-down and bottom-up871
integration,” in Proc. 2003 Int. Conf. Very Large Data Bases (VLDB’03), Berlin, Germany, Sept. 2003.872

29. Y. Zhao, P.M. Deshpande, and J.F. Naughton, “An array-based algorithm for simultaneous multidimensional873
aggregates,” in Proc. 1997 ACM-SIGMOD Int. Conf. Management of Data (SIGMOD’97), Tucson, Arizona,874
May 1997, pp. 159–170.875

