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In this paper, we study strategies in incremental planning for ordering and grouping
subproblems partitioned by the subgoals of a planning problem. To generate a rich set of
partial orders for ordering subproblems, we propose an algorithm based on a relaxed plan
that ignores the delete lists. The new algorithm considers both the initial and the goal
states and can effectively order subgoals in such a way that greatly reduces the number
of invalidations during incremental planning. We have also considered trade-offs between
the granularity of the subgoal sets and the complexity of solving the overall planning
problem. We propose an efficient strategy for dynamically adjusting the grain size in
partitioning in order to minimize the total complexity. We further evaluate a redundant-
ordering scheme that uses two different subgoal orders to improve the solution quality,
without greatly sacrificing run-time efficiency. Experimental results on using Metric-FF,
YAHSP, and LPG-TD-speed as the embedded planners in incremental planning show
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that our strategies are general for improving the time and quality of these planners
across various benchmarks. Finally, we compare the performance of the three planners,

the incremental versions using these planners as embedded planners, and SGPlan4.1.

Keywords: Basic planner, incremental planning, partitioning, subgoal ordering, subgoal
grouping.

1. Introduction

In this paper, we study new strategies in incremental planning for solving planning

problems represented in STRIPS. Incremental planning13 solves a planning problem

in a multi-step fashion by achieving in each step (or stage) all the facts (subgoal

facts of the final goal or some other facts) considered in this and the previous steps.

As is illustrated in Figure 1, the planner tries to satisfy all the goal facts up to the

current step in each step of the process. The framework studied is for the STRIPS

domains but can be extended to domains with durative actions.

In a STRIPS domain, a planning problem P = (F ,O, I,G) is a tuple with four

components, where F is a finite set of all the facts, and O is a finite set of all the

actions. An action o ∈ O has three attributes: pre(o), a set of facts that defines the

preconditions of o; add(o), a set of facts that defines the add-effects of o; and del(o)

a set of facts that defines the delete-effects of o. State S =
{

f1, · · · , fn
S

}

is a subset

of facts in F that are true; I is the set of facts in the initial state; and G is a set of

subgoal facts to be made true in the goal state.

The resulting state of applying a sequence of actions to S is defined recursively

as follows:

Result(S, (o1, · · · , on)) = Result(Result(S, (o1, · · · , on−1)), on),

where Result(S, o) is (S ∪ add(o))\del(o) if pre(o) ∈ S and S otherwise.

The planning task of P is to find a sequence of actions (o1, · · · , on) that trans-

forms the state from I to a goal state Sg where all the facts in G are true:

G ∈ Sg = Result(I, (o1, · · · , on)).

Incremental planning entails the decomposition of G into N disjoint subgoal sets,

G1, · · · ,GN , and the solution of the sequence of N subproblems P1, · · · ,PN , where

g1,1

g1,2

g1,3

g1,1

g1,2

g1,3

g2,1

g2,2

g1,1

g1,2

g1,3

g2,1

g2,2

g3,1 g3,2 g3,3

I

P1(G1) P2(G1,G2)

P0()

P3(G1,G2,G3)

Fig. 1. An illustration of incremental planning that decomposes P with subgoal sets G1,G2,G3

into subproblems P1,P2,P3. Each dot is a subgoal fact in G.
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G =
⋃n

i=1 Gi. Here, Pi aims to generate a plan (o
i,1

, · · · , o
i,ni

) from State Si−1 of

achieving G1, . . . ,Gi−1 to State Si of achieving G1, . . . ,Gi.

Incremental planning has been studied for many years in AI. It has been applied

in planning under uncertainties in which a planner reacts to new uncertain events

by planning incrementally,5 and in dynamic domains in which a planner outputs

valid prefixes of a final plan before it finishes planning.12 Recently, it has been used

to decompose large planning tasks into subproblems in such a way that a subset of

them can be solved more efficiently than the original problem.13 It is different from

subgoal partitioning in SGPlan4.1
3 in which each subproblem representing a sub-

goal is solved individually, and inconsistent global constraints across the subgoals

are resolved at the end. Since global constraints only exist as biases in each subprob-

lem and may not be satisfied after solving the subproblems, the subproblems will

have to be re-evaluated. In contrast, incremental planning will not incur violated

global constraints because all previous subgoals have to be satisfied in solving a

subproblem. However, backtracking to a different order of subgoal evaluations may

be needed when a feasible plan to a subproblem cannot be found.

Although some intractable planning problems can be solved efficiently by in-

cremental planning, the approach does not always work well in a naive mode that

randomly orders the subgoals. To improve the effectiveness of the technique, we

study in this paper two general approaches.

a) Subgoal ordering. The ordering of subgoals may have great impact on both

run time and solution quality. In the ideal case, solving Pi would only require finding

actions from Si−1 to achieve Gi, without invalidating those facts found previously

for G1, . . . ,Gi−1. For example, it would be best to order G1 and G2 in Figure 1 in

such a way that, when solving P2(G1,G2), the subgoal facts found by solving P1(G1)

do not have to be invalidated. In that case, the extra actions and search time for

re-achieving P1(G1) will be saved.

In practice, since the ideal order is unknown until the problem is actually solved,

heuristic approaches for ordering subgoals have been developed. A well-known ap-

proach for ordering subgoals is reasonable ordering.13 Although it tries to avoid

some unnecessary invalidations of previous subgoals, it does not work well on many

of the 4th International Planning Competition6 (IPC4) benchmarks because it de-

duces the partial orders of subgoals by considering the goal state alone. Without

taking the initial state into consideration, it can only generate partial orders that

are invariant to any initial state.

b) Subgoal grouping. Another aspect that may impact run time is the group-

ing of subgoals in incremental planning. Current planning approaches fall into two

extremes. Many planners simply group all subgoals into a single problem and re-

solve them simultaneously. In contrast, traditional incremental planning schemes

add only one subgoal from G in each step. Although both are natural choices, they

do not always lead to the the best run time and plan quality.

Based on subgoal ordering and granularity control, we present in this paper a
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general incremental planning framework for enhancing the performance of existing

STRIPS planners. In the next section, we propose a new ordering algorithm based

on a relaxed plan built from the initial state to the goal state. The new ordering

relations consider both the initial and the goal states and can effectively order

subgoals in such a way that greatly reduces the number of invalidations during

incremental planning. In Section 3, we study a general strategy that groups subgoals

together in each step. Based on trade-offs between the size of subgoal groups and the

complexity of each subproblem, we show an optimal group size that minimizes the

time for solving the overall problem. We propose an efficient strategy for dynamically

adjusting the size of subgoal groups in order to operate in this optimal region.

In Section 4, we present the results of an incremental version using the above

techniques. To improve plan quality without sacrificing run time, we introduce a

strategy that evaluates two subgoal orders and that selects the best plan. Our

extensive experimental results show that incremental planning is a general approach

that can improve both the run time and plan quality of target planners.

2. Subgoal Ordering

The order of resolving subgoals can have significant effects on the performance of

incremental planning. An ideal order is one in which each subgoal does not invalidate

any previous subgoals already achieved. That is, if fact f in Pi has been achieved

(i.e., f ∈ Gi), then f should stay true in all subsequent states.

If each subgoal does not invalidate any previous subgoal during planning, then

incremental planning effectively decomposes a planning task into a sequence of

subproblems, each resolving a small number of additional subgoals. On the other

hand, if many subgoals are invalidated after being made true, then incremental

planning becomes less useful, because the previous efforts to achieve certain subgoals

will be wasted when their subgoals are invalidated.

2.1. Previous Reasonable-Ordering Algorithm

The goal of the algorithm is to detect partial orders between some pairs of subgoals

gi and gj and to determine if a plan must invalidate gi before reaching gj . If any plan

that reaches gj must invalidate gi first, then gi should be ordered after gj because

it will be invalidated anyway if it is resolved before gj . A heuristic procedure in

FF13 to incompletely detect some of the reasonable orders consists of two steps:

a) For each subgoal fact g, it generates a FALSE set F (g) that includes some

facts to be invalidated before reaching g. This is found by enumerating all actions

that support g as an add effect and by finding the common delete effects of all

supporting actions.

b) For each pair gi and gj, it checks all supporting actions for gj . If any of these

actions either deletes gi or requires some facts in F (gi) as preconditions, then gj is

ordered before gi.
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1. procedure Relaxed-Plan-Ordering (P = (F ,O, I,G))
2. construct planning graph G from I to G without computing mutual exclusions;
3. extract a relaxed plan from G;
4. for each pair of subgoals gi and gj

5. PREC ← true;
6. for each action o in P that has gj as an add effect do

7. if (gi * del(o)) and (pre(o) ∩ F (gi) == ∅) then

8. PREC ← false;
9. end if

10. end for

11. if (PREC or gj is reached before gi in the relaxed plan) then

12. order gj before gi;
13. else

14. order gi before gj ;
15. end if

16. end for

17. end procedure

Fig. 2. The relaxed-plan ordering algorithm that uses a planning problem P with m subgoals
G = (g1, · · · , gm) as input and that outputs an ordered sequence of subgoals.

A deficiency of reasonable ordering is that it only analyzes the interactions of

those subgoal facts in G but does not consider the initial state I. Therefore, it can

generate invariant ordering relations that only hold true for any initial state, which

are rare in practice. For instance, our tests on all the IPC4 domains show that

reasonable ordering can find some partial orders in 42 out of the 50 instances in the

Airport domain, 42 out of the 100 instances in the Pipesworld domain, and none in

the other five domains (Satellite, Promela, UMTS, Settlers, and PSR).

2.2. Proposed Relaxed-Plan Ordering

Figure 2 shows our proposed relaxed-plan ordering algorithm that takes both I and

G into consideration in generating partial orders. It consists of three steps:

a) Line 2: Build a planning graph2 G from initial state I until a fixed point is

reached. Starting from a level with all facts in I, G alternates between a level of all

possibly achievable actions and a level of all possibly achievable facts. It stops at a

certain fixed-point level where no new actions or facts can be added. In contrast to

planning graphs in Graphplan, we do not compute mutual exclusions in this step.

b) Line 3: Based on G, extract a relaxed plan from I to G by ignoring delete

effects. This is the standard backward chaining in FF’s relaxed-plan heuristic.11

c) Lines 4-16: Determine a proper order between each pair of subgoals gi and

gj by examining all actions in G that makes gj true. If any of these actions either

deletes gi or needs a fact in the FALSE set F (gi) as a precondition, then gj is

ordered before gi; otherwise, gi and gj are in the same order as they appear in the

relaxed plan. If a cycle occurs in the order, then the subgoals involved must be at

the same level of the relaxed planning graph. In that case, we will use the original

sequence specified in the problem file to order these subgoals.
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An important property of our relaxed-plan ordering is that it is strictly stronger

than reasonable ordering in the sense that all partial orders detected by reasonable

ordering are also detected by relaxed-plan ordering but not vice versa. This is true

because in reasonable ordering, gj is ordered before gi only when all actions support-

ing gj invalidate gi, whereas in relaxed-plan ordering, gj is ordered before gi when

all actions in planning graph G supporting gj invalidate gi. In other words, relaxed-

plan ordering can detect more partial orders than reasonable ordering because it

uses a subset of all supporting actions for gj in G when deriving the relations.

Note that our algorithm can use the relaxed plans already constructed in each

search step in the planners studied in this paper. It does not have any additional

memory requirements and incurs little overhead for computing the partial orders.

2.3. A Comparison of the Ordering Schemes

To compare the three schemes for ordering subgoals: the original order provided by

the planning model, reasonable ordering, and our proposed relaxed-plan ordering,

we measure their quality using N inv, the total number of invalidations in incremen-

tal planning. Given m subgoals g1, · · · , gm, N inv is defined as:

N inv = N inv
1 + N inv

2 + · · · + N inv
m ,

where N inv
i is the number of times gi is invalidated. To compute N inv

i , suppose gi

first appears in the kth subproblem (gi ∈ Gk). We have:

N inv
i =

N
∑

j=k+1

Inv(gi, j),

where Inv(gi, j) is 1 if gi is invalidated in the subplan for Pj and is 0 otherwise.

We have evaluated the three ordering schemes for two of the IPC4 domains:

Airport and Pipesworld. These are domains where a lot of invalidations can occur

under random ordering. The other five IPC4 domains are relatively easy in the sense

that there are a few invalidations under the original or random ordering.

Figure 3 compares N inv for the various instances of the Airport and Pipesworld

domains with respect to the three ordering schemes in which Metric-FF8 is used as

the embedded planner. Figure 3a shows that relaxed-plan ordering is consistently

better (has smaller N inv) than reasonable ordering in 20 instances of the Airport

domain (the values in the first ten instances are too small to be compared) and is

better than original ordering in all but Instances 18 and 20. Figure 3b shows that

relaxed-plan ordering is better than original ordering and reasonable ordering in all

the 20 instances of the Pipesworld domain except Instances 3 and 12.

Although the differences in the number of invalidations among the three schemes

in Figure 3 may be seemingly small, the search overhead actually grows exponen-

tially with respect to the number of invalidations. This happens because once an

earlier subgoal is invalidated, the final state of the invalidated subgoal is also inval-

idated, and all subsequent subgoals based on that state must be reevaluated.
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a) Airport domain. b) Pipesworld domain.

Fig. 3. A comparison of original ordering, reasonable ordering, and relaxed-plan ordering in terms
of N inv on two IPC4 domains when using Metric-FF as the embedded planner.

2.4. Dynamic Reordering

Although relaxed-plan ordering can detect more partial orders than reasonable or-

dering, it may still get stuck and requires backtracking. This happens when the

embedded planner takes too long to find a feasible plan from the final state in one

stage to the next stage with a new group of subgoals. For instance, assume that

S1 has been reached in solving P1(G1) in Figure 1 and that G2 is ordered before

G3. The embedded planner may fail to find a feasible plan in the time allowed for

solving P2(G1,G2) but may find a feasible plan easily when solving P2(G1,G3).

An effective way to alleviate the above problem is to re-order the subgoals and

to achieve those easy-to-reach subgoals first. For example, if an airplane at A needs

to visit B and C and there is a path A → B → C, then it is more efficient to get to

B before reaching C than to get to C before reaching B. This ordering may not be

detected in the initial relaxed-plan ordering because the airplane may be initially

at D and is closer to C than to B. Therefore, relaxed-plan ordering will order C

before B. But as planning progresses, the current state changes and the airplane

may be moved to A, where B is closer than C. At this point, re-ordering B before

C will allow the airplane to move to B first.

To this end, we propose to dynamically re-order unsatisfied subgoals, based on

a heuristic estimate of the distance from the current state to each subgoal. We set

a threshold of planning time for each subproblem and invoke dynamic re-ordering

when the threshold is exceeded. At that time, we use FF’s relaxed-plan heuristic

to estimate the distance from the current state to each of the unsatisfied subgoals,

and order the subgoals in an ascending order of their estimated distances.

In practice, the above strategy can effectively avoid a search getting stuck at

some difficult subgoals with a large heuristic distance from the current state. For

example, if an airplane is at A and there is a path A → B → C, then the relaxed-

plan heuristic will indicate a shorter distance to visit B from A. Therefore, using

dynamic re-ordering, the airplane will try to get to B first before reaching C.
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Table 1. Trade-offs between grain size |Gi| and the to-
tal time Ttotal for solving the Satellite-15 instance with
24 subgoals using incremental planning. Also shown are
the number of subproblems N and the average time for
solving a subproblem Ts. The optimal grain size is to
have 2 subgoals in each subproblem and 12 subproblems.

N 1 2 3 4 6 12 24

|Gi| 24 12 8 6 4 2 1
Ts 6.6 2.2 1.4 1.1 0.03 0.002 0.002

Ttotal 6.6 4.3 4.2 4.3 0.2 0.02 0.06

3. Granularity in Incremental Planning

After determining the ordering of subgoals, we need to partition them into N disjoint

sets: G1, · · · ,GN , where G =
⋃n

i=1 Gi. These sets will be used in incremental planning

in which Pi, i = 1, . . . , N , will generate a plan to achieve G1, . . . ,Gi.

In one extreme, the smallest grain size is one in which each subgoal set has

one subgoal fact; that is, Gi = {gi}. In this case, there will be a large number of

iterations in incremental planning, although each subproblem is trivial. In the other

extreme, all subgoals are grouped into one subgoal set; that is G1 = {g1, . . . , gm}.

In this case, the benefit of incremental planning is not exploited.

The efficiency of incremental planning depends on the granularity of the subgoal

sets chosen. There is a trade-off between this granularity and the complexity of

solving the overall problem. One can estimate the total planning time by the sum of

the planning times for solving each subgoal individually. If the grain size is too small,

then each subproblem will be easy to solve, but there will be many subproblems to

be evaluated and the complexity of incremental planning will be high. In contrast,

if the grain size is large, then there will only be a few subproblems to be evaluated,

but each subproblem will be very expensive to solve. It is clear that there is an

optimal grain size that minimizes the total time of incremental planning.

Table 1 illustrates the trade-offs between grain size (|Gi|) and the total planning

time in incremental planning (Ttotal) for solving the Satellite-15 instance in IPC4.

Note that Ttotal is not equal to the product of the number of subproblems (N) and

the average time for solving one subproblem (Ts). The reason is that Ts is only

the time for solving each partition of subgoals, without considering any previously

achieved subgoals. The results show that neither the smallest nor the largest grain

size leads to the optimal total time. In this example, the best total time is obtained

by 12 subproblems, each with a grain size of 2.

We have experimentally designed a strategy for determining the granularity in

incremental planning. Given a planning problem P with subgoal set G, we first

partition the subgoals into ten subsets, each with |G|
10

subgoals. For example, in the

Satellite-15 instance illustrated, the initial grain size is 24
10

= 2.4 subgoals. We then

test if the number of states evaluated in solving the first subproblem is less than a

threshold (4 in our experiments), and double the grain size (number of subgoals in

each subset) if the number of states evaluated is less than the threshold. We perform
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this iterative doubling until the threshold is exceeded.

In our algorithm, we have used multiplicative instead of additive increases in

determining a proper grain size. The former allows us to estimate a coarse grain

size quickly. This is preferable because the number of subgoals is relatively small

in most domains, and the effectiveness of granularity control depends on how fast

one can find a good grain size. Likewise, improvements due to dynamic decreases

in grain size will be small when the number of subgoals is not sufficiently large.

4. Experimental Results

In this section, we describe our results on comparing the various ordering and

granularity-control strategies using, respectively, Metric-FF,8 YAHSP 1.1,14 or

LPG-TD-speed 1.07 as the embedded planner in incremental planning. We have

chosen YAHSP and LPG-TD-speed because they are top planners in IPC4 and

their binary codes are available for integration as embedded planners in incremen-

tal planning. (YAHSP won the second prize in the Suboptimal Propositional Track,

whereas LPG-TD won the second prize in the Suboptimal Temporal Metric Track.)

We did not use Downward, another leading IPC4 planner, because it is not available

for testing. As YAHSP and LPG-TD-speed are only available in binary form, they

will incur additional overheads in parsing instance files each time they are called.

Since this overhead should be incurred once initially, we discount the overhead of

parsing instance files multiple times in our experiments.

We have also compared our planner with SGPlan4.1.
3 This planner won the

first prize in the Suboptimal Temporal Metric Track and the second prize in the

Suboptimal Propositional Track in IPC4. It cannot be used as an embedded planner

because it already performs subgoal partitioning and employs Metric-FF as its basic

planner. SGPlan4.1 employs a different partition-and-resolve approach that solves

each subproblem individually and that resolves inconsistent global constraints across

the subproblems at the end.

Each planner is called with two arguments: domain file and instance file, where

instance file contains the initial and the goal states. We first pre-process the inputs

by Metric-FF’s parser and get the internal representation of the initial and the goal

states. All the subproblems generated from a problem use the same domain file but

use different instance files with unique initial and goal states.

In the first iteration of planning, the single subproblem to be solved uses the

original initial state as its initial state and a goal state with one subgoal. The final

state of solving the first subproblem is obtained by matching the sequence of actions

found with the internal representation generated by Metric-FF’s parser. Using this

state as the initial state, the second subproblem tries to achieve a goal state with

one more subgoal. The process is repeated until all the subgoals have been achieved.

Table 2 summarizes the results of the various combinations of planners, grain

sizes, and subgoal ordering schemes for the IPC4 AIRPORT-34 instance.6 This in-

stance involves the planning of eight planes to take off while three are going to their
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Table 2. An evaluation of the various combinations of solvers,

grain sizes, and subgoal ordering schemes on AIRPORT-34.

Strategy Time States Actions N inv

M
et

ri
c-

F
F

no partitioning − − − −
reasonable-order − − − −
optimal-order(1) 9.18 540 427 0
random-order(1) − − − −
original-order(1) − − − −
proposed(1) 9.23 540 427 0

Y
A

H
S
P

P
la

n
n
er

no partitioning − − − −
reasonable-order − − − −
optimal-order(1) 0.23 41 443 0
optimal-order(d) 0.22 30 443 0
random-order(1) − − − −
random-order(d) − − − −
original-order(1) − − − −
original-order(d) − − − −
proposed(1) 0.22 41 443 0
proposed(d) 0.20 30 443 0

L
P

G
-T

D
-s

p
ee

d no partitioning 58.49 n/a 427 0
reasonable-order 292.06 n/a 493 3
optimal-order(1) 4.56 n/a 427 0
random-order(1) − − − −
original-order(1) − − − −
proposed(1) 4.68 n/a 427 0

SG partition+resolve 96.75 n/a 427 0

Keys
− Strategy failed to solve instance in one hour of run time

on an AMD MP2000 system running Linux AS3
States Number of states evaluated (not provided in LPG)
Actions Length of the solution plan
N inv Total number of subgoal invalidations
1 Strategy with one subgoal in each subproblem
d Strategy with dynamically adjusted grain size

parking positions. We have evaluated the three original planners without partition-

ing and with default parameters, and our incremental planner under reasonable

ordering, original ordering, random ordering, proposed relaxed-plan ordering, and a

hypothetical optimal ordering. The optimal order serves as an (impractical) upper

bound on performance and was determined by examining the order in which sub-

goals were satisfied after the solution plan has been generated. Note that dynamic

granularity cannot be applied in LPG-TD-speed because the number of states eval-

uated is not available. Also, dynamic granularity is not applicable in Metric-FF for

this instance because the number of states evaluated in solving the subproblem in

the first stage is larger than our threshold of four.

The results show that AIRPORT-34 cannot be solved by Metric-FF and YAHSP

but can be solved by LPG-TD-speed and SGPlan4.1. They also show that incremen-

tal planning can solve the instance much faster than the original planners.

Table 3 compares the performance of our incremental version with that of the
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Table 3. Quality-time comparisons of the incremental version of three planners and

the non-incremental version. We also compare the performance of the incremen-
tal version of Metric-FF and SGPlan4.1 that uses Metric-FF as its basic solver.

Domain Fi Fq Ft Fw Fwt Fwq F1 F2 Fu

M
e
tr

ic
-F

F
-i
n
c

v
s.

M
e
tr

ic
-F

F

airport 0.66 0.02 0.04 0.00 0.00 0.00 0.28 0.00 0.00
pipesworld 0.20 0.02 0.24 0.10 0.00 0.12 0.14 0.04 0.14

pw-tankage 0.16 0.12 0.04 0.00 0.00 0.00 0.44 0.02 0.20
optical 0.71 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.29

philosophers 0.41 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.59
psr-small 0.56 0.08 0.14 0.00 0.00 0.02 0.04 0.12 0.04

satellite 0.39 0.00 0.42 0.00 0.00 0.06 0.06 0.00 0.08
freecell 0.30 0.15 0.35 0.20 0.00 0.00 0.00 0.00 0.00
depots 0.20 0.00 0.70 0.00 0.00 0.00 0.10 0.00 0.00

logistics 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00

Y
a
h
sp

-i
n
c

v
s.

Y
a
h
sp

airport 0.60 0.06 0.04 0.00 0.00 0.00 0.26 0.00 0.02
pipesworld 0.10 0.46 0.04 0.32 0.00 0.04 0.00 0.00 0.00
pw-tankage 0.18 0.18 0.28 0.22 0.00 0.00 0.08 0.02 0.04

optical 0.93 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.07
philosophers 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00

psr-small 0.38 0.00 0.22 0.02 0.00 0.24 0.00 0.00 0.00
satellite 0.83 0.00 0.08 0.00 0.00 0.06 0.00 0.03 0.00
freecell 0.00 0.60 0.00 0.15 0.00 0.00 0.05 0.20 0.00

depots 0.30 0.30 0.15 0.00 0.00 0.00 0.05 0.15 0.05
logistics 0.02 0.00 0.89 0.00 0.00 0.10 0.00 0.00 0.00

L
P

G
-T

D
-s

p
e
e
d
-i
n
c

v
s.

L
P

G
-T

D
-s

p
e
e
d

airport 0.70 0.00 0.12 0.08 0.00 0.00 0.10 0.00 0.00
pipesworld 0.24 0.10 0.14 0.34 0.00 0.02 0.10 0.02 0.04

pw-tankage 0.16 0.04 0.10 0.20 0.00 0.02 0.22 0.06 0.20
optical 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

philosophers 0.31 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.69
psr-small 0.30 0.14 0.12 0.24 0.00 0.00 0.02 0.02 0.00

satellite 0.06 0.03 0.36 0.36 0.00 0.03 0.00 0.08 0.03
freecell 0.05 0.00 0.20 0.00 0.00 0.00 0.00 0.70 0.05
depots 0.15 0.05 0.35 0.40 0.00 0.05 0.00 0.00 0.00

logistics 0.00 0.00 0.77 0.21 0.00 0.02 0.00 0.00 0.00

M
e
tr

ic
-F

F
-i
n
c

v
s.

S
G

P
la

n
4
.1

airport 0.72 0.00 0.16 0.00 0.00 0.00 0.12 0.00 0.00
pipesworld 0.40 0.24 0.02 0.08 0.00 0.08 0.00 0.18 0.00
pw-tankage 0.22 0.24 0.00 0.06 0.00 0.02 0.22 0.10 0.12

optical 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00
philosophers 0.00 0.00 0.00 0.00 0.41 0.00 0.00 0.59 0.00

psr-small 0.58 0.00 0.14 0.00 0.00 0.02 0.02 0.12 0.04
satellite 0.31 0.03 0.17 0.25 0.00 0.03 0.00 0.06 0.08
freecell 0.25 0.00 0.55 0.05 0.00 0.05 0.10 0.00 0.00

depots 0.15 0.05 0.65 0.05 0.00 0.10 0.00 0.00 0.00
logistics 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00

Keys: (ti, qi) = (time, quality) by the inc. method (INC) (smaller values are better)
(tn, qn) = (time, quality) by the non-inc. method (NON-INC)
Fi: Fraction that ti ≤ tn and qi ≤ qn; Fq: Fraction that ti > tn and qi < qn

Ft: Fraction that ti < tn and qi > qn; Fw: Fraction that ti > tn and qi > qn

Fwt: Fraction that ti > tn and qi = qn; Fwq: Fraction that ti = tn and qi > qn

F1: Fraction solved by INC but not by NON-INC
F2: Fraction solved by NON-INC but not by INC
Fu: Fraction unsolved by both INC and NON-INC

original planner, using a quality measure on the number of actions and a run-time

limit of 30 minutes on an AMD MP2000 system with Linux AS3. It also compares

the performance of the incremental version of Metric-FF with that of SGPlan4.1.

To evaluate our proposed framework, we conducted experiments on all IPC4

STRIPS domains, the Depots and the Freecell domains in IPC3,4 and the Logistics

domain in IPC2.1 The latter three domains are considered difficult for incremental

planning: Freecell has a strong inter-dependency or interference among its subgoals;
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Logistics has a number of positive goal interactions in its instances; and Depots is

a combination of Logistics and the well-known Blocksworld.

The results show that incremental planning can generally solve more instances

using less run times than the original planners. Metric-FF-inc has been found to

require less run times than SGPlan4.1 for a majority of the instances. SGPlan4.1,

however, is better in several domains because it not only partitions a problem by

its subgoals but also carries out landmark analysis and symmetry-group detection3

to further decompose a problem into smaller subproblems.

Although incremental planning is in general faster than the original planner

(Fi + Ft + Fwq > Fq + Fw + Fwt for most domains), it is likely to lead to longer

plans. These quality degradations (Fq +Fw +Fwq > Fi +Ft +Fwt) exist in a number

of domains, such as Pipesworld, Satellite, Freecell, Depots and Logistics.

The ordering of subgoals is crucial for generating shorter plans in incremental

planning. In the original version of our incremental planners, we have implemented

one subgoal order. As there are significant improvements on run time, we have

implemented a second version that evaluates two alternative subgoal orders in order

to search for better plans. Our planner first tries the proposed relaxed-plan ordering

and then the original ordering specified in the problem definition. Since we would

like to restrict the total time spent, we set a time limit for the second alternative

to be five times the time spent for the first alternative plus one minute. The time

of incremental planning reported is then the total time for both alternatives and

within the 30-minute limit. The reported solution is the one with the shorter plan.

Table 4 summarizes the results of our redundant-ordering scheme. The results

show improved quality as compared to that of the original implementation without

redundant ordering. For example, in the Logistics domain, the original incremental

version generates solutions of worse quality for all the instances (Ft = 1), whereas

Metric-FF-inc with redundant ordering can improve both the quality and the run

time for a majority of the instances (Fi = 0.92).

Figure 4 depicts the quality-time trade-offs of each benchmark between

SGPlan4.1 and three versions of the target planner: the original planner, its in-

cremental version, and the incremental version with redundant ordering. For each

benchmark, we first select the best embedded planner to be used in incremental

planning according to the number of instances solved (and using run time to break

ties) by the original planner. We then plot the quality and time normalized with

respect to those of SGPlan4.1 for the best planner selected, the corresponding incre-

mental version, and the incremental version with redundant ordering. The reason

to select only one planner for comparison is that, if this planner is better than the

others in terms of run time, then its incremental version is also the best among the

incremental versions.

In the AIRPORT domain (Figure 4a), the two incremental versions of Metric-FF

use much less run times than SGPlan4.1, while the non-incremental version generally

incurs more run times than SGPlan4.1. In this domain, relaxed-plan ordering can

reduce the number of airplanes in the airport quickly because the “take-off” subgoals
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Table 4. Quality-time comparisons of the incremental version of three planners

with redundant ordering and the non-incremental version. We also compare Met-
ric-FF-inc-redundant and SGPlan4.1. (See the explanations of keys in Table 3.)

Domain Fi Fq Ft Fw Fwt Fwq F1 F2 Fu

M
et

ri
c-

F
F
-i
n
c-

re
d
u
n
d
a
n
t

v
s.

M
et

ri
c-

F
F

airport 0.66 0.02 0.04 0.00 0.00 0.00 0.28 0.00 0.00
pipesworld 0.28 0.06 0.20 0.10 0.00 0.04 0.14 0.04 0.14
pw-tankage 0.16 0.16 0.02 0.00 0.00 0.00 0.44 0.02 0.20
optical 0.71 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.29
philosophers 0.41 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.59
psr-small 0.56 0.08 0.14 0.00 0.00 0.02 0.04 0.12 0.04
satellite 0.72 0.00 0.11 0.00 0.00 0.03 0.06 0.00 0.08
freecell 0.40 0.45 0.00 0.15 0.00 0.00 0.00 0.00 0.00

depots 0.86 0.05 0.00 0.00 0.00 0.00 0.09 0.00 0.00
logistics 0.92 0.00 0.04 0.04 0.00 0.00 0.00 0.00 0.00

Y
a
h
sp

-i
n
c-

re
d
u
n
d
a
n
t

v
s.

Y
a
h
sp

airport 0.52 0.14 0.04 0.00 0.02 0.00 0.26 0.00 0.02
pipesworld 0.08 0.50 0.02 0.30 0.06 0.04 0.00 0.00 0.00
pw-tankage 0.24 0.28 0.06 0.26 0.02 0.00 0.08 0.02 0.04
optical 0.93 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.07
philosophers 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00
psr-small 0.28 0.00 0.20 0.02 0.24 0.26 0.00 0.00 0.00
satellite 0.69 0.17 0.06 0.00 0.00 0.06 0.00 0.03 0.00
freecell 0.00 0.65 0.00 0.10 0.00 0.00 0.05 0.20 0.00
depots 0.23 0.27 0.14 0.00 0.09 0.00 0.05 0.14 0.09
logistics 0.67 0.00 0.23 0.00 0.00 0.10 0.00 0.00 0.00

L
P

G
-T

D
-S

P
-i
n
c-

re
d
.

v
s.

L
P

G
-T

D
-S

p
ee

d

airport 0.54 0.08 0.08 0.06 0.14 0.00 0.10 0.00 0.00
pipesworld 0.18 0.20 0.06 0.36 0.04 0.00 0.10 0.02 0.04
pw-tankage 0.10 0.12 0.04 0.22 0.04 0.00 0.22 0.06 0.20
optical 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
philosophers 0.31 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.69

psr-small 0.04 0.34 0.06 0.24 0.28 0.00 0.02 0.02 0.00
satellite 0.19 0.06 0.06 0.53 0.06 0.00 0.00 0.08 0.03
freecell 0.05 0.00 0.10 0.10 0.00 0.00 0.00 0.70 0.05
depots 0.14 0.14 0.09 0.64 0.00 0.00 0.00 0.00 0.00
logistics 0.62 0.15 0.00 0.21 0.02 0.00 0.00 0.00 0.00

M
et

ri
c-

F
F
-i
n
c-

re
d
u
n
d
a
n
t

v
s.

S
G

P
la

n
4
.1

airport 0.78 0.00 0.10 0.00 0.00 0.00 0.12 0.00 0.00
pipesworld 0.30 0.40 0.00 0.12 0.00 0.00 0.00 0.18 0.00
pw-tankage 0.22 0.26 0.00 0.02 0.06 0.00 0.22 0.10 0.12
optical 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00
philosophers 0.00 0.00 0.00 0.00 0.41 0.00 0.00 0.59 0.00
psr-small 0.58 0.00 0.14 0.00 0.08 0.02 0.02 0.12 0.04
satellite 0.19 0.03 0.00 0.00 0.67 0.00 0.03 0.03 0.06
freecell 0.50 0.10 0.05 0.00 0.20 0.05 0.10 0.00 0.00
depots 0.36 0.09 0.00 0.00 0.55 0.00 0.00 0.00 0.00
logistics 0.85 0.04 0.00 0.08 0.04 0.00 0.00 0.00 0.00

cannot be invalidated once they have been achieved. Although there are some dead-

ends that cannot be recognized by the relaxed-plan heuristic,10 they only occur in

uncommon regions with traffic congestion9 and do not occur elsewhere. In terms

of quality, relaxed-plan ordering helps produce better solutions than the original

orders, and incremental planning generates shorter plans than those of Metric-FF.

In the two PIPESWORLD domains (Figures 4b and 4c), YAHSP and its incre-

mental versions are much faster than SGPlan4.1 for most of the instances, although
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Fig. 4. Quality-time distributions of the best target planner and its incremental versions for each
instance normalized with respect to the corresponding metrics of SGPlan4.1 for the same instance
on all instances solvable by both planners. (Performance values larger than one are better for
SGPlan4.1.)

they both found much longer solution plans. Redundant ordering can help improve

plan quality but is still not competitive with respect to SGPlan4.1.

In the OPTICAL domain (Figure 4d), SGPlan4.1 is significantly faster than

the other planners because it does not backtrack in its state-space search but uses

penalties to resolve global violations. In this domain, the “Ignoring-Delete-Lists”

heuristic does not work well because there are local minima that need possibly an

unbounded number of steps to escape from.10 In this case, incremental planning still

improves in terms of run time since it can reduce the amount of backtracking. The

Philosophers subdomain (Figure 4e) requires a much smaller amount of backtracking

than the OPTICAL subdomain because the number of steps to escape from a local

minimum is bounded by a small constant.

In the PSR-SMALL domain (Figure 4f), the encoding that compiles away de-

rived predicates makes all subgoals artificial and breaks the assumption that tasks

can be decomposed by subgoals. As a result, both SGPlan4.1 and incremental plan-

ning by subgoals found plans of similar quality as compared to those of YAHSP

while using more times. Due to dynamic granularity control, incremental planning

on YAHSP can further improve its speed.

In the Satellite domain (Figure 4g), SGPlan4.1 generates better plans but is

usually much slower than YAHSP and its incremental versions. In this domain,

there are actions for changing the directions of satellites that are feasible from

any states. By aggressively applying the “Ignoring-Delete-Lists” heuristics in its

lookahead strategy, YAHSP uses as many of the applicable actions as possible from

a relaxed plan and will be much faster in generating feasible solutions. Since YAHSP

does not backtrack after finding a feasible plan, it will lead to longer solution plans.

In the Depots domain (Figure 4h), the incremental versions of LPG-TD-speed

generate worse plans than LPG-TD-speed. These happen because the Depots do-

main is an extension of the Blocksworld domain and contains a number of reasonable
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orders, but our incremental planner does not always follow these reasonable orders

in preventing unnecessary invalidations.

In the Freecell domain (Figure 4i), Metric-FF-inc-red generates the best plans

for over half of the instances. There are little differences in run times among the

planners, and redundant ordering does not improve the run times.

Finally, in the Logistics domain (Figure 4j), incremental planning can greatly

reduce the run times of all the instances. Not only can incremental planning with

redundant orders generate better plans than YAHSP for a majority of the instances,

it can also generate better plans than SGPlan4.1 for some of the instances, although

there is a clear gap in plan quality between SGPlan4.1 and YAHSP.

In short, incremental planning can reduce search complexity without sacrificing

plan quality, when the subgoal order and the grain size of the problem to be solved

are properly chosen. Our study also shows that the selection of the basic planner

has more impact on solution quality than incremental planning itself.

5. Conclusions

In this paper, we have developed strategies for ordering and for grouping subgoals in

incremental planning, when each partitioned subproblem is solved by an embedded

basic planner. Using a new ordering algorithm that considers both the initial and

the goal states, we order subgoals in such a way that greatly reduces the number

of invalidations during incremental planning. We have studied an effective strategy

that dynamically adjusts the grain size of partitioning in order to operate with

the best grain size and to minimize the complexity of incremental planning. We

have also shown improved plan quality by evaluating two alternative subgoal orders

during planning. Incremental planning, when integrated with existing planners, can

generally solve more instances and uses less run times without sacrificing quality.
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