7™M

ATM NETWORK PERFORMANCE SIMULATOR

BY
" SCOTT ALLEN YENERICH

B.S.. University of Illinois, 1992

THESIS
| Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Electrical Engineering
in the Graduate College of the
University of Illinois at Urbana-Champaign, 1995

~ Urbana, Illinois

To Maria, Mom, and Dad, for all of their love and suﬁport

ACKNOWLEDGEMENTS

1 would like to express my sincere appreciation to my advisor, Professor Benjamin
W. Wah, for his advice throughout this project. I would also like to thank Laurence Koehn
for his assistance with the NWS application. Finally, I wish to thank Maria Yenerich for her

constant support and motivation.

TABLE OF CONTENTS

CHAPTER PAGE
INTRODUCTION e it e e e e e e e e e e e 1
BACKGROUND ON ATM NETWORKS i e e e e e 3
2.1 ATM Networks . . o o ot e 3
2.2 Previous WorkK o o e e e e e e e e e e e e e e 4
SIMULATION MODEL e e e e e et 6
3.1 The Model e e e e e e e e e e e e e e 6
3.2 The Parameters v o o o e e e e e e e e e e e e e e e e e e e 8
SIMULATION SYSTEM P 10
4.1 The NWS Application« 10
4.2 The Interface Modulet e e e e e e e 10
4.3 The Simulation Program e e e e 11
4.4 The Simulation Module o i o e e e 13
SYSTEM PERFORMANCE e e e e e e v e e 15
5.1 Data ColleCtion o v e 15
5.2 The Restts . . . o o o o e o e 15
CONCLUSTONS . . . o e e e e e e e e e e e s e e e 18
APPENDIX A SYSTEM CODE e e e e e e e e 19
APPENDIX B NUMERICAL RESULTS oo 32
APPENDIX C SYSTEM USERS’ GUIDE i 4]

REFERENCES i i e e e e e e e e e 42

FIGURE

3.1

B.1

B.2

B.3

B4

B.5

B.6

B.7

B.8

LIST OF FIGURES

The Simulation Model '

Time versus Channels

average users = 15, average inter-arrival time
average packet size = 4 KB

Time versus Channels

average users = 30, average inter-arrival time
average packet size = 4 KB

Time versus Channels :

average users = 15, average inter-arrival time
average packet size = 4 KB

Time versus Channelso

average users = 30, average inter-arrival time
average packet size = 4 KB

Time versus Channels

average users = 15, average inter-arrival time
average packet size = 8 KB

Time versus Channels-« .

average users = 30, average inter-arrival time
average packet size = 8 KB

Time versus Channels

average users = 135, average inter-arrival time
average packet size = 8 KB

Time versus Channels

average users = 30, average inter-arrival time
average packet size = 8 KB

vi

PAGE
.................. 7
................. 33

Z ms,
................. 34
2 ms,
................. 35
1 ms,
................. 36
1 ms,
................. 37
2 ms,
................. 38
2 ms,
................. 39
1 ms,
................. 40
1 ms,

CHAPTER 1

INTRODUCTION

With the inevitable implementation of ATM (Asynchrarous Transfer Mode) networks
for use by many applications, it 18 important to understand the ability of a network to handle
various traffic loads and, similarly, to understand the effects o various traffic conditions on
the performance of applications. Tt is the purpose of this thess to present a system which
can be used to simulate certain traffic conditions that may be chserved by applications. In
addition, using a real application, we will examine the performaﬂce of a network with ATM-
like transmission rates under various traffic loads.

The simulation system presented here is designed as a layer below the application
layer. The simulator is passed the message or packet from the sending application. The
simulation is performed, the packet is then sent to the simulator at the receiving end. This
copy of the simulator forwards the packet to the receiving application.

The simulation itself consists of attempting to send the packet through the ATM-like
network in the presence of other traffic. The characteristics of the traffic on the network are
created with the use of several variable parameters. The simulation model is presented in
Chapter 3. The measured resuit is the total time required to send the entire packet. This
result has two components: the time the packet spends waiting to be sent, and the time it
takes to transmit the entire packet.

The second chapter of this thesis provides some basic background on other analyses

of traffic multiplexing in ATM networks. The third chapter presents the model used in this

thesis. The fourth chapter describes the programs which compose the simulation system.

The fifth chapter discusses the results obtained during simulations using a real application to

produce the data packets. The final chapter discusses the results of the thesis.

CHAPTER 2

BACKGROUND ON ATM NETWORKS

2.1 ATM Networks

ATM networks are an emerging technology upon which B-ISDNs (Broadband
Integrated Services Digital Networks) will be built. ATM networks utilize high-speed
transmission rates. They are capable of handling all types of multi-media traffic, such as
voice, video, and data.

The basic units of transfer in ATM networks are cells. Cells consist of a 48 byte
information field and a five byte header. The cells of all connections are transported on the
transmission path, which is composed of virtual paths. Each virtual path is further divided
into virtual channels.

Cells belonging to the same connection are transmitted, in order, along the same
virtual channel and, therefore, the same virtual path. Cells belonging to different
connections, but which have the same network endpoints, are transmitted on different virtaal
channels within the same virtual path.

This implies that statistical multiplexing may be used to transport the cells from
several connections along the same transmission path. ATM networks are regarded as an

efficient way to integrate bursty types of heterogeneous traffic [1]. The traffic can include

various classes with differences in bit rates and in quality of service (QOS).

2.2 Previous Work

Some work has been done to study cell multiplexing in ATM networks [11-[6]. The

¢ such as cell delay, cell loss rate, and cell

performance has been evaluated using measure

d [5]. The performance of a statistical mulitiplexer for

blocking probability [11, [2}, am
s, bursty traffic in an ATM network has b

server model with multiple output channels

heterogeneou een analyzed {11-[3].

The performance of a finite queue, multi-

has been analyzed [1]. In this model, a Markov-modulated Poisson process was used to

model the bursty traffic. The channels were fixed-rate, and the cells were transmitted at

discrete-time instances through the channels, after being queued in a finite buffer.
nearly with the number of

It was found that the performance did not improve 1i

that performance decreased as burstiness increased,

channels [1]. In addition, it was found

and it was suggested that traffic types of comparable burstiness be divided into groups and

idth be allocated to the groups exclusively.

hen traffic classes with different burstiness

that bandw
characteristics

Other work indicates that w

are muliplexed, the class with the highest burstiness experiences the poorest QOS [2]. A

third study also suggests that statistical multiplexing approaches can be improved by
separating the treatment received by traffic from different classes and by using relatively

large buffer sizes for the multiplexers [31.
Another approach uses a Dynamic Time-Slice (DTS) scheme 10 guarantee a required
c class [4]. This model sets up separate queues for different traffic

bandwidth for each traffi

for the time slice allocated to that queue.

classes. The server cyclically visits each queuc

The time slice allocated to each queue is proportional to the bandwidth required by that
queue.

This scheme is dynamic in that it allows for the sharing of the bandwidth by the
different traffic classes. The scheme is considered to be more efficient than statistical
multiplexing as a way of combining traffic of various types. This work suggests that each
traffic class be serviced separately, according to its own requirements.

A weighted round-robin scheme which improves upon an earlier algorithm has also
been studied [5]. This algorithm allows different virtual circuits to be visited a different
number of times during the server cycles. This scheme was presented in order to improve
the smoothness of the multiplexer over the earlier algorithm. The weighted round-robin

scheme is an effective and simple method for handling priority traffic.

CHAPTER 3

SIMULATION MODEL

3.1 The Model

The model used in this thesis is shown in Figure 3.1. It includes an infinite queue
which stores the packets from the various connections. The packets are segmented into cells
and are allocated an output channel on a First-Come, First-Served (FCFS) basis. The cells
are sent via the output channels at a rate which is load-dependent.

The incoming packets have an inter-arrival time which is exponentially distributed.
This is due 10 the fact that such bursty data packets can be modeled by a Poisson process [1].
In éddition, the size of the packets is also exponentially distributed. The packet size is
restricted to a range of 1 KB to 16 KB for purposes of practicality. The mean inter-arrival
time and the mean packet size are system parameters.

The users in the simulation model are allocated bandwidth as a group, as has been
suggested [1]-[4]. In the simulations shown in Chapter 5, the users are all assumed to, be
“reporters” from the NWS application, which is described in Chapter 4. Hence, the users
all possess the same traffic characteristics and share the bandwidth made available to them.

The model assumes an infinite queue since it has been suggested that large output
buffers are needed for bursty data traffic (3]. In addition, the assumption of an infinite
queue is justifiable since the application used in the simulations uses a sliding-window
protocol for flow control. This will insure that overflow would not be a problem, since

adequate buffers could be provided once the level of users was known.

6

i user 2

data packets with
interarrival time and
packet size exponentially
distributed

infinite packet
queue

Figure 3.1 The Simulation Model

number of
active channels

distributed, but a maximum number of users is established. The parameter should be a
floating-point value.

The fourth parameter is the average‘;‘)acket size, which other users on system may
send. The size of the packets is exponentially distributed. T his parameter has units of
kilobytes, and should be a floating-point value. Again, a range is set for the packet size.

The final parameter is a floating-point number which represents the mean inter-arrival
time of the packets on the system. This parameter is used to control the level of activity on

the system:.

CHAPTER 4

THE SIMULATION SYSTEM

4.1 The NWS Application

The application which was used to drive the simulation system is called NWS. It {vas
developed by students at the University of Illinois. The applicatién is a type of news wire
service consisting of a news center, reporters, and clients. The reporters submit articles to
the news center, which then distributes the articles to subscribing clients.

The application relies upon a program called “RTP” which coordinates the reliable
transfer of the articles using Internet sockets. A copy of “RTP” runs at each node and can
service multiple processes simultaneously. It is responsible for dividing a message into
packets and sending them, and for receiving the packets and reconstructing the original
message. “RTP” uses a packet size of one kilobyte.

This application was chosen for the simulation because it provides reasonably good
characteristics of bursty data traffic. A good deal of the time the system is idle. However.

when an article is submitted, there is a significant amount of traffic produced, in a relativeiy

short amount of time.

4.2 The Interface Module

The first portion of the simulation system is the interface module, named “link.c”.
This module is shown in Appendix A. It is the interface between the simulation program and
the application driving the simulation. This interface consists primarily of a function named

“SENDTO” which takes parameters in the exact same format as the Unix function

10

“sendto()”. This module is linked with the application at compile time. The application then
uses calls to “SENDTO()"”, rather than “sendto()”, to send packets through Internet domain
séckets. |

The “SENDTO()” parameters include a socket descﬁptor for an Internet domain
socket, a pointer to the packet to be sent, the length of that packet, some control flags, the
address to which to send the packet, and the length of that address. When a call is made to
“SENDTO", it gets the port number of the Internet domain socket and uses this number to
create a unique Unix domain socket for communication with the simulation program. This is
done so that multiple applications can use the simulation program simultaneously.

The interface module then sends all pertinent information to the simulation program.
This information inciudes most of the parameters of the “SENDTO” function, the name of
the Unix domain socket, and the port number of the Internet domain socket.

Nexi, the interface module waits for the simulation program to send back the time
required to send the packet. This time is then written to a file. Finally, the module returns

the size of the packet sent to the application, just as the Unix “sendto()” function does.

=

4.3 The Simulation Program

The second portion of the simulation system is the simulation program, named
“siml1”. This program is shown in Appendix A. It is responsible for receiving a packet
from the interface, simulating the time required to send the packet, and sending that time
back to the interface. In addition, the simulation program also sends the actual packet to the

copy of the simulation program running at the receiving end of the application. This copy of

11

the simulation program is responsible for forwarding the packet to the waiting application at

the receiving end.
The simulation program sets up a socket in the Unix domain and a socket in the
s used to receive packets from the local interface module

Internet domain. The Unix socket i
ets from remote copies of the simulation

and the Internet socket is used to receive pack
program. The local packets must undergo simulation and be sent {0 remote copies of the
ocal “RTP” program.

simulation program. The remote packets must be delivered to the |
When a connection is made on the Unix socket, the program reads in the information

Tt then “forks” a child process to handle the simulation. while

sent by the interface module.

the parent process waits for other CONnNections.
The child calls the simulation module which generates the time to send the packet.

Finally, the child sends the actual packet 10 the remote copy of the simulation program and

sends the time to send the packet back to the interface module.
ram receives the packet.

When a connection is made on the Internet socket, the prog
It then “forks” a child which sends the packet to the local “RTP” program, while the parent

Ed

waits for other connections.
Some modifications had to made to the “RTP” program to handle the receipt of

packets from the simulation program. Originally, “RTP” used the Unix function

* to receive packets from another copy of “RTP” at the sending node. This
However, since the simulation

“recvfrom()
allowed the receiver to obtain the sender’s Internet address.

program was sending the packets to the receiving copy of “RTP”, the original sender’s

address had to be included in the packet. Thus, “RTP” had to be modified to handle packets

12

of a slightly larger size. In addition, the original sender’s address must be extracted from

the received packet.

4.4 The Simulation Module

The final portion of the simulation system is the strulation module, named “sim2”.
This module is shown in Appendix A. It is an executable program created with the “CSIM™”
simulation package. This program requires the size of a packet in by—tes and a seed for its
random number generator. It then generates the time to send the packet.

The simulation program provides the inputs to the simulation module by writing the
packet size and the seed to a file. The module reads the information and creates other traffic
on the system. Some of this other traffic has arrived ahead of the real packet, and some of i
has arrived after the real packet. The modute simulates the sending of all of the traffic on
the system. It then writes the time. to send the real packet o a file, where it is read by the
simulation program.

The characteristics of the created trafﬁc on the system are determined by several
parameters which are read from a file named “sim.init”. The parameters include the
following: 1) the total bandwidth available o any or all of the users, 2) the maximum
number of channels available, 3) the average number of users on the system (in addition to
the real application), 4) the average packet size sent by the other users, and 5) the average
inter-arrival time of the packets on the system.

The simulation module services the packets on a first-come, ﬁ;st—served basis. When
a packet arrives, it waits until it can be allocated a channel. The transmission rate of each

channel is determined by the number of other users in the system.

13

Once the allocation of a channel has taken place, the transmission of the packet

occurs. The total time to send the packet is the waiting time plus the transmission time.

14

CHAPTER 5

SYSTEM PERFORMANCE

5.1 Data Collection

The data presented in this chapter was collected using the NWS application running
on Sun SPARC 2 workstations running SunOS 4.1.3. Specifically, the simulation times were
recorded for packets sent from the “reporter” application to the “news center” application as
part of a submitted article. A “dummy” article was chosen so that a single submission
resulted in the sending of 50 packets by the “reporter”. Each packet was one kilobyte in
length.

Each of the figures in Appendix B shows plots of the time required to send an entire
packet (in millisecoﬁds) versus the maximum number of active channels, for three different
available bandwidth values. Each point is the average of the send times for the 50 individual
packets. Each of the eight figures represents a different combination of the average number
of users on the system, the inter-arrival times of the packets, and the average packet sizes.

The maximum number of users is limited to 60, and the packet sizes are restricted to

' the range from 1 KB to 16 KB.

5.2 The Results

Figures B.1, B.3, B.5, and B.7 show plots for an average of 15 users, while Figures
132 B.4, B.6, and B.8 show plots for an average of 30 users. Figures B.1, B.2, B.5, and
B.6 show plots where the mean inter-arrival time for the packets is 2 ms, while Figures B.3,

B.4, B.7, and B.8 show plots for a mean inter-arrival time of 1 ms. Finally, Figures B.1,

15

B.2, B.3, and B.4 show plots where the average packet size is 4 KB, while Figures B.5,
B.6, B.7, and B.8 show plots where the average is 8 KB.

For the cases where the available bandwidth is 10 Mbits/s, there seems to be
significant improvement in the send time when the number of channels is increased. Having
more channels will lower the waiting times for some messages, but will increase the waiting
times for other messages since the send times will be much slower.

The send time 1is almost directly proportional to the average number of users on the
syster for the 10 Mbits/s cases. This seems to be true across all of the inter-arrival time
and packet size combinations, lespecially for the cases involving smaller average packet sizss.

The effects of the inter-arrival times of the packets are more easily seen for the cases
where the average packet sizes are smaller. For example, the differences between Figures
B;l and B.3 are greater than the differences between Figures B.6 and B.8.

Increasing the average packet sizes greatly increases the send time, especially when
the inter-arrival times are larger. For example, a much greater increase is evident when
comparing Figures B.1 and B.5, than when comparing Figures B.4 énd B.8.

For the cases where the available béndwidth is 20 Mbits/s, the effects of varying the
aumber of channels are similar to the 10 Mbits/s cases. For example, the effects lof
increasing the packet sizes are similar to the 10 Mbits/s cases. However, the overall effects
of increasing the number of channels are not as noticeable as they were in the 10 Mbits/s
cases.

The send times are still proportional to the average number of users on the system, as

they were for the 10 Mbits/s cases. The effects of halving the average inter-arrival time

16

seem o be greater than the effects of doubling the number of users for the smaller average

packet size cases, while the reverse is true for the large packet size cases.
For the cases where the available bandwidth is 40 Mbits/s, the effects are much less

apparent, but the overall trends are similar to the 10 Mbits/s and 20 Mbits/s cases.

17

CHAPTER 6

CONCLUSIONS

This thesis presented a scheduling scheme for ATM networks and the results of
simulating the scheduling scheme using a real application. The performance of the system,
with respect 1o the application used in the simulation, was examined for several combinations
of available bandwidth and channels. The effects on packet delay were shown for traffic
parameters which included the number of users on the network, the packet inter-arrival time.
and the packet size. The results presented in Chapter 5 indicate that the various parameters
have different effects upon packet delay, and that the effects aré different under different

CIrcUImsiances.

18

APPENDIX A

SYSTEM CODE

This appendix lists the system programs.

Link.h

/* header file for limk

#include
#includs
#include
#include
#include
#include
#include
#include
#include
ginclude
#include
#include
#includs

<stdio.h>
<signal.h>
<stddef.h>
cstring.h>
«sys/types.h>
<sys/time.h>
<sys/socket . h>
<sys/wait.h>
<gys/un.h>
<netinet/in.h>
<netdb. h>
<sys/param.h>
<errno.h>

.c */

g#define SIM SOCK "__sim.sock" /* Unix socket of siml.c

extern int SENDTO();

Link.c

/* interface to simulator program */

#include

"link.h"

/* clean up before exiting */

void link_gquit(sl, s2, name)

int =1,

s2;

char *name;

close (sl);
close(s2});
unlink {(name) ;

return;

}

/* get port number of RTP Internet socket */

int get_port (s}

int s;

{

19

*/’

}

int port_ number;
struct sockaddr_in name;
int namelen;

namelen = sizeof (name);

if ({getsockname(s, (struct sockaddr *)&name, s&namelen)) < 0) {
perror {"Link: getting socket name") ; :
return -1;

port_number = ntohs (name.sin_poxt);
return port number;

/* SENDTC function */

int SENDTC {socket descriptor, buffer, buffer len, flags, to, tolen)

int buffer len, flags, socket descripter, tolen;
struct sockaddr *to;
char *buffer;

int si. s2, rdsock; -
struct scckaddr un uvaddr;
int poertc_number;

char sczxname[32];

int sock_isn;

int resuit;

float timing;

int i;]

fd set readfds;

struct ctimeval timeout, *to_ptr;
FILE *ITo;

/* get port number of RTP Internet socket * /

if ({port_number = get port (socket_descriptor)) < 0) {
perror{"Link: invalid port numbder”);:
return -1;

/* set uc sockets */

sprinti (sockname, "__ link.%d.sock", port_number) ;
s1 = socket {AF_UNIX, SOCK_STREAM, 0);
if (s1 < 0} {

perror ("Link: opening link sockatl');

return -1;

uaddr.sun_family = AF_UNIX;
strcnv(uaddr sun_path, sockname) ;

if (bind(sl, (struct sockaddr *)auadd sizeof {struct sockaddr_un)) < 0}
close(sl) ;
perror{"Link: binding");
return -1;

if (listen(sit, 1) < 0} {
close(sl);
unlink (sockname) ;
perror {"Link: listening"};
return -1;

20

I

s2 = socket (AF_UNIX, SOCK_STREAM, 0);
if (s2 < 0} {
close(sl};
unlink {sockname) ;
perror ("Link: opening link sogket2") ;
return -1;

uaddr.sun_family = AF UNIX;
strepy (waddr.sun_path, SIM_SOCK) ;
if (commnect (82, (struct sockaddr *}&uaddr, sizeof (struct sockaddr_un)} < 0)

link quit({sl, s2, sockname);
perror ("Link: connecting");
return -1;

}

/* send info to sim */

sock_len = strlen{sockname) + 1;

if (write(s2, {(char *)&sock_len, sizeof{sock_len)} < 0) {
link quit{sl, s2, sockname);
return -1;

if (write(s2, sockname, strlen(sockname}) < 0) {
link quit{si, s2, sockname) ;
return -1;

Ed

if (write(s2, (char*)&port number, sizeof (port_number)) < 0} {
link_quit(sl, s2, sockname);
return -1;

if (write(s2, (char *)&flags, sizeof (£lags)) < 0) {
link_guit(sl, s2, sockname);
return -1;

if (write(s2, buffer, buffer len) < 0) {
link quit(sl, s2, sockname);
return -1;

if (write(s2, (char *)s&tolen, sizeof(tolen)) < 0) {
link guit(sl, s2, sockname) ;
refturn -1;

if (write(s2, (char *)to, tolen) <« 0) {
link_quit({sl, s2, sockname) ;
return -1;

/* wait for response or timecut */

FD_ZERO(&readfds);

FD_SET(sl, &readfds);

timeout.tv_sec = 30;

timeout.tv_usec = 0;

to_ptr = &timeocut;

i = select (FD_SETSIZE, &readfds, (fd_set *}NULL, (fd_set *)NULL, to_ptr);

/* error */
if (i < 0}
link_gquit{sl, s2);

21

perror ("Link: selecting");
return -1;

/* timecut */

if (1 == 0) {
link_guit(sl, s2};
printf("Link: select timedout") ;
return -1;

/* accept connection from sim */

if ((rdsock = accept{sl, ({struct sockaddr *)0, (int*}0}) < 0) {
link_quit(sl, s2, sockname) ;
return -1;

}

/* read info from sim */

if (read(rdscck, {(char *)&result, sizeof (resuit)) < 0} {
cloge (rdsock) ;
link_gquit(sl, s2, sockname} ;
return -1;

if (read{rdsock, {(char *)&timing, gsizeof (timing)) < 0) {
close (rdsock) ; .
link gquit(si, s2, sockname) ;
return -1;

close (rdsock) ;
link quit{s1, s2, sockname);

1 --» successful transmission */
2 --> packet sent, but lost * [/
3 --» packet sent, but corrupted */

/* result
/* result
/* result

nown

/* write timing info to file */
if ({(fp = fopen("timedata", "a+")) == NULL) {
perror ("Link: opening file"});
return -1;

fprintf (fp, "%f\n", timing) ;
fclose (fp) ;

/* end of SENDTO */
return buffer_len;

Sim1.h

/* header file for siml.c */

#include <stdio.h>
#include <stddef.h>
#include <stdlib.h>
#include <sys/types.h>

22

#include <sys/socket.h>
#include <sys/un.h>
#include «sys/wait.h>
#include <sys/time.h>
#include <sys/param.h>
#include <netinet/in.h>
#include <netdb.h>
#include <signal.h>
#include <errno.h>

#define PKT_SIZE 1024
#define RTP_PKT_SIZE 1044
#idefine SIM_PKT_SIZE 1052
#define SIM _SOCK "__sim.sock"
#define SIM_PORT 10000

Siml.c

/* simulator program */
#include "simi.h"

float timing;

int result;

char linksock([32];

int link_len;

int usock, isock;

int rand_ seed;

struct sockaddr sendaddr;
struct sockaddr in recvaddr;
int saddr_len, raddr_len;
char msg [PKT_SIZE] ;

int port number, flags;

/*
/s\-
/*
/*
/1\-

int sim_pkt_size = SIM_PKT_SIZE;
int rtp_pkt_size = RTP_PKT_SIZE;

int pkt_size = PKT_SIZE;
char recvpkt {SIM_PKT SIZE];

packet size sent by RTP

packet size sent to RTP from simulator
packet size used by copies of simulator
local Unix socket name

gimulator Internet socket port number

/%* remove child processes upon exit */

TOid sig_child ()

union wait status;
pid_t pid;

while{({pid = wait3(&status, WNOHANG, NULL}) > 0);

/* clean up and exit due to error */

veoid sim_quit ()

close (usock) ; -
unlink (SIM SOCK) ;
close (isock) ;
exit (1) ;

/* create Unix and Internet sockets */

23

*/
*/
*/

void socket_init ()

struct sockaddr un uaddr;
struct sockaddr_in iaddr;

/* create UNIX socket */

usock = scocket (A¥_UNIX, SOCK_STREAM, 0} ;
if (usock < 0) {
perror ("Sim: opening Unix socket"};
exit (1) ;

uaddr.sun_family = AF UNIX;
strepy (uaddr.sun _path, SIM SOCK) ;
if (bind(usock, (struct sockaddr *)&uaddr,

close (usock) ;
perror ("Sim: binding Unix socket");
exit (1) ;

/* create Internet socket */

bzero ({char *)&laddr, sizeof (iaddr));
iaddr.sin family = AF_INET;
iaddr.sin_addr.s_addr = htonl (INADDR_ANY) ;
iaddr.sin port = htons (SIM_PORT} ;

sizeof (struct sockaddr_un))

if ((isocck = socket (AF_INET, SOCK DGRAM, 0)) < 0} {

close (usock) ;

unlink (SIM_SOCK) ;

perror("slm opening Internet socket");
exit(1l);

if (bind(isock, (struct sockaddr *)&iaddr,
perror ("Sim: binding Internet socket"};
sim_quit();

return;

}

/* construct packet and send to RTP */

void send rtpl)

char rtp_pkt [RTP_PKT_ SIZE];
char packet [PKT SIZE] ;

int s4;

int rtp flags;

int rtp port;

struct sockaddr_in rtpaddr;
int rtpaddr len;

if ((s4 = socket (AF_INET, SOCK_DGRAM, 0))
perror ("Sim: opening dgram socket"),
exit{1);

/* extract info from received packet */

sizeof (iaddr)) < 0) {

< 0} {

bcopy (recvpkt, {char *)s&rtp_flags, sizeof (rtp_ flags));
beopy {recvpkt + 4, {char *) grtp_port, sizeof (rtp_port});

24

< 0}

bcopy (recvpkt + 8, {char *)&rtpaddr_len, sizeof (rtpaddr_len});
beopy (recvpkt + 12, packet, pkt_size);
bcopy (recvpkt + (12 + pkt_size), (char *) grtpaddr, rtpaddr_len);

/* construct rtp packet */
recvaddr.sin_port = htons (rtp port); /* change SIM port to RTP port */
beopy ((char *)&raddr len, rtp pkt, gizeof {raddr_len)};
beopy ((char *)&recvaddr, rtp_pkt + 4, raddr_len);
beopy (packet, rtp_pkt + {4 + raddr_len), pkt _size);
/* gsend info to rtp */
if (sendto(s4, rtp pkt, rtp_ pkt_size, rtp_flags, (struct sockaddr
*) grtpaddr, rtpaddr_len) < 0)
close (s4) ;
perror ("sim: sending to RTP");
exit (1) ;
close (s4}) ;
return;
/* simulate via csim */

void simulation ()}

int bytes;
FILE *fp;

bytes = pkt_size;

/* write size of message and seed to a file */

if ((fp = fopen("simdata", "w")}) == NULL) {
perror ("Sim: opening filel™);
exit (1} ;

fprintf (fp, "%d %4", bytes, rand_seed);
fclose (fp) ;

/* run csim simulation program */ +
system("sim2");

/* read result and timing from a file */

if ({(fp = fopen("simdata", "r")} == NULL) {
perror("Sim: opening file2"};)
exit (1) ;

fscanf (fp, "%d%f", &result, &timing) ;

fclose (fp) ;

return;

}

/* connect to link and send information */
void send_link()

int s2;

25

struct sockaddr_un linkaddr;

g2 = socket (AF_UNIX, SOCK_STREAM, 0);

if (82 < 0) { .
perror ("Sim: opening stream gsocket");
exit(1); :

linkaddr.sun_family = AF_UNIX;
strcpy (linkaddr.sun_path, linksock) ;
if (connect {s2, (struct sockaddr *)&linkaddr, sizeof (struct sockaddr_un))} <
0)
close(s2});
perror {"Sim: connecting to link");
exit{l);

/* send result and timing to link */

if (write{sz, (char *)&result, sizeof (result)) < 0) {
close(s2);
exit{1);

if (write(s2, (char *)&timing, gizeof (timing)) < 0) |
close(s2);
exit (1) ;

close(s2);
return;

}

/* corrupt the packet before gsending to sim */
void corrupt ()
int corrupt byte, location;

corrupt byte = rand();

location = (rand() % pkt_size);

bcopy ((char *}&corrupt_byte, msg + location, sizeof (corrupt_bytel};
return;

}

/* create Internet socket and send information to sim */
void send_sim()

int s83;
char sim_pkt [SIM _PKT SIZE];
struct sockaddr_in simaddr;

/* construct address of other simulator */

bzero({(char *)&simaddr, gizeof {simaddr}) ;
beopy { {char *)&sendaddr, (char *)&simaddr, saddr_len);
simaddr.sin_port = htons (SIM_PORT) ;
if ((s3 = sbecket (AF INET, SOCK DGRAM, 0)) < 0) {
perror ("Sim: opening dgram socket");
exit (1} ;

/* construct packet to send */

26

becopy { {(char *) &flags, sim pkt, sizeof (flags));

beopy { {char *)&port_number, sim_pkt + 4, sizeof (port_number)};
beopy ((char *) &saddr _len, sim_pkt + 8, sizeof (saddr_len));
beopy (msg, sim_pkt + 12, pkt_size};

becopy ((char *)&sendaddr, sim_pkt + (12 + pkt_size}, saddr_len);

if (sendto(s3, sim pkt, sim_pkt_size, 0, (struct sockaddr *) gsimaddr,
sizeof (simaddr)) < 0)
close(s3);
perror{"Sim: sending to sim");
exit (1) ;

close(s3);
return;

main ()

int i, model, mode2;
int childpid;

int si;

fd set readfds;

struct timeval *to_ptr;

signal (SIGCHLD, (void (*) ())sig_child};
/* seed tne random number generator */
srand ((int)time ({(long *}NULL)) ;
socket init{};
/* listen for connections from link */

if (listen{usock, 5) < 0) {
perror ("Sim: listening");
sim_guit();

do {
model = 0; mode2 = 0;
FD_ZERQ (&readfds);
FD_SET (usock, &readfds};
FD_SET (isock, &readfds) ;
to_ptr = (struct timeval *)NULL;
while ({(i = select(FD _SETSIZE, &readfds, (fd_set *} NULL, (f4_set *)NULL,

to ptr)) == -1) && (errno == EINTR));
/* error */
if (i < 0) |
perror ("Sim: selecting");
gim_quit () ;
/* timeouts cannot occur, the select blocks indefinitely */
if (i == 0}

printf ("this should never happen!"};
gim guit (};

27

/* receive Internet packet from other copy of simulator */

if (FD_ISSET(isock, &readfds)) {
raddr len = sizeof (recvaddr);
if (recvfrom{isock, recvpkt, sizeof (recvpkt), 0, (struct sockaddxr
+) grecvaddr, &raddr_len) < 0) {
perror {"SIM: receiving dgram") ;
sim quit();

model = 1;

/* accept Unix domain connection */

if (FD_ISSET(usock, &readfds)) {
if ((s1 = accept (usock, (struct sockaddr *)0, (int *)0)) < 0) {
perror {"Sim: accepting") ;
sim_quit();

}
/* read info from link */

if {read(sl, (char *}&link_len, sizeof (link_len)) < 0) {
close{sl);
sim_quit();

{f (read(sl, linksock, link len) < 0} {
close(sl) ;
sim_quic();

if (read(sl, (char *)&port_number, sizeof {port_number)) < 0) {
close(sl);
sim__quit (};

if (read(si, {char *)&flags, sizeof (flags)} < 0} {
close(sl);
sim quit();

if (read{sl, msg, pkt_size) < 0) {
close(sl);

} sim_guit (}; ;

if (read(si, (char *)&saddr len, sizeof (saddr_len)) < 0) {
close{sl);
sim quit {};

if (read(sl, (char *)&sendaddr, saddr_len) < 0) {
close (s1);

sim_quit () ;
mode2 = 1;
rand seed = rand(}; /* get seed for simulator */
close(sl);

}

/* fork child to handle incoming packet or simulation */

if ({model) || (modez}) {
if ({childpid = fork(}) < 0} {
perror ("sim: forking");
sim quit () ;

28

}
}

} while{childpid != 0);
/* CHILD PROCESS -- RECEIVE MODE */

if (model) {
close {isock) ;

send rtpl); /* forward packet to local RTP */

/* CHILD PROCESS -- SIMULATION MODE */

if (mode2) {
close (usock) ;

simulation(); /* call to csim process
if (result == 3) corrupt{}; /* corrupt packet */
if (result != 2) send sim{); /* send info to sim */
} send_link{); /* send info to link */
return(0); /* cnhild exits */
Sim2.h
/* header file for sim2.c */
#include <stdio.h>
#include <stddef.h>
#include <sys/types.h>
#include <sys/time.h>
#include <errno.h>
#define CELL_SIZE 53 /* cell sizé in bytes */
#define MIN_PKT 1024 /* minimum packet size */
#define MRX PKT 16384 /* maximum packet size */
#define MRX USERS 60 /* maximum users */
Sim2.c
/* csim simulation module */
#include "lib/csim.h"
#include "sim2.h"
STORE s; /* storage to simulate available bandwidth
FACILITY £; /* facility to simulate server
EVENT done; /* signals end of simulation
int count; /* counts the jobs left to service
int result; /* 1 = normal, 2 = lost, 3 = corrupt .
float timing; /* record time to send the real packet in ms

/* simulation parameters */
int band, corrupt, lost;

sim()}

29

*/

*/
*/
*/
>/

int i, before, after, users;

int sim size, size, channels, cells, rand_ seed;
flioat net_users, pkt_size, iatm;

FILE *fp;

create("sim") ;

f = facility("server");

set_servicefunc(f, prc_shr); /* service functien is load-dependent */
done = event{"done");

/* read in parameters */

if ((fp = fopen("sim.init", "r"}) == NULL) {
perror {"Sim2: opening init file"};
exitc (1) ;

fscanf (fp. $d3dsF e f¥dsd", &band, &channels, &net _users, &pkt _size, &iatm,
scorrupt, &lost);

fclose (fp) ;

s = storage ("channels", channels) ;

/* read size and seed from file from siml.c */

if ({(fp = fopen("simdata", "x")) == NULL) |
perror ("S8im2: opening data file");
exit (1} ;
fescanf (fp, "¥dxd", &sim_size, grand_seed) ;
fclose (£p) ;
reset prob(rand_ seed); /* reset random number generator */
before = (int)expntl {net_users); /* other users ahead of real packét */
if (pefore > MAX USERS) before = MBX_USERS;
after = (int)expntl{net_users); /* other users behind real packet */
if {after > MAX USERS) after = MAX_USERS;
users = (before + aftexr + 1};
count = usSers;
forf{i = 1; i <= users; i++) {
hold (expntl (iatm)} ; /* inter-arrival time of the jobs */
if (i == (before + 1)) { '
cells = sim size/44;
if ((sim_size % 44) != 0) cells++;
user (cells, 1); /* simulate the real packet * [/
else {
size = (int)expntl (pkt_size); /* create size of other packets */

if {(size < MIN_PKT) size = MIN_PKT;
if (size > MAX PKT) size = MAX_PKT;
cells = size/44;

if {((size % 44) != 0) cells++;
| user{cells, 0); /* simulate the other jobs */
wait (done) ;
if {{fp = fopen("simdata", nwn)) == NULL} { /* write result and time to */
perror {"Sim2: opening data file"); /* a file for siml.c */
exit (1) ;

30

fprintf {fp, ngd %£f", result, timing);
fclose (fp); :

exit (0); /* end of simulation */

}

user {cells, id) /* the job process */
int cells, id;

float tl, t2, t3, t4, transmission;

create("usex"};

if (id == 1) { _ /* set the result %/
result = 1;
outcome = random(0,89);
if (outcome < lost)
result = 2;
else |
outcome = random({0,99);
if (cutcome < corrupt) result = 3;
}
}
tl = simclock; /* start the clock for the jcb
allocate{, s); /* wait for awvailable pandwidth *
£2 = simcliock; /* waiting is over e
/* transmission time = (bits) / (bits per ms} */

transmission = {({float)} (CELL_SIiZE * cells * 8.0))/ ((float)band * 1000.0);

£3 = simclock;

use (£, transmission); /* service the job </

t4 = simclock;

deallocace(l, s); /* release bandwidth */

if {34 == 1) {

} timing = (t2 - &1} + (t4 - £3); /* cotal time to send packet */
count--; /* decrement job count */

if {count == 0) setl{done);

/* end of job process */

31

APPENDIX B

NUMERICAL RESULTS

This appendix contains the simulation results discussed in Chapter 5.

32

Time (ms)

28

28

24 |

22

20

18 -

16

12 =

10 -

Figure B.1

Chanheis

O 10 Mbits/is + Z0 NMbits/s o 40 Mbits/s

Time versus Channels

average users = 13, average inter-arrival
average packet size = 4 KB

33

time = 2 ms,

Time (mMs)

6G

S0 —
40
™~
~
3G =
20 -
10 b
Q ¥ A, r] 1.
1 = 410 20
Channe!s

1 10 Moits/s + 20 Molterss 6 20 Mbits/s

Figure B.2 Time versus Channels

average users = 30, average inter-arrival time = 2 ms,
average packet size = 4 KB

34

Time {ms)

45

40 -

35

30

a5 +

o -

|

channe!ls
3 10 Wbits/s = 20 wbits/s 4 40 Mbits/s

Figure B.3 Time versus Channels
average users = 15, average inter-arrival time = 1 ms,
average packet size = 4 KB

35

Tiwrs 1)

90

380

30

20

a0

{

/

i T i
5 a0 20
) Trannz. s
0 10 Mbits/s ~ 20 Msits/s & 20 Mbits/s

Figure B.4 Time versus Channels

average users = 30, average inter-arrival time = 1 ms,
average packet size = 4 KB

36

Time £ms)

S0

80

80 |-

30

ac -

20 i—

Channels
o 10 Moits/s + 20 Moits/s o 40 Mbits/s

Figure B.5 Time versus Channels

average users = 15, average inter-arrival time = 2 ms,
average packet size = 8 KB

37

170

160
150
140
120

120

Tier e

[} 10 Woits/s

cranne!s
- 23 Moits/s o 4D Mbits/s

Figure B.6 Time versus Channels

average users =

30, average inter-arrival time = 2 ms,

average packet size = 8 KB

38

Time {ms)

110

100 -

20 -

80

70

50

a |-

30 =

Channels
O 10 Mbits/s + 20 Moits/s ¢ 40 Mbits/s

Figure B.7 Time versus Channels
average users = 15, average inter-arrival time = 1 ms,
average packet size = 8 KB

39

Time Cing)

i —\
=

L

Channels
m] 10 Mbits/s =~ 20 Moizs/s o 40 Mbits/s

Figure B.8 Time versus Channels
average users = 30, average inter-arrival time
average packet size = 8 KB

40

20

= 1 ms,

APPENDIX C

SYSTEM USERS’ GUIDE

This appendix contains a guide to using the simulation system.

In order to use the simulation system, the file “link.c™ must be linked with the
application that will call the “SENDTO(” function. This function can replace the Unix
“sendto()” function wherever desired, as it has exactly the same format. Before it returns,
“SENDTO()” appends the time to send the packet 1o a file named “timedata”. Hence, at the
end of the simulation run, all “send” times can be found in this file.

Before the application is run, the program “siml” must be running in the background
in the same directory. This program is the executable form of “siml.c”. This program is
set to run indefinitely, so when execution is halted, the process must be killed manually. In
addition, it creates a socket, named * _sim.sock”, which must also be removed manually
before the program can be run again.

«Qim1.c” assumes that the application uses a constant packet size, which can be set in
the file “sim1.h”. If a variable packet size is possible, then the system should be modified
so that the packet size is passed from “link.c” to “siml.c”.

The application on the receiving end may need to be modified to receive a packet of &
larger size. This size is equal to the sender’s packet size plus the size of a struct sockaddr
plus the size of an int. This is due to the fact that the address of the original sender and the
length of this address may need to be included in the packet, from where they can be
extracted.

Finally, the copies of “siml” use packets of the following size: the sender’s packet
size plus the size of a struct sockaddr plus three times the size of an int. Again, these sizes
would need to be modified to include another integer (the original packet size) if variable-
sized packets were allowed.

The user can set the traffic parameters discussed in Chapter 5. These parameters are
found in the file “sim.init”. In addition, the user can also allow for lost and/or corrupted
packets in “sim.init”. These parameters represent the percentage of packets that will be lost
and/or corrupted. They should be integers in the range [0, 99] (if they are set to “0”, they
have no effect). Packets would be “sent” in simulated time and then either dropped or
corrupted and sent in “siml.c”. All of the parameters should be typed on a single line in
“sim.init”, separated by a space.

41

(1]

(2]

(3]

(4]

{31

[6]

REFERENCES

Y. H. Xim and C. K. Un, «performance Analysis of Statistical Multiplexing for
Heterogeneous Bursty Traffic in an ATM Network,” IEEE Trans. Commun. , vol. 42,
no. 2/3/4, pp. 745-753, Feb./Mar./Apr. 1994.

H. Saito, M. Kawarasaki, and H. Yamada, “ An Analysis of Statistical Multiplexing
in an ATM Transport Network,” IEEE J. Select. Areas Commun., vol. 9, no. 3,
pp. 359-367, Apr. 1991.

F. Bonomi, S. Montagna, and R. Paglino, « A further look at statistical multiplexing
in ATM networks,” Computer Networks and ISDN Systems, vol. 26, no. 1, pp. 119-
138, Sep. 1993.

K. Sriram, “Methodologiés for bandwidth allocation, transmission scheduling, and
congestion avoidance in broadband ATM networks,” Computer Networks and ISDN
Systems, vol. 26, no. 1, pp- 43-59, Sep. 1993.

Y. Wang, T. Lin, and K. Gan, “An Improved Scheduling Algorithm for Weighted
Round-Robin Cell Multiplexing in an ATM Switch,” Conference Record - IEEE
International Conference on Communications, vol. 2, pp. 1032-1037, 1994,

M. Hirano and N. Watanabe, “Characteristics of a cell multiplexer. for bursty ATM
traffic,” Proc. ICC’89, 1989, pp. 13.2.1-5.

42

