VIRTUAL MEMORY SUPPORT FOR
BRANCH AND BOUND ALGORITHMS

A Thesis
Submitted to the Faculty

of

Purdue University

by

Chee Fen Yu

In Partial Fulfillment of the

Requirements for the Degree

of

Master of Science in Electrical Engineering

May 1983

il

this is dedicated

to my mom, dad, sister and Wui Foong

11

ACKNOWLEDGMENTS

I would like to express my sincere gratitude to my advisor, Professor
Benjamin W. Wah for his guidance, advice and support. I also wish to thank

my committee members, Professor K. Hwang and Professor K. S. Fu.

v

TABLE OF CONTENTS

Page
LIST OF TABLES ... eeceiieinsceeercerteereeeecceteee caeaeeemensantte e srensesassaseees vesannrans vi
LIST OF FIGURES.....coctiiiiieirecieiiierrreeierearsiares cserasasssaessenas sasassnsnssssnssss cussnnenen viiil
ABSTRACT ..ot rceeervarerasaersrs e s s ce s saeesee s s s s s s e e s ae s nammssenennnreraras xii
CHAPTER 1 - INTRODUGTION...... oottt recee e coeeee e aeees s cee s 1
1.1 Branch and Bound Algorithms..........cccveerrvenroveirieiiirrenreerenree sree e 2
1.2 Virtual Memory Systems.....ccceuecmmiiiiimiiiii e 10
1.3 Branch and Bound Algorithms in a Locality
Based Virtual Memory Environmentccoooomiiioiiiinceerecerenenes 14
1.3.1 Data Structures for the Branch and _
Bound Algorithmscoocevviiriininenemmemrmeerretirem e erere e s e e aeeee s 14
1.3.2 Does the Branch and Bound Algorithm
Exhibits Locality 7 .ottt s 17
1.4 The Perspective and Organization of this
TRESIS ... cterererreeervereeeres e eereesesaesees s eemeectraenrteres semnaenetnnaesteee srmnmmteeaeereaeee 18
CHAPTER 2 - PROBABILISTIC MODELING OF BRANCH AND
BOUND ALGORITHMS.....oet e et eecetiree e e teecraceeeeeee s eereeeeases e reenae 20
2.1 The Model of the Branch and Bound Process
with Best First Search....coooeee e e 20
2.1.1 The Position of the Front Wall.........coooooinimiiiiiiiiiieececeee 21
2.1.2 The Position of the Back Wall.........cccvvvimiiiiinnnen, 26
2.1.3 The Distribution of Subproblems Behind
the Front Wall ..ot cnrae et e ettes s res e snbaas e 28
2.2 Comparison of the Analytical Model with
30 00811 Y A TeY 1 I SOOI 30
2.3 CODCIUSION...cciueiiiiiiiitieiereicer e reere st eer s e e e s aat s onies sebnntes s sstatas sronrannan 37

CHAPTER 3 - VIRTUAL MEMORY SYSTEMS FOR BRANCH AND

BOUND ALGORITHMS .. e 38
3.1 A Virtual Memory System for the Branch and
Bound Algorithms (VM1)...oooooiiiiiviiiiiiminiiimnieeiienei v ees e 38
3.1.1 Organization of the Secondary List.......cc.ccomniieiiiiiriiiiinn.... 39
3.1.2 Organization of the Primary List.....ccovreeimiiernriiiiiiireieeeeeens 40
3.1.3 An Analysis of the Expected Number of
Page ACCeSSeS ...ooiiiiiiiiiiiiricrr e e 40
3.1.3.1 The Expected Number of Page
Accesses due to Replacementcocoeevnnieviiiininniiiinnivnnnnen.. 41
3.1.3.2 The Expected Number of Iterations
Between Successive Replacements...........cooceevieiieeiiin, 48
3.1.3.3 The Expected Number of Page
Accesses Due to Loading ...c.oovviiiniiciiiiiiiiieeree e 50
3.1.3.4 An Expression fOr 1ccociiiiiiiiiiicciiiieniiirecrreeeeeeir e seenneens 51
3.1.3.5 Comparison of 5 with Simulation
Results...coocviviiiicriiirecci vt rivescsee e e 51
3.1.4 Replacement Rule........cooiriimiimirinieiiiec e 52
3.1.5 Page S1Ze..cooooiiriiiiiiiiit i e raras e s 61
3.1.6 Loading Rule........cccoicnninrninaeee. reeererisee bbb ne e sraeenaaee 68
3.1.7 Performance of VM1cccccoviriimiiiiiinectiiiricnininieon e cevrres e snne s 75
3.2 A Modification of VM1 with One Subproblem
per Block {VM2) ..ottt e v se e e .80
3.2.1 Performance of VM2 ..ot 85
3.3 COnCIUSION . ..ciiiiiiie e et et s re e e e e s e eeer e res sennnnenan 90
CHAPTER 4 - CONCLUDING REMARKS ...t 91
LIST OF REFERENCGES.....coiveirieiiinmmenimeiricimirritinsee s s ssssansevennee snmanns 04
APPENDICES
Appendix A The B-Tree ..o e 98
Appendix B The Heapcccvvrreemrciiiniiiniiinineieniineiniieeiisms sivimeseiensen seesesaens 106
Appendix C Maximum Number of Non-leaf Nodes
D 8 BTTree ittt s 112

Appendix D Expected Value of exp { -V)ererriviiiiiiiiiiiiriireecriireeie e 114

vi

LIST OF TABLES

Table Page

1. Page sizes used in some cOmputer systems.....ccccccueirrniiriiiiceiiiecernnrcrne s 12

2. Testing of the hypothesis that the increase in lower
lower bounds of son subproblems is exponentially
distributed for 20 variables, 20 constraints integer
programming problems (sample size = 200). ...c..cooiiiiiiire e 31

3. Testing of the hypothesis that the difference
between the lower bounds of the active subproblems
and the front wall is gamma distributed for four
20 variables, 20 constraints integer programming
problems {sample size = 100).ccccoonrriinmiiinnciiin it e .32

4. Comparison of n with the actual number of page
accesses, p, for four 20 variables, 20 constraints
integer programming problems (nP = 132, h, = 33,
¢ = 60). ST PSPPSRI 53

5. Variation of A, A, and {, with # for four 20 variables,

20 constraints integer programming problems (n,
=132, B, = 33, @ = B0) ceureerreeeemteerensestiesesenssssssnsnase s ensssessensseras eneeneans 57

B. a;,i,j = 1,...,3 and 8* for the four integer
programming problems shown in Table 5......ccoooveiiiiiiiiiiiiiinn.. 58

7. Variation of §* with small perturbations in the
values of &y, &9, @9y, C99, @3y and agy for problem
2 0f Table 5 oo e e 59

8. Variation of the parameters f,, A, and A, with ¢
for four 20 variables, 20 constraints integer
programming problems (np = 132, h, = 33,

vit

g = n, D). tereertre e et e e vre e h b ans e a s ks assa e s r e tbbnesaa et ae s rrrereeas 62

9. B,1j =123 and ¢* for the four integer
programming problems shown in Table 8..........cccccooiiin 63

10. Variation of ¢* with small perturbations in the

values of Byy, By2, B2ty Boa, B3y and Py, for
- problem 2 of Table 8 ...t e e 64

11. Variation of X, A, and I, with page size for four
20 variables, 20 constraints integer programming
problems (n, = 132, ¢ =120, 8 = D = @)eecnnii e 69

12. p;, py and g, for four 20 variables, 20 constraints
integer programming problems.c.ovvvvviiiiiiiniiiin e 81

Figure
1. A branch and bound tree......ccoocviivivciiviviiinniiiinioninnsineienen,
2. {a) An example of an integer programming problem

and (b) the corresponding branch and bound tree.....................
3. The model of the branch and bound process under

best first search......cccovvririiiiiiciiiii e
4. The generation of a pair of active subproblems..........................
5. The positions of the front and back walls for a 20

variables, 20 constraints integer programming

problem (problem 1) ...ccocovviommeenrereiiiiiniiereic
6. The positions of the front and back walls for a 20

variables, 20 constraints integer programming

problem (problem 2)cccoooiiiiiiiiiiinii
7. The number of active subproblems between the two

walls as a function of the number of subproblems

evaluated. ... ivrmicreiiieer e e e
8. Variation of the number of page accesses with # for

viil

LIST OF FIGURES

four 20 variables, 20 constraints integer programming

programming problems (n, = 132, h, = 33, ¢ = 60).................

Variation of the number of page accesses with ¢
for four 20 variables, 20 constraints integer
programming problems (n, = 132, h, = 33,

= (Fof) RS reererieeraenes reee s et e reba st e s et e s b ar e aa e e e aeares

10. Variation of the number of page accesses with page

size for four 20 variables, 20 constraints integer

.................. 65

11.

12.

13.

14.

15.

16.

17.

programming problems (n, = 132, ¢ = 120,

=n,) OO

Variation of the total paging cost with page size
on a moving head disk (t; = 28ms., t, = 16.67ms.)
with a disk density of 16 kbytes/track for four
20 variables, 20 constraints integer programming

problems (n, =132, ¢ = 120, f# = B, = @) rvevrniciniininniineens

Variation of the total paging cost with page size

on a head per track disk (t, = 16.67ms.)
with a disk density of 16 kbytes/track for four

20 variables, 20 constraints integer programming

problems (n, =132, ¢ = 120, 0@ = np — @) ceereieneinicci

Variation of the total paging cost with page size
on a moving head disk (t, = 28ms., t, = 16.67ms.)
with a disk density of 64 kbytes/track for four
20 variables, 20 constraints integer programming

problems (n, = 132, ¢ = 120, # = n, — . TR

Variation of the total paging cost with page size
on a head per track disk (t, = 16.67ms.)
with a disk density of 64 kbytes/track for four
20 variables, 20 constraints integer programming

problems (n, =132, ¢ = 120, 0 = 0, = @) eeeriiciiinniiiienian,

Variation of the paging costs for a 20 variables,
20 constraints integer programming problem
(problem 1) with disk density for a LRU virtual
memory system and VM1 (n, = 132, h, = 100,

¢~120,0—np D) et et e

Variation of the paging costs for a 20 variables,
20 constraints integer programming problem
(problem 2} with disk density for a LRU virtual
memory system and VM1 (n, = 132, h, = 100,

$ = 120, 0 T Dy —) crreereerscorseesneneneeses e senese e e senese e

Variation of the paging costs for a 20 variables,
20 constraints integer programming problem
(problem 3} with disk density for a LRU virtual
memory system and VM1 (np = 132, h, = 100,

P = 120, 0 = Dy 7 D) et e

oooooooooooooooo

oooooooooooooooo :0

................. 71

................. :2

................. 73

................ 74

18.

19.

20.

21.

22.

23.

24.

25.

2

o]

Variation of the paging costs for a 20 variables,

20 constraints integer programming problem

(problem 4) with disk density for a LRU virtual

mermory system and VM1 (n, = 132, hy = 100,

B =120, 0 = Dy = B) eereerereereiresreeereeee s s e 79

Variation of the paging costs for a 20 variables,

20 constraints integer programming problem

{problem 1) with disk density for a LRU virtual

memory system and VM2 (n, = 132, hy = 100,

B =120, 8 T Dy = B) e e 86

Variation of the paging costs for a 20 variables,

20 constraints integer programming problem

(problem 2) with disk density for a LRU virtual

memory system and VM2 {n, = 132, h, = 100,

@ =120, 0 T Dy T B) e e 87

Variation of the paging costs for a 20 variables,

20 constraints integer programming problem

(problem 3) with disk density for a LRU virtual

memory system and VM2 (n, = 132, h, = 100,

$ = 120, 0 = Dy = B) corvreversreesnens et s s 88

Variation of the paging costs for a 20 variables,

20 constraints integer programming problem

(problem 4) with disk density for a LRU virtual

memory system and VM2 (n, = 132, h; = 100,

S =120, 0 = Dy = B) corvcevermrenniinnsieenenees s st e 89

{(a) A B-tree, {b) the B-tree after the insertion
of a record with key 57 and {c) the B-tree after
the insertion of the record with key 64.......ccovriiiiiiiniiiiiiiii s 100

(a) A B-tree and the B-trees resulting from the
successive deletions of the records with keys
{b) 84, (c) B4 and {d) 54 ..coeireerii et e 102

(a) A heap, (b} the binary tree resulting from

the insertion of 2 node with value 3 and {c)

the resulting heap after restoring the heap

1) 1] 113 2 7 20O SUTSUURINR PP URET ISR 107

. (a) A heap, (b) the binary tree resulting from

xi

the deletion of the node with the smallest value
and (c) the resulting heap after restoring the
READ PIOPEITY ittt ettt s s e e e

27. {a) A heap and (b) its implementation as a
sequential st c.ooorverr i e

xii

ABSTRACT

Chee Fen Yu, Purdue University. May 1983. Virtual Memory Support for
Branch and Bound Algorithms. Major Professor: Professor Benjamin W. Wah.

The branch and bound algorithm is an organized and intelligently
structured search of solutions for enumerative type problems such as .NP-
complete problems, The best first search criterion always expands the
subproblem with the smallest lower bound. This minimizes the time expended
by the algorithm but has a worst éase exponential space requirement. Since the
size of main memory is usually limited some of the subproblems must be moved
to secondary storage and staged into main memory when referenced.This

staging process may be maintained by a virtual memory system.

The use of a locality based virtual memory system is inadequate for
branch and bound algorithms as the algorithms do not exhibit strong locality.
It is not apparent how the amount of locality exhibited may be enhanced. The
alternative is to adapt the virtual memory system to the algorithms.
Simulations indicate that for branch and bound algorithms sech a system may
achieve a seven to nine-fold improvement in performance over a general

purpose virtual memory system with the LRU replacement algorithm.

The work reported herein was partially performed by CIDMAC, a research unit of Purdue
University, sponsored by Purdue, Cincinnati Milicron Corporation, Control Data Corpora-
tion, Cummins Engine Company, Ransburg Corporation and TRW and partially under
the support of NSF Grant ECS81-05968

CHAPTER 1
INTRODUCTION

Current virtual memory systems are general purpose systems which are
based upon the concept of locality. Locality refers to the tendency of a
program to reference in the near future neighboring pages and those pages
referenced in the recent past. This has the advantage of not requiring any
knowledge about the characteristics of the program being run, and is extremely
robust since a program which does not exhibit any locality will still run on the

system, albeit inefficiently.

An efficient virtual memory system will be one whereby the characteristics
of programs match the model of program behavior assumed by the virtual
memory system. For a general purpose virtual memory system, it is likely that
a mismatch exists between the behavior of the program being executed and the
locality model used.

The problem of reducing this mismatch has been studied with respect to
certain specific applications such as matrix manipulations, sorting and database
applications. We feel that there is a need to address this problem for a number
of other applications such as image database, artificial intelligence and

optimization problems. Most of the programs used in these applications require

large amounts of memory resources and CPU time, so any improvements

realized will bring about substantial benefits.

In this thesis, we propose to study ways of improving the virtual memory
environment for branch and bound algorithms which are used in optimization

problems.

1.1 Branch and Bound Algorithms

Many of the deterministic problems in computer science, operations
research, and other application areas are NP-complete. This class of problems
is characterized by a deterministic algorithm that computes a function from a
countable domain into a countable range, and it generally involves the
optimization of an objective function. The computation time for all known
optimal algorithms for this class of problems increases exponentially with the

problem size.

The common approach to solving NP-complete problems is to solve
optimally for small problems and to solve sub-optimally using heuristics for
large problems. The most general technique for solving a widé variety of these

problems is the branch and bound algorithm

A branch and bound algorithm is an efficient algorithm to solve for

problems that can be put into the form of a constrained optimization.

Minimize Cy(x}
subject to g{x} > 0
gafx} = 0

Em(x) > 0
and x e X

in which X represents the domain of optimization defined by the m constraints,
normally an euclidean n-space, and x denotes a vector (x;Xo,...,%.)
(Problems that are NP-complete can be put into this form. There exists
problems that are not NP-complete, but are put into this form as well}) A
solution vector that lies in x is called a feasible solution, and a feasible solution

for which Cy(x) is minimal is called an optimal solution.

The branch and bound algorithm is an organized and intelligently
structured search of the space of all feasible solutions. It has been extensively
studied in areas such as artificial intelligence and operations research [g, 19, 21,
22]. It has been applied to solve problems in scheduling {17, 20], knapsack [13,
14], traveling salesman (1, 5], facility allocation [2], integer programming [4, 6],
and mapy others. Dominance relations similar to those used in dynamic
programming have been used to prune search tree nodes. Theoretical
properties of branch and bound algorithms have been developed in several
studies [10, 12, 16, 22].

In branch and bound algorithms {19, 21}, the space of all feasible solutions
is repeatedly partitioned into smaller and smaller subsets, and both the loﬁer

and upper bounds are calculated for solutions within each subset. After each

partitioning, subsets with lower bounds (in the case of minimization) that

exceed either the value of a known feasible solution or the least upper bound of
all subsets are excluded from further consideration. The partitioning process
continues until a feasible solution is found such that the value is no greater

than the lower bound of any subset.

The state of the partitioning process at any time can be represented as a
partial tree (Figure 1). Each node in the tree represents a partition and is
called a subproblem. The partitioning process selects a partition and breaks up
this partition into smaller partitions. This extends the node in the partial tree
representing this partition by one level and uses the sons to denote the smaller
partitions. In Figure 1, node j is expanded in the partitioning process into k

other partitions, which are represented as sons of node j in the partial tree.

There are two essential features of a branch and bound algorithm: the
branching rule and the bounding rule. With respect to the partial tree in
Figure 1, each node in the tree has two numbers associated with it - the upper
bound and the lower bound of the subproblem. The leaf nodes in the partial
tree are candidates for partitioning. A leaf node of the partial tree whose lower
bound is less than both the value of a known feasible solution and the greatest
upper bound of all leaf nodes is active; otherwise, it is terminated and need not

be considered in any further computation.

The branching algorithm examines the set of active leaf nodes and, based
on some predefined criterion, selects one for expansion. If the set of active
nodes is maintained in a first-in first-out (FIFO) list, the algorithm is called a
breadth-first search. If the set is maintained in a last-in, first-out list, the
algorithm is called a depth-first search. Lastly, if the node selected for
expansion is one with the minimum lower l';ound, the search algorithm is called

a best-first search.

Figure 1 : A branch and bound tree

In a breadth-first search, the nodes of the tree will always be examined in
levels. That is, a node at a lower level will always be examined before a node
at a higher level. This search will always find a goal node nearest to the root;
however, the sequence of nodes examined is predetermined, so the search is
”blind.” Depth-first search has a similar blind behavior except that a subtree is
generated completely before the other subtrees are examined. In both
algorithms, the next node to be examined is known, so the state of the parent
node leading to the next node from the root node is easily found and is uﬁique.
Furthermore, the memory space required for storing the state is very small.

These two algorithms are, therefore, space-saving.

In contrast, the best-first search is space-consuming because all active
subproblems must be stored as intermediate data in the computer. The total
number of nodes expanded, however, is minimum in the sense that any
branching operation performed under this policy must also be performed under
other policies, provided that all the bounds are unique [19]. Since time is a
more critical factor in evaluating large optimization problems, the behavior of

the best-first search merits further study.

One study [11] shows that depth-first, breadth-first and best-first searches
are special cases of heuristic search. In a heuristic search, an evaluation
function f{n) for a subproblem n is computed as the sum of cost of an optimal
path from a given start node to n and cost of an optimal path from n to a goal.
An ordered search algorithm picks up a subproblem with the minimum value of
f for expansion each time. Any general heuristic functions can be included in

the computation and the choice of a heuristic function depends on the

application.

Once the subproblem has been selected for partitioning, some
undetermined parameters in the subproblem must be selected so that
alternatives for these parameters can be defined and multiple subproblems
created. For example, in the traveling salesman problem, the undetermined
alternatives are the set of untraversed edges. In expanding a subproblem, an
untraversed edge (i,j) is selected, and two alternatives can be created: (1) the
edge is traversed and the salesman goes directly from city i to city j, and (2)
vice versa. The parameter chosen to be expanded is usually done in an ad hoc

manner.

After new subproblems are created, the bounding algorithm is applied to
evaluate the upper and lower bounds of a subproblem. Generally, only the
lower bound is evaluated, and the upper bound is updated when feasible
solutions are found. The bounding algorithm that is designed is highly
dependent on the problem. For example, in an integer programming problem,
a linear program with relaxed integer constraints can be used as a lower bound -
[18]; in the traveling salesman problem, an assignment algorithm [1] or a

spanning tree algorithm can be used as the bounding algorithm.
As an example to illustrate the use of branch and bound algorithms, the
evaluation of an integer programming problem is shown here. The integer

programming problem may be expressed as

Minimize CX
subject to AX > B
XT = (Xl,x:z, P ,Xn)

x;: non-negative integer, i=1,2,...n.

These problems differ from ordinary linear programming problems in that the

variables are restricted to non-negative integer values.

One approach to the problem is the following. Apply the dual simplex
method to a subproblem. If the optimal solution is integral, a feasible solution
has been generated; otherwise, create two new subproblems as follows. Choose
a variable that -has a non-integer value (say x; = 4.4) and restrict that variable
to the next lower integral value for one problem (x; < 4) and to the- next
higher integral value (x; > 5) for the other. The variable chosen is the one
with the greatest up or down penalty. The up penalty for a variable x; having

a value of a; is the estimate of the amount by which the solution to the current

subproblem would increase if the integral constraint x; > [a.i] was introduced.

The down penalty is similar, except that it is associated with the constraint

X; < Ia.i]. The lower bound of a new subproblem is the sum of the optimal

simplex solution and the associated penalty. This process is repeated on the
new subproblems.

Figure 2(b) shows the branch and bound tree for the problem in Figure
2(a). The dual simplex method gives an optimal solution of 14.2 for the
original problem. Since the variables are not integral, a feasible solution has
not been generated. Up and down penalties are calculated for the variables
and x, has the greatest penalty { U = 1.8). Two new subproblems are then
created, one with x;=0 and the other with x; > 1. The lower bounds are
calculated as in Figure 2(b). The dual simplex method is then applied to the
subproblem with the smaller lower bound again, and a feasible solution is
generated with all variables having integral values. This constitutes an optimal

solution since the lower bound of the remaining subproblem is greater.

min xo =7x1 + 3X2 + 4X3
X, + 2xp + 3x5 > 8
3xl+2X2+X325

Xy, Xa, X3 = 0, integer

@
Optimal dual simpiex solution
Xo = 14.2
=0 Variable Down Up
x; = 0.4 Penalty | Penalty
Xa = 3.8 Xy 0.8 1.8
X; =0 Xg 0.3 0.13
z=lower
bound
) 2314.2"‘0.8 Z=14.2+1.8
=15,0 =16,0
Feasible Solution Terminated

Optimal dual simplex solution
Xp = 15.0
b S

Xy =

X3 —
(b}

Figure 2 : {a) An example of an integer programn;ing problem and {b) the
corresponding branch and bound tree

10

1.2 Virtual Memory Systems

An enormous amount of literature has been published concerning virtual
memory systems [24-20]. The set of addresses that a task can reference is
called the (virtual) address space V. The set of physical locations in main
memory allocated to the task is the memory space M. During execution,
reference to addresses in the object code will be to virtual addresses. The
virtual memory system automatically maps -the address space into the memory

space via an address mapping function defined as follows:

y if x is in M at location y

f:V>Msuch thatifx eV, f{x) = {undeﬁned otherwise

An exception or missing-item fault occurs when f(x) is undefined. The
item that the task wishes to reference has to be brought into the main memory.
The type of allowable missing item or block defines the type of virtual memory
system. Depending on the size of the blocks, the virtual memory system may
be classified as:

e segmentation where the blocks are of unequal length

e paging where the blocks are of equal length

e segmentation with paging where blocks (segments) are multiples of
pages.

The block size chosen is a compromise between constraints imposed by the
efficiency of the secondary memory device and the average sizes of tl_le logical
program entities. The latency of a paging drum is a device such that a block
size of at least 1024 bytes should be used. A moving arm disk requires a block

size at least 4 times as big. On the other hand, measurements on programs

show that logical blocks are much smaller than 1000 words. Most procedures

11

occupy less than 100 words. Table 1 lists the page sizes of some virtual

memory systems.

Three rules govern the transfer of information between the main memory

and secondary storage.

replacement. rule which indicates which block is to be displaced

from the main memory;

loading rule which decides when the missing block should be

brought into the main memory;

placement rule which dictates where the missing block is to be

placed in the main memory.

Common replacement algorithms include

First-in-First-Out (FIFO) : The page which has been in the main

memory for the longest time is removed;

Least-Recently-Used (LRU) : The page which has not been

referenced for the longest time is removed;

Clock or First-In-Not-Used-First-Out (FINUFO) : The pages are
kept in a circular FIFO queue. Associated with each entry in the
queue is a use bit which will be turned on when the corresponding
page is referenced after its initial loading. A pointer points to the
next page to be replaced. At page fault time, the use bit of the
page pointed to by the pointer is examined. If it is off then the
page is replaced. If it is on, the use bit is turned off and the pointer
is advanced one position. This continues until the pointer points to

a page whose use bit is off;

12

Table 1 : Page sizes used in some computer systerns

Computer Page size

DEC VAX 11/780 | 512 bytes

IBM 370/168 2048 or 4096 bytes
CDC STAR-100 4096 bytes

DEC PDP-10,20 512 36 bit words
MULTICS 1024 36 bit words

13

o Working Set (WS) : The working set at time t for a window of size
T is the set of pages which have been referenced in the interval
(t—T +1,t). A page is replaced at time t if it does not belong

to the working set.

The loading algorithm usually implemented in production virtual memory
systems is demand paging in which pages are loaded into the main memory
when they are accessed at page fault time. Another approach is prepaging in
which future exceptions are predicted and the corresponding pages
preloadeded. Clustered loading is sometimes applied because bringing several
pages into main memory at a time incurs less overhead than bringing them in
individually.

The main memory is normally divided into page frames, each of which has
the same size as a page. When the missing page is loaded into main memory,
the placement rule will normally place the missing page into the page frame
vacated by the page which has been replaced. If no page has been replaced

then an empty page frame is arbitrarily chosen.

Central to the successful operation of paging systems is the principle of
locality. This principle states that, during execution, a process will favor a
subset of V, i.e. , only a subset of its pages need to be resident in main memory
to allow seldom interrupted execution intervals. There are two components to
this locality of reference: temporal locality which is the tendency for a program
to reference in the near future those pages referenced in the recent past; and
spatial locality which is the tendency for a program to reference neighboring
pages. Loops, constants,- temporary variables and working stacks are
constructs which lead to temporal locality. Sequential portions of code and

traversals of arrays give rise to spatial locality.

14

These have led to investigations into the behavior of programs in order to
determine methods for enhéncing the locality of programs. Some rules to be
followed have been proposed [30], and some studies on programs implementing
specific algorithms such as matrix manipulation [31, 32], sorting [32] and
database operations [34] have been made. Investigations have also been
performed on automatic restructuring of programs in order to tailor the
programs better suited to the locality-based virtual memory environment [35-

39]

1.3 Branch and Bound Algorithms in a Locality Based Virtual
Memory Environment

In this section, the execution of tﬁe branch and bound algorithms in a
locality based virtual memory environment is considered. Sub-section 1.3.1
selects the data structures with which the algorithms may be implemented and
sub-section 1.3.2 considers the amount of locality exhibited by those

implementations.

1.3.1 Data Structures for the Branch and Bound Algorithms
The following three operations on the subproblem list may be defined

(i) insert(x) insert a subproblem with lower bound
x into the subproblem list ;

(ii) delete—smallest(y) delete the subproblem with the
smallest lower bound y from the

subproblem list ;

15

(1ii) delete—not—less—than(z) delete all subproblems with lower
bounds not less than z from the

subproblem list.

Each iteration of the branch and bound algorithin commences with a delete-
smallest operation. Let v be the lower bound of this subproblem. If a feasibie
solution w is. generated, then a delete-not-less-than (w) operation must be
carried out. Otherwise s new subproblems with lower bounds x,, x5, - -, x;
are generated and inserted into the subproblem list. Since x,, x5, - - -, x, are
random variables, it will not be possible to predict where each subproblem will

be inserted.

Subproblems are ordered by increasing lower bounds into an ordered list

under best-first search. Let the average size of this ordered list be m.

If a sequential mapping into an array is used for the ordered list, both the
insert and delete-smallest operations are expensive. The location into which a
subproblem is to be inserted may be found efficiently by binary search.
However, the use of a sequential mapping forces some of the remaining
subproblems to be moved so the sequential mapping is preserved in its proper
form, resulting in a time complexity of O(m). The subproblem with the
smallest lower bound is the first subproblem in the list. Once this subproblem
has been deleted, the remaining subproblems have to be moved in order to
preserve the sequential mapping. The delete-smallest operation also has a time
complexity of O(m). In contrast, the delete-not-less-than operation is very
efficient when a sequential mapping is used. Binary search deter'mines the
index beyond which all subproblems are to be deleted. These subproblems are
then deleted by updating the size variable of the ordered list. The time

complexity will only be O(log m).

16

An alternative that avoids the excessive data movement of the sequential
representation is the linked list. Here successive items of the ordered list may
be placed anywhere in memory. To ensure that elements in the list are accessed
in the correct order, each item has a pointer to the next element in the list.
Insertion and deletion are simple once the desired item has been located.
However, finding the correct location may be difficult as sequential search has
to be used. This leads to a time complexity of O{m) for an insertion. In
contrast, the delete-smallest operation has a time complexity of O(1) since the
position of the subproblem with the smallest lower bound is known. Sequential
search has to be used in the delete-not-less-than operation. In addition, the
deleted nodes will have to be returned to the storage pool. The time
complexity will be O(m).

A balanced tree will avoid the excessive cost of insertion exhibited by both
the linked list and the sequential allocation. We shall consider two variants of

the tree structure namely the B-tree (Appendix A) and the heap (Appendix B).

For a B-tree, both the insert and delete-smallest operations have a time
complexity of O(log m). Suppose the delete-not-less-than operation deletes tm
subproblems , 0<t<1 . Then it must be carried out as a sequence of tm

deletions, resulting in a time complexity of O(m log m).

Insertion and deletion of the smallest subproblem also have a time
complexity of O(m log m) in a heap. There is no easy way of accessing the
subproblems in a heap in the order of increasing lower bounds. The heap must
first be sorted. and only then the tm subproblems can be removed. This leads
to a time complexity of O(m log m) for the delete-not-less-than operation.

The above discussion shows that no single data structure is optimal for all

the three operations. The suitable choice will depend upon the relative

17

frequencies of the various operations. Recalling our assumption that each
expansion produces s son subproblems, insertions should be approximately s as
frequent as deletions. Simulations show that the delete-not-less-than operation
is very infrequent. This implies that the B-free and the heap are the best data

structures for implementing the branch and bound algorithms.

1.3.2 Does the Branch and Bound Algorithm Exhibits Loecality?

Suppose that the heap is implemented as an array as described in
Appendix B. Then the insert operation exhibits both temporal and spatial
locality. Spatial locality arises from the fact that an insert operation always
inserts the subproblem at the end of the heap. Temporal locality is exhibited
during the restoration of the heap property since the sets of ancestor nodes

examined during successive insertions intersect.

On the other hand, the delete-smallest operation exhibits little locality, as
the set of nodes examined during the restoration of the heap property for
successive delete-smallest operations have few nodes in common. Some locality

exists as the root and the node at the end of the heap are always accessed.

The same considerations apply to the sorting phase of the delete-not-less-
than operation.

The B-tree is normally implemented by a linked representation. Under
these conditions, the insert operation exhibits little locality. The random
nature of the insertions imply that the set of nodes accessed during successive
insertions will have little in common. In contrast, the delete-smallest and
delete-not-less-than operations exhibit both temporal and spatial locality. Each
node in a B-tree of order d contains at least d co.nsecutive subproblems.

Subproblems removed by successive deletions will either be from the same node

18

or a neighboring node.

For each implementation, the algorithm exhibits locality for either
insertion or deletion, but not both. This implies that the branch and bound
algorithm will be unable to run efficiently in a locality based virtual memory
environment. Modification of the algorithm to enhance the amount of locality

exhibited does not appear to be a feasible approach.

‘Thus, it may be useful to consider an alternative approach to this
problem, namely the adaptation of the virtual memory system to the

algorithm. This will be the approach discussed in the remainder of this thesis.

1.4 The Perspective and Organization of this Thesis

Before the adaptation of the virtual memory system to the branch and
bound algorithms may be carried out it is necessary to investigate the access
characteristics of the branch and bound process. Towards this end, a
stochastic model of the branch and bound algorithm is presented in Chapter 2.
Among the results derived from this model is the distribution function of the
active subproblems in the system. Together with the assumptions on the
distribution function of the newly generated subproblems, this characterizes the

access pattern of the branch and bound algorithm.

Chapter 3 considers the design of a proposed virtual memory system that
is based upon these access characteristics. Both analytical techniques and
simulations were used to determine suitable values for the system parameters.
Simulations indicate that a seven to nine fold improvement in performance
may be achieved by utilizing the proposed modified virtual memory system
instead of a general purpose virtual memory system with the LRU replacement

algorithm for branch and bound algorithms.

19

There are still many unresolved questions and Chapter 4 examines some of

these.

20

CHAPTER 2
PROBABILISTIC MODELING OF BRANCH AND BOUND ALGORITHMS

In this chapter, a probabilistic model for the branch and bound algorithms
is proposed. The problems studied include : (1) finding the memory size
requirement for the best first branch and bound algorithm; (2) predicting the
number of subproblems evaluated before the branch and bound process
terminates; and (3) determining the distribution of active subproblems by their

lower bounds

2.1 The Model of the Branch and Bound Process with Best First
Search

The branch and bound process can be modeled as two walls moving
towards each other. The front wall indica.te's the value of the lower bound for
the subproblems currently expanded. The back wall represents the minimum

of all the feasible solutions.

Initié.lly, the front wall is undefined and the back wall is at infinity. The
lower bound for the problem is evaluated and this is taken to be the position of
the front wall. The problem is then branched into two or more subproblems
and a lower bound is calculated for each subproblem. Since the lower bounds
of descendent subproblems are always greater than the lower bound of ancestor

subproblems, the front wall always moves to the right (Figure 3). Once the

21

current subproblem has been expanded, the front wall moves to the position of
the minimum of the set of active subproblems. This subproblem is then

expanded and the process repeats.

When a subproblem generated becomes a feasible solution, the value of the
solution is compared with the position of the back wall. If the position of the
back wall is greater than the value of the new feasible solution, the back wall is
set to this value; otherwise the feasible solution is ignored. Successive
expansion of the subproblems cause the front and back walls to approach each

other and the process is terminated when the two walls coincide.

In the following sections, the positions of the front and back walls are
calculated. Some simplifying assumptions are made in order for the

calculations to be tractable.

2.1.1 The Position of the Front Wall

The solution of the following problem is desired: given the position of the
front wall, what is the expected number of subproblems examined; or inversely,
given the number of subproblems examined, what is the expected position of
the front wall. The set of examined subproblems consists of subproblems that
have been processed and no longer belong to the set of active subproblems.
The following assumptions are made in the derivation:

(A1) The differences between the lower bounds of the expanded
subproblems and the parent subproblem are independent, identically

distributed random variables satisfying the gamma density function 8]

22

REGION REGIOH
FROWVT oF BACK OoF
WALL ACTIVE WALL FEASIBLE
SUBPROBLENMS SOLUTIONS

AR R AN

—>

COST

ACTIVE SU3PROBLEMS

CURRELITLY EXAMINED SUBPROBLEM
EXAMINED 3UT3TROBLEM

FEASTSZ0 SO0LUTION

0000

Figure 3 : The model of the branch and bound process under best first search

23

_ (o)
foly;a,\) = 0 y<0 (1)

The density function is monotonic if o < 1, and unbounded near the origin
when o < 1. For a > 1, the graph is bell-shaped and as a — oo, the density
function becomes normal [3]. A gamma density function is chosen because it
represents a very general class of density functions. As shown in the next
section, this assumption is valid for integer programming.

{A2) Each parent subproblem is expanded into s smaller subproblems.
This assumption is valid for a class of NP-complete problems.

Let I be the lower bound of the first subproblem. Let N(x) be the number
of subproblems examined when the front wall is at position x and E(N(x)) be
the expected value of N(x). When the parent subproblem is expanded, y’ and
y'! are the differences between the lower bounds of the expanded subproblems
and the parent subproblem. E(N(x)) can be written in the form of a renewsl

equation [23].

E(N{x)) =1 +{ E)(N(x—y,)dF g{y1) "‘{ E(N{x—yz)}dF g(y2)

e "’{ E (N(x~yo)dF g(ys)
or
E(N(x)) =1 + s | Ey(N(x~y)dF¢(y) {2)

where

24

E{N(x~— fy <
Ey(N(x-)) ={ s 3)

The evaluation of the above renewal equation would result in an incomplete
gamma function that cannot be solved analytically. Since fg(y) — 0, as y
— o0, the assumption that x is reasonably large implies that for any y > x,

fa(y) = 0. This leads to an approximate renewal equation which can be written

as:
E'(N(x)) =1 +s { E' (N(x~y))dF¢(y) (4)

To solve Eqn. (4), a solution is guessed and is substituted into Eqn. (4) in order

to verify it. Assume that E' (N(x)) = k e™ - ;—_—{T Substituting into Eqn. (4),

we obtain an identity

ke~ —o =1 45 [(k) = —L)dF(y)
0

=1 +s [ket dFg(y) - ZET [dFg(y)
0 0

oo
=1-—— +5 [k ™) dFq(y)
s—1 0

or 1 =3 }0 e ™dF o(y) - (5}
0

Using the density function of Eqn. (1) and substituting it into Eqn. (5), m

can be solved,

25

m = \(s!/* ~ 1) (6)

To solve for the constant k, we use the boundary condition E'(I) = 1.

Substituting for x = I in the assumed solution, we obtain

— mi_ _1

1 =ke p—
or

k= e ™l

s—1
Therefore,
' = (=) D - L
B/ (N&) = () e " 7

In particular when s=2 as for the case of the integer programming problem
Eqn. (7) becomes
E'(N(x)) = 2 @ 100D — 3

As similar to problems in general renewal theory, the derivation of the
distribution function of N{x) is difficult. The expected value of N(x) will,
therefore, be used in the calculation of the position of the back wall.

At this time, it is important to know the total number of nodes in the
branch and bound tree. All the subproblems to the left of the front wall must
have been examined (non-terminal nodes) and all the subproblems to the right
of the front wall are active and not examined {terminal nodes). Assuming the
degree of every non-terminal node is s, the expected fotal number of nodes in

the branch and bound tree is E(Ny(x)) and using Eqn. {7),

26

E(Ng(x)) ~s E' (N(x)) + 1 (8)

2.1.2 The Position of the Back Wall

To determine the position of the back wall, the mechanism involved in
generating a feasible solution must be understood. Let n be the number of
input parameters. n can be the number of variables in an integer programming
problem; n can be the number of cities that a traveling salesman ﬁishes to
visit; n can also be the number of nodes in a graph of the vertex covering
problem. Before a feasible solution can be obtained, a chain of subproblem
expansions must be generated. The number of subproblems in a chain can be
less than n (vertex covering problem}), equal to n (integer programming
problem) or greater than n (traveling salesman problem). To evaluate the
position of the back wall, the following additional assumptions are made:

(A3) Every chain that results in a feasible solution is made up of n
subproblem evaluations. Each chain starts at the origin and has a length equal
to the sum of n independent gamma distributed random variables. Variable
length chains will be considered in the future.

(A4) The chains leading to feasible solutions are independent. This

assumption is not true in general but is necessary for mathematical tractability.
The number of chains due to E(Np{x)) nodes in the branch and bound tree
is C(n,x), and the maximum is C_(n,x) which arises when the nodes in the

branch and bound tree are generated in a depth-first fashion. Let the root be

at level 1. Then, the number of nodes in level i of the branch and bound tree

is,

27

Conax (8,%) I
2n—i

The total number of nodes in the branch and bound tree is E{Np{x)]. Thus

_ o1 [Cpipy(nx)
ENt(x)) = ¥ |— (9)
=0 2"

Cax(D,X) can be solved by first calculating its approximate value without the
ceiling in Eqn. (9) and searching for the solution in the vicinity of the
approximate value.

The actual number of chains formed is, of course, less than C_, {nx}.
The position of the back wall estimated using C_ ., (n,x) will, therefore, be a
lower bound of the actual position.

By assumption (A3), the length of each chain is also gamma distributed
with a density function f(y) since the family of gamma densities is closed

under convolution.

f(y) = Igly; n * @, A) (10}

Since all the chains are assumed independent {assumption (A4)), the
position of the back wall is givern by the minimum value of all the chains. The
distribution function of the minimum of C(n,x) independent, identically

distributed random variables is Fg{y)} where,

Fg(y) =1 - [1 - F {y)]°") (11)

The expected position of the back wall is E(b}

28
E(b) = [v 4Pyl (12)

= [y C((nx) [1~ F(y) 9@ 1 (y) dy
1]

= v [Clax)[1 = Foly) 7" toly) dy -

[] Clax) [1-Fgfy) |99 t(y) dy 2L dy
00 dy

= [1i-Fem 10 [+ f11-Foty) o0 0y

2.1.3 The Distribution of Subproblems Behind the Front Wall

In this section, the distribution function of the difference between the
lower bounds of active subproblems and the front wall is calculated. The
generation of active subproblems is depicted in Figure 4. The distribution
functions of z; and z, are sought. Since y, and y; are gamma distributed, an
assumption which simplify the ealculation is the following.

{A5) The parent subproblem and the corresponding active subproblems it
generates can be at any position as long as they lie on opposite sides of the
front wall.

From the above assumption, it implies that x and z, have the same
distribution function. Since y, is gamma distributed, x and z, are also gamma

distributed.

29

.
g
-

N
J._IL

PARENT

e |

DN
2

|
IR
- 4

’ 24 "
%
e 7 Y2 -
FRONT WALL

Figure 4 : The éeneration of a pair of active subproblems

30

f(y) =2 * ,(y) = fg(y; a/2, }) (13)

Similarly, z; is gamma distributed with an additional constraint that z; > z,.
Therefore,

£.(v) = faly; @/2, N)[1 — Fgly; /2, M) (14)
The set of active subproblems is a combination of the sets of z; and z,.

2.2. Comparison of the Analytical Model with Simulations

A program to solve the integer programming problem was written in the ¢
language and run on a VAX 11/780 computer at Purdue. The cumulative
statistics on the increase in the lower bounds of son subproblems with respect
to the parent subproblem was collected over the duration of the solution
process. An exponential distribution was fitted on the collected statistics and
the results are shown in Table 2. The .20 critical value for the Kolmogorov-
Smirnov test is 0.076. Thus the hypothesis that the density function of the
increase in lower bounds of son subproblems is exponential for the integer
programming problem may be accepted. (An exponential distribution implies
a =1in Eqn. (1)) -

The cumulative statistics on the distribution of the difference between the
lower bounds of active subproblems and the front wall was also collected.
Gamma distributions with & = 0.5, 0.8, 0.7, 0.8, 0.9 and 1.0 were fitted on the
collected statistics and the results are shown in Table 3. The 0.20 critical value

for the Kolmogorov-Smirnov test is 0.11. These results show that the

exponential distribution (@ = 1) is a good approximation to the actual

distribution.

31

Table 2 : Testing of the hypothesis that the increase in lower bounds of son
subproblems is exponentially distributed for 20 variables, 20 constraints integer
programming problems (sample size = 200).

Problem | Sample | Kolmogorov-Smirnov

Number | Mean Variable, D,
1 0.184 | 0.057
2 0.322 0.083
3 0.170 0.062
4 0.230 0.076
5 0.312 0.049

32

Table 3 : Testing of the hypothesis that the difference between the lower
bounds of the active subproblems and the front wall is gamma distributed for
four 20 variables, 20 constraints integer programming problems {sample size =

100).

Problem Sample Kolmogorov-Smirnov Variable D,

Number Mean a=0.5 a=0.6 a=0.7 =038 =09 a=1.0
1 0.17 0.21 0.16 0.12 0.09 0.06 0.06
2 0.30 0.23 0.19 0.16 0.13 0.10 0.09
3 0.16 0.20 9.16 0.12 0.09 0.06 0.06
4 0.29 0.24 0.20 0.17 0.14 0.11 0.09

33

Using the analytical expressions derived in Section 2, we have plotted in
Figures 5 to 7 the performance of the branch and bound algorithm using best-
first search. In Figures 5 and 6, the position of the front and back walls are
plotted for two runs of the integer program using the measured mean of the
exponential distribution. It is seen that the expected number of subproblems
examined increases exponentially with the position of the front wall. On the
other hand, the position of the back wall approaches the front wall as the
number of subproblems examined is increased. However, thé approach is
rather slow and the slope of the graph for the back wall is steep. This implies
that as the problem size becomes larger, the number of subproblems that have

to be examined before the process terminates increases exponentially.

In spite of the various assumptions that we have made, the estimated
positions of the front wall match to within two percent of the simulated
position. The results concerning the simulation of the back wall position is not
plotted because an initial feasible solution is not generated in our runs and the
first feasible solution obtained usually becomes the optimal solution.
Nonetheless, assuming 2% error in the estimated positions of the back wall
which are plotted in Figures 5 and 6, the number of iterations at termination is
predicted correctly. Due to the steepness of the curves and the exponential
scale used, the predicted number of iterations may lie in a range of several

orders of magnitude.

In Figure 7, the analytical number of active subproblems as a function of
the number of subproblems examined is plotted. It indicates that the number
of active subproblems first grows to a maximum and decreases to zero at the
termination of the process. Furthermore, as n is doubled, the number of

active subproblems grows by a factor of 10%. These indicate the need of an

PREDICTION
SIMULATTIONS

ANALYTICAL

POSITION OF

BACK WALL

SOLUTION

POSITION

| T ¥ T H [
700 710 720 T30 740 750 760 770 780

CINIRVYY SWITEOHdIS d0 HAGWNN

Figure 5 : The positions of the front and back walls for a 20 variables, 20

constraints integer programming problem (problem 1)

35

TINIMVXE SWITHOUJENS J0 UTEWNON

O
W
0¥
2]
Fy H&a &5 O
o =<0 O - T~
m OH = 1y
=] HHE4 H
as B3
bw SHE IQ
2% B R [%
8
)
LIy
L
o
= <t
193
&)
= 1y
19
o]
o
LA
5 o
=
7 &4 B
QK
REES _
¥ T Q
M o~ 1
O O o
~ ~— -~

POSITION

: The positions of the front and back walls for a 20 variables, 20

constraints integer programming problem (problem 2}

Figure 6

36

10°

fG(y;1,0.1)

1 04 N n=40

NUMBER OF SUBPROBLEMS BETWEEN WALLS

£,(y31,0.1)

34
10 n=20

102"

10 1 l2 T ¥ |} T T
100 102 103 10* 165 10®% 107 108
NUMBER OF SUBPROBLENS EVALUATED

Figure 7 : The number of active subproblems between the two walls as a
function of the number of subproblems evaluated

37

efficient memory management scheme for storing the active subproblems.

2.3 Conclusion

In this chapter we have studied the probabilistic modeling of branch and
bound algorithms. With the aid of this model, we can characterize the access
behavior of the algorithm. Each iteration of the algorithm commences with the
deletion of the subproblem at ‘the head of the subproblem list. This
subproblem is expanded into s son subproblems. The differences between the
lower bounds of the son subproblems and the parent subproblem are
independent identically distributed random variables satisfying the gamma
distribution. For the integer programming problem, s is 2 and the distribution
is exponential. Also, we find that the differences between the lower bounds of
the subproblems in the list and the lower bound of the subproblem at the head

of the list is approximately exponential for the integer programming problem.

CHAPTER 3
VIRTUAL MEMORY FOR THE BRANCH AND
BOUND ALGORITHMS

In this chapter, the adaptation of the virtual memory system to the

branch and bound algorithms is considered.

3.1 A Virtual Memory System for the Branch and Bound Algorithms
(VM1)

One desirable feature of such a system is that the execution period
between successive replacements should be as long as possible. Another is the
batching of disk accesses. In addition, overlap between computation and
input/output should be maximized. These suggests that the subproblem list
should be split into two disjoint sub-lists, a primary list which resides in the
main memory and a secondary list which resides in the secondary storage.
Newly generated subproblems are inserted into the primary list. When the
primary list grows to its maximum size, subproblems are removed from the
primary list and inserted into the secondary list. During this time,
computation can still be carried out. The replacement rule selects the
subproblems which are to be removed. This use of a primary list in this
manner is equivalent to batching the insertions into the virtual space, which

reduces the cost of insertions.

39

The subproblem selected for partitioning is the smaller of the smallest
subproblems in the primary and the secondary lists. Thus it is necessary to
keep a number of the smallest subproblems of the secondary list in a portion of
the main memory, known as the p-buffer. The loading rule governs the

movement of subproblems from the secondary list into the p-buffer.
In the following sections, the design of VM1 will be considered by the
appropriate choice of the following parameters
e organization of the secondary list
e organization of the main list
e replacement rule
e Joading rule

® page size

3.1.1 Organization of the Secondary List

The same considerations that govern the choice of the data structure in
Section 1.3 holds in the choice of the organization of the secondary list. The
B*Y-tree is particularly suitable. Let each leaf correspond to a page of the
virtual memory system. The terms page and leaf will be used interchangeably
in this chapter. Since the internal nodes of a B*-tree are very much smaller in
size than the leaf nodes, it is possible to keep the index portion of the Bt-tree
in main memory. This reduces the number of secondary accesses required by
an insertion or a deletion to O(1).

Some modifications to the BY-tree are necessary. It is more efficient to

insert i subproblems into a leaf j as a single operation rather than performing i

insertions into the leaf j. The only modification required is to check for

40

overflow only when all i subproblems have been inserted into leaf j. Now,

instead of splitting when there are 2m+1 subproblems, there may be 2m+i

i

subproblems. m+ subproblems will go into one leaf and m+ -;—

subproblems will go into the other.

It is also necessary to be able to delete more than one subproblem from a
leaf, including the entire leaf. This is needed for efficient deletion of
terniina.ted subproblems. Deleting the subproblems individually causes an
intolerable delay. The modification required is to delete i subproblems from
the leaf before checking for underflow. An entire leaf may be deleted by

deleting the corresponding separator key and pointer from the parent node.

3.1.2 Organization of the Primary List

The organization chosen for the primary list has to allow efficient insertion
and tetrieval of the subproblem with the smallest lower bound. Since each
subproblem may be rather large, it is desirable not to manipulate the
subproblems. This suggests the use of a random organization for the
subproblems and a dense index. Since it is only necessary to retrieve the
subproblem with the smallest lower bound, it is not necessary to keep the dense

index sorted. A more efficient method is to use a heap.

3.1.3 An Analysis of the Expected Number of Page Accesses

In this section, we derive an expression for a quantity n which is the
expected number of page accesses pormalized by the expected number of
iterations under VM1. By minimizing this expression, the suitable page size

and replacement rule may be determined.

41

The two principal causes of page accesses in VM1 are the transfer of
subproblems from the main memory to the secondary storage during
replacement and the transfer of subproblems from secondary storage to main

memory during the loading of the p-buffer.

The expected number of page accesses during replacement is considered in
sub-section 3.1.3.1. Sub-section 3.1.3.2 analyses the expeéted number of
iterations between successive replacements while sub-section 3.1.3.3 analyzes
the expected number of page accesses due to the loading of the p-buffer. The
results of sub-sections 3.1.3.1, 3.1.3.2 and 3.1.3.3 are combined in sub-section
3.1.3.4 to yield an expression for 7. This expression is compared with

simulation results in sub-section 3.1.3.5.

3.1.3.1 The Expected Number of Page Accesses due to Replacement

Let the maximum size of the primary list be n, subproblems, that is, the
replacement algorithm is ca.!led.when the primary list grows to n, subproblems.
Suppose ¢ subproblems are then removed from the primary list and inserted
into the pages of B*-tree (secondary list). Also, let the number of
subproblems in the secondary list, just before the invocation of the replacement

algorithm, be N, subproblems.

Let G, 1 = L...mp be the lower bounds of subproblems in the primary
list such that cp‘,gcp,g v SCp,n’ Similarly, let Cg;, 1 = 1,...,N; be lower
bounds of the subproblems in the secondary list with C1<C,p - - Gy,
We can then define

Xi = Cp,i - Cp“ i=1, """ Dp (15)

42

Y; =G5~ Cs1 j=1,---,Ng (18}

It is assumed that

() Cpa = Cus o

(i) X; i = 1,..,n, are independent, identically distributed random variables

having the exponential density function

fy(x) = e " (18)

(i) Y53 = 1,...,N, are independent, identical exponentially distributed random
variables with density function

fy(y) = Ne (19)

Assumptions (ii} and (iii} are reasonable since the distribution of the
difference in lower bounds of the active subproblems and the front wall has

been shown to be exponential in the previous chapter.

Suppose the ¢ subproblems selected for removal are the subproblems with
lower bounds C,54+1,Cpp+2 * - ,Cp,g+¢ Where X;4+; has the value v and
Xj+4 has the value w. Let M, be the number of subproblems in the secondary
list with v < Y; < w. The probability of v < Y; < w for any subproblem in
the secondary list is given by

Pr{iv< Y,<w}= [A\e " dx

X=v

—AgW

— AN e

—-e

The probability that M; = m constitutes a binomial distribution

43

Pr{M, =m} = l:nIs [PT{V <Y; £ W}]m[l -Pr{iv<Y; < w}]N‘_m

The expected value of M given that Xy4; = v, Xp+gy =wand N; =n

E[Mleg = V,Xa+¢ = W,Ns = n] - IIPI'{V < Yi S W} (20)

Since N, and P{v < Y; < w} are independent, Eqn. (20) may be evaluated as

EM,] =EN] [[Pr{v<Y; < w}iv(y) fwlw) dv dw

v=0 w=0

=ENJ [J (6™ — e ™%) fy(v) fy(w) dv dw

v=0 w=0

= B[Ny {0 e ™ fy{v) dv - D'Eo e MY fy(w) dw (21)

It can be shown (Appendix C) that

n,! P(np—0+1+g)

< —~ AV — P
v.io e ™ fiy(v) dv G-0F T(n, ¥ 1790) (22)
° ! I'(n,~0—¢ +1+¢)
AW — np p ¢
w{_o ¢ f_V(w) dw [np—ﬂ—qb)! I(n, +1+ ¢) (23)
where
_ A
Y

Inserting Eqns. {22) and (23) into Eqn. (21) yields

44

_ T(n,—0+1+g)
E[M] = B[N, (npiﬂ)! r(lp+ 1+¢)

B n,} I(n,—6—-¢+1+¢)
(n,—0-¢) T(n, +1+g) (24)

Let the M, subproblems reside in R pages and let Q;, Q,, - - - ,Qr be the

number of subproblems in these R pages. Then

Q +Qt - +Qr2M, (25)

Assuming the equality in Eqn. (25) and taking expectations yields
El[Q, + Q; + -+ + Qp] = E[M,] (26)

By assuming that Q,Q,, Q,, - -- and Qg are independent and identically
distributed, and letting R be a stopping time, renewal theory and Wald's
equation gives

E[Q, + Q2 + --- + Qg] = ER|E[Q] (27)
Combining Eqns. (26) and (27) yields

EfM,] = E[R] E[Q] (28)

Let h, subproblems be the size of each page. Assume that the number of

subproblems in a page is uniformly distributed between 1/2h, + 1 and h,.

Thus

Pr{Q=q} = — 1/2h, + 1 <q <h, (29)

and the expected number of subproblems in a page, E[Q], will be given by

45

3h, + 2
BlQ) = —— (30)

By substituting Eqn. (30) into Eqn. (28) we obtain

3h, + 2
EM,] = ——E[R]
and

EIR] = 3515 BMJ

n,! I(n,—0+1+g)
(p—=0)t F(n, +1+g)

= 35, 72 BN

_ np! M(n,~0-¢+1+¢)
(n,—8-9)! I'(n, +1+5g) (31)

The derivation of the distribution function of R is extremely difficult. The
expected value of R will be used for mathematical tractability. Of the E[R]
pages, let subproblems be actually inserted into G pages. Assuming that the ¢
insertions are uniformly distributed among the E[R] pages, the number of

subproblems inserted into any page, K, satisfies the binomial distribution

_ I
Prik=i} = l ”Elﬂl”“ﬁffﬁ"

The probability that at least one subproblem is inserted into a page

Pr{K > 1} =1 - Pr{K = 0}

46

¢
=1-|1- gy

E[R]

and the expected number of pages into which subproblems are inserted

E[G] = E[R] Pr{K > 1}

1
-t |

Out of the G pages, H pages have to be split due to overflow. Suppose a

1- (32)

= ER]

page has q subproblems in it. Then the page has to be split only if more than

(hy—q) subproblems are inserted into the page. Thus

Pr{ split page|Q=q } = Pr{ K > h,—q+1}
=1-Pr{ K < h,—q-1}
=1-Pr{K<h~q} (33)

and the probability that a page has to be split, f,, will be given by

b,
f, = ZﬁPr{Q = q} Pr{split page| Q = q} (34)
q:

where

5 = max(ly2h, +1,h,—¢ + 1)
Using Eqns. (29) and (33), Eqn. (34) becomes

h
s 2
f, = o (1-Pr{K < h-q})
q:S g

47

=-—(h+ 6*—2Pr{1<h —-q}

Sq—s
_ 2 LS AN p P
=, (70 hm[][Em”l"ﬁﬁi]
=2 (y -2
=3 (h+=0) s}%[[h+1 5,]

¢~}
l][E[R]I E[Rl] %)
For ¢ >>1, -—<<1 and o . 4 (1-E[R}), the Poisson
E[R}] ER] — E[R] ’

approximation to the binomial distribution may be used as a simplification.

2 2 __¢
f, o h(h -6) h, exp(E[R])x
Slnrr-omi) 2 [2 |
= U '3 | ER

Since any of the G pages is either split or not split, this is a binomial
experiment with f, as the probability of success and 1 —f, the probability of

failure. The expected number of pages split is

EMH] = 1,G

To insert subproblems into a page, the page must be read from the secondary
storage into main memory. The subproblems are inserted into the image of the
page in main memory and then the image of the page is written back onto

secondary storage. This implies that G pages are read in from the disk and

48

(G+H) pages written back to the disk. Thus the number of page accesses
incurred during a replacement, T, is given by

T, =G + (G+H)

Taking expectations and using Eqn. (32) yields
E[T,] = 2 E[G] + E[H]

={2 + f,) E[G]

J

P 1
ll—'l::—[ﬁl—r E[RI{I_[I_E_[RTT} (38)

3.1.3.2 The Expected Number of Iterations Between Successive

FIPIPNEE §. =N L | BN
2+hs(h"+ 8) b 3, (bhg +1-46~j) E[R]]‘ X

s j=0

Replacements

In our proposed virtual memory system, the main memory contains the
primary list and a p-buffer which holds the leftmost page of the B*-tree. At
present, only the case where the space set aside for the primary list and the p-
buffer are fixed will be considered. The case where the space allocated is
allowed to vary dynamically will be considered in the future. The loading rule

ensures that the p-buffer is never empty whenever the secondary list exists.

When a subproblem is chosen for partioning, let f, be the probability that

the subproblem is from the p-buffer. Also, let the number of subproblems

49

partitioned between two consecutive replacements be D. Of these D
subproblems, let D, subproblems be from the p-buffer and D, subproblems be

from the heap (primary list). Thus,

D =D, + D,
Furthermore, the value of D, given D satisfies a binomial distribution

D
Pr{D,=k|D} = [k](fs)k (1-t)P*

The expected number of subproblems from the p-buffer partitioned between

two consecutive replacements,

E[D,] = E[E[D,| D]]
= E[f, D]
= f, E[D] (37)

Similé,rly,the expected number of subproblems from the heap partitioned

between two consecutive replacements

E[D,] = (1-L)E[D) (38)

In Chapter 2, we have made the assumption that each partitioning of a
subproblem generates s new subproblems. These newly generated subproblems
are inserted into the heap. The size of the heap will increase by s whenever a
subproblem from the p-buffer is partitioned. When a subproblem from the heap
is partitioned, the increase in the size of the heap is only s — 1 since the
subproblem being partitioned has been deleted from the heap. Equating the

increase in the size of the primary list between two replacements to the fixed

50

number of subproblems removed during a replacement

¢ =sD, + (s—1)D, (39)

Taking expectations of Eqn. (39) gives

¢ = s E[Dg] + (s—1)E[D,]
= s 1, ED] + (s~1)(1~1,) E[D]
= (s—1+1,) E[D]

and

E[D] = ;’ﬂ_—f ‘ (40)

3.1.3.3 The Expected Number of Page Accesses Due to Loading

Let the D, subproblems reside in F pages of the secondary memory, and
Q;, Qé, SN Q;.‘ subproblems be the number of subproblems in each of these
F pages. Q, Q;, Qé, SR Q]’;\ are assumed to be independent identically
distributed random variables. Let F be a stopping time. The use of renewal

theory and Wald’s equation gives

E[D,] = E[F]E[Q]

and
E[D,]

EFl = Eq)

o1

_ 4
T 3b,+2 EID,|
4 f; ¢

3h, +2 s—1-+f,

Let the number of page accesses due to the loading of the p-buffer between two

successive replacements be T,. Then

E[T,] = E[F]
=4 X (41
3hy +2 s—1-f,)
3.1.3.4 An Expression for 5
From its definition, » may be written as
E[T] + E[T}
= SE[D} (42)
Substituting Eqns. {36), (40} and (41) into Eqn. (42) yields
sT1+f, | 4 f;¢ 2 2 hd
= +12 + = (b +1-6)— = —5+1—
" o 3z sa+r,)2y, BT J%[h oF1 J]
& 1 j 1 $-) 1 4
—=l1-==1 IER e
A ” E[R]I Brl) [P ER (4)

3.1.3.5 Comparison of n with Simulation Results

52

To obtain an indication of the validity of Eqn. (43), simulations were
performed using integer programming problems, for which s=2. Using the
values of f,, A, and A, obtained from the simulations, the corresponding values
of n were computed and compared with the actual number of page accesses, p,
observed (Table 4). To simplify this comparison, the values for p are
normalized so that the mean of the normalized values coincide with the mean
of 7 values. The results show that Eqn. (43} is a reasonably good measure of

the number of page accesses for integer programming problems.

3.1.4 Replacement Rule
Using the notations introduced in the previous section, let the subproblems
in the primary list when the replacement algorithm is called have lower bounds

Ci,i=1,- - n,suchthat C; < C, --- SCn'.

One of the aims in the design of VM1 is to batch the insertion of
subproblems. The lower bound of a subproblem determines the page into
which the subproblem is inserted. The subproblems that are most likely to be
inserted into the same page as the subproblem with a lower bound C; are the
subproblems with lower bounds C;, and C;;,. This suggests that these
subproblems should be removed as a set. The proposed replacement rule S(8,¢)
| will select the subproblems with lower bounds Co+1.Co420, - :Co4y4 for
removal. Two special cases of this rule may be identified: S(0,¢4) or front
replacement where the ¢ subproblems with the smallest lower bounds are
replaced and S(np—c;b,qb) or back replacement where the ¢ subproblems with the
largest lower bounds are replaced.

Thus the problem of selecting the proper replacement rule reduces to the

selection of the proper values of :

53

Table 4 : Comparison of n with the actual number of page accesses, p, for four
20 variables, 20 constraints integer programming problems (n, = 132, h, = 33,
¢ = 60). '

Problem 1 Problem 2
0 Actual Normalized Actual Normalized
n P n P n P
10 7021 3.47 3.443 2899 3.46 3.43
20 6741 3.33 3.29 2768 3.30 3.26
30 6546 3.23 3.20 2657 3.17 3.15
40 | - 6214 3.07 3.12 2521 3.01 3.05
50 6210 3.07 3.07 2475 2.96 2.99
52 6058 3.00 3.06 2474 2.96 2.97
Problem 3 Problem 4
o " Actual Normalized Actual Normalized
n P n P n P
10 2423 3.47 3.38 3155 3.40 3.40
20 2277 3.26 3.21 3019 3.23 3.24
30 2165 3.10 3.09 2930 3.13 3.12
40 2111 3.02 3.00 2887 3.09 3.02
50 1988 2.85 294 2763 2.96 2.97
52 1987 2.85 2.91 2728 2.93 2.95

54

(i) ¢ or the subproblems which are to be removed from main memory

(i) ¢ or the number of subproblems to be removed from the main
memory during a replacement

For simplicity, only replacement of a fixed number ¢ of subproblems is
considered.

The page access measure, n, calculated in section 3.1.3 allows the vaIu.e of

0 and ¢ to be selected. We desire the values of § and ¢ which will minimize 7

as given by equation (43)for a given n,, by, and E[N;]. However, this is difficult

as f;, A, and A\; are complex functions of both # and ¢. The approximation of

optimizing ¢ and ¢ independently of each other will be used here. Assume that

E[Ng >> 1. This implies that E[R] >> 1. Thus

+f i

q21¢5[2+i—(hs+1—6)-—-h%[(hs+1—6)[1—E—[1RTJ
1
co o+ --o.”E[R] l_ll_—éﬁr}
_1+f$ 2 a2 _
== 2+hs(hs+1 5) hs(hs+1) x
L, P
"R]E[R‘ ‘[“ﬁ”

o~ > 2 E|R] —ll“—-]l . (44)

E[R] may be simplified to

55

— 4 E[N] n! T(o,—68-+1+¢)
[]“3h3+2 (o, ~8)! T(n, +1+¢)
_ n,! I{n,~0-¢+1+¢)
(n,— 80—} [(n, +1+g)
_ 4E|NJ] n,! I(n,—0+1+g)

3h,+2 T(n, +1+¢} (n,—8)!

I(n,—0-¢+1+¢)

{n,—0-¢)!
4ENJ 1 » 1 mef o+
= T(1+¢) I 1<
3h,+2 |t ids | T(1+g | ‘)il;Il i
mA-4 i 4
- M+g) T
i=1
_ 4E[Ns] T i
= 3hs+2 i=n,—ﬂ—¢+l i+§ x
n,—# .
[om LiEs —1} (45)
i=n,~d-¢+1 !

Let 8* be the value of § which minimizes Eqn. (44) for a given n,, by, E[N,] and
¢. Simulations based on integer programming problems show that the
parameters I, A, and A varies as @ varies (Table 5). Quadratic approximation
of these variations was used, whereby

fS=&11+0129+01392

56

Ap = agy F+oagy 0+ oy 6P (46)
Ne =g toag 0+ ag F

The optimization of ¢ was then performed using non-linear programming.
Table 6 shows the a;;'s estimated for the integer programming problems shown
In Table 5 and the corresponding values of #*. It can be seen that there is a
significant variation in the values of the oy, as, @g;, agy, a3 and ag, for the
different problems. The values of a,3, a3 and @33 remain reasonably close for
all four problems. The effect of slight perturbations in the values of the o,
09, Oy, Olgg, &3) and ags upon the value of #* are shown in Table 7. It
appears that slight perturbations do not affect the value of 6*.

The use of Back Replacement is also suggested by statistics on the number
of page accesses (Figure 8) collected during the simulations for the same four

integer programming problems.

Under Back Replacement, Eqn. (45) reduces to

4 E[Nsl Iy (l + E) _
3b,+2 it ,Ij[, i] 1] (47)

i
i+¢

E[R] =

Let ¢* be the value of ¢ which minimizes Eqn. (44). Once again, complications
arise from' the variations of f;, A, and X, with ¢{Table 8). Quadratic

approximation was again used.

f,=P8nu + B¢ + B3 ¢°

Xp = Bay + Bap ¢ + Poz 9° (48)

57

Table 5 : Variation of X\, A, and f; with # for four 20 variables, 20 constraints
integer programming problems {n, = 132, h, =33, ¢ = 60).

Problem1 Problem?2

. Ap A, s Ap A

10 | 0.866 0.138 0.196 0.854 0.169 0.358
201 0802 0.169 0.195 0.783 0.192 0.341
301 0.760 0.203 0.194 0.728 0.262 0.331
40 | 0.717 0.223 0.193 0.680 0.294 0.323
50 [0.684 0.238 0.192 0.642 0.353 0.313
52| 0674 0.240 0.192 0.627 0.364 0.313

Problem3 Problem4 .
N | e I, N | A
10 | 0.837 0.111 0.174 0.839 0.177 0.343
201 0.757 0.133 0.166 0.772 0.205 0.336
30| 0.703 0.159 0.161 0.714 0.247 0.324
40 0.650 0.186 0.158 0.669 0.303 0.313
50 0.607 0.207 0.155 0.625 0.348 0.306
52 0.591 0.210 0.154 0.620 0.355 0.304

Table 6 : ey ,i,j = 1,...,3 and #° for the four integer programming problems

shown in Table 5

58

Problem 1 Problem 2 Problem 3 Problem 4
0y 0.9287 0.9230 0.9140 0.9130
oo -0.0068 -0.0079 -0.0084 -0.0078
O3 3.872e-05 4.382e-05 4.434e-05 4.309e-05
Oy 0.0946 0.1298 0.0839 0.1447
Ctpo 0.0045 0.0032 0.0026 0.0026
g -3.352e-05 | 2.402e-05 | -3.315e-06 | 2.752¢-05
gy 0.1970 0.3702 0.1821 0.3543
age -0.0001 -0.0015 -0.0009 -0.0010
33 1.794e-07 9.151e-06 7.571e-08 2.752e-05
& 52 52 52 52

59

Table 7 : Variation of 6" with small perturbations in the values of ay;, ay,, oy,
Qg9, &3) and aye for problem 2 of Table 5

ap = ~0.0079 a5 = -0.0078
ayn = 0.1200 oy
asy = 0.0032 a, = -0.0033
an = 0.3700 a,f
ez = —0.0015 as = —0.0014

N

0.01
0.0001

= 0.1300

= 0.3800

for a;

for a;,

g*

», ey + v oty oz + 9 az + ag + 7 age +
<o < <oy < <an= <ap< <an < <oy <
ai*ty | epty | alty | efty | ety | e +e

~7¢ 52 52 52 52 52 52
-6¢ 52 52 52 52 52 52
- 5¢ 52 52 52 52 52 . 52
- 4¢ 52 52 52 52 52 52
-3¢ 52 52 52 52 52 52
-2¢ 52 52 52 52 52 52
~1le 52 52 52 52 52 52
+ O¢ 52 52 52 52 52 52
+ 1¢ 52 52 52 52 52 52
+ 2¢ 52 52 52 52 52 52
+ 3¢ 52 52 52 52 52 52
+ 4¢ 52 52 52 52 52 52
+ 5¢ 52 52 52 52 52 52
+ 6¢ 52 52 52 52 52 52
+7¢ 52 52 52 52 52 52
oy = 0.9200 a,; = 0.9300

60

8.00
7.80 -
6.40 -
prob 1
5.60 -
%.80 -
%.00 -

ajn-‘\\\HN\"h-h“““*~———-______\‘H_____
prob 4

2.40 - . prob 2

number of page accesses X103)

prob 3

1.“ ¥ L] L3 L] 3 ¥ ¥ ¥ L Ll L) L] 1 L] ¥
00 M0 .80 1.2 1.6 2.0 2.% 2.8 3.2 3.6 4.0 4.4 4.8 5.2 5.6 6.0 6.4

g (Xiol)

Figure 8 : Variation of the number of page accesses with # for four 20 variables,
20 constraints integet programming problems (n, = 132, h, = 33, ¢ = 80)

61

Ag = B3 + Bag ¢ + Pag #°

The values of the ;s for the four problems of Table 8 are shown in Table 9.
It is noticed that there is a sharp fluctuation in the value of the parameters in
the region of ¢ = 40. Quadratic approximation will not be able to handle
these sharp variations. Non-linear programming was used to solve for ¢* and
the results are shown in Table 9. It can be seen that the values of ¢* were
between 0.7 n, and 0.9 n,. The results obtained also show that the values for
Bit, Bizs Bay, Poo, B3 and Bi, differ significantly among the various problems.
In contrast, the values of 3,3, fs3 and (33 remain reasonably constant. The
effect of slight perturbations on the values of 3y, Bya, 821, Pa2, P31 and B3, are

shown in Table 10. The results show that this has a significant effect on ¢°.

Statistics on page accesses (Figure 9) collected by simulations on the same
four integer programming problems also suggest such a result. It is noticed
that the number of page accesses is minimum at a ¢' which is problem
dependent. These values are problem dependent and are difficult to predict. A
safer approach is to select ¢* in the range of 0.7n, to 0.9n,. Here the number
of page accesses is consistently close to the minima and differs from it by at

most 109%.

3.1.6 Page Size

The cost of a page access varies with the size of the page. Thus to select
the correct page size it is necessary to consider the total cost of the page
accesses and not the number of page accesses.

The characteristics of disk drives will first be considered. There are two

types of media, removable media (diskpacks) and non-removable media. Each

62

Table 8 : Variation of the parameters f;, A\, and A with ¢ for four 20 variables,
20 constraints integer programming problems (n, = 132, h; = 33, # = n, — ¢)

Problem 1 Problem 2

f, N | f, X, A,

10| 0.207 0.477 0.119 0.272 0.682 0.203
20] 0215 0.409 0.123 0.298 0.728 0.266
301 0227 | 0.369 0.130 0.286 0.534 0.223
0.349 0.374 0.191 0.330 0.504 0.228
0.384 0.333 0.190 0.360 0.504 0.266
0.400 | 0.305 0.197 0.386 0.439 0.261
0.447 | 0.284 0.194 0.417 0.421 0.273

80 | 0.482 | 0.263 0.202 0.460 0.392 0.276
100 | 0.564 0.234 0.201 0.548 0.358 0.284
110 | 0.627 0.228 0.206 0.608 0.350 0.285
120 | 0.687 0.215 0.202 0.670 0.337 0.280

38383

Problem 3 Problem 4

f, Mp A f, Ap s

10| 0178 | 0.511 0.115 0.143 | 0.506 0.084
20| 0189 | 0425 | 0122 .| 0.38 | 0517 0.176
30| 0.152 | 0.352 0.083 0.143 0.340 0.089
40§ 0379 | 0383 | 0.193 0.428 | 0.383 0.183
50| 0411 | 0349 | 0.197 0.447 | 0337 | 0.184
60| 0438 | 0316 | 0.202 0.485 | 0308 | 0.191
70| 0472 | 0299 | 0199 | 0508 | 0.274 0.190
80| 0.507 | 0.268 | 0.203 0.545 | 0258 | 0.191
100 | 0590 | 0242 | 0.206 0.628 | 0226 | 0.191
110 | 0650 | 0.233 | 0.208 0.689 | 0.219 | 0.197
120 | 0697 | 0.230 | 0.213 0.752 | 0.207 0.196

Table 9 : 8, ij = 1,2,3 and ¢" for the four integer programming problems

shown in Table 8

Problem 1 Problem 2 Problem 3 Problem 4
B 0.3002 0.2940 0.3182 0.4042
Brz 0.0004 -0.0001 0.0008 -0.00046
Bia 2.351e-05 2.764e-05 2.011e-05 2.874e-05
B2y 0.5410 0.6966 0.5640 0.5821
820 -0.0050 -0.0052 -0.0053 -0.0060
Bag 2.012e-05 1.945e-05 2.231e-05 2.572e-05
B 0.1738 0.1492 0.1867 0.1715
Baa 0.0004 0.0029 0.0001 0.0003
Baa ~2.398e-06 -1.780e-06 8.421e-07 -8.018e-07
d)' 110 113 123 108

Table 10 : Variation of ¢* with small perturbations in the values of 8y, 3,

64

Bots Bag, P31 and Fag for problem 2 of Table 8

¢l
¥
fnt7 Pzt Par ¥ Pz + Bay + Baz t
<Pn< <P <Bn< <Br< < B < < fpe<
B+~ | B+ | BAt+ta | BE+tar | Bata | Bmta
—7e 111 113 97 116 109 109
- Ge 111 113 97 101 110 110
—5¢ 112 113 96 115 110 110
—4¢ 112 113 96 96 110 111
-3¢ 112 113 95 114 111 111
—2¢ 112 113 95 114 112 112
- 1¢ 114 113 113 113 112 112
+ 0 113 113 113 113 114 113
+ 1e 113 113 113 112 113 113
+ 2¢ 113 113 112 112 113 95
+ 3¢ 114 94 112 112 95 95
+ 4¢ 114 94 111 111 95 96
+ 5¢ 114 94 111 111 96 9
+ B¢ 114 94 111 111 96 100
+ 7¢ 115 94 110 110 96 97
By = 0.29 By = 0.30
Bz = —0.0001 By = 0.0000
Bn =069 B, =070
Bz = —0.0053 B = =0.0052
B = 0.14 5 = 0.15
Baz = 0.0020 f4 = 0.0030
0.01 for 8,
€= l0.0001 for gy

65

8.00
7.20 -

e

™

S s.uo -

X

S\t

)

@ s.60- prob 1

n

v

¥

U .

n Y.80 4

o

o

]

a
%.00 -

.

o

1.

o

L 3.20

[=

3

c
2.490 - prob %

prob 2
prob 3
1-“ ¥ L]) * ¥ ¥ L]
.80 .20 40 .60 .80 1.0 1.2 1.4 1.6

é ¢X10%)y

Figure 9 : Variation of the number of page accesses with ¢ for four 20
variables, 20 constraints integer programming problems (n, = 132, h, = 33,

=n, —)

66

may have movable access mechanisms or fixed access mechanisms. The most
popular is the diskpack drive. Here, a set of disks are mounted together in a
stack. Multiple disks are separated by spacers from other disks in the stack.
The pack of disks is placed in a spindle and rotate continuously. Each surface
can be read by a recording head mounted on one of a set of arms that move in
or out, relative to the center of the disk. All recording heads in a disk drive
move in unison, but only one head may actually transfer information at any
time. No further physical movements of the arms is required to reach any of
the set of tracks that are radially equidistant from the center but on different
surfaces. For these tracks, only electronic switching delays are incurred to
switch from track to track. These delays are relatively negligible. Such a set

of tracks is known as a cylinder.

In another type of disk design, the disk units have one head per track
which entirely avoids the access arm movement. Geometrically different but
logically identical are magnetic drums which has stationary heads mounted on
a rotating cylindrical magnetic surface. These head-per-track devices provide
less storage.

A track is often subdivided in smaller areas called sectors since the entire
track tends to be unmanageably large. The division of a track into sectors may
be implemented completely by hardware. There will be a fixed number of
sectors, each capable of holding a fixed number of bytes. In some disk units,
the track is divided into sectors by a software-controlled formatting operation,
which writes markers onto the disk to be recognized by the hardware during
normal read and write operations. If !;he size of a hardware sector is
inconveniently small, it is possible routinely to use a number of sectors

together.

67

The effective working unit, be it a sector, a number of sectors, a formated
track sector, a track or a software defined i)ortion of the track, will be referred
to as a block. A block, then, is a collection of data of a fixed size within a
computer system which is moved as a unit between the secondary storage
devices and main memory. The fixed size reduces hardware and software
complexity at the lower level and defers some decisions to a level closer to the

user programs.

The average time to reach a specific known position which contains the
data item to be accessed, from an undetermined previous position is known as
- the random access time. It is frequently broken down into two constituents,
seek time and rotational delay. The seek time is the time required to position
the access mechanism over the proper track. Seek tiines can be approximated
by a linear relationship a + bi, where i is the distance traveled in terms of
intertrack spaces and a and b are constants. Often only an average value tg is
used. After the head is positioned on the correct track, a further delay is
incurred to reach the desired block on the track. The delay between the
completion of the seek and the actual transfer of data constitutes the rotational
latency. Part of the delay occurs because the reading cannot commence at an
arbitrary point. A track begin point may have to be reached first before the
location of the desired block. In many devices, the track begin point is sensed
by a separate sensing device. The average value of the rotational latency, t,, is

half the time required for one rotation of the disk.

When the proper track and position is reached the actual data still has to
be accessed. On disks the transfer rate is a function of rotational speed and
track capacity. Since the transfer of a block is such a frequent operation, the

block transfer time, ty, is often used.

The average cost of a page access for a page of size e blocks will be

b, =t + t, + ety (47)

The average total paging cost normalized by the expected number of iterations

will be given by

K=nt, ‘ (48)

However, the parameters f, m, and m, again show variations with page
size {Table 11). An approximation which may be used is a step function. At
present, floating point truncation problems prevents the use of nonlinear
programming to determine the value of the page size which minimizes «.
Simulation results (Figures 10 - 14) based on the integer programming problem
suggest the use of a page size, h,, in the range of 0.65n; and 0.85n,. Each 20

variables, 20 constraints integer programming problem occupies 1974 bytes.

3.1.8 Loading Rule

The large page size, h,, selected means that it is inefficient to use a p-
buffer of size h,. If a separate portion of main memory is set aside for the p-
buffer, the value of n, will be reduced significantly. If the p-buffer shares the
same main memory space as the heap, a replacement may be needed to create

space for the subproblems being loaded into the p-buffer.

A reasonable compromise is to set aside a p-buffer for k subproblems.
Instead of loading the entire page, the k subproblems with the smallest lower
bounds are deleted from the left-most page of the B¥-tree and loaded into the
p-buffer. This scheme will eventually cause an underflow of the left-most page
and precipitate either a redistribution or a concatenation which results in

further page accesses.

69

Table 11 : Variation of X, X; and f; with page size for four 20 variables, 20
constraints integer programming problems (np =132, ¢ = 120, § = n, — 8).

Page size Problem 1 Problem 2
(kbytes) f Xp A f, Xy bW
32 0.842 0.18% 0.16¢ 0.822 0.297 0.281
64 0.841 0.181 0.160 0.819 0.294 0.281
96 0.845 0.181 0.150 0.819 0.292 0.281
128 0.836 0.180° 0.160 0.819 0.291 0.280
160 0.785 0.266 0.286 0.662 0.272 0.181
192 0.785 0.266 0.286 0.662 0.272 0.191
224 0.785 0.266 0.286 0.662 0.272 0.193
256 0.785 0.2566 0.286 | o0.662 0.272 0.192
Page Size Problem 3 Problem 4
{kbytes) f, X Ay fy X, A
32 0.803 0.167 0.156 0.814 0.278 0.279
64 0.794 0.166 0.150 0.808 0.279 0.280
96 0.806 0.165 0.150 0.811 0.281 0.281
128 0.799 0.164 0.150 0.818 0.277 0.277
150 0.666 0.174 0.150 0.681 0.272 0.243
182 0.564 6.173 0.150 0.681 0.272 0.243
224 0.667 0.173 0.149 0.679 0.272 0.240
256 0.669 0.173 0.150 0.660 0.276 0.244

70

1.00

number of page accesses (x10'H
8
o

.ase{ Drob 2

- —“‘ -
probk 3
800 Y Y Y T Y y T
.aeo .GM0 .960 1.28 1.60 1.92 2.24 2.5% 2.88

page size kbytes (X10%)

Figure 10 : Variation of the number of page accesses with page size for four 20
variables, 20 constraints integer programming problems {n, = 132, ¢ = 120,

=n, = ¢)

71

7.20
.30 -
S.40 o
4,50 -

3.60 4
prob 1

sz-::::::::::::::::::_______ prob 4

prodb 3

paging cost, seconds (X102)

900

080 T T T T T T 1 1
. 320 840 . 960 1.29 1.0 i.ce 2.24 2.% 2.k¥

page size kbytes (X10%)

Figure 11 : Variation of the total paging cost with page size on a moving head
disk (t, = 28ms., t, = 16.67ms.) with a disk density of 16 kbytes/track for four
20 variables, 20 constraints integer programming problems (np = 132, ¢ = 120,

9=DP“¢) '

72

6.4
$.80
)
o *o” -
-l
x
-
2 400+
c
o
O
&
W 3.0-
* prob 1
] -
S 2.40 - prob 4
3, - prob 2
g 1. —~———
prob 3
. 900
.3" 1 L L] L L L) +
.38 .40 .960 1.29 1.60 1.92 2.24 2.5 2.88

page size kbytes (X102

Figure 12 : Variation of the total paging cost with page size on a head per
track disk (t, = 16.67ms.) with a disk density of 16 kbytes/track for four 20
variables, 20 constraints integer programming problems (n, = 132, ¢ = 120,

= n, — ¢}

73

6.%0
5.60.-
o
o9 qv“-
——y
x
"
W
< %.00 -
c
o
U
[-
" 3.20 - - prob 1
»
o
S 2.40 -
o prob 4
5 /
o 1.6
Q
Q.
—
-808 7 prob 2 / .
prob 3
-’a‘ ¥ 3 L L | L) L3 L B
.3e0 .6H0 .960 1.28 1.60 1.92 @224 2.% 2.80

page size kbytes ¢x10%)y

Figure 13 : Variation of the total paging cost with page size on a moving head
disk (t; = 28ms., t, = 16.67ms.) with a disk density of 64 kbytes/track for four
20 variables, 20 constraints integer programming problems {(n, = 132, ¢ = 120,

#=n, = ¢)

74

6.4%0
S.60 -
~
‘ua %.80 -
L.]
x
o
3 4.00-
c
[~
U
o
n 2.20
-
o
8 AR
g
- 160 ',-prob 1
5 .
fprob 4
—_—
800 A T —— T = —
prob 2_/ prob 3 -/
.Dﬂﬂ ¥ L] ¥ ¥ L L L)
.320 .640 . 960 1.28 1.6 1.92 2.24 2.5 2.88

page size kbytes (X10%)

Figure 14 : Variation of the total paging cost with page size on a head per
track disk (t, = 16.67ms.} with a disk density of 64 kbytes/track for four 20
variables, 20 constraints integer programming problems (nP = 132, ¢ =120,

§=n,—¢)

75

An alternative is to delete the entire left-most page but load only the k
subproblems with the smallest lower bounds. The remaining subproblems are
left in a s-buffer in secondary storage. When the p-buffer is empty, an
additional k subproblems are moved from the s-buffer to the p-buffer. Only
when the s-buffer is empty, is the new left-most page deleted from the B*-
tree. When a replacement occurs while the s-buffer is not empty, the B*-tree
may have subproblems with lower bounds that are smaller than those in the s-
buffer. The chance of this occurring is srnai], since the replacement rule will
leave the subproblems with the smallest lower bounds in the main memory
heap. Even if this occurs its effect should be minimal since the subproblems in
the s-buffer will have to examined by the branch and bound process in the near
future. This effect is only visible when the final solution is close to being

generated. At worst, it will delay the solution by h, iterations.

3.1.7 Performance of VM1

To compare the performances of VM1 with that of a general purpose
virtual memory system usiﬁg the LRU replacement algorithm, simulations were
performed on a VAX 11/780 using integer programming problems.

The results for four 20 variables, 20 constraints integer programming
problems are shown in Figures 15 - 18. Let the solution of a problem incur an
average paging cost P, on VM1 and P) on the LRU virtual memory system.

The relative performance, R, may be defined as

R, = oL
C_Pm

For a head per disk device, P; is smaller than P, at low disk densities. As

the disk density increases, P, decreases faster than Py, so that P is smaller

76

5.60
'+.90 4 IRU
P
& 4.e04
R
x
L
3 3.0
&
G
. T]
] 2.80
LY
»
b4
S e
o
c
@ 1404
g .
a
700 -
.00 r Y - > t
.30 1.6 3.2 4.8 6.4 8.0

kbytes/srack ¢X1gl)

Figure 15 : Variation of the paging costs for a 20 variables, 20 constraints
integer programming problem (problem 1) with disk density for a LRU virtual
memory system and VM1 (n, = 132, hy = 100, ¢ = 120, § = n, = ¢)

77

3.20
=% \
YN LRYU
G e.u0-
—y
<
wr
3 2.00-
c
<3
@ MHD
¢ 9
. e HPTD
>
3
U 1.20 4
o
c
T .ec0-
a - . UMl
"-“"::;": LRU
UM
KRR il
-nna & [3 ¥ L
.00 1.6 3.2 4.8 6.4 .8
kbytesstrack ¢X10ly
Figure 16 : Variation of the paging costs for a 20 variables, 20 constraints

integer programming problem (problern 2) with disk density for a LRU virtual
memory system and VM1 (n, = 132, h, = 100, ¢ =120, § = n, = ¢)

78

2.20
£.980 -
-~ \
& 2.0 - IRU
oy
X
L
9 2.08
c
o
Y]
.7}
wn 1.60 -
-
3
S 180
[w]
c
vy
o ., 800
L]
Q.
L 400
ogaa ¥ L] | L} 1
.08 1.6 3.2 4.0 6.4 8.2

kbytes/track ¢X101)

Figure 17 : Variation of the paging costs for a 20 variables, 20 constraints
integer programming problem (problem 3) with disk density for a LRU virtual
memory system and VM1 (n, = 132, hy = 100, ¢ = 120, § = n, = ¢)

79

4.00
3.50 - \
- -— IRV
N, 3.004
-y
x
o’
" -
b v] 2.50
c
o
U
o
L 2.00 -
-
-
3
8 1.50 4
o
c
)
o 1.80 -
M
a
.S00 4
'gca L) ¥ ¥ T 1 3
.00 1.6 3.2 4.9 &.4 8.0

kbytes/track (Xid1)

Figure 18 : Variation of the paging costs for a 20 variables, 20 constraints
integer programming problem (problem 4) with disk density for a LRU virtual
memory system and VM1 (np =132, h, =100, ¢ = 120, 0 = n, — @)

80

than P, at high disk densities. For a head per track device rotating at 3600
rpm, R increases from between 0.45 to 0.67 at 16 kbytes/track to between
1.18 and 1.28 at 64 kbytes/track. P becomes less than P, at disk densities in
the range 32 to 48 kbytes/track.

For a moving head disk, P, is always less than P;. For example, on a
moving head disk with an average seek time of 28 ms and a rotational speed of
3600 rpm, R, is the range 1.33 to 1.75 at 16 kbytes/track and between 3.23 to
4.35 at 64 kbytes/track.

These results indicate that VM1 is better than an LRU virtual memory
system only for some disk characteristics. Even then, the improvement is
much less than what was hoped for. The culprit is the high cost of each page
access due to the large page size used. Statistics gathered during the
simulations (Table 12) show that the number of page accesses have been
reduced significantly. They also show that an average of only 8.5 subproblems
are inserted into a page of size h, = 100 during each replacement. This
suggests that it is wasteful to perform insertions by reading a page into main
memory, inserting the subproblems into the image of the page in main memory
and writing the image back onto the disk. Modifications to reduce the cost of

a page access will be considered in the next section.

3.2 A Modification of VM1 with One Subproblem Per Block (VM2)

The block size is a parameter that can be set by the operating system,
subject to constraints like sector size and overall disk capacity. The block size
is chosen to be the smallest number of sectors equal to or greater than a
subproblem. A block is allowed to hold only one subproblem. Thus, each page

consists of h, successive blocks.

Table 12

=
Py =
By =

P, py and g, for four 20 variables, 20 constraints integer
programming problems

81

Problem 1 | Problem 2 | Problem 3 | Problem 4
P 12901 6820 6413 8579
Py 1241 905 651 945
gy 8.4 8.5 10.6 8.5

number of page accesses for LRU virtual memory system.

number of page accesses for VM1 (n, = 132, h, = 100, ¢ = 120, ¢ = n, — ¢}
average number of sub-problems inserted into a page during one replacement for
VMI (o, = 132, b, = 100, ¢ = 120, 8 = n, = @).

82

Next, the B*-tree is further modified by removing the restriction that
subproblems in a page have to be stored sequentially by increasing lower
bounds. A subproblem is allowed to reside in any block as long as it is in the

correct page.

Each page is assigned a unique number between 0 and I, — 1, where 1 is
the number of pages in the B¥-tree. A set of l; status vectors is maintained in
main memory. Status vector m is assigned to page m. Each status vector
contains h, bits. Bit n of status vector m will be set whenever block n of page

m contains a subproblem, and cleared otherwise.

To insert j subproblems into page m the operating system uses the status
vector m to select the j empty blocks into which the j subproblems are to be
written. As soon as the write head is positioned over each of the chosen blocks,
the corresponding subproblem is written onto the disk, and the status vector

updated. Two approaches to the selection of the blocks have been considered:

® Sequential allocation. The j vacant blocks with tﬁe smallest block
numbers are selected. This scheme ensures that the subproblems
are kept in successive blocks. Since each subproblem must be
written into a specified block, the average time required to insert j
subproblems is t, + t. + jt,.

® First available allocation. The read/write head is positioned over
the cylinder that contains the page. Assuming that the operating
system knows where it is on the disk, the status vector is scanned
for the first j vacant blocks that will come under the write heads.
Under this scheme, subproblems will occupy clusters {due to the

batching of the insertions) scattered throughout the page. The time

83

required to inseri; j subprcblems will depend on the distribution of
subproblems in the page. The best performance is obtained when
the j vacant blocks are the first j blocks that come under the head.
Here the average time required is t; + jt,. The worst performance
occurs when the j vacant blocks have the same angular position on
different surfaces. In this case, t, + (j — 1}t, + t, will be the

average time required. .

Since subproblems are not stored in sorted order in a page, loading of the
p-buffer requires the selection of the k subproblems with the smallest lower
bounds in the page. This may be done by building a selection tree of lower
bounds of size k in main memory. The largest lowei' bound is removed from
the selection tree when a new lower bound is inserted, and the corresponding
subproblem is deleted from the p-buffer. On completion of this process, the
selection tree will contain the k smallest lower bounds in the page and the
sub-page buffer will contain the desired subproblems. The selection tree is then
removed and the status vector is updated to reflect the subproblems which
have been loaded into main memory. The average time required is
t, + t, + hgty.

An alternative is to modify the best-first search process of the branch and
bound algorithm. The k subproblems residing in blocks with the smallest block
numbers are loaded. Now, instead of partitioning the subproblem with the
smallest lower bound, a subproblem with a lower bound that is at least the q
smallest is partitioned, where q is the number of subproblems remaining in the
page. The effect of this, at worst, is to increase the number of iterations by q.

The mean time to load k subproblems into the p-buffer will be reduced to

84

t, + t, -+ ity where iis the number of blocks {occupied or vacant) read before
the k subproblems are loaded.

When an overflow occurs, before the overflowing page can be split, the
median lower bound has to be determined. All subproblems with lower bounds
less than the median lower bound remain in this page while those with lower
bounds greater than the median lower bound are moved to a new page. Two
disk-drives are needed to carry out this operation eﬁicientlj. Double buffering
in main storage enables the reading of subproblems from the full page and
writing of subproblems onto the new page to proceed simultaneously. Let the
input and output disk buffers each have a size of g blocks. The splitting
operation will have an average cost of 2t, + 2t, + 3h,t,. On a single disk
drive, the overhead is extensive. It will be necessary to read subproblems into
the buffer, move the head to the cylinder containing the new page, write the

subproblems in the buffer and move the heads back to the original cylinder.

Similarly, when an underflow occurs, before the actual redistribution of
subproblems between two pages can be carried out, it is necessary to find the
median lower bound which will divide the subproblems evenly among them. If
the underflowing and the neighboring pages are on different disk drives, the use
of double buffering in main memory allows the reading of subproblems from the
neighboring page and the writing of subproblems into the underflowing pages
to proceed concurrently. The average cost will then be 2t, + 2t + 3hyt,.
When the underflowing page and the neighboring page reside on the same disk

drive, two possibilities exist :

85

e The neighboring page is moved to another disk drive. The median
lower bound is determined while this is being carried out. Ignoring
the overhead of setting up a new page, this requires an average cost
of 4t, + 4t, + 4ht,.

e Neither the underflowing page nor the neighboring page is moved.
Since only one disk is used, there is no need to use double buffering,.
Thus, up to 2g subproblems can be in main memory buffers when
the disk head is moved. Let the average number of subproblems
moved during a redistribution be u subproblems. The the average

time required will be
u
2 s

For concatenation, subproblems are simply read from the underflowing

(t, + t.) + 2h ity + uty

page into the disk buffers in main memory and written into the neighboring
page. If the pages are on different disk drives, an average cost of
2t + 2t + 2h,t, will be required. If they are on the same disk drive, and
one page is moved to another disk drive the average time required- is
4t, + 4t, + 4h,ty, If no page is moved the average cost will be

2 I—é’-— (s + r) + 2h,t, where p is the average pumber of subproblems in the
g

underflowing page.

3.2.1 Performance of VM2

Figures 19 - 22 compares the paging costs incurred in VM2 with those
incurred in a general purpose virtual memory system using the LRU

replacement algorithm for four 90 variables, 20 constraints integer

86

5.60
.o \ -
LR
N
N y4.ep-
.
p Y
L
n - " e ———— -
?‘: 3.5 HPTD
o
o MHD
W 2.80 -
-
e)
a
o
c _
oy
S 1.40 o
n
a.
.700 4
.ncn L) ¥ L) ¥ i
.00 1.6 3.2 4.9 6.4 8.

kbytesstrack ¢Xi2ly

Figure 19 : Variation of the paging costs for a 20 variables, 20 constraints
integer programming problem (problem 1} with disk density for a LRU virtual
memory system and VM2 (n, = 132, h, = 100, ¢ = 120, # = n, = ¢)

LF]

87

3.820
2.80 -
\
——
~ LR
N, 2.y
-t
>
Lo
n
2] 2.00 -
S
U !
g MHE
1.684d e —— HPTD
-
3
b 1.20
(v]
c
ot -
o . 800 - S
g. \ e
.. =" LRU
-~
e
.lwo - . _\
pE TS M2
"""""" UM
280 Y T T T 1
00 1.6 3.2 4.8 6.4 2.8

Figure 20 : Variation of the pa
integer programming problem (pr
memory system and VM2 (n, =1

kbytes/track (12l

ng costs for a 20 variables, 20 constraints
slem 2) with disk density for 2 LRU virtual
%, h, =100, ¢ =120, ¢ = n, ~ ¢)

88

LRy

2.8
2.90 -

L)

N pup-

vy

%

o

2 200+

c

- Q

¥}

T

n 1.60 4

-

g .

S 1.20-

o

c

ey

o .800 -

]

a
400 -
.20

.00

kbytess/srack extoly

.
L+

Figure 21 : Variation of the paging costs for a 20 variables, 20 constraints
integer programming problem (problem 3) with disk density for a LRU virtual
memory system and VM2 (n, = 132, hy = 100, ¢ = 120, 0 = n, — ¢)

89

4.80
3.3 \
-~ LR
Na 3.00 -
-t
2K
ot
]
o 2.30 4
c
0
o MHD
@ ey mo--e- HPTD
-
3
O 1.9 +
o
o~
vy
o> 1.00 +
]
Q.
300 +
202 Y T T Y H
.20 1.6 3.2 %.8 a.4 "

kbyses-strack (Oligl)

Figure 22 : Variation of the paging costs for a 20 variables, 20 constraints
integer programming problem {problem 4) with disk density for a LRU virtual
memory system and VM2 (r, = 132, h; = 100, ¢ =120, § = n, — ¢)

.
L #

90

programming problems. It can be seen that VM2 has a better performance
than the LRU virtual memory system. The performance of VM2 also shows a
greater improvement with increasing disk density than the LRU virtual
memory system.

For a integer programming problem, let P,’n be the paging cost on VM2
and P, the paging on a LRU virtual memory system. As before, the

improvement R; is defined as

t Pl
Rc = —
Pn

For a head per track device, R. increases from between 1.3 to 1.4 at 16
kbytes/track to between 3.7 and 4.0 at 64 kbytes/track. For a moving head
~disk the increase in R, is from between 3.2 and 3.9 at 16 kbytes/track to

between 7.7 and 9.1 at 64 kbytes/track.

3.3 Conclusion

In this chapter,we have proposed a virtual memory system that is based
upon the access characteristics of the branch and bound process. Simulations
indicate that this virtual memory system is more effective than a general
purpose virtual memory system with LRU replacement algorithm for branch
and bound algorithms. The amount of improvement observed increases as disk

density increases.

91

CHAPTER 4
CONCLUDING REMARKS

A general purpose locality based virtual memory system will not be able to
provide an efficient virtual memory environment for the branch and bound
algorithms as the algorithms do not exhibit strong locality. The conventional
approach of modifying the algorithm so as to increase the amount of locality is
not feasible.

The philosophically opposite approach of adapting the virtual memory
system to the algorithm has to be used. Towards this end, a probabilistic
model for the branch and bound process was proposed. The model consists of
two walls approaching each other. The front wall represents the value of the
lower bound of the subproblem currently being expanded. The back wall
represents the minimum of all feasible solutions. These two walls approach

each other and eventually coincide at the termination of the process.

Using this model, the position of the front and back walls and the
distribution and number of active subproblems were derived. The model
clearly shows that the subproblems constitute a dynamically varying list
ordered by lower bounds. The access characteristics of the branch and bound
algorithms call for the access of items at the head of this list and random

insertion into the list.

92

The proposed virtual memory system partitions the subproblem list into
two disjoint sublists, the primary list and the secondary list. The primary list
resides in main memory and is implemented as a heap. The secondary list is
organized as a B*-tree Each leaf of the B*-tree corresponds to a page. The
index portion of the B*-tree is kept in main memory and the leaves on
secondary storage, except for the leaf containing the subproblems with the
smallest lower bounds. A portion of this leaf is kept in main memory, since
under best first search the subproblem with the smallest lower bound is always

expanded.

Newly expanded subproblems are inserted into the primary list. When the
primary list grows to its maximum size, n,, subproblems are moved from the
primary list to the secondary list. A suitable replacement algorithm is one
which replaces the ¢ subproblems with the largest lower bounds. For the
integer programming problem ¢ should lie between 0.7 n, and 0.9 n, and the
page size between 0.65 n, to 0.85 n,. Simulations with integer programming
problems show that this virtual memory system is more effective for branch
and bound algorithms than a general purpose virtual memory system using the
LRU replaeemen't algorithm.

There remain several areas in which further work may be carried out. The
variation of X,, A, and f; with & and ¢ peeds to be analyzed. This will
eliminate the dependence of the analysis of 5 upon values estimated from

simulations and allow & and ¢ to be optimized simultaneously.

This study has been based considerably upon the integer programming
problem. Further investigation into other branch and bound algorithms is
necessary. One of these is the vertex covering problem. Here, the lower

bounds are integers and the subproblem size is significantly smaller. In

93

addition, the manner in which feasible solutions are generated is different.

The branch and bound algorithms have an average time complexity that
varies as the exponential of the input size. Two possible ways of reducing the
time required are the parallel branch and bound algorithms and approximate
.branch and bound algorithms. Virtual memory support for these variants are

also possible areas for future study.

LIST OF REFERENCES

[1]

(2]

(3]

[4]

[5]

[6]

[7]

[8]

94

LIST OF REFERENCES

W. L. Eastman, “A Solution to the Traveling Salesman Problem?,
presented at the American Summer Metting of the Econometric Society,
Cambridge, Mass., Aug. 1958.

M. A. Efroymson and T. C. Ray, “A Branch and Bound Algorithm for
Plant Location”, Operations Research, Vol. 14, pp. 361-368, 1966.

W. Feller, An Introductsion to Probability Theory and its Applications, Vol.
II, 2nd edition, John Wiley & Sons, Inc., 1971.

R. 5. Garfinkel and G. L. Nemhauser, Integer Progremming, John Wiley
and Sons, Inc., New York, 1972,

R. Garfinkel, ““On Partitioning the Feasible Set in a Branch and Bound
Algorithm for the Asymmetric Travelling Salesman Problem”, Operations
Research, Vol. 21, No. 1, pp. 340-342, 1973.

A. M. Geoffrion and R. E. Marsten, “Integer Programming Algorithms:
A Framework and State-of-the-Art Survey”, Managerent Seience, Vol.
18, No. 9, pp. 465-491, May 1972.

L. Guibas and R. Sedgewick, “A Dichromatic Framework for Balanced
Trees”, Proc. 19'th Symp. Foundations of Computer Science, pp. 821,
1978. ‘

P. G. Hoel, S. C. Port and C. J. Stone, Infroduction to Probability
Theory, Houghton Mifflin Co., 1971.

(6]

[10]

(11]

[12]

[13]

[14] .

[15]

[16]

[17]

[18]

[19]

[20]

95

E. Horowitz and S. Sahni, Fundamentals of Computer Algorithms,
Computer Science Press, Maryland, 1978.

T. Ibaraki, ‘‘Computational Efficiency of Approximate Branch and Bound
Algorithms”, Math. of Oper. Research, Vol. 1, No. 3, pp. 287-298, 1976.

T. Ibaraki, ‘“Theoretical Comparisons of Search Strategies in Branch and
Bound Algorithms”, Int. Jr. of Comp. and Info. Sci., Vol. 5, No. 4, pp.
315-344, 1976.

T. Ibaraki, “Depth-m Search in Branch-and-Bound Algorithms”, Int. Jr.
of Comp. and Inf. Sei., Vol. 7, No. 4, pp. 315-343, 1978.

G. Ingargiola and J. Korsh, “A Reduction Algorithm for Zero-one Single
Knapsack Problems”, Management Science, Vol. 20, No. 4, pp. 460-663,
1973.

G. Ingargiola and J. Korsh, ““A General Algorithm for One Dimensional
Knapsack Problems”, Operations Research, Vol. 25, No. 5, pp. 752-759,
1977.

D. E. Knuth, The Art of Computer Programming, Sorting, and Searching,
Vol. 3, Addison-Wesley, 1973.

W. Kohler and K. Steiglitz, ‘‘Characterization and Theoretical
Comparison of Branch and Bound Algorithms for Permutation
Problems”, JACM, Vol. 21, No. 1, pp. 140-156, 1974.

B. Lageweg, J. Lenstra and A. Rinnooy Kan, ‘“Job-shop Scheduling by
Implicit Enumeration”, Manaegement Science, Vol. 24, No. 4, pp. 441-400,
1977.

A. H. Land and A. Doig, “An Automatic Method for Solving Discrete
Programming Problems”, Econometrica, Vol. 28, pp. 497-520, 1960.

Lawler, E. L. and Wood, D. W., “Branch and Bound Methods: A
Survey”, Operations Research, Vol. 14, pp. 699-719, 1966.

J. Lenstra, ‘‘Sequencing by Enumerative Methods”, Math. Centre. Tract
69, Mathematisch Centrum, Amsterdam, 1976.

[21]

[22]

(23]
[24]
[25]

[26]

[27]
[28]
[29]
[30]

31

[32]

[33]

96

L. Mitten, “Branch and Bound Methods: General Formulation and
Properties”, Operations Research, Vol. 18, pp. 24-34, 1970.

N. J. Nilsson, Principles of Artificial Intelligence, Tioga, Palo Alto, 1980.

S. M. Ross, Applied Probabslity Models with Optimization Applications,
Holden-Day, San Francisco, 1970.

J. L. Baer, Computer Systems Architecture, Computer Science Press,
Rockville 1980.

P. J. Denning, "*Virtual Memory”, Computing Surveys, Vol. 2, No. 3, pp.
153-187, Sept. 1970.

R. W. Doran, “Virtual Memory”, Computer, pp. 27-37, Oct. 1976.

L. A. Belady, “A Study of Replacement Algorithms for a Virtual Storage
Computer”, IBM Systems Journal, Vol. 5, No. 2, pp. 78-101, Jan 1966.

P. J. Denning, *“The Working Set Model for Program Behavior”, CACM,
Vol. 11, No. 5, pp. 323-33, May 1968.

W. W. Chu and H. Opderdeck, ‘‘Program Behavior and the Page-Fault-
Frequency Replacement Algorithm”, Computer, pp. 29-38, Nov. 1976.

J. E. Morrison, ‘‘User Program Performance in Virtual Storage Systems”,
IBM Systems Journal, Vol. 5, No. 2, pp. 216-237, 1966.

A. C. McKellar and E. G. Coffman, Ir., "“Organizing Matrices and Matrix
Operations for Paged Memory Systems”, CACM, Vol. 12, No. 3, pp. 153-
164, 1969.

P. C. Fisher and R. L. Probert, “*Storage Reorganization Techniques for
Matrix Computation in a Paging Environment”, CACM, Vol. 22, No. 7,
pp. 405-415, July 1979.

B. S. Brown, F. G. Gustavson and E. S. Mankin, “Sorting in a Paging
Environment”, CACM, Vol. 13, No. 8, pp. 438-494, August 1970.

(34]

[85]

[36]

[37]

[38]

139]

[40]

97

A. J. Smith, “Sequentially and Prefetching in Database Systems”, ACM
Trans. on Database Systems, Vol. 3, No. 3, pp. 223-247, Sept. 1978.

J. L. Baer and G. R. Sager, “Dynamic Improvement of Locality in
Virtual Memory Systems”, IEEE Trans. on Software Engineering, Vol.
SE-2, No. 1, pp. 54-62, March 1976.

D. J. Hatfield and J. Gerald, “Program Restructuring for Virtual
Memory”, IBM Systems Journal, Vol. 10, No. 3, pp. 168-192, 1971.

D. Ferrari, “‘Improving Locality by. Critical Working Sets”, CACM, Vol.
17, No. 11, pp. 614-620, Nov. 1974.

D. Ferrari, “Tailoring Programs to Models of Program Behavior”, IBM
Journal of Research and Development, Vol. 19, No. 3, pp. 244-251, May
1975.

D. Ferrari, ““The Improvement of Program Behavior”, Computer, pp. 39-
47, Nov. 1976.

D. Comer, “The Ubiquitous B-Tree”, Computing Surveys, Vol. 11, No. 2,
pp. 121-137, June 1979.

APPENDICES

98

Appendix A
The B-Tree

A B-tree of order m is a search tree which is either empty or of height

greater than or equal to one and satisfies the following properties:

(1) the root node has at least two children;
{ii) each node contains at most 2m keys and 2m + 1 pointers;
(iii) each node contains at least m keys and m+1 pointers;

The beauty of a B-tree (and indeed all B-tree variants) lies in the methods
for inserting and deleting records that always leave the tree balanced. A
balanced tree is one which has all its leaves at the sanie depth. Then, the

longest path in a B-tree of n records contains at most Oflog n) nodes.

Insertion of a new record is a two step process. First, a find proceeds from
the root to locate the proper node for insertion. The new record is inserted
into the node and balance is restored. Referring to Figure 23{a), when a record
with the key 57 is inserted into the B-tree, the find terminates unsuccessfully at
the fourth leaf. Since the leaf can accept another record, the new record is
simply inserted yielding the B-tree of Figure 23(b). If a record with key 72 is
now inserted, there is no space for it in the appropriate leaf. Space has to be
created for it by a split of the 2m+1 records, the m records with the smallest

keys remain in the node, the m records with the largest keys are placed in

99

another node and the remaining record is promoted to the parent node where it
serves as a separator as shown in Figure 23(c). Usually the parent node can
accommodate an additional record and the insertion process terminates. If the
parent node happens to be full; then it has to be split. In the worst case,
splitting propagates all the way to the root and the B-tree increases in height

by one level.

Deletion also requires a find operation to locate the proper node. Once the
record has been deleted, a check must be made to see if at least m records
remain otherwise an underflow occurs. To restore balance, at least one record
is needed and this may be obtained from a neighboring leaf. Since this
operation requires at least two accesses to secondary storage, a betier
redistribution would evenly divide the remaining records between the two
neighboring nodes. The deletion of the record with key 84 from the B-tree of
Figure 24{a) does not cause an underflow and results in the B-tree of Figure
24(b). However, a further deletion of the record with key 64 causes an

underflow and requires redistribution, resulting in the B-tree of Figure 24(c).

Redistribution is feasible only when there are at least 2m records to
distribute. When less than 2m records remain, concatenation is performed
whereby the records are combined into ore of the nodes and the other is
discarded. Since only one node remains, the record separating the two nodes in
the parent is no longer necessary, it too is added to the single remaining leaf.
This is turn may cause underflow and require redistribution from omne of its
neighbors. Concatenation occurs when the record with key 54 is deleted from
the B-tree of Figure 24(c) resulting in the B-tree of Figure 24(d).

The process of concatenation may, thus, force a concatenation at the next

higher level and so on to the root level. If the descendants of the root are

100

19 A9 1Im P02l Y)Y Jo uonesul) 103e 13- 2 () pue Lc
A3 yum p1o%at € Jo uoptasul oY) JajJe 3vul-g A (q) ‘ealy- V (®) : gg 2an3y

(a)
<.6lirs|I6L aLllLL]|69] 189 conLalivelics ¥l i6e 2eiiati|zt LOt120
alffoo og[[1s
LS
(&)
celivsilol, oLl LI|69] |89 ¢9liralies L¥[16% 22ligtilzaL Lol 20
aLllog oclit

LS

101

9L

LL

69

89

(®)

panutjuod ‘gz aindyj

¥3

oL

14

e

Ly

Ge

e

Gl

cl

Lo

c0

el 991,45

LG

0%

L

102

¢ {P) pue 19 (9} ‘¥8 (q) sho))M spiodal ayy jo
SUOLI[IP JAISSBOINS 9Y) WM} Jury[nsal ssali-g 2Y) pue 2211 V (®) : pg aandiy

9L}l L][69|[89 (2)
colj6L ¥9}[£9 v6ljes Ly||as zzjistfet Loflz0
8L1199}|L4 oglltt
1S
9. [+ l[69|89 (&)
co| [vsl 6L 79|19 v4[[cs Ly)lae ze|lay et Lof|zo
84/199||LS Am

LS

103

panuljuod ‘pg a4ndiy

(v)
coll6L aL{ |+2f[69]] {9sllcd[24[es vi]Jag | ED Lo|[z0
8llis9] og| |t
LS
aLlliLil69 ()
¢6|l6L 99| |29 el les T\ 3 % | |ED Lo]lzo
8LlleollLs ol

3]

104

concatenated they form a new root decreasing the height of the B-tree by one.

The cost of processing a find operation grows as the logarithm of the
number of records in the B-tree, n. An insert or delete operation may require
additional secondary storage accesses beyond the cost of the find operation as it
progresses back up the B-tree. Overall the costs are at most doubled.
Therefore, in a B-tree of order m, insertion and deletion take time proportional

to logyn in the worst case.

As with most file organizations, variations of B-trees abound. One very
popular variant is the B¥-tree. In a B*-tree, all records reside in the leaves.
The upper levels, which are organized as a B-tree, consist only of an index to
enable rapid location of the records. Naturally, index nodes and leaf nodes may
have different formats, or even different sizes. In particular leaf nodes are

usually linked together left-to-right. This allows for easy sequential processing.

The record to be deleted must always reside in a leafl so its removal is
simple. As long as the leafl remains half full, the index need not be changed.
Of course, if an underflow condition arises, the redistribution or concatenation

procedures may require adjusting values in the index as well as in the leaves.

Insertion and find operations in a B¥-tree are processed almost identically
to insertion and find operations in a B-tree. When a leaf splits into two,
instead of promoting the middle record, the algorithm promotes a copy of the
key of the record, retaining the actual record in the right leaf. Find operations
differ from those in a B-tree in that searching does not stop if a key in the
index equals the query value. Instead, the nearest right pointer is followed and

the search proceeds all the way to a leaf.

105

The B*-tree retains the logarithmic cost properties for operations by key
but gains the advantage of requiring at most O(1) access to satisfy a next
operation. Thus, B¥-trees are well suited to applications which entail both

random and sequential processing.

106

Appendix B
The Heap

A heap is a complete binary tree with the property that the value of each
node is at least as small as the value of its children nodes. The implies that
the root of the heap has the smallest key in the tree. Insertion consists of
adding a new node to the tree as a leaf and then restoring the heap property,
which requires at most 0(log n) comparisons and record movements where n is
the number of nodes in the heap. Figure 25 illustrates the insertion of a node

with value 3 into a heap.

Retrieval of the subproblem with the smallest lower bound consists of
copying the last node onto the root and then restoring the heap property.

Figure 26 illustrates this process.

-

Furthermore, since the heap is a complete binary tree, it may be
implemented as a sequential list as shown in Figure 27. This may be done by
sequentially numbering the nodes, starting with nodes on level 1, then on level
2 and so on. Nodes on any level are numbered from left to right. These nodes
may then be stored in a one dimensional array, with the node numbered i being

stored in element i of the array.

107

Figure 25 : (a) A heap, (b) the binary tree resulting from the insertion of a
node with value 3 and (c) the resulting heap after restoring the heap property

108

Figure 25, continued

109

(v)

Figure 26 : {a} A heap, (b) the binary tree resulting from the deletion of the
node with the smallest value and (¢) the resulting heap after restoring the heap

property

110

{ec)

Figure 26, continued

111

(a)

<S|AROD AR AR DI

(6)
(8)
(L)
(9)
(S)
(¥)
(<)
(2)
(1)

18I [e1yuanbas ¢ se uongjuawaldun ST {q) pue deoy v (€) : 23 a1ndiy

112

Appendix C

Maximum Number of Non-Leaf Nodes in a B*-Tree

Let the order of the non-leaf nodes be m; and the order of the leaf nodes
be m,. Also let the number of records in the B*-tree be n.

The B¥-tree has the maximum number of nodes when each non-leaf node
- contains only m, keys and (m, +1) pointers and each leaf node contains m,

records, with the exception of those nodes needed to maintain the balance of

the B*-tree. Let k be the height of the B¥-tree. Then, the maximum number

of nodes in each level of the B*-tree will be given by
Level Maximum number of nodes
k I.L]
mg
1

=]

ml+l
® »
® []

113

Allowing the simplification of removing the floor operators, the number of non-

leaf nodes, g, will be given by

¢ = n + n b ooy n
my(m; +1) my(m; +1) my(m, +1)*!
n 1 1
=—20 |1+ T (N
my(m; +1) m; +1 (m, +1)
R S
_ n (my +1)*!
mg(m;+1) ,__ 1
m;+1

For m;>>1 and k>>>1 the above simplifies to

g~ n 1
~ mg(m; +1) 1- 1
m1+1

m; g

114

Appendix D
Expected Value of exp (- mV)

Let X;, i = 1, 2, ..., N be N independent, identical, exponentially
distributed random variables with density function f{(x) = me™* and
X, £X, '+ £XyN. For an arbitrary constant k, let V be the random

variable such that X; <V and Xy 4y > V. The expected value of e ™V je.
E[e™V] will be derived as follows.

Suppose (k-1} random variables reside in the region 0 < x < v and 1
random variable in the region v < x <v + Av. Denote the region
0O<x<v by ~ and the region v<x<v+Av by A4 Let
u =Pr{0 < X; < v)and Au = Pr(v < X; < v + Av). Then
Pr{(k-1)rv'sE€~and 1 r.v. € A 7}

=P{k-1)rv/seq}P{1rv.€ v |(k-lrv's €~}

t 1

N N-k+1 A aq F*
= k1 [Nk +1 u [1_ ur

k1] 1 I—u 1—u
(N | [N-k+1
~ k1[N +1 Au
1—u

k—1] 1

