
c©Copyright by

Zhe Wu

2000

THE THEORY AND APPLICATIONS OF DISCRETE CONSTRAINED OPTIMIZATION
USING LAGRANGE MULTIPLIERS

BY

ZHE WU

B.E., University of Science & Technology of China, 1996
M.S., University of Illinois at Urbana-Champaign, 1998

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2000

Urbana, Illinois

Abstract

In this thesis, we present a new theory of discrete constrained optimization using Lagrange

multipliers and an associated first-order search procedure (DLM) to solve general constrained

optimization problems in discrete, continuous and mixed-integer space. The constrained

problems are general in the sense that they do not assume the differentiability or convexity

of functions. Our proposed theory and methods are targeted at discrete problems and can

be extended to continuous and mixed-integer problems by coding continuous variables using

a floating-point representation (discretization). We have characterized the errors incurred

due to such discretization and have proved that there exists upper bounds on the errors.

Hence, continuous and mixed-integer constrained problems, as well as discrete ones, can be

handled by DLM in a unified way with bounded errors.

Starting from new definitions on discrete neighborhoods, constrained local minima in

discrete space, and new generalized augmented Lagrangian function, we have developed new

discrete-space first-order necessary and sufficient conditions that are able to characterize

all constrained local minima in discrete space. Our proposed first-order conditions show a

one-to-one correspondence between a discrete-space constrained local minimum, a discrete-

space saddle point, and a solution to the first-order conditions. They are important because

they allow us to transform the difficult problem of looking for constrained local minima in

the original-variable space to the easier problem of looking for saddle points in the discrete

Lagrangian space. They provide a solid foundation for DLM to solve general constrained

problems that cannot be achieved in the conventional theory of Lagrange-multipliers for

solving continuous constrained nonlinear programming problems.

Finally, we demonstrate the efficiency and effectiveness of our proposed theory and meth-

ods. DLM is able to solve systematically general discrete, continuous and mixed-integer

constrained benchmarks, which is a task not achieved by previous methods. DLM has found

iii

better multiplierless filter-bank designs that improve over all of Johnston’s benchmark de-

signs using a maximum of three to six ONE bits in each filter coefficient instead of using

floating-point representations. Finally, DLM has found efficiently new solutions for satisfia-

bility problems that were not possible by existing local- and global search techniques.

iv

To Dong Lin, as always my loving wife,
my parents Fuliang Wu, and Huiqin Zhao

and my brother Yi Wu.

v

Acknowledgments

First of all, I thank my advisor, Professor Benjamin W. Wah, for his large amount of patience

and guidance. I had much to learn when I started my graduate study, and I am grateful to

him for pointing me the way of doing research, namely, working hard and keeping a clear

mind. After four years of research and study, I still have much more to learn; however,

thanks to Professor Wah I now have the necessary tools to attack any new problem.

I also would like to thank all the members in our research group, Yi Shang, Jeffrey Monks,

Tao Wang, Dong Lin, Xiao Su, Minglun Qian, Peter Wahle, Pohao Chang and Chienwei Li,

for providing crucial comments on the work and for providing a congenial environment for

me to work in.

I would like to acknowledge the support of National Science Foundation Grant MIP 96-

32316 and National Aeronautics and Space Administration Grant NAG 1-613, without which

this work would not have been possible.

Last, but not the least, I thank my wife for loving me, keeping my life colorful, and

discussing various difficult problems with me. I thank my parents and my brother for giving

me a confident and persistent personality and their ever-lasting confidence in me. I also want

to thank all my friends who have supported me in this endeavor.

vi

Table of Contents

Chapter

1 Introduction . 1

1.1 Problem Formulation . 2

1.2 Basic Definitions . 4

1.3 Research Goals . 9

1.4 Outline of This Thesis . 10

1.5 Significance of This Research . 10

2 Previous Work . 13

2.1 Prior Methods for Solving Discrete Constrained NLPs 14

2.1.1 Transformations into Constrained 0-1 NLPs 16

2.1.2 Penalty Formulations and Methods 17

2.1.3 Direct Solutions for Solving Discrete Constrained NLPs 29

2.1.4 Lagrangian Relaxation . 30

2.2 Prior Methods for Solving Continuous Constrained NLPs 31

2.2.1 Penalty Formulations . 34

2.2.2 Direct Solutions for Solving Continuous Constrained NLPs 38

2.2.3 Lagrangian Formulations . 40

2.3 Prior Methods for Solving Mixed-Integer Constrained NLPs 48

2.3.1 Penalty Formulations . 50

2.3.2 Lagrangian Formulations . 51

2.3.3 Direct Solutions for MINLPs . 53

vii

2.4 Summary . 55

3 Nonlinear Constrained Optimization Using Lagrange Multipliers 57

3.1 Floating-Point Representations of Continuous Variables in Constrained NLPs 58

3.1.1 Characteristics of Floating-Point Representations 59

3.1.2 Worst-Case Error Bounds on CGM 61

3.2 General Augmented Lagrangian Formulation of Discrete Constrained NLPs . 66

3.3 First-Order Necessary and Sufficient Conditions for CLMdn 69

3.4 Handling Inequality Constraints . 74

3.5 CSA for General Constrained NLPs . 75

3.5.1 CSA Procedure . 76

3.5.2 Asymptotic Convergence of CSA . 77

3.6 Summary . 78

4 Discrete Space First-Order Search Methods 81

4.1 A Discrete-Space First-Order Search Framework 82

4.1.1 DLM: An Implementation of First-Order Search Framework 83

4.1.2 Neighborhood Search . 86

4.1.3 Dynamic Weight Adaptation . 88

4.1.4 Global Search . 93

4.1.5 Relax-and-Tighten Strategy for Handling Equality Constraints 95

4.1.6 Duration of Each Run . 96

4.2 Performance Comparisons of Various Strategies 98

4.3 Experimental Results on Constrained NLP Benchmarks 102

4.4 Summary . 118

5 Application I - Designing Multiplierless Filter Banks 119

5.1 Introduction . 120

5.2 Problem Formulation . 123

5.2.1 Multi-Objective Unconstrained Formulation 123

5.2.2 Single-Objective Constrained Formulation 124

viii

5.3 DLM-QMF: An Implementation of Discrete First-Order Search Method . . . 125

5.3.1 Generating a Starting Point . 127

5.3.2 x Loop . 130

5.3.3 λ Loop . 131

5.4 Experimental Results . 133

5.4.1 Performance of DLM-QMF with Dynamic Weights 134

5.4.2 Comparisons of DLM-QMF and Johnston’s Designs 135

5.4.3 Comparisons of DLM-QMF and Other Optimization Methods 139

5.5 Summary . 142

6 Application II - Solving Hard Satisfiability Problems 144

6.1 Introduction . 145

6.2 Previous Work . 147

6.2.1 Discrete Formulations . 147

6.2.2 Continuous Formulations . 150

6.3 Solving SAT using Lagrange-Multiplier Formulations in Discrete-Space . . . 152

6.3.1 Formulations of Objective Function 153

6.3.2 Major Components in Discrete-Space Lagrange-Multiplier Method . . 154

6.3.3 Basic DLM for Solving SAT Problems 161

6.4 Trap Avoidance based on Constrained Decision Formulations 166

6.5 Trap Avoidance based on Constrained Optimization Formulations 172

6.6 Performance Comparisons with Some Existing Algorithms 176

6.7 Summary . 180

7 Conclusions and Future Work . 181

7.1 Summary of Work . 181

7.2 Future Work . 182

7.2.1 Development of More Efficient Heuristics 183

7.2.2 Reducing The Number of Probes . 183

Bibliography . 185

ix

Vita . 203

x

List of Tables

2.1 Summary of existing algorithms for solving discrete constrained NLPs. Applicable

domains specify whether there exists limitations or special requirements on the type

of problems that can be solved. The four criteria used for evaluation are described

in the beginning of Chapter 2. 32

2.2 Summary of existing algorithms for solving continuous constrained NLPs. Appli-

cable domains specify whether there exists limitations or special requirements on

the type of problems that can be solved. The four criteria used for evaluation are

described in the beginning of Chapter 2. 47

2.3 Summary of existing algorithms for solving mixed-integer constrained NLPs. Ap-

plicable domains specify whether there exists limitations or special requirements on

the type of problems that can be solved. The four criteria used for evaluation are

described in the beginning of Chapter 2. 54

3.1 Differences between the theory and methods of Lagrange multipliers in continuous

space and those in discrete space. 80

4.1 Effects of static and dynamic weights on convergence time and solution quality from

20 randomly generated starting points for the discretized version of Problem 2.6 in

[57]. (Weight w is the initial weight in the dynamic case.) 90

xi

4.2 Performance comparison of DLM-General and CSA in solving discrete constrained

NLPs derived from continuous constrained NLPs G1-G10 [135, 121]. All timing

results in seconds were collected on a Pentinum III 500-MHz computer with Solaris

7. For all problems except G2, CSA was able to find the optimal solutions in the

times reported. For G2, CSA has a 97% success ratio. ‘-’ stands for no solution

found for the solution quality specified within 100 feasible DLM runs. ‘SR’ stands

for success ratio of finding solutions with specified quality within 100 feasible DLM

runs. 109

4.3 Performance comparison of DLM-General and CSA in solving continuous con-

strained NLPs: G1-G10 [135, 121]. All timing results in seconds were collected

on a Pentinum III 500-MHz computer with Solaris 7. For all problems except G2,

CSA was able to find the optimal solutions in the times reported. ‘-’ stands for

no solution found for the solution quality specified within 100 feasible DLM runs.

‘SR’ stands for success ratio of finding solutions with specified quality within 100

feasible DLM runs. 110

4.4 Performance comparison of DLM-General and CSA in solving constrained MINLPs

based on continuous constrained NLPs G1-G10 [135, 121]. All timing results in

seconds were collected on a Pentinum III 500-MHz computer with Solaris 7. For

all problems except G2, CSA was able to find the optimal solutions in the times

reported. For G2, CSA has a 95% success ratio. ‘-’ stands for no solution found for

the solution quality specified within 100 feasible DLM runs. ‘SR’ stands for success

ratio of finding solutions with specified quality within 100 feasible DLM runs. . . 111

4.5 Performance comparison of DLM-General and CSA in solving discrete constrained

NLPs based on Floudas and Pardalos’ continuous constrained NLPs [57]. All timing

results in seconds were collected on a Pentinum III 500-MHz computer with Solaris

7. ‘-’ stands for no solution found for the solution quality specified within 100

feasible DLM runs. ‘SR’ stands for success ratio of finding solutions with specified

quality within 100 feasible DLM runs. 112

xii

4.6 Performance comparison of DLM-General and CSA in solving Floudas and Pardalos’

continuous constrained NLPs [57]. All timing results in seconds were collected on a

Pentinum III 500-MHz computer with Solaris 7. ‘-’ stands for no solution found for

the solution quality specified within 100 feasible DLM runs. ‘SR’ stands for success

ratio of finding solutions with specified quality within 100 feasible DLM runs. . . 113

4.7 Performance comparison of DLM-General and CSA in solving constrained MINLPs

based on Floudas and Pardalos’ continuous constrained NLPs [57]. All timing

results were collected on a Pentinum III 500-MHz computer with Solaris 7. ‘-’

stands for no solution found for the solution quality specified within 100 feasible

DLM runs. ‘SR’ stands for success ratio of finding solutions with specified quality

within 100 feasible DLM runs. 114

4.8 Comparison results of LANCELOT, DONLP2, CSA and DLM in solving selected

continuous problems from CUTE using specified starting points in the benchmark.

All timing results are in seconds and were collected on a Pentium-III 500-MHz

computer running Solaris 7. ′−′ means that no feasible solution was found, and ′∗′

means that solutions were obtained by the commercial version of LANCELOT (by

submitting problems through [124]) but no CPU times were available. Numbers

in bold represent the best solutions among the four methods if they have different

solutions. Note that the objective functions f(x) in CUTE can be linear, quadratic

or nonlinear. For simplicity, we use L, Q and N to denote them respectively. . . . 115

5.1 Comparison of a PO2 filter bank obtained by truncating the real coefficients of

Johnston’s 32e QMF bank [112] to 3 bits and a similar PO2 filter bank whose coef-

ficients were scaled by 0.5565 before truncation. (Performance has been normalized

with respect to the performance of the original filter bank.) 128

5.2 Experimental results of DLM-QMF in solving multiplierless QMF-bank design prob-

lems. The initial points of the run were from six ONE-BIT expressions of scaled

Johnston’s solutions. 136

xiii

5.3 Comparison of normalized performance of filter banks with discrete coefficients de-

signed by DLM-QMF and those with continuous coefficients designed by Johnston,

Chen, Novel, simulated annealing (SIMANN), and genetic algorithms (EA-Ct and

EA-Wt). Columns 2-4 show the performance of DLM-QMF using 3 ONE bits for

32-tap filters and 6 ONE bits for 64-tap filters normalized with respect to that of

Johnston’s 32e, 64d, and 64e filter banks [112]. Columns 5-6 show the performance

of DLM-QMF using 3 ONE bits normalized with respect to that of Chen et al.’s

64-tap and 80-tap filter banks [37]. Columns 7-10 show the performance of 32-tap

filter banks designed using Novel [208], SA, and EA, normalized with respect to

that of Johnston’s 32e filter bank and using Johnston’s design as constraints. . . . 139

5.4 Experimental results of DSA in designing multiplierless QMF-bank problem 24c,

starting from a six ONE-BIT expression of scaled Johnston’s solutions. 142

6.1 Performance of DLM-BASIC-SAT in solving DIMACS/SATLIB SAT problems. All

experiments were run on a 500-MHz Pentinum-III computer with Solaris 7. (aim

is on artificially generated random-3-SAT; ii is from inductive inference; jnh is on

random SAT with variable-length clauses; par8 is for learning parity functions; ssa

is on circuit fault analysis; ais is on all-interval series; uf is on uniform random-3-

SAT; flat is on “flat” graph coloring; logistics is on logistics planning; and sw is on

“morphed” graph coloring [69].) . 162

6.2 Performance of DLM-Trap-Avoidance-SAT in solving some hard SAT instances and

the g-class problems that were not solve well before [179]. Experiments were run

on a 500-MHz Pentinum III computer with Solaris 7. 171

6.3 Performance of DLM-Distance-Penalty-SAT in solving hard SAT instances. Exper-

iments were run on a 500-MHz Pentinum-III computer with Solaris 7. 176

xiv

6.4 Performance comparisons of DLM-Trap-Avoidance-SAT, DLM-Distance-Penalty-

SAT, WalkSAT/GSAT, and LSDL [41] on solving some hard SAT instances. Our

experiments were run on a 500-MHz Pentinum-III computer with Solaris 7. Walk-

SAT/GSAT was evaluated on an SGI Challenge with MPIS processor, model un-

known. The timing results of LSDL, using two different strategies GENET and

MAX, were collected on a SUN Sparc classic, model unknown. So far, DLM-

Distance-Penalty has not found any solution to par32-?-c, as denoted by ‘-’ in the

table. (“NR” in the table stands for “not reported.”) 177

6.5 Performance comparisons of Grasp [130], DLM-Trap-Avoidance-SAT and DLM-

BASIC-SAT on some typical DIMACS benchmarks. The timing results of Grasp

were collected on a SUN SPARC 5/85 computer. ‘-’ stands for ‘not solved.’ . . . 179

xv

List of Figures

1.1 The objective function and feasible solution points defined in (1.4) 8

2.1 Classification of methods for solving discrete constrained NLPs 15

2.2 Classification of methods for solving continuous constrained NLPs 33

2.3 Properties of CLMcn in a general continuous constrained NLP. Note that CLMcn and

SPcn stand for continuous-space constrained local minima and continuous-space

saddle points, respectively. 44

2.4 Classification of methods for solving mixed-integer constrained NLPs 49

3.1 The non-uniform spacing between consecutive floating point numbers. 62

3.2 Illustration of Theorem 3.1. 63

3.3 DMPD(A) = C . 68

3.4 Relationships among solution sets of discrete constrained NLPs defined over discrete

neighborhoods. CLMdn and SPdn stand for CLM and saddle points defined over

discrete neighborhoods, respectively. 73

3.5 CSA: constrained simulated annealing procedure. 75

4.1 Framework of DLM, a first-order search for SPdn. Each component is discussed in

detail in the section marked in parenthesis. 82

4.2 DLM-General: An implementation of the general discrete first-order local-search

method. (The initial values of parameters are indicated here unless specified oth-

erwise in the text.) . 83

4.3 Procedures for weight initialization and adaptation in Figure 4.2. (The initial values

of parameters are indicated here unless specified otherwise in the text.) 91

xvi

4.4 The average time to find a solution 1.25 times the optimal solution in G5 depicts

a convex behavior with respect to the number of iterations of each run of DLM-

General. 98

4.5 Comparisons of average relative CPU times and average relative solution qualities

under different parameters/strategies (using Cauchy distribution) normalized with

respect to the reference strategy N1-S3-T2 (Cauchy distribution, tabu-list Q size

= 10, v = 1.2) in solving 12 difficult mixed-integer constrained NLPs. All runs were

made on a Pentium III 500MHz computer with Solaris 7. 103

4.6 Comparisons of average relative CPU times and average relative solution qualities

under different parameters/strategies (using Gaussian distribution) normalized with

respect to the reference strategy N1-S3-T2 (Cauchy distribution, tabu-list Q size

= 10, v = 1.2) in solving 12 difficult mixed-integer constrained NLPs. All runs were

made on a Pentium III 500MHz computer with Solaris 7. 104

4.7 Comparisons of average relative CPU times and average relative solution qualities

under different parameters/strategies (using uniform random distribution) normal-

ized with respect to the reference strategy N1-S3-T2 (Cauchy distribution, tabu-list

Q size = 10, v = 1.2) in solving 12 difficult mixed-integer constrained NLPs. All

runs were made on a Pentium III 500MHz computer with Solaris 7. 105

4.8 Performance of DLM-General using N1-S2-T2 (Cauchy, tabu-list Q size = 6 and

v = 1.2) on 12 difficult derived discrete constrained NLPs. All runs were made on

a Pentium III 500MHz computer with Solaris 7. The solutions in Problems 7.2-7.4

have been normalized by their best-known solutions. 106

4.9 Performance of DLM-General using N1-S2-T2 (Cauchy, tabu-list Q size = 6 and

v = 1.2) on 12 difficult continuous constrained NLPs. All runs were made on a

Pentium III 500MHz computer with Solaris 7. The solutions in Problems 7.2-7.4

have been normalized by their best-known solutions. 107

4.10 Performance of DLM-General using N1-S2-T2 (Cauchy, tabu-list Q size = 6 and

v = 1.2) on 12 difficult derived mixed-integer constrained NLPs. All runs were made

on a Pentium III 500MHz computer with Solaris 7. The solutions in Problems 7.2-

7.4 have been normalized by their best-known solutions. 108

xvii

5.1 Possible design objectives of filter banks and an illustration of the design objectives

of a single low-pass filter. ([0, ωp] is the pass band; [ωs, π], the stop band; [ωp, ωs],

the transition band.) . 120

5.2 DLM-QMF: An implementation of discrete first-order method for designing PO2

filter banks. (The initial values of parameters are indicated here unless specified

otherwise in the text.) . 126

5.3 Algorithm for finding the best scaling factor, where wi is the weight of constraint i. 129

5.4 Performance progress measured during the search of Problem 32e. 133

5.5 Comparison of convergence time and quality of solution between static weighting

and dynamic weighting for multiplierless QMF-bank design problems 32d and 48e,

where quality is measured by the ratio of the reconstruction error of our design

to that of Johnston’s design [112]. Hence, better designs have smaller values of

solution quality. 134

5.6 Normalized performance for PO2 filter banks with a maximum of 3 ONE bits per

coefficient and different number of filter taps. 137

5.7 Normalized performance with respect to Johnston’s 48e QMF bank [112] for PO2

filters with 48 taps and different maximum number of ONE bits per coefficient. . . 138

6.1 Large disparity between the maximum and the average numbers of times a clause

is in traps. 159

6.2 DLM-BASIC-SAT [179]: An implementation of the basic discrete-space first-order

method for solving SAT. 160

6.3 Pseudo code of DLM-Trap-Avoidance-SAT. 167

6.4 Reduced disparity between the maximum and the average numbers of times a clause

is in traps using SPECIAL-INCREASE. 170

6.5 Distribution of number of flips for applying DLM-Trap-Avoidance-SAT to solve

benchmark problem bw-large-d from 100 randomly generated starting points. . . 173

6.6 Pseudo code of DLM-Distance-Penalty-SAT . 174

6.7 Distribution of number of flips for applying DLM-Distance-Penalty-SAT to solve

benchmark problem bw-large-d from 100 randomly generated starting points. . . 178

xviii

Chapter 1

Introduction

Many applications in engineering, decision science and operations research can be formulated

as nonlinear, nonconvex, optimization problems, whose objective and constraint functions are

nonlinear. Typical applications include signal processing, structural optimization, neural-

network design, VLSI design, database design and processing, nuclear power-plant design

and operation, mechanical engineering, physical sciences, and chemical-process control [144,

193, 17, 47, 56].

A general goal in solving nonlinear constrained optimization problems is to find feasible

solutions that satisfy all the constraints. This is not an easy task because nonlinear con-

strained optimization problems are normally NP-hard [63]. In practice, the difficulties in

solving a nonlinear constrained optimization problem arise from the challenge of searching

a huge variable space in order to locate feasible points with desirable solution quality.

To achieve this goal, we propose new theories and search methods in this thesis. In

this chapter, we start with the mathematical characterization of the types of optimization

problems addressed in this thesis. We then introduce some fundamental concepts that are

important not only to our proposed theory but also to general constrained optimization.

1

1.1 Problem Formulation

Conceptually, a generic optimization problem consists of three components [33]:

• an objective function to be minimized (or maximized),

• a set of unknowns or variables that affect the value of the objective function and,

• a set of constraints that allow the unknowns to take on certain values but exclude

others.

Solving an optimization problem, therefore, amounts to finding values of variables that min-

imize or maximize the objective function while satisfying the constraints.

Consider, for example, a filter-bank design problem in signal processing. The main

objective in designing a filter bank is to minimize its reconstruction error, while considering

other metrics like transition bandwidth, energies and ripples. The variables of such a design

problem are the coefficients of a filter-bank, and solving it involves the search of a space

consisting of these coefficients in order to minimize the reconstruction error while at the

same time satisfy constraints on bandwidth, energies and ripples.

Mathematically, the general form of a constrained nonlinear programming problem (con-

strained NLP) can be expressed as:

minimize f(x)

subject to g(x) ≤ 0 x = (x1, x2, . . . , xn) (1.1)

h(x) = 0,

where f(x) is the objective function, and h(x) and g(x) are, respectively, equality and in-

equality constraint functions. Without loss of generality, we consider only minimization

problems here, knowing that maximization problems can be converted to minimization ones

2

by negating their objectives. Note that objective function f(x) in (1.1) should be lower

bounded in order to make the minimization meaningful. Moreover, in their general form,

f(x), g(x) and h(x) are nonlinear functions that are either continuous or discrete, convex

or non-convex, and analytic or procedural (evaluated through simulations). These assump-

tions imply that the functions of a constrained optimization problem are not necessarily

differentiable or even continuous in this thesis.

Depending on the values x in (1.1) takes, this research addresses three classes of problems:

• discrete constrained NLPs whose x takes discrete values;

• continuous constrained NLPs whose x is continuous;

• mixed-integer continuous NLPs in which some variables are continuous and others are

discrete.

To solve problems in the first class, we develop a new theory of discrete constrained

optimization using Lagrange multipliers and an associated first-order search method (DLM).

The major results are summarized in the discrete-space first-order necessary and sufficient

conditions that are able to characterize all solutions to (1.1). By studying errors of using

a floating-point representation to code continuous variables in continuous or mixed-integer

constrained NLPs, we are then able to apply the theory and search method proposed to solve

problems in continuous and mixed-integer constrained optimization.

The proposed theory of discrete constrained optimization using Lagrange multipliers is

inspired by existing continuous Lagrange-multiplier theory and methods. However, they

are derived from new foundations that differ significantly in terms of theoretical results. In

order to clarify the fundamental differences between our proposed theory and the existing

Lagrangian theory for solving continuous constrained NLPs, we compare them in a step-by-

step fashion in our development of the theory in Chapter 3.

3

In the following section, we introduce some basic concepts.

1.2 Basic Definitions

For a discrete constrained NLP formulated in (1.1), its possible solutions are local minima

satisfying all the constraints. To formally characterize the solutions to be found, we state the

concepts of feasible points, neighborhoods and constrained local minima in discrete space.

Definition 1.1 Point x ∈ X is a feasible point if and only if h(x) = 0 and g(x) ≤ 0.

Definition 1.2 Ndn(x) [1], the neighborhood of point x in discrete space, is a finite set

of user-defined points {x′ ∈ X} such that x′ is reachable from x in one step and that

x′ ∈ Ndn(x)⇐⇒ x ∈ Ndn(x′).

For example, in {0, 1}n space in which variables are represented by a vector of binary

elements, each in the set {0, 1}, the neighborhood of x can be defined as points whose

Hamming distance between x and y is less than 2. In modulo-integer space in which variables

are vectors of integer elements, each in the set {0, 1, . . . , k − 1}, x and y can be defined as

neighbors if

mod(y1 − x1, k) + . . .+ mod(yn − xn, k) ≤ j (1.2)

holds, where j is a positive integer.

In contrast, in continuous space the neighborhood of point x, Ncn(x), is defined to be all

points x′ satisfying

‖x− x′‖ < ε (1.3)

where ε is a positive real number that approaches zero asymptotically. One can view ε

as the radius of a high-dimensional sphere. A fundamental difference between continuous

and discrete neighborhoods is that a discrete neighborhood has a finite number of elements,

4

whereas a continuous neighborhood has an infinite number of points for any positive ε.

The finite nature of neighborhood points in Ndn is critical in proving the theory of discrete

constrained optimization using Lagrange multipliers.

Definition 1.3 Point xl is a discrete constrained local minimum (CLM) if and only if it

satisfies the following two properties: a) xl is a feasible point, implying that xl satisfies all

the constraints h(xl) = 0 and g(xl) ≤ 0, and b) f(xl) ≤ f(x′) for all x′ ∈ Ndn(xl), where

x′ is feasible. A special case in which xl is a CLM is when xl is feasible and all neighboring

points of xl are infeasible.

Based on these definitions, there are two distinct features of CLM in discrete space.

First, the set of CLM in discrete space for a problem is not unique because it depends on

the definition of Ndn(x); that is, point xl may be a CLM to one Ndn(x) but may not be for

another. The choice of Ndn(x), however, does not affect the validity of a search as long as a

consistent definition is used throughout, although it may affect the time to find a CLM. In

general, a good choice may include nearby discrete points for doing local search as well as

“far-away” points for exploring larger regions in a search space. Second, the verification of

a point in discrete space to be a CLM can be done by comparing its objective value against

the objective value of a finite number of its neighbors. This feature allows the search of a

descent direction to be done by enumeration rather than by differentiation.

In contrast, point x is a constrained local minimum [128] in continuous space if and only

if, for any feasible x′ ∈ Ncn(x), f(x′) ≥ f(x) holds true. Unlike the definition of Ndn(x) in

discrete space, Ncn(x) is well defined and unique. Thus, in continuous space points that are

constrained local minima are well defined, although it is impossible to verify whether a given

point is a CLM by enumeration since Ncn(x) is infinite in size.

5

To avoid confusion of CLM in discrete and continuous spaces, we denote, respectively,

CLMdn to be a CLM in discrete space and CLMcn to be a CLM in continuous space. The

difference lies in their neighborhoods, and this convention will be used throughout the thesis.

Definition 1.4 Point x is a discrete constrained global minimum (CGMdn) if and only if:

a) x is a feasible point, implying that x satisfies all the constraints, and b) for any other

feasible x′, f(x′) ≥ f(x). The set of all CGMdn is denoted by Xopt. Unlike CLMdn, whether

a point is a CGMdn is neighborhood independent and well defined.

To characterize different algorithms for solving constrained optimization problems, some

frequently used and closely related terms are described and compared next:

• Local-search, global-search and global optimization. Local-search methods rely on infor-

mation from local probes to generate candidate trial points and advance their search

trajectories [7, 128, 103]. Obviously, local-search methods may be trapped and con-

fined in a small local region in their search space. Global-search methods, on the other

hand, have techniques for escaping from the attraction of local minima or constrained

local minima in their search space [77, 15, 168, 165, 94, 191, 173, 201], thereby having a

better chance to find high-quality solutions. Last, global-optimization methods can find

global optima for unconstrained problems or constrained global optima for constrained

problems when the methods stop [118, 132, 19, 147, 30, 232, 213, 214].

• Deterministic versus stochastic search methods. An iterative search procedure is de-

terministic [106, 235] if each probe is generated deterministically by the procedure.

Otherwise, it is called a probabilistic or stochastic procedure.

• Complete versus incomplete search methods. Complete methods have mechanisms to

explore exhaustively the whole search space. Consequently, given a finite search space,

6

complete methods are able to find globally optimal solutions (or constrained global

optima) in finite time. Moreover, if a constrained problem has no feasible solution,

complete methods can prove infeasibility. On the other hand, incomplete methods

have no guarantee to find optimal solutions and cannot prove infeasibility. In finite

time, incomplete methods may be able to find a feasible solution if one exists.

• Reachability versus asymptotic convergence. An iterative search procedure is said to

have reachability [6, 235] if the probability of its search trajectory hitting a global

optimum (or a constrained global optimum for constrained problems) converges to one

as time goes to infinity. In contrast, an iterative search procedure is said to have

asymptotic convergence [6, 235] if the probability for its last probe hitting a global

optimum (or a constrained global optimum for constrained problems) converges to one

as time goes to infinity. Reachability is weaker than asymptotic convergence as it

only requires hitting a constrained global minimum sometime during a search. A pure

random search is an example of global optimization with reachability. In contrast,

asymptotic convergence requires the current probe to converge to a constrained global

minimum with probability one. Consequently, the probability of hitting a global solu-

tion increases as a search progresses, making it more likely to find the globally optimal

solution (or constrained global optimum) than an algorithm with reachability alone.

Note that algorithms with either reachability or asymptotic convergence are stochastic

search methods and are incomplete when given finite time because global solutions are

not guaranteed to be found in finite time.

Example 1.1 To illustrate the concepts of discrete neighborhoods and constrained local

minima, consider the following one-dimensional nonlinear discrete constrained optimization

7

-3

-2

-1

0

1

2

3

-2 -1 0 1 2 3

O
bj

ec
tiv

e

x

objective function
feasible points

Figure 1.1: The objective function and feasible solution points defined in (1.4)

problem with constraints satisfied at integer points between −2 and 3.

minimize f(x) = 2− 0.4x− 2.0x2 + 0.75x3 + 0.4x4 − 0.15x5 + sin(5x)

subject to h(x) = 0 (1.4)

where h(x) =







sin(πx) if − 2 ≤ x ≤ 3

1 otherwise

and x is a discrete variable. Figure 1.1 plots the objective function.

By choosing the neighborhood of x to be {x− 1, x+ 1}, x = −2, 1, 3 are all constrained

local minima in (1.4), since x = −3 is infeasible, f(−1) > f(−2), f(0) > f(1), f(2) > f(1),

f(2) > f(3), and x = 4 is infeasible. Out of the six points in the feasible region, the

global minimum is at x = 1 where f(1) = −0.359. In this simple example, its CLMdn and

CGMdn can be found by exhaustive enumeration.

8

1.3 Research Goals

The overall goal of this thesis is to solve a general class of constrained NLPs whose functions

are not necessarily differentiable or convex. This goal is decomposed into four sub-goals.

Our first sub-goal entails the solution of discrete constrained NLPs. We develop the theory

of discrete constrained optimization using Lagrange multipliers and an associated efficient

discrete-space local-search method (DLM). Our proposed theory is able to characterize all

CLMdn of a discrete constrained NLP without differentiability or convexity assumptions.

Our second sub-goal is to extend our proposed theory and DLM to continuous and mixed-

integer constrained NLPs. We explore floating-point representations (or discretization) of

continuous variables in continuous and mixed-integer constrained NLPs in order to trans-

form them into discrete constrained NLPs. Such transformations allow constrained NLPs in

continuous and mixed-integer space to be handled in a unified way as discrete constrained

NLPs by DLM.

Our third sub-goal is to investigate the errors introduced due to floating-point representa-

tions of continuous variables and determine analytically the upper bounds on the worst-case

errors introduced by discretization.

Finally, we apply DLM to solve some constrained NLP benchmarks, designs of multipliers

QMF banks, and hard satisfiability problems. We like to demonstrate that DLM can find

new solutions and designs that were not possible by other existing procedures.

We have focused in this research on finding constrained local minima to (1.1) and have

developed conditions to characterize such solutions. However, the theory is general and can

be extended to characterize constrained global minima. Such extensions have been carried

out in the development of constrained simulated annealing [213, 211].

9

1.4 Outline of This Thesis

In Chapter 2, we survey existing work on three classes of constrained NLPs: a) discrete con-

strained NLPs, b) continuous constrained NLPs, and c) mixed-integer constrained NLPs.

A floating point representation, which is closely related to the implementation of numerical

algorithms for solving constrained NLPs with continuous variables, is explored carefully in

the beginning of Chapter 3. The analysis reveals that, by coding continuous variables in

a continuous or mixed-integer constrained NLP using a floating-point representation, the

original problem is transformed into a discrete constrained NLP. We prove a theorem on the

upper bound between the CGMcn of the original constrained NLP and the CGMdn of the

corresponding discrete constrained NLP. Next, we present the theory of discrete constrained

optimization using Lagrange multipliers. We begin by defining a set of new concepts, like

direction of maximum potential drop (DMPD) and discrete-space saddle points. We then

introduce a generalized discrete Lagrangian function, propose the theory of discrete con-

strained optimization using Lagrange multipliers, and prove the discrete-space first-order

necessary and sufficient conditions. Based on these conditions, we propose an efficient first-

order search method in Chapter 4 for solving discrete constrained NLPs. We also discuss

in detail related issues on neighborhood search, global search and dynamic weight adapta-

tion. Next, we demonstrate the efficiency and effectiveness of our proposed first-order search

method on two real-world applications: the design of multiplierless filter banks in Chapter 5

and the solution of satisfiability problems in Chapter 6. Finally, we conclude this thesis and

point out some possible directions of future work in Chapter 7.

1.5 Significance of This Research

We list in this section the main contributions of this thesis.

10

• A complete theory of discrete constrained optimization using Lagrange multipliers.

Compared to previous work [207, 178, 176], we have developed a complete theory on

discrete constrained optimization using Lagrange multipliers and its associated first-

order search procedure for locating CLMdn. Our proposed discrete-space first-order

necessary and sufficient conditions can characterize all CLMdn in discrete space. In

contrast, traditional first-order necessary conditions in continuous Lagrangian space

are only able to characterize a subset of CLMcn. Our proposed theory and methods

provide a systematic way to solve general discrete constrained NLPs without convexity

and differentiability assumptions.

We have shown in this research, an upper bound on the error between a CLMcn for a

continuous or mixed-integer constrained NLP and the closest CLMdn when continuous

variables are discretized in a floating-point representation. Such a characterization is

important because it allows discrete, continuous, and mixed-integer NLPs to be solved

in a unified way as discrete NLPs with bounded errors.

• Designs of better multiplierless filter banks. We have formulated the design of multi-

plierless QMF (quadrature mirror filter) filter banks as nonlinear discrete constrained

NLPs and have applied DLM to find new designs that were not possible using existing

methods. Our designs improve over all of Johnston’s benchmark designs using a max-

imum of three to six ONE bits in each filter coefficient, instead of using floating-point

representations. Moreover, our approach is general and can be applied to design other

types of multiplierless filter banks [216].

• Solving hard satisfiability problems. We have applied DLM with global-search heuristics

to find new solutions for satisfiable benchmarks that were not possible by existing local-

and global search techniques. Our experimental results on the DIMACS and SATLIB

11

benchmarks demonstrate that DLM is robust as well as effective in solving hard SAT

problems.

12

Chapter 2

Previous Work

In this chapter, we summarize previous work in the literature on the three classes of problems

formulated in Chapter 1. Methods for solving these three classes of problems are surveyed in

the first three sections of this chapter. These methods are evaluated based on four criteria:

C1) the quality of solutions these methods can achieve, their solution time and convergence

behavior; C2) the properties of these algorithms, whether they have well-defined stopping

conditions and whether their algorithmic steps are related to the stopping conditions; C3)

the type of objective and constraints that these methods can handle, linear or nonlinear;

and C4) their requirements on continuity, convexity or differentiability of the objective and

constraint functions. Criterion C1 is further decomposed into three parts: i) solution stands

for the final solution quality achieved when an algorithm stops, where solution quality can be

constrained local minimum, constrained global minimum or ‘heuristic’ (implying no feasibil-

ity and optimality guarantee on the final solution); ii) convergence stands for the convergence

behavior, namely, asymptotic convergence, reachability to a global optimal solution, or ‘none’

(meaning no convergence to any globally optimal solution); and iii) time is the solution time

required to achieve the final solution, where ‘finite’ means that an algorithm will locate its

13

final solution in finite time when given a finite space, and ‘bounded’ means that an algorithm

will terminate in bounded time.

By reviewing the many existing methods for solving the three classes of problems for-

mulated in Chapter 1, we wish to find out: a) whether there are necessary and sufficient

conditions to characterize constrained local minima for the three classes of constrained NLPs;

b) whether there exists a unified method for solving them; and c) whether existing methods

are efficient in addressing them.

2.1 Prior Methods for Solving Discrete Constrained

NLPs

The general formulation of a discrete constrained NLP is defined in (1.1) with respect to a

vector x of discrete variables. In general, a discrete constrained NLP has a finite search space,

although the number of points in it is normally very huge because a search space increases

exponentially with respect to the number of variables in the problem. For instance, a very

small problem with 10 variables, each taking 1000 different discrete values, has as many

as 1030 points in its whole search space. As a result, it is impossible for any algorithm to

enumerate all possibilities of even small problems.

In the past, there have been four major approaches on efficient techniques to solve dis-

crete constrained NLPs defined in (1.1): transformations into constrained 0-1 NLP prob-

lems, transformations into unconstrained problems using penalty formulations, direct solu-

tion methods, and Lagrangian relaxation. Figure 2.1 shows a classification of these methods

according to the four approaches.

14

local searchlocal search

deterministic deterministic deterministic stochastic

global search

learning

global optimization

deterministic deterministic

global optimizationglobal search global optimization

deterministicstochastic

Random walk

stochastic

cutting-plane
based methods

Lagrangian
relaxationdiscarding branch&bound

IHR

Methods for Discrete Constrained NLPs

repair

 Penalty formulations Direct solutions Lagrangian formulationsTransformations into Constrained 0-1 NLPs

linearization,
algebraic methods,

greedy, multi-start,
adaptive multi-start,

Tabu search,
GLS,

Bayesian methods,

random search,
adaptive search,

CRS,
GA,
SA,

reject, enumerative,
 hill
 climbing

 heuristic repair,

stochastic

search
random

Figure 2.1: Classification of methods for solving discrete constrained NLPs

15

2.1.1 Transformations into Constrained 0-1 NLPs

One major approach is to rewrite a discrete constrained NLP into a constrained nonlinear

0-1 programming problem before solving it. This rewriting process is simple because an

integer variable can naturally be expressed as the summation of several binary bits or 0-1

variables. Existing nonlinear 0-1 integer programming algorithms can be classified into three

categories [92].

First, a nonlinear problem can be linearized by replacing each distinct product of vari-

ables by a new 0-1 variable and by adding some new constraints [223, 78, 79]. However,

linearization often leads to large linear programs due to the many new variables and con-

straints introduced. In general, linearization methods will only work for problems with a few

simple nonlinear terms.

Second, algebraic methods [90, 159] express an objective function as a polynomial function

of its variables and their complements. These only work for cases in which all the constraints

can be removed.

Third, cutting-plane methods [82, 83] reduce a constrained nonlinear 0-1 problem into

a generalized covering problem. In these methods, the objective is assumed to be linear

or is linearized. However, they are limited because not all nonlinear 0-1 problems can be

transformed this way.

Transformations into nonlinear constrained 0-1 problems are not helpful because existing

techniques for solving these problems are very limited and all have difficulties in handling

highly nonlinear objective and constraint functions. However, if a nonlinear problem can

be linearized, existing linear programming methods generally have well-defined algorithmic

steps and stopping conditions for locating CLMdn.

16

2.1.2 Penalty Formulations and Methods

Penalty Formulations. A second approach transforms (1.1) into an unconstrained prob-

lem consisting of a sum of the objective and the constraints weighted by penalties before

solving it by incomplete methods. A typical penalty formulation is as follows:

eval(x) = f(x) + p(x), (2.1)

where f(x) is the objective function and p(x) is the penalty term. A widely used penalty

term is:

p(x) =

n
∑

i=1

wi|hi(x)|, (2.2)

where wi are weight coefficients to be determined.

A simple solution is to use a static-penalty formulation [22, 128] that sets wi to be static

large positive values. This way, a local minimum of eval(x) is a constrained local minimum

(CLMdn), and a global minimum of eval(x) is a constrained global minimum (CGMdn).

However, if the wi’s are too large, they will cause the search space to be very rugged.

Consequently, feasible solutions are difficult to be located by local-search methods because

it is hard for these methods to escape from deep local minima after getting there and to

move from one feasible region to another when feasible regions are disconnected. On the

other hand, if the wi’s are too small, then local minima or global minima of eval(x) may not

even be feasible solutions to the original constrained problem.

In general, hard-to-satisfy constraints should carry larger penalties than easy-to-satisfy

ones. However, the degree of difficulty in satisfying a constraint may depend on other con-

straints in a problem. Without the ability to vary penalties dynamically, search techniques

for unconstrained problems will likely get stuck in infeasible local optima.

17

Dynamic-penalty methods address the difficulties in static-penalty methods by gradu-

ally increasing penalties. By transforming (1.1) into a sequence of unconstrained subprob-

lems with increasing penalties, dynamic-penalty methods employ the solution in a previous

subproblem as a starting point for the next subproblem. Dynamic-penalty methods have

asymptotic convergence if each unconstrained subproblem in the sequence is solved opti-

mally [22, 128]. Optimality in each subproblem is, however, difficult to achieve in practice,

given only finite amount of time to solve each subproblem, leading to suboptimal solutions

when the result in one subproblem is not optimal. Moreover, the solutions to intermediate

subproblems may not be related to the final goal of finding CLMdn or CGMdn when penal-

ties are not large enough. Approximations to the process that sacrifice the global optimality

of solutions have been developed [117, 129].

Various constraint handling techniques have been developed based on dynamic-penalty

formulations in [99, 113, 133, 148, 134, 76, 8, 170, 145, 169]. Besides requiring domain-

specific knowledge, most of these heuristics have difficulties in finding feasible regions or in

maintaining feasibility for nonlinear constraints and get stuck easily in local minima [135,

133]. Some typical constraint-handling techniques are explained next. Note that these

techniques are all heuristic and were developed in an ad hoc fashion.

• One technique is to apply dynamically updated coefficients on a penalty formulation.

The following formula reveals this idea:

eval(x) = f(x) + (cT)α

n
∑

i

hβ
i (x), (2.3)

where c, α, β are constants. A typical choice of these parameters are: c = 0.5, and α =

β = 2 [113]. The critical part of this method lies in the exponentially increasing weight

coefficient, (cT)α, where T is a measure of progress or time. Obviously, the weight

18

coefficient will be large after some time. Therefore, the penalty is indeed dynamic and

eventually will be sufficiently large to force violated constraints into satisfaction. The

drawback, however, is that the penalty is increasing at an exponential rate, which is

too sensitive to α. In practice, it is very difficult to chose a suitable α for an unknown

problem. A large α will cause the search terrain to be too rugged, making it hard to

escape from local minima. Also, a large α will incur large penalties on constraints and

will force a search to find only feasible solutions, while ignoring the objective.

• A second technique is based on adaptive penalties [18]. Similar to the first technique,

it uses a dynamically changing weight coefficient in a penalty formulation:

eval(x) = f(x) + λ(T)
n
∑

i

h2
i (x). (2.4)

The difference, however, lies in the fact that λ(T) is not simply a function of search

progress. Rather, λ(T) is dynamically updated according to constraint violations: it

will be increased if many constraints are violated and stabilized if most are satisfied.

A problem with this approach is that all constraints are summed up and treated with

equal weights. This is counter-intuitive because different constraints may have different

levels of difficulty to be satisfied and, therefore, should carry different weights.

In general, methods based on the above dynamic-penalty formulations can at best, but

have no guarantee to, achieve constrained local minima (CLMdn). Consider a simple prob-

lem with only one constraint function h(x) and an objective f(x). If a dynamic penalty-

based algorithm starts from x∗ and |h(x∗)| = minx∈Ndn(x∗)∪{x∗}{|h(x)|} > 0 and f(x∗) =

minx∈Ndn(x∗)∪{x∗}{f(x)}, then regardless of how large (cT)α in (2.3) or λ(T) in (2.4) be-

comes, no feasible solution can be found.

19

Next, we review methods based on penalty formulations. These methods can be further

classified into local search, global search and global optimization.

Local Search Based on Penalty Formulations. Local search methods based on penalty

formulations rely on local probes or perturbations to generate candidate trial points and

advance their search trajectories. Typical methods include greedy search and hill climbing [7,

128]. These methods usually have well-defined stopping conditions that are closely related

to their algorithmic steps. They, however, have difficulties in finding feasible solutions and

get stuck easily in infeasible local minima when the weight coefficients in (2.2) are not chosen

properly. For this reason, local search methods are often combined with various global search

techniques to find high-quality solutions.

Global Search Based on Penalty Formulations. Global search methods based on

penalty formulations normally have certain techniques to escape from the attraction of local

minima or valleys in a search space. Typical methods include tabu search [75, 77, 15], multi-

start [168, 165, 94, 191], heuristic repair methods [41], break-out strategies [139], guided

local search (GLS) [201], and random walk [173].

Among all the global search methods, multi-start is the most straightforward approach

to get out of local minima. The method works as follows. Assuming a search gets stuck at a

local minimum and cannot find any improvement locally, the search process will be restarted

from a randomly generated starting point. A major strength of multi-start is that it is very

simple and efficient to implement. However, random restarts cause all valuable historical

information to be lost and have little bearings in locating CLMdn or CGMdn.

Tabu search [75] is an effective global search method that records previously-seen solutions

or points in its variable space using a so-called tabu list implemented using a simple data

20

structure. The solutions or points stored in a tabu list are prohibited in the future. (A trial

point not in a tabu list is called an ‘allowed move,’ whereas a trial point inside the tabu list

is called a ‘prohibited move.’) Note that the simplicity of a tabu list structure is very critical

to the success of the algorithm because a simpler data structure is both faster to index and

smaller in memory consumption. By maintaining a tabu list of previously-seen solutions or

points, a search is forced to explore new regions in its search space. Therefore, local minima

can be overcome and better solutions can be found.

There are many variations [75, 77] of tabu search. For example, a strict tabu search has

no bound on the size of its tabu list, and a trial point is prohibited if and only if it has

been visited before. A fixed tabu search, on the other hand, has a fixed-size tabu list that is

updated in a FIFO manner. Both the fixed and strict tabu searches do not allow prohibited

moves. Probabilistic tabu search, however, uses a large probability for allowed moves and a

small probability for prohibited moves.

A tabu search is an effective and efficient global search method if it is implemented

carefully. However, its effectiveness is very sensitive to the length of the tabu list, and the

representation of previously-seen solutions that are placed in the tabu list. The stopping

condition of tabu search methods is usually set to terminate after a desired solution is located,

although the way of allowing or prohibiting a move has little bearings to the goal of finding

CLMdn or CGMdn for constrained problems.

A guided local search (GLS) [201] is a heuristic strategy that uses problem-specific fea-

tures to characterize different solution points and associates penalties with different features.

If a region or point is revisited during a search, it will incur large penalties on some features,

thereby forcing the search go to other regions. GLS defines the following eval function:

eval(s) = f(s) + λ
∑

i=1,F

pi · Ii(s), (2.5)

21

where s is a candidate solution, λ is a parameter to be determined, F is the number of

features, pi is the penalty for feature i, and Ii is an indication of whether feature i is associated

with solution s. Ii is defined to be:

Ii(s) =







1, if solution s has feature i,

0, otherwise.

GLS tries to find candidate solutions with better eval(s) values. At the same time, pi

will be increased when the corresponding feature exhibits a local minimum. GLS has been

applied successfully to some applications [201] and is efficient because each algorithmic step

of decreasing eval(x) meets the goal of locating problem solutions. The weakness of GLS,

however, is that features are very problem specific and a poorly chosen feature may be

detrimental to GLS.

A random walk [173, 172] performs greedy local descents most of the time and perturbs,

occasionally, one or several variables in order to bring the search out of local traps. A prob-

ability, p, is used to govern the percentage of carrying out local descents versus performing

random perturbations. Random walks have been found to be very successful in solving hard

satisfiability problems, although the way of doing descents with occasional perturbations has

little bearings on constraint satisfaction. The probability p and the level of perturbations

are, however, difficult to tune for a new problem.

In heuristic repair methods, a network (called GENET) with a set of nodes and edges

is constructed. Each variable in the original problem is represented by a group of nodes.

Each node consists of a pair of a particular variable and an associated value assigned to that

variable, thereby fixing a possible assignment to that variable. Two nodes are connected by

an edge if and only if the two assignments decided by the two nodes violate the constraints.

Note that an edge has an associated weight, or penalty, that is updated dynamically accord-

22

ing to constraint violations. The algorithm performs iterative repairs on a network, while

trying to minimize constraint violations. It is obvious that the algorithmic steps of heuristic-

repair methods actually guide a search gradually towards finding feasible solutions. A major

problem with heuristic-repair methods is that a violated constraint is not necessarily caused

by only two variable assignments but may be caused by multiple variables. Such scenarios

cannot be coped with by networks that connect two variables at a time.

Learning-based approaches [29] attempt to predict good starting points for local search

methods such as hill-climbing. The algorithm learns some relationships between starting

points and solution quality of the local search method used. The method works well for sim-

ple functions but has difficulty in learning complex search terrains. For example, population-

based incremental learning (PBIL) [11] incorporates the notion of a candidate solution pop-

ulation (used in GA) by replacing it with a probability vector. Each element in the vector

represents the probability that the corresponding bit in a solution is on. During the learning

process, the probability vector can be viewed as a model of the search terrain and is rederived

after each generation. Note that the probabilistic model used in PBIL does not explore any

inter-parameter dependency.

Mutual information maximization for input clustering (MIMIC) [25] analyzes the global

structure of a variable space, uses knowledge of this structure to guide a randomized search

in the variable space, and refines the estimation of the structure using new information

collected. MIMIC improves PBIL by capturing a heuristically chosen set of pairwise de-

pendencies among solution parameters. Combining optimizers with mutual information tree

(COMIT) [12] further improves MIMIC by combining probabilistic models with fast local

search techniques, like greedy search, in order to reduce computational costs. The problem

of these algorithms is that, for NLPs with highly nonlinear constraints, the models used in

23

these algorithms are usually not accurate. As a result, the guidance provided by these models

may be weak and does not have close bearings to the goal of locating feasible solutions.

In Bayesian methods [137, 202], the variables in an original problem are modeled by

random variables. They try to find solutions by minimizing the deviation of the model from

actual global solutions. The weaknesses of these methods are, again, in the difficulty in mod-

eling accurately a search space determined by nonlinear objective and constraints functions

and in the high cost of applying them to problems with more than twenty variables [196].

In general, global search methods based on penalty formulations can at best achieve con-

strained local minima (CLMdn), given large penalties on constraints. However, as mentioned

before, selecting suitable penalties often proves to be difficult, and most current methods

use heuristics to select penalties. To address this issue, we shall develop a systematic way to

handle nonlinear constraints that can guide a search to achieve the goal of locating CLMdn.

Global Optimization Based on Penalty Formulations. Given sufficiently large penal-

ties on constraints and infinite time, global optimization methods based on penalty trans-

formations for solving discrete constrained problems are able to find CGMdn. In practice, it

is difficult to achieve global optimality when given finite time, because a search may commit

too quickly to an infeasible region or a region with only CLMdn.

Simulated annealing (SA) [118] and genetic algorithms (GA) [96] are two well-known

global optimization algorithms for solving unconstrained NLPs.

Simulated annealing, a typical global optimization algorithm with asymptotic conver-

gence, is motivated by real-world annealing processes that first heat up a system and then

gradually cool it down in order to reach states with globally minimal energy. So far, SA has

been applied successfully to solve unconstrained optimization problems [151, 122, 46, 4]. Its

basic idea is as follows. An artificial temperature, T , is introduced to control the progress of

24

annealing. At the beginning of the annealing process, T = T 0 is large, and a starting point,

x0, in the search space is chosen. T is gradually deceased as annealing goes on. In each

iteration of the process, a new trial point, xn+1, in the search space is generated based on

the current point, xn. The trial point, xn+1, is accepted or rejected based on the following

Metropolis acceptance probability [73]:

AT (xn, xn+1) = exp(−(f(xn+1)− f(xn))+

T
) (2.6)

where

a+ =







a, a > 0

0, a ≤ 0.
(2.7)

The form taken by AT (xn, xn+1) reveals two facts. First, if xn+1 has a better (smaller)

function value then xn, then it will be accepted with AT (xn, xn+1) = 1. However, if xn+1

has a worse (larger) function value, it will be accepted at a certain probability computed

using (2.6). Second, T plays a very critical role. If, T is very large, which is the case at the

beginning of the annealing process, then most of the trial points will be accepted because

(f(xn)− f(xn+1))+/T is close to zero, regardless of function values of trial points. On the

other hand, when T approaches zero at the end of the annealing process, only trial points

with better function values will be accepted. A necessary and sufficient condition [66] for SA

to converge to an unconstrained global optimum requires T to be decreased at a rate inversely

proportional to a logarithmic function of time, given a sufficiently large initial temperature

T 0:

T (t) =
T 0

log(1 + t)
. (2.8)

25

Many variations of SA have been proposed, like fast simulated annealing (FSA) [194],

simulated annealing with extended neighborhood [230], adaptive simulated annealing [111,

222], and a combination of simulated annealing with local search heuristics [131, 13].

The advantage of SA lies in its global convergence property. Also, each step of probabilis-

tic descents in its variable space matches the goal of locating optimal solutions. However,

when applied to solve constrained NLPs using penalty formulations, the global convergence

of SA only ensures that a search will converge to an optimal solution of the penalty function

(that may be an infeasible point, a CLMdn, or a CGMdn of the original constrained prob-

lem). That is, the success of SA in constrained optimization depends heavily on the proper

choice of penalties. Moreover, SA requires a very slow cooling schedule in order to converge

to an optimal solution with high probabilities. Further, because SA allows up-hill moves, it

is generally not as efficient as local search methods that only accept down-hill moves.

Genetic algorithm (GA) [80, 59, 133, 161, 142, 146, 93], a typical global optimization al-

gorithm with reachability, roots itself in nature’s rule of “fitness to survive.” As summarized

in [135, 133, 132], a genetic algorithm has five basic components: a) a genetic representation

of solutions to the problem, b) a way to generate an initial population of solutions, c) a

fitness function to rank different solutions, d) genetic operators to generate different genetic

composition of offsprings, and e) parameters used by the algorithm.

A basic genetic algorithm [135, 133, 143] works as follows. A population of solutions, say

P (n) for the nth generation, is maintained. (P (0) is the starting population.) Each individual

in P (n) represents a possible solution to the problem and has a fitness rating according to

a fitness function. In order to reproduce individuals for the next generation, two popular

genetic operators are used. One is mutation that creates new individuals by changing or

by perturbing the genetic composition of a single individual. The other is crossover that

creates new individuals by combining the genetic compositions of two individuals. The

26

newly created individuals, together with all individuals in P (n), are then rated according

their fitness values, or objective values in case of unconstrained optimization problems. A

new population, P (n+1), is then formed by selecting from the top-fit individuals, according

to the rule of “fitness to survive.” After performing the above procedure for a significant

number of generations, the algorithm is expected to converge to the best individual.

Some important issues for a genetic algorithm are the encoding of solutions, choosing

suitable genetic operators, ranking and selection of individuals, and setting population size.

A traditional and straightforward way to encode a solution is to use binary encoding, where

a solution is represented by a string of binary bits (00011010010 for example). However, for

many real-world problems, it is difficult and inefficient to use a binary representation. It has

been found [54] that real-number encoding performs better than binary or Gray encoding

for function and constraint optimization. The reason is that the topological structure of the

coding space for a real-number encoding is the same as that of the original solution space.

In this research, when we apply our discrete Lagrangian methods to solve continuous or

mixed-integer constrained NLP problems, we also use real-number encoding (floating point

representation) to represent continuous variables.

A conventional crossover operator simply swaps the genetic compositions of two individ-

uals at a certain pivot point. The fusion operator [19], a generalized crossover operator, has

been proposed in order to take into account the fitness information of parent individuals

in a stochastic way. Note that the fusion operator will only reproduce one single offspring,

in contrast to a traditional crossover operator that produces two offsprings. Assuming P1

and P2 to be the two parents selected, the child to be reproduced has a probability of

p = f(P2)/(f(P1) + f(P2)) to be P1, and a probability of 1− p to be P2.

Together, the fitness-selection, crossover, and mutation operators of GA will guide a

search gradually towards optimal solutions. However, similar to SA, GA requires a good

27

choice of penalties in a penalty formulation in order for the search to converge to a CGMdn of

the original constrained problem. Otherwise, the search may end up finding only CLMdn or

even infeasible solutions.

Besides SA and GA, there are some other optimization strategies, although not as pop-

ular, that can be applied to solve discrete constrained NLPs using penalty formulations.

Among those include random search, adaptive search [147, 30], controlled random search

(CRS) [5, 153] and improving hit-and-run (IHR) [232].

A general sequential (or iterative) random search algorithm [232] works as follows:

Generate a trial point pk,

Advance the search by setting xk+1 =







pk, if pk is accepted

xk, if pk is rejected.
(2.9)

It was proved in [186] that under some generic conditions, a sequential random search method

can asymptotically converge with probability one to a global minimum. Note that the way

of generating and accepting trial points in (2.9) must not consistently exclude any region

in a variable space. Otherwise, the global convergence property of the algorithm no longer

holds.

Pure adaptive search (PAS) [147] is a typical sequential random search algorithm that

consistently improves its solution in each iteration. Some analysis of PAS can be found

in [147].

IHR combines the idea of PAS and a trial-point generator that can generate points with

asymptotically uniform distribution. IHR was proved [233] to have a polynomial complexity

of the number of dimensions of a class of elliptical programs.

The basic philosophy of CRS [5] resembles a contraction process in which a group of points

are iteratively contracted by replacing the worst point by a better point. The replacement

28

is determined by a global or local technique. The global technique is for generating a new

trial point based on two or more points selected from the group. In contrast, the local

search technique searches in a local region around one selected point for a replacement. The

iterative procedure stops when all points in the group are close enough to one another, i.e.

|f(xa)− f(xb)| < ε0, where ε0 is a predefined small positive value.

The issues for these random search methods are: a) that they depend heavily on a good

choice of penalties in order to find feasible solutions; and b) that the trial point generator,

normally based on some random distributions, has no bearing to the final goal of finding

CGMdn or CLMdn. Therefore, these random search methods are usually not very efficient.

To summarize, transforming discrete constrained NLPs into unconstrained problems and

solving them by many existing methods, although popular, has an inherent difficulty in

choosing suitable penalties. If the penalties are too small, then a search might be trapped

easily by deep local minima of the penalty function. On the other hand, if the penalties are

too large, then the search terrain will be very rugged and feasible points may be hard to

find.

2.1.3 Direct Solutions for Solving Discrete Constrained NLPs

Direct solution methods for solving discrete constrained NLPs without any transformation

on their objective and constraint functions can be classified into two approaches. One major

approach is based on rejecting, discarding [8, 9, 150] or repairing [114] methods in order

to avoid infeasible points. This approach, however, has difficulty in handling nonlinear

constraints whose feasible regions may be very hard to locate, leading to mostly infeasible

points generated that are rejected.

The other approach is based on enumeration or randomized search techniques [105]. Enu-

merative algorithms [125, 221] belong to the class of complete methods that utilize branch-

29

and-bound techniques to find lower bounds of linearized constraints. In these algorithms,

branching variables are chosen according to a rigid a priori ordering. (Better results may be

obtained by choosing branching variables according to a rule that exploits the characteristics

of the current subproblem.) The advantage of these enumerative methods is that optimality

(CGMdn) can be achieved and that the process is closely tied to the final goal of locating

optimal feasible solutions. However, lower bounds found through linearized constraints may

be inaccurate when constraints are highly nonlinear, and inaccurate bounds may lead to

incorrect pruning and infeasible solutions when the algorithm terminates.

2.1.4 Lagrangian Relaxation

There is a class of algorithms called Lagrangian relaxation [72, 74, 64, 180, 16] proposed in the

literature that should not be confused with our proposed discrete constrained optimization

method using Lagrange multipliers. Lagrangian relaxation reformulates a linear integer

minimization problem:

z = minimizex Cx

subject to Gx ≤ b where x is an integer vector of variables (2.10)

x ≥ 0 and C and G are constant matrices

into the following form:

L(λ) = minimizex (Cx+ λ(b−Gx))

subject to x ≥ 0. (2.11)

Obviously, the new relaxed problem is simple and can be solved efficiently for any given

vector λ. The method is based on Lagrangian Duality theory [195] upon which a general

relationship between the solution to the original minimization problem and the solution to

30

the relaxed problem can be deduced. There was some research [10] addressing nonlinear

optimization problems. However, as pointed out in [195], Lagrangian relaxation aims to find

an optimal primal solution given an optimal dual solution, or vice versa. This approach is

simple in the case of linear functions but not for nonlinear functions.

Table 2.1 summarizes existing algorithms for solving discrete constrained NLPs based

on the four evaluation criteria. Clearly, existing algorithms for solving general discrete con-

strained NLPs do not have a systematic way to handle nonlinear constraints except by

utilizing penalty formulations. Our survey reveals a common difficulty with penalty for-

mulations in choosing suitable penalties; penalties that are too small or too large are both

detrimental to solution time and quality. Hence, there is usually no guarantee on final

solution quality of these penalty-based methods. Further, there is no existing theory to

characterize discrete-space constrained local minima (CLMdn), resulting into a large dispar-

ity of different heuristics developed in the past. These observations motivate us to develop a

theory to characterize constrained local minima (CLMdn) and an associated search method

to address systematically nonlinear constraints and guide a search to locate CLMdn.

2.2 Prior Methods for Solving Continuous Constrained

NLPs

A general continuous constrained NLP problem is defined in (1.1) in which x is a vector of

continuous variables. Active research in the past three decades has produced a variety of

methods [196, 107, 58, 91, 144, 133] to solve the general constrained continuous minimization

problem defined in (1.1). Based on different problem formulations, existing methods can

be classified into three categories: penalty formulations, direct solutions, and Lagrangian

methods. Figure 2.2 classifies these methods according to their formulations.

31

Table 2.1: Summary of existing algorithms for solving discrete constrained NLPs. Applicable
domains specify whether there exists limitations or special requirements on the type of problems
that can be solved. The four criteria used for evaluation are described in the beginning of Chapter 2.

Problem Search Typical Applicable C1
C2 C3 C4

Formulations Strategies Methods Domains Solution Convergence Time

Constrained 0-1

Programming

Local Search

linearization general CLMdn none finite yes restricted no

algebraic methods general CLMdn none finite yes restricted no

cutting-plane methods general CLMdn none finite yes restricted no

Penalty

Formulations

Local Search
greedy general heuristic none bounded yes general no

hill-climbing general heuristic none bounded yes general no

Global Search

learning-based methods general heuristic none bounded no general no

multi-start general heuristic none bounded no general no

adaptive multi-start general heuristic none bounded no general no

Tabu search general heuristic none bounded no general no

GLS general heuristic none bounded yes general no

Random walk general heuristic none bounded no general no

Heuristic repair general heuristic none bounded yes general no

learning-based methods general heuristic none bounded no general no

Bayesian methods general heuristic none bounded no general no

Global Optimization

SA general optimal asymptotic infinite yes general no

GA general optimal reachability infinite yes general no

random search general optimal reachability infinite no general no

adaptive search general optimal reachability infinite no general no

CRS general optimal reachability infinite no general no

IHR general optimal reachability infinite no general no

Direct

Solutions

Global Search
repair methods restricted CLMdn none bounded yes restricted no

reject/discarding restricted CLMdn none bounded yes general no

Global Optimization
branch-and-bound restricted CGMdn none finite yes restricted no

random search restricted CGMdn reachability infinite no general no

Lagrangian Formulations Global Optimization Lagrangian Relaxation restricted CGMdn none finite yes restricted no

32

deterministic deterministic

global optimizationglobal search

Lagrangian formulations

deterministic

repair

stochastic

discarding branch&bound

deterministic

feasible direction interval methods, first order search,
Newton’s methods,

global optimization

deterministic stochastic

multi-start,

stochastic

Penalty formulations

local search

trajectory

Methods for Continuous Constrained NLPs

Direct solutions

global search

Simulated diffusion

methods
reject,

global search

deterministic

local search

barrier methods,

gradient descent,

Newton’s methods,
conjugate gradient, methods, Tabu search,

 GLS,
Random walk

 learning
 based

 interior methods,
 steepest descent

random search,
adaptive search,

CRS,
GA,
SA,
IHR,

 (SD)

 SQP

stochastic

random
search

Figure 2.2: Classification of methods for solving continuous constrained NLPs

33

2.2.1 Penalty Formulations

In this section, we review methods for solving continuous constrained NLPs based on penalty

formulations discussed in Section 2.1.2. These methods often rely on existing unconstrained

optimization algorithms for finding solutions to unconstrained formulations. Depending on

the strategies used to handle local minima, these penalty methods can further be classified

into local search, global search and global optimization.

Local Search Methods Based on Penalty Formulations. These methods attempt

to find solutions to unconstrained continuous minimization problems using only local infor-

mation. Typical methods include gradient descent, conjugate gradient methods, Newton

descent [128, 144, 158], and barrier or interior methods [58, 144, 224, 225]. Since they may

get stuck in local minima and their solution quality is heavily dependent on their start-

ing points, they are often used as components of other global-search or global-optimization

methods.

Among unconstrained local-search methods, gradient descent is both simple and repre-

sentative. Gradient descent in continuous space is analogous to greedy search in discrete

space. It was derived from Taylor’s theorem by using first-order approximation. Given

function f(x), gradient descent defines an iterative procedure:

x(n + 1) = x(n)− α∇f(x(n)), (2.12)

where α is a positive real coefficient to be determined. Basically, (2.12) performs descent

along the opposite gradient direction. A stopping criterion for (2.12) is measured by the

norm of the gradient. If the norm value is small enough, say less than 10−8, then a local

minima is assumed to be reached. Obviously, each algorithmic step in gradient descent

attempts to achieve the goal of reaching a local minimum.

34

In practice, step size α is hard to choose. A remedy is to use a dynamic step size computed

as follows:

α(n) = argminc>0f(x(n) + c∇f(x(n)). (2.13)

This technique is employed in steepest descent [128].

Barrier or interior methods [58, 144, 225] try to confine a search inside feasible regions.

Their major limitation is that they require a feasible starting point. In general, finding a

feasible point for a given constrained NLP may be as difficult as solving the problem itself.

To summarize, existing local search methods based on penalty formulations for solving

continuous constrained optimization problems can at best find a CLMcn when started with

large penalties. If the penalties are small or the search terrain is rugged, then local search

methods may not find any feasible solution. Moreover, most unconstrained local search

methods rely on gradients to provide search directions. Although gradients provide the

steepest descent direction, they also unnecessarily guide a search to a local minimum too

quickly.

Global Search Methods Based on Penalty Formulations. These methods improve

local-search methods by utilizing some heuristics to help escape from local minima, by

identifying good starting points, and by using local-search methods to find local minima.

Among all the local minima found, the best one is returned as a search result. Exam-

ples of global search methods include multi-start [168, 165, 94, 191], trace or trajectory

methods [203, 200], tabu search [77, 15], guided local search (GLS) [201], learning-based

approaches [29], PBIL [11], MIMIC [25], COMIT [12], and random walk [173, 172]. (See

Section 2.1.2 for details.) Although some of these methods were originally developed for

solving discrete problems, they can be extended to solve continuous problems after some

modifications. For example, random walk and GLS can be applied to solve continuous

35

problems when provided with a suitable trial-point generator. Assuming that the trial-point

generator generates continuous points in a floating-point representation, then the algorithmic

steps of random walk and GLS can actually search in a continuous space.

Although popular, existing unconstrained global search methods based on penalty formu-

lations have no guarantee to converge to feasible solutions (CLMcn) for constrained NLPs.

If the penalties are too small, then no feasible solution may be found. On the other hand,

penalties that are too large lead to a very rugged search space in which deep local minima

may trap these methods.

Global Optimization Methods Based on Penalty Formulations. These methods

can be classified into unconstrained algorithms with reachability and those with asymptotic

convergence. Some typical methods in the first category include random search [147, 30,

5] and GA [80, 146, 93]. Examples of methods in the second category include covering

methods [107, 55, 91, 138], simulated annealing (SA) and its variants [230, 151, 122, 232, 46,

3, 4, 80, 59, 133, 161, 142, 146, 93] discussed in Section 2.1.2. Similar to the discrete case,

if penalties were not chosen properly, then these methods may not be able to find feasible

solutions (CLMcn) to the original constrained optimization problem.

Random search includes pure random search, pure adaptive search [147], hesitant adaptive

search [30], controlled random search (CRS) and IHR [153, 2, 5]. As mentioned before, when

applied to solve constrained optimization problems based on a penalty formulation, these

techniques are usually not very efficient because their way of generating trial points does not

usually lead to constraint satisfaction.

GA can be applied to solve continuous, mixed-integer, and discrete problems by using

suitable representations and genetic operators. For example, a Gaussian mutation opera-

36

tor [8, 59] adds a random noise to the current solution point as follows:

x(n + 1) = x(n) +N(0, σ) (2.14)

where N(0, σ) stands for a random Gaussian distribution with a zero mean and a standard

deviation of σ. A possible crossover operator produces two offsprings, x′(n+1) and y′(n+1),

by a linear combination [44] of two parents x(n) and y(n) using:

x′(n+ 1) = αx(n) + (1− α)y(n) (2.15)

y′(n+ 1) = (1− α)x(n) + αy(n), (2.16)

where α is in the range (0, 1).

Obviously, using a Gaussian mutation operator and a linear-combination based crossover

operator, GA can be applied easily to solve continuous and even mixed-integer problems.

Another method worth mentioning is simulated diffusion (SD) [67, 162]. SD utilizes the

physical fact that a particle placed in a given potential and with Brownian motion is diffused

into a global minimum of the given potential profile. The diffusion process can be described

by the following differential equation:

dx = −∇f(x)dt +
√

2Tdw, (2.17)

where t is time, x is the physical location of the particle, f(x) is a potential function in which

the particle is put, dw is Gaussian random noise and T is temperature.

The first term on the right-hand side of (2.17) gives a descent direction for the particle,

whereas the next term signifies the Brownian movement. When temperature T is high,

√
2Tdw dominates dx, and the movement is carried out in a stochastic fashion. This is quite

similar to the high-temperature case of SA. After T is gradually reduced to a small value,

∇f(x) dominates dx; consequently, local descents are performed most of the time. Also,

37

the second term now serves as a force to bring the search process out of local minima. This

low-temperature scenario is also similar to that of SA.

With a proper temperature cooling schedule [67], P (x), the probability distribution of

solution x, is independent of the initial value and is peaked around the global minimum

of f(x). Thus, given sufficiently long time, SD tends to converge to a global minimum.

Compared to SA and GA, SD requires gradient information. It is, therefore, limited to

continuous problems with first-order derivatives.

Existing unconstrained continuous global optimization methods based on penalty for-

mulations for solving constrained optimization problems can converge to a CGMcn when

given sufficiently large penalties on constraints and infinite time. However, these conditions

are hard to meet in practice. The difficulty, again, lies in the choice of suitable penalties:

penalties that are too small will lead a search to a CLMcn or even infeasible points, whereas

penalties that are too large will lead a search to only a CLMcn.

2.2.2 Direct Solutions for Solving Continuous Constrained NLPs

Direct solution methods aim to solve (1.1) directly without performing any transformation

on the objective and constraint functions. Typical direct solution methods can again be

classified into local search, global search, and global optimization methods.

Local Search methods, like feasible-direction methods [114, 133], require a search to start

from a feasible point. Each algorithmic step will keep the search within feasible regions,

while trying to improve solution quality at the same time. Obviously, for problems with

highly nonlinear constraints, finding a feasible starting point may be as difficult as solving

the original constrained problem. Further, keeping a search inside a feasible region does not

work well when feasible regions are disconnected. Note that although not very practical,

38

each algorithmic step of these methods does guide a search to achieve the goal of finding

feasible solutions.

Global Search methods introduce techniques to overcome local minima. Typical global

search methods include rejecting methods, discarding methods [156, 150], repair meth-

ods [114, 143] and preserving feasibility [134, 76]. Rejecting and discarding methods have

been discussed in Section 2.1.3. Typical repair methods have some techniques to transform

or repair infeasible points into feasible ones. These techniques, however, are quite limited

and have difficulties in handling nonlinear constraints. As mentioned before, when feasible

regions are disconnected, it will be hard for these methods to move from one feasible region

to another in order to improve their solutions.

Global Optimization methods either take deterministic approaches, like interval meth-

ods, or stochastic approaches, like randomized search, to locate a CGMcn. Deterministic

methods [107, 20] are in general too expensive to apply for large problems except for linear

problems and for problems that can linearized effectively. A typical deterministic approach

divides a search space recursively into subregions, keeps promising subregions, and drops un-

promising ones; examples include branch-and-bound and interval methods [91, 138]. These

methods are usually computationally expensive and have difficulties in handling highly non-

linear constraints. When constraints are highly nonlinear, lower bounds cannot be found

accurately, and the search space cannot be reduced effectively.

On the other hand, stochastic approaches, like random search and adaptive random

search [105], probe a search space in a random fashion. (Random search has been discussed

in Section 2.1.2.) Although optimality can be achieved given sufficiently long time, the

chance of hitting a feasible point by random sampling is very small for a large constrained

39

NLP instance. Moreover, random sampling of a search space has little bearing to constraint

satisfaction. Hence, random search techniques are generally not efficient for solving contin-

uous constrained NLPs.

2.2.3 Lagrangian Formulations

Lagrangian methods generally work on equality constraints, and inequality constraints are

first transformed into equivalent equality ones before applying Lagrangian methods. For

instance, an inequality constraint can be transformed into an equality constraint by adding

a slack variable [128] or by using the MaxQ method [219, 220, 212]. A general continuous

equality-constrained minimization problem is formulated as follows:

minimize f(x) (2.18)

subject to h(x) = [h1(x), . . . , hm(x)]T = 0.

where x = (x1, x2, . . . , xn) is a vector of continuous variables. Both f(x) and h(x) are

assumed to be continuous functions that are at least first-order differentiable.

The augmented Lagrangian function in continuous space of (2.18) is defined as:

Lc(x, λ) = f(x) + λTh(x) +
1

2
||h(x)||2, (2.19)

where λ is a vector of Lagrange multipliers. Compared to the conventional Lagrangian

function in continuous space defined as Lc(x, λ) = f(x)+λTh(x), the augmented Lagrangian

function reduces the possibility of ill conditioning and is, therefore, more stable.

Comparing (2.19) to penalty formulations defined in (2.1) and (2.2), there is no apparent

difference. Indeed, one can view Lagrangian methods as a special kind of penalty methods.

The major difference that distinguishes Lagrangian methods from other penalty-based meth-

ods is that CLMcn in continuous Lagrangian space are characterized by first-order necessary

40

conditions with regularity and differentiability assumptions [128], whereas CLMcn in other

penalty-based methods are not.

Various continuous Lagrangian methods have been developed to locate CLMcn. They are

all based on the first-order necessary conditions. To state these conditions, we first introduce

the concept of regular points. A point x satisfying constraints h(x) = 0 is said to be a regular

point [128] if gradient vectors

∇h1(x), ∇h2(x), · · · , ∇hm(x) (2.20)

at point x are linearly independent.

First-order necessary conditions for continuous problems [128]. Let x be a local

extremum point of f(x) subject to constraints h(x) = 0. Further, assume that x is a regular

point. Then there exists λ ∈ Rm such that

∇xf(x) + λT∇xh(x) = 0. (2.21)

Based on the definition of Lagrangian function, the necessary conditions for x to be a con-

strained local extremum can be written as follows:

∇xLc(x, λ) = 0,

∇λLc(x, λ) = 0. (2.22)

To ensure that the equilibrium point is a local minimum, second-order sufficient conditions

are used to check that the solution is a strict relative minimum subject to constraints [128]. In

the second-order sufficient conditions, second-order derivatives are required and the Hessian

matrix of the Lagrangian function needs to satisfy certain conditions [128] in order to make

a solution to (2.22) a strict CLMcn.

41

Based on the first-order necessary conditions in continuous space, a number of search

methods have been developed for solving constrained minimization problems. These [22, 128]

include the first-order method, Newton’s method, modified Newton’s methods, quasi-Newton

methods, and sequential quadratic programming (SQP) [24, 48, 108]. A major advantage of

these methods is that solving the first-order conditions matches exactly the goal of locating a

CLMcn. Therefore, these algorithms are usually efficient for solving continuous constrained

NLPs. Next, we briefly discuss two popular methods: first-order method and sequential

quadratic programming.

The first-order method is a simple and straightforward method and is represented as an

iterative process:

xk+1 = xk − αk∇xLc(x
k, λk), (2.23)

λk+1 = λk + βkh(x
k) (2.24)

where αk and βk are step-size parameters to be determined. Intuitively, these two equations

represent two counter-acting forces to resolve constraints and find constrained local minima.

When any of the constraints is violated, its degree of violation is used in the second equation

to increase the penalty on the unsatisfied constraint and to force it into satisfaction. When

a constraint is satisfied, its associated Lagrange multiplier stops to grow. Finally, the first

equation performs descents in the objective space when all the constraints are satisfied and

stops at a local minimum in feasible space.

Sequential quadratic programming (SQP) is actually a generalization of Newton’s method

[128] for unconstrained optimization in the sense that it finds a step away from the current

search point by solving a quadratic model of the original problem. In its simplest form, an

SQP algorithm replaces f(x) in the Lagrangian function by a quadratic approximation and

42

the weighted constraint functions λh(x) by their linear approximations:

q(d) = ∇f(x)Td+
1

2
dT∇2

xxLc(x, λ)d. (2.25)

Here, step d is a solution to the following quadratic problem, assuming equality con-

straints only:

minimize q(d)

subject to hi(x) +∇hi(x)
Td = 0. (2.26)

The local convergence property of SQP is well defined when (x, λ) satisfies the second-

order sufficient conditions [128]. That is, if point (x, λ) is sufficiently close to solution (x∗, λ∗),

then the sequence generated using step size d will converge to x∗ at a second-order rate.

The SQP method described here requires the computation of second-order derivatives,

Hessian matrix more precisely, ∇2
xxL(xk, λk), at each step. However, in implementation, it is

often replaced with BFGS approximation Bk, which is updated at each iteration. A simple

update strategy defines:

sk = xk+1 − xk (2.27)

yk = ∇xLc(xk+1, λk)−∇xLc(xk, λk) (2.28)

and updates matrix Bk using the BFGS formula:

Bk+1 = Bk −
Bksks

T
kBk

sT
kBksk

+
yky

T
k

yT
k sk

. (2.29)

Although SQP methods are generally efficient, they usually require functions to be differen-

tiable and, therefore, cannot be applied to solve NLPs containing discrete variables.

In the theory of continuous Lagrange multipliers, a concept not commonly used but very

critical to this research is that of saddle points (SPcn). A saddle point (x∗, λ∗) of function

43

cn1

cn
432

satisfying the

conditions

Local minima

CLM

continuous space
first&second-order

SP

Figure 2.3: Properties of CLMcn in a general continuous constrained NLP. Note that CLMcn and
SPcn stand for continuous-space constrained local minima and continuous-space saddle points,
respectively.

Lc is defined as a point that satisfies:

Lc(x
∗, λ) ≤ Lc(x

∗, λ∗) ≤ Lc(x, λ
∗), (2.30)

for all λ in R and all x ∈ Ncn(x
∗), the continuous neighborhood of x∗ defined in (1.3).

In general, there is no efficient method to find saddle points in continuous space. More-

over, given a point in Lagrangian space, it is very difficult to decide whether a given point

(x, λ) is a saddle point unless the second-order derivative is positive or the Hessian matrix

is positive definite.

Figure 2.3 summarizes the relationships among CLMcn to a general continuous con-

strained NLP. In general, the set of all saddle points and the set of all regular points satis-

fying continuous-space first-order necessary and second-order sufficient conditions are only

subsets of the set of CLMcn. Hence, a common limitation of methods based on the first-order

conditions (including the first-order, SQP and other Newton’s methods) is that they cannot

find CLMcn that do not satisfy the first-order conditions. Moreover, such CLMcn cannot

be found by any existing method. The relationships in Figure 2.3 are demonstrated by the

following example problems whose solution falls in each subset.

The first example constrained NLP, defined in (2.31), demonstrates that a CLMcn is not

necessarily a SPcn. See [226] for a proof that x∗ = 0 is a CLMcn, but there does not exist

44

any λ to make (0, λ) a SPcn.

minimize f(x) = −x2 (2.31)

subject to h(x) = x5 = 0.

The example shows that x∗ = 0 satisfies the first- and second-order conditions but is not

a SPcn.

The second example constrained NLP, defined in (2.32), demonstrates that a CLMcn,

x∗ = 0 in this example, is not necessarily a solution to the continuous-space first-order

necessary conditions.

minimize f(x) = (x+ 1)4 (2.32)

subject to h(x) = 0

where h(x) =







x4 x < 0

0 otherwise

Finally, the example constrained NLP defined in (2.33), demonstrates that a SPcn(0, 0) for

this particular problem does not satisfy the first-order necessary and second-order sufficient

conditions:

minimize f(x) =







−x x < 0

2x otherwise
(2.33)

subject to h(x) = 0,

where h(x) is satisfied at and only at point 0.

45

However, there are also example constrained NLPs for which the three solution spaces

are equal. Consider a continuous constrained problem defined as follows:

minimize f(x) = x2 (2.34)

subject to h(x) = 0

where h(x) = 1− x. (2.35)

It can be verified easily that x = 1 is a CLMcn, a solution to first-order necessary and

second-order sufficient conditions, and that (x = 1, λ = 2) is a SPcn. Therefore, the three

solution spaces for this particular NLP are equal.

To characterize precisely the different regions in Figure 2.3, let Csp be the saddle-point

conditions (2.30), Creg be the conditions for regular points [128] and the first- and second-

order conditions, and Cclm be the conditions for constrained local minima. Obviously, points

in Region 3 in Figure 2.3 satisfy condition Creg ∧ Csp ∧ Cclm; points in Region 2 satisfy

Creg ∧ Cclm ∧ ¬Csp; points in Region 4 satisfy Csp ∧ Cclm ∧ ¬Creg; and points in Region 1

satisfy Cclm ∧ ¬Creg ∧ ¬Csp.

Table 2.2 summarizes existing methods for solving continuous constrained NLPs based

on the four evaluation criteria mentioned in the beginning of this chapter. Obviously, direct

solution methods have difficulties in addressing general nonlinear NLPs; methods based

on penalty formulations may end up finding only CLMcn or even infeasible solutions if

penalties were chosen poorly; and methods based on Lagrangian formulations can at best

locate solutions in Regions 2 and 3 of Figure 2.3.

Based on these observations, our goal in this research is to first develop a theoretical

foundation that is able to handle discrete constrained NLPs as well as continuous and mixed-

integer constrained NLPs in a unified way. Second, our proposed theory and methods should

be able to characterize all CLM in the solution space and not part of them, as exemplified in

46

Table 2.2: Summary of existing algorithms for solving continuous constrained NLPs. Applicable
domains specify whether there exists limitations or special requirements on the type of problems
that can be solved. The four criteria used for evaluation are described in the beginning of Chapter 2.

Problem Search Typical Applicable C1
C2 C3 C4

Formulations Strategies Methods Domains Solution Convergence Time

Penlaty

Formulations

Local Search

gradient descent general heuristic none bounded yes general yes

steepest gradient general heuristic none bounded yes general yes

conjugate gradient general heuristic none bounded yes general yes

Newton descent general heuristic none bounded yes general yes

barrier methods general heuristic none bounded yes general yes

interior methods general heuristic none bounded yes general yes

Global Search

multi-start general heuristic none bounded no general no

trajectory methods general heuristic none bounded yes general yes

Tabu search general heuristic none bounded no general no

GLS general heuristic none bounded yes general no

learning-based methods general heuristic none bounded no general no

Random walk general heuristic none bounded no general no

Global Optimization

SA general optimal asymptotic infinite yes general no

GA general optimal reachability infinite yes general no

random search general optimal reachability infinite no general no

adaptive search general optimal reachability infinite no general no

CRS general optimal reachability infinite no general no

IHR general optimal reachability infinite no general no

simulated diffusion general optimal asymptotic infinite yes general yes

Direct

Solutions

Local Search feasible-direction methods restricted CLMcn none finite yes restricted yes

Global Search

reject/discarding restricted CLMcn none bounded yes general no

repair methods restricted CLMcn none bounded yes restricted no

preserving feasibility restricted CLMcn none bounded yes restricted no

Global Optimization

interval methods restricted CGMcn none finite yes restricted yes

random search restricted CGMcn reachability infinite no general no

branch and bound restricted CGMcn none finite yes restricted yes

Lagrangian

Formulations

Global Search

first-order methods general CLMcn none bounded yes general yes

Newton’s methods general CLMcn none bounded yes general yes

SQP general CLMcn none bounded yes general yes

methods based on the first- and second-order conditions in continuous Lagrangian methods

(see Figure 2.3).

47

2.3 Prior Methods for Solving Mixed-Integer Constrained

NLPs

A general mixed-integer constrained NLP is formulated as follows.

minimize f(x, y) (2.36)

subject to h(x, y) = 0 x = (x1, x2, . . . , xn1)

g(x, y) ≤ 0 y = (y1, y2, . . . , yn2)

where f(x, y) is the objective function, g(x, y) = [g1(x, y), . . . , gk(x, y)]
T is a k-component

vector representing inequality constraints, h(x, y) = [h1(x, y), . . . , hm(x, y)]T is an m-compo-

nent vector representing equality constraints, x is a vector of continuous variables, and y is

a vector of discrete variables. In general, f(x, y), g(x, y) and h(x, y) are nonlinear functions

that are either continuous or discrete, convex or non-convex, and analytic or procedural

(evaluated through simulations). Therefore, the functions of (2.36) are not assumed to be

differentiable or even continuous.

In mixed-integer space, neighborhoods are actually a combination of discrete neighbor-

hoods in discrete subspace and continuous neighborhoods in continuous subspace. Con-

sequently, constrained local minima and saddle points are redefined based on such hybrid

neighborhoods.

Definition 2.1 Given point (x, y) in mixed-integer space, where x represents the continuous

subspace and y the discrete subspace, the neighborhood of (x, y) is defined to be:

Nmn(x, y) = Ncn(x) ∪ Ndn(y) (2.37)

where Ncn and Ndn are, respectively, the sets of neighboring points of x in continuous

subspace defined in (1.3) and the sets of neighboring points of y in discrete subspace defined

in Definition 1.2.

48

global optimization

deterministic stochastic

multi-start,

Tabu search,
GLS,

stochastic

CRS,
GA,
SA,

Penalty formulations

global search

learning random search,
adaptive search,based

IHR

deterministic deterministic

global optimizationglobal search

repair random

stochastic

methods
reject,

discarding branch&bound, search
 interval methods,

Direct solutions

deterministic

local search

GBD,
OA,

GCD

Lagrangian formulations

Methods for Mixed-integer Constrained NLPs

 heuristic repair,

Bayesian methods,
Random walk

 greedy search,
 hill climbing

deterministic

local search

 FATCOP

stochastic

Figure 2.4: Classification of methods for solving mixed-integer constrained NLPs

49

The definitions of mixed-integer-space saddle points and constrained local minima are

the same as those in discrete or continuous space, except that Nmn(x, y) is used instead.

As before, to avoid confusion, we denote saddle points and constrained local minima in

mixed-integer space by SPmn and CLMmn, respectively.

Existing MINLP (mixed-integer nonlinear programming) methods for solving (2.36) can

be classified into three major approaches, as shown in Figure 2.4.

2.3.1 Penalty Formulations

Penalty-based methods transform a constrained MINLP into a sum of objective and con-

straints weighted by penalties and solve it using existing unconstrained search algorithms.

(Various penalty formulations have been discussed in Section 2.2.1.) Based on a penalty

formulation, many local search, global search, and global optimization techniques can be

applied to solve MINLPs.

Local Search Methods Based on Penalty Formulations. These methods, like greedy

descent and hill climbing [128, 155], perturb a search trajectory in the joint space of discrete

and continuous variables, while trying to find improvements in the objective and decrease

constraint violations at the same time. Convergence to CLMmn may not be guaranteed if

penalties were not chosen correctly. Similar to the discrete and continuous cases, a local

search trajectory may be trapped easily by local minima in its variable space.

Global Search Methods Based on Penalty Formulations. These techniques, like

GLS [201], Tabu search [75, 77], heuristic repair methods [41], learning-based approach

[28, 29], Bayesian methods [136, 202, 137], multi-start [168, 165, 94, 191], and random

walk [173, 172], can be applied after a constrained MINLP problem has been transformed

into an unconstrained problem using penalty formulations. Detailed explanations of these

50

techniques can be found in Section 2.1. Similar to the discrete and continuous cases, the

success of these methods depends heavily on proper choices of penalties.

Global Optimization Methods Based on Penalty Formulations. These methods

include methods that can guarantee reachability, like GA [126, 231, 164, 164, 38, 31], pure

random/adaptive search [147], hesitant adaptive search [30], CRS [153, 2, 5] and IHR [232],

and methods that can ensure asymptotic convergence, like SA [234, 1, 52] and many of its

variants [230, 151, 232, 46, 3, 4]. See Section 2.1 for detailed explanations on these methods.

For example, GA can be applied by constructing a fitness function, usually based on a

weighted sum of the constraints and penalties, and by using genetic operators to minimize

the penalty function. A general formulation may use a binary representation to represent real

variables or a real-number encoding to represent variables whose precision and range are not

known beforehand. Genetic operators used include crossovers and mutations. Crossovers

take two chromosomes and create a new one based on a weighted sum. If the original

variable is discrete, then the newly created chromosomes are truncated to discrete. Non-

uniform mutations [132] may be used for manipulating floating-point numbers and for genes

that are required to be integers. As the search aims at minimizing a penalty function, the

overall function value will decrease gradually as constraint violations are suppressed in the

search. The limitations of these penalty-based methods for solving constrained problems in

mixed-integer space are similar to those in discrete and continuous spaces. See Sections 2.1.1

and 2.2 for further explanation.

2.3.2 Lagrangian Formulations

Methods exploiting the convexity of functions generally formulate a constrained MINLP in

a Lagrangian formulation before decomposing it into subproblems in such a way that after

51

fixing a subset of the variables, the resulting subproblem is convex and can be solved easily.

There are three classes of these algorithms.

a) Generalized Benders Decomposition (GBD) [56, 71, 21] is used to solve a subclass of

constrained MINLPs under some convexity assumptions. For example, it requires the contin-

uous subspace to be a nonempty and convex set and the objective and constraint functions

to be convex. Its basic idea is to generate in each iteration an upper bound on the solution

sought by solving a primal problem and a lower bound on a master problem. The primal

problem corresponds to the original optimization problem with fixed discrete variables; the

solution of which provides information on upper bounds and Lagrange multipliers associated

with the equality and inequality constraints. The master problem is derived via nonlinear

duality theory, making use of Lagrange multipliers obtained in the primal problem. Its solu-

tion provides information on lower bounds, as well as the set of fixed discrete variables to be

used in the next primal problem. As the process iterates, it can be shown that the sequence

of upper bounds are non-increasing, that the sequence of lower bounds are non-decreasing,

and that the sequences converge in finite time.

b) Outer Approximation (OA) [51, 50] is similar to GBD except that it formulates the

master problem using primal information and outer linearization. With similar restrictions

as GBD, it requires the continuous subspace to be a nonempty, compact, and convex set,

and the objective and constraint functions to be convex in the continuous subspace.

c) Generalized Cross Decomposition (GCD) [56, 97, 98, 160] iterates between two phases:

Phase 1 solving the primal and dual subproblems, and Phase 2 solving the master problem.

The solution of the primal subproblem in Phase 1 is similar to that in GBD and provides an

upper bound on the solution of the original optimization problem and Lagrange multipliers

for the dual subproblem. The dual subproblem provides a lower bound on the solution of the

original problem and supplies solutions to the discrete variables of the primal subproblem.

52

After solving the primal and dual subproblems, a primal convergence test is applied on the

discrete variables, while a dual convergence test is applied on the Lagrange multipliers. If

any convergence test fails, then Phase 2 is entered in which the master problem is solved

using cuts generated by the primal and dual subproblems. Similar to OA and GBD, GCD

requires the objective and constraint functions to be proper convex functions.

In short, methods like GBD, OA, and GCD work well when a constrained MINLP can

be decomposed into a sequence of continuous convex problems that can be solved easily.

They have difficulties when the continuous subproblems are non-convex and cannot be de-

composed.

2.3.3 Direct Solutions for MINLPs

Typical direct solution methods for solving MINLPs include: a) reject/discarding [109, 8, 156,

150] or repair methods [114, 143] that try to avoid infeasible points or repair infeasible points

into feasible ones and that can at best find CLMmn; b) random search techniques, like pure

random/adaptive search [147], hesitant adaptive search [30], CRS [153, 2, 5] and IHR [232],

that try to satisfy all the constraints and improve the objective by random sampling; and

c) branch-and-bound based methods, like FATCOP [40, 39], that utilize linear programming

relaxation, depth-first-search, and cutting planes to handle nonlinear constraints in problems

that can be modeled effectively by linear relationships [40]. All these methods have difficulties

in handling highly nonlinear constraints and in finding feasible solutions.

Table 2.3 summarizes the properties of existing methods for solving mixed-integer con-

strained NLPs based on the four evaluation criteria defined in the beginning of this chapter.

53

Table 2.3: Summary of existing algorithms for solving mixed-integer constrained NLPs. Ap-
plicable domains specify whether there exists limitations or special requirements on the type of
problems that can be solved. The four criteria used for evaluation are described in the beginning
of Chapter 2.

Problem Search Typical Applicable C1
C2 C3 C4

Formulations Strategies Methods Domains Solution Convergence Time

Penlaty

Formulations

Local Search
greedy search general heuristic none bounded yes general no

hill-climbing general heuristic none bounded yes general no

Global Search

GLS general heuristic none bounded yes general no

Tabu search general heuristic none bounded no general no

heuristic repair general heuristic none bounded yes general no

learning-based methods general heuristic none bounded no general no

Bayesian methods general heuristic none bounded no general no

multi-start general heuristic none bounded no general no

Random walk general heuristic none bounded no general no

Global Optimization

GA general optimal reachability infinite yes general no

random search general optimal reachability infinite no general no

adaptive search general optimal reachability infinite no general no

CRS general optimal reachability infinite no general no

IHR general optimal reachability infinite no general no

SA general optimal asymptotic infinite yes general no

Direct

Solutions

Global Search
repair methods restricted CLMmn none bounded yes restricted no

reject/discarding restricted CLMmn none bounded yes general no

Global Optimization

random search restricted CGMmn reachability infinite no general no

branch and bound restricted CGMmn none finite yes restricted no

FATCOP restricted CGMmn none finite yes restricted no

Lagrangian

Formulations

Local Search

GBD restricted CLMmn none bounded yes restricted yes

OA restricted CLMmn none bounded yes restricted yes

GCD restricted CLMmn none bounded yes restricted yes

54

2.4 Summary

We have surveyed in this chapter existing work for solving discrete, continuous, mixed-integer

constrained NLPs. Major existing approaches to these constrained NLPs fall into one of the

following three classes.

The first class of methods try to solve constrained NLPs directly. Typical methods in-

clude enumeration, branch-and-bound, linearization, repair/discarding, keeping feasibility,

and randomized search. In general, these methods cannot cope with highly nonlinear con-

straint functions and are only applicable to NLPs with simple nonlinear functions.

The second class of methods are based on penalty formulations. By combining both

the objective and constraint functions through penalty coefficients, many unconstrained

optimization techniques can be applied. Typical methods include: greedy search, gradient

descent, tabu search, trajectory methods, genetic algorithm, simulated annealing, learning

based methods, guided local search, and random/adaptive search. The common difficulty

of these methods lies in their dependence on suitably chosen penalties. It is undesirable to

use penalties that are either too large or too small. To address this issue, various dynamic

penalty methods, heuristic repair, and weighting schemes have been proposed, although

many of them are developed in an ad hoc fashion.

The third class of methods are based on Lagrangian formulations that can be viewed

as a special kind of penalty formulations founded upon some first-order necessary condi-

tions. Currently, these methods are only good for solving continuous constrained NLPs

whose objective and constraint functions are assumed to be continuous and differentiable

and whose solution points must be regular points [128]. (Lagrangian relaxation is basically

developed for solving linear problems.) Moreover, as pointed out in Section 2.2.3, the set

55

of CLMcn satisfying the continuous first-order necessary conditions is only a subset of all

CLMcn for general continuous constrained NLPs.

The previous work surveyed leads us to conclude that, given a general constrained NLP

defined in discrete, continuous or mixed-integer space and assuming no requirement of con-

tinuity, differentiability and convexity on its objective and constraint functions, there is: a)

no simple necessary and sufficient conditions to characterize its solution points that satisfy

all the constraints; and b) no unified efficient systematic procedure to solve such a con-

strained NLP. As a result, our goal in this research is to develop a complete theory and

efficient methods that can address in a unified fashion NLPs with: a) nonlinear constraints;

b) discrete, continuous or mixed-integer variable space; and c) functions without continuity,

differentiability and convexity requirements.

Starting from the Chapter 3, we present the theory of discrete constrained optimization

using Lagrange multipliers. The theory was originally developed for solving discrete con-

strained NLPs. Using a floating-point representation of continuous variables, we are able to

extend the theory to solve continuous and mixed-integer NLPs.

56

Chapter 3

Nonlinear Constrained Optimization

Using Lagrange Multipliers

In this chapter, we present our proposed theory of discrete constrained optimization using

Lagrange multipliers [217, 226, 179] for solving general constrained optimization problems

whose (objective and constraint) functions may not be differentiable.

The theory was first developed for solving SAT problems [179, 207] but was incomplete

in the sense that it only provided a sufficient, but not necessary, condition for a point

to be a discrete-space constrained local minimum [217, 226]. In this chapter, we propose

a new generalized augmented Lagrangian formulation with a transform function H that

facilitates the proof of the necessary and sufficient conditions for CLMdn in discrete space.

The proposed first-order conditions prove a one-to-one correspondence among a discrete-

space constrained local minimum, a discrete-space saddle point, and a point satisfying the

first-order conditions. Therefore, discrete-space constrained local minima can be located by

solving the discrete-space first-order conditions or by looking for discrete-space saddle points.

An efficient procedure (DLM) to look for saddle points and its implementation details are

presented in Chapter 4.

57

Although the proposed theory was originally developed for solving discrete problems,

it can be generalized to solving constrained NLPs with continuous variables after coding

continuous variables by a floating-point representation. Our proposed theory, therefore, can

be applied to solve continuous and mixed-integer constrained NLPs.

In Section 3.1, we study the errors of using a floating-point representation to code con-

tinuous variables in continuous and mixed-integer constrained NLPs. We then develop the

theory for NLPs with equality constraints and extend the theory in Section 3.4 to NLPs with

inequality constraints. Section 3.5 briefly reviews constrained simulated annealing (CSA),

an algorithm developed by Wah and Wang [213, 211] based on the theoretical results in this

chapter.

3.1 Floating-Point Representations of Continuous Vari-

ables in Constrained NLPs

Our work is motivated by the facts that floating-point representations are accepted as the

de facto standard on digital computers to represent real numbers, and that algorithms for

solving constrained NLPs, whether using closed-form formulae or not, use floating-point

representations to represent real numbers when implemented on digital computers. When

Porg, the original problem with continuous variables, is redefined to be Psub, a new problem

over a finite discrete variable space (as specified by a floating-point representation), the

solutions to Porg are generally different from those to Psub.

Intuitively, we like to bound the difference between the optimal solution to Porg and

that to Psub. There are two approaches to derive such a bound. First, a given constrained

NLP can be analyzed to derive a tight bound between its original and discretized solutions.

Besides being problem-specific, this approach only works in some simple cases because there

58

is no systematic approach today for finding tight error bounds for general constrained NLPs.

Second, a loose bound can be derived based on some problem-dependent and problem-

independent attributes that can be measured easily. Although not as tight as problem-

specific bounds, such loose bounds are useful to assess the quality of solutions in Psub. In

this research, we adopt the second approach.

The problem-specific attribute that we use is the minimum Lipschitz constant based on

the original Lipschitz constant [149]. Given a general n-dimensional continuous function

f(x) defined over a bounded variable space:

[Bl
1, B

u
1]× · · · × [Bl

n, B
u
n], (3.1)

we define the minimum Lipschitz constant `min of f(x) as the minimum of all possible

Lipschitz constants [149] ` that satisfy:

|f(x)− f(y)| ≤ ` · ||x− y|| ∀ x, y ∈ [Bl
1, B

u
1]× · · · × [Bl

n, B
u
n], (3.2)

where || · || is the norm operator. Note that, if f(x) has first-order derivatives everywhere

in its variable space, then `min is actually the absolute value of the maximum gradient.

However, (3.2) is general enough to apply to cases in which f(x) is not continuous or does

not have first-order derivatives everywhere.

Next, we characterize some properties of floating-point representations and analyze for-

mally the effect on solution qualities of using floating-point numbers to code continuous

variables in constrained NLPs.

3.1.1 Characteristics of Floating-Point Representations

A typical floating-point number y on a digital computer consists of the mantissa d and the

exponent e, each represented by a finite number of bits [95]:

y = ±βe × .d1d2 . . . dt, (3.3)

59

where β is the base (also called the radix), t is the precision, and e is the exponent in a range

determined by [emin, emax]. Each digit, di, in (3.3) satisfies

0 ≤ di ≤ β − 1. (3.4)

Among the digits, d1 is called the most significant bit and dt, the least significant bit.

For instance, the IEEE double-precision standard has β = 2, t = 53, emin = −1021, and

emax = 1024. Clearly, (3.3) defines a discrete, finite set of numbers, whereas R, the set of

real numbers, is an infinite uncountable set. Hence, the set of all y is a discrete, finite, proper

subset of R.

To illustrate that exact constrained solutions may not be representable by floating-point

numbers, consider a simple continuous constrained NLP:

minimize f(x) = x

subject to h(x) = 3x− 2−1074 = 0. (3.5)

Obviously, the best solution with the minimum constraint violation is x = 1
3
· 2−1074 that

cannot be represented in the IEEE double-precision format.

Another property unique in floating-point representations is that the level of discretiza-

tion is not uniform across the range of possible numbers [95]. For example, the closest

positive point to x = 0 in an IEEE double-precision representation is x = 2−1074 (equal to

the multiplication of 2−53, the contribution from the least significant bit, and 2−1021 that is

calculated from βemin), whereas the closest point to x = (21000 + 2948) is x = 21000. 1 The

distance between the two closest points in floating-point space is 2−1074 in the first case and

2948 in the second. Figure 3.1 illustrates a similar scenario in a two dimensional space, where

1Simply represent 21000 using the format in (3.3) and then perturb the last digit of the mantissa will

verify the result.

60

grid points represent floating point numbers. It is obvious that the spacing between two

adjacent floating point numbers increases along both the x and y dimensions.

Next, we study the effect of floating-point representations on solution qualities.

3.1.2 Worst-Case Error Bounds on CGM

Consider a general (continuous or mixed-integer) constrained NLP whose continuous vari-

ables are represented in floating-point types (single or double precision, for example). Ob-

viously, such a representation is independent of any particular numerical algorithm used to

solve the problem. Let c∗ be the constrained optimum solution to Porg, the original NLP,

and d∗ be the constrained optimum solution to Psub, the NLP with its continuous variables

represented by floating-point numbers. Note that d∗ is a discrete solution and c∗ is usually

not, and that c∗ can be further decomposed into a vector form c∗ = (c∗1, c
∗
2, . . . , c

∗
n). It is

obvious that c∗i must reside inside an interval determined by two adjacent floating-point

numbers, Bl
j and Bu

j , j = 1, . . . , n. Denote sgrid,j to be the interval size calculated using

Bu
j − Bl

j. Let γ∗ be the hypercube containing c∗, where

γ∗ = [Bl
1, B

u
1]× · · · × [Bl

n, B
u
n]. (3.6)

Denote the minimum Lipschitz constants of the objective and constraint functions to be,

respectively, `min
f and `min

hi
, i = 1, . . . , m, computed from continuous points inside γ∗. The

following theorem proves the relationship between c∗ in Porg and d∗ in Psub found by any

numerical algorithm.

Theorem 3.1 Worst-case error on objective function due to floating-point representation of

continuous variables. Assume the following for Porg and Psub.

61

(0,0)

y

x

Figure 3.1: The non-uniform spacing between consecutive floating point numbers.

1. `min
f , and `min

hi
, i = 1, . . . , m, are finite. Intuitively, this condition limits the range of

fluctuations in objective and constraint-function values in the variable space bounded

by γ∗.

2. Constraint hi(x), i = 1, . . . , m, is considered to be satisfied if |hi(x)| ≤ Φ, where Φ is

a pre-specified maximum violation tolerance. This assumption is reasonable because

it may not be possible to satisfy equality constraints exactly when there are precision

errors in floating-point representations.

3. The interval sizes for all dimensions satisfy

G =
1

2

√

√

√

√

n
∑

j=1

s2
grid,j ≤

Φ

maxm
i=1`

min
hi

. (3.7)

Then the error in objective f due to a floating-point representation of d∗ is:

f(d∗)− f(c∗) ≤ `min
f ·G. (3.8)

62

G

Bl
2

d

c∗

||d− c∗|| ≤ G

Bu
1

Bl
1

Bu
2

Figure 3.2: Illustration of Theorem 3.1.

Proof. For any infeasible discrete point x, from the second condition, we have |h(x)| > Φ.

Also, from (3.7), we conclude that

∀x′ such that |x′ − x| ≤ G, h(x′) 6= 0, (3.9)

holds true. (3.9) states the fact that for any continuous point x′ close enough to a discrete

infeasible point, x′ cannot be the true CGMcn because it cannot even be feasible.

Therefore, for any discrete point, d, that has a distance less than or equal to G to the

true CGMcn c
∗, d is a feasible solution to Psub (|hi(d)| ≤ Φ), and f(d) satisfies:

|f(d)− f(c∗)| ≤ `min
f · ||d− c∗||. (3.10)

Such a discrete point, d, is guaranteed to exist based on the special definition of G.

Thus, it holds that

|f(d)− f(c∗)| ≤ `min
f ·G. (3.11)

Consequently,

f(d) ≤ f(c∗) + `min
f ·G (3.12)

Since f(d∗) ≤ f(d), we have therefore verified that:

f(d∗)− f(c∗) ≤ `min
f ·G (3.13)

63

Figure 3.2 illustrates the above proof in a two-dimensional space. In Figure 3.2, G is half of

the diagonal distance of the rectangle bounded by [B l
1, B

u
1] × [Bl

2, B
u
2], and d is the nearest

discrete point to CGMcn c
∗.

It follows from the proof that d is feasible and f(d) ≤ f(c∗) + `min
f ·G.

Note that Theorem 3.1 only gives an upper bound on f(d∗)−f(c∗), not on |f(d∗)−f(c∗)|.

This is true because the constraints for Psub are relaxed and Psub can have better objectives

than Porg.

Although the bound in (3.8) is general and applies to all continuous and mixed-integer

constrained NLPs and all search algorithms, its quality is problem dependent. In the follow-

ing, we show three examples to illustrate this fact.

The first example shows that the bound is tight in some cases. Consider a one-dimensional

convex, continuous, finite function f(x) satisfying:

`min
f = max(`min

h1
, `min

h2
, . . . , `min

hm
).

Let c∗ be located in the center of two adjacent discrete grid points, and

−f ′(x1) = f ′(x2) = `min
f ∀x1 < c∗ and ∀x2 > c∗.

Hence,

f(d∗)− f(c∗) = `min
f · ||d∗ − c∗|| = `min

f ·G. (3.14)

The last equality is true because f(x) is convex, and the two points d∗ and c∗ satisfy ||d∗ −

c∗|| = G.

The second example shows that the bound is small in some cases. Consider the simple

program in (3.5). Obviously, the CGMcn is at c∗ = 1
3
·2−1074 and f(c∗) = c∗. Using a double-

precision representation, c∗ is inside the interval [0, 2−1074]. Within this interval, `min
f = 1,

64

`min
h = 3, and G = 1

2
· 2−1074 = 2−1075. Let Φ be 3

2
· 2−1074. One can easily verify that the

three conditions in Theorem 3.1 hold true. Therefore, according to Theorem 3.1,

f(d∗)− f(c∗) ≤ `min
f ·G = 1 · 2−1075 = 2−1075. (3.15)

The bound is obviously correct because f(d∗) = f(0) = 0.

The third example shows that the bound is loose in some other cases. Consider the

following constrained program with a large c∗.

minimize f(x) = x

subject to h(x) = x− (21000 + 2947) = 0. (3.16)

It is clear that f(c∗) = c∗ = (21000 + 2947), and that c∗ is inside [21000, (21000 + 2948)]. Note

that (21000 +2948) is the minimum floating-point number larger than 21000, and (21000 +2947)

is not representable by a floating-point number. Inside the interval [21000, (21000 + 2948)],

`min
f = `min

h = 1, and G = 1
2
· 2948 = 2947. In order to have a numerical solution based on

a double-precision representation of x, we have to set Φ ≥ 2947. The three conditions in

Theorem 3.1 can be verified to be true for Φ = 2947. Hence,

f(d∗)− f(c∗) ≤ `min
f ·G = 1 · 2947 = 2947. (3.17)

The results in this section reveal that solving continuous or mixed-integer constrained

NLPs Porg by digital computers is equivalent to solving discrete constrained NLP Psub

mapped on a finite, discrete space represented by floating-point numbers. The precision

of such a representation is adequate in most cases, although in degenerate cases in which the

variable range is exceedingly large, the precision will be poor due to the large G. (A possible

remedy is to use scaling on the variable range.) Given a discrete representation, we develop

in the rest of this chapter the theory and methods to solve discrete constrained NLPs.

65

3.2 General Augmented Lagrangian Formulation of Dis-

crete Constrained NLPs

A general discrete constrained NLP with equality constraints defined on discrete variable

space X is formulated as follows:

minimize f(x) x = (x1, . . . , xn) is a vector (3.18)

subject to h(x) = 0 of discrete variables,

where f(x) is the objective function and h(x) = [h1(x), . . . , hm(x)]T is a set of m equality

constraints. As stated before, our formulation has no requirements on convexity, differen-

tiability, or continuity of the objective and constraint functions. Further, the objective and

constraint functions in (3.18) are not necessarily required to have closed-forms and can even

be evaluated procedurally.

Next we define a new augmented Lagrangian function based on a weighted sum of the

objective function f(x) and the constraint functions h(x). A new transformation function

H(·) is introduced in order to facilitate the proof of our proposed theory. Note that the

Lagrangian function Ld(x, λ) defined next is independent of whether the neighborhood is

discrete or not. Moreover, its form is not unique and can take other forms without affecting

the validity of our theory.

Definition 3.1 A new generalized augmented Lagrangian function of (3.18) is defined as:

Ld(x, λ) = f(x) + λTH (h(x)) +
1

2
||h(x)||2, (3.19)

66

where H is a non-negative (or non-positive) continuous transformation function satisfying

H(y) = 0 if and only if y = 0, and

||h(x)||2 =
m
∑

i=1

h2
i (x). (3.20)

The definition of augmented Lagrangian function follows directly from the continuous version

except the transformation function that is essential in proving our theory. We cannot use

Ld to derive first-order necessary conditions in discrete space similar to those in continuous

space [128] because Ld is a non-differentiable discrete function. Without differentiability, the

results in continuous space cannot be extended to those in discrete space.

An understanding of gradients in continuous space shows that they define directions in a

small neighborhood in which function values increase. To this end, we use a concept similar

to that in traditional discrete-space search and define a descent direction in discrete space

as follows.

A direction of maximum potential drop (DMPD) defined on discrete neighborhoods of

Ld(x, λ) at point x for fixed λ is a vector2 that points from x to x′ ∈ Ndn(x) with the

minimum Ld:

∆xLd(x, λ) = ~νx = y 	 x = (y1 − x1, . . . , yn − xn) (3.21)

where y ∈ Ndn(x) ∪ {x} and Ld(y, λ) = min
x′∈Ndn(x)∪{x}

Ld(x
′, λ).

Here, 	 is the vector-subtraction operator for moving from x to a point in Ndn(x) ∪ {x}.

Intuitively, vector ~νx points from x to y, the point with the minimum Ld among all neigh-

boring points in Ndn(x), including x itself. That is, if x itself has the minimum Ld, then

~νx = ~0. As an illustration, the DMPD of A in Figure 3.3 points to C, the neighbor of A with

the minimum Ld.
2To simplify our symbols, we represent points in the x space without the explicit vector notation.

67

~x1

Ndn(A) = {B, C, D, E}

~x3

~x4

B (Ld = 10)

C (Ld = 7)

E (Ld = 8)

D (Ld = 12)

A (Ld = 10)

~x2

Figure 3.3: DMPD(A) = C

Based on this definition, it is easy to show that DMPDs cannot be added/subtracted

[226]. Hence, we cannot use DMPDs in a similar proof [128] of first-order conditions in

continuous space in order to prove the corresponding conditions in discrete space.

Note that in finite calculus [81], a difference operator ∆ is defined to be:

∆f(x) = f(x+ δ)− f(x) (3.22)

where x+δ is the closest grid point in discrete space to x and δ > 0. This difference operator

cannot be used to define first-order conditions similar to those in continuous space for the

following reasons. First, it does not necessarily define a direction pointing to a grid point

in discrete space because δ is the difference, which can be a real number, between function

values of two discrete points. Second, it does not define a descent direction because it is

associated with only two neighboring points x + δ and x, while ignoring all other points in

Ndn(x). Consequently, it cannot be used to guide a search in discrete space. Finally, there

is no chain rule [128] based the definition in (3.22), which is critical to the proof of the

first-order conditions in continuous space [128].

A discrete-space saddle point (SPdn) [179, 217, 226] (x∗, λ∗) is defined in the same way

as in continuous space [128] with the following property:

Ld(x
∗, λ) ≤ Ld(x

∗, λ∗) ≤ Ld(x, λ
∗), for all x ∈ Ndn(x∗) and all λ ∈ R. (3.23)

68

The first inequality only holds if all constraints are satisfied and must be true for all λ.

Further, (x∗, λ′) is a SPdn if λ′ ≥ λ∗, where λ′ ≥ λ∗ means that every element of λ′ is no less

than the corresponding element of λ∗. Last, for a reason similar to that of CLMdn, whether

a point is a SPdn depends on the choice of Ndn(x). That is, x may be a SPdn for Ndn(x) but

not for N ′
dn(x).

3.3 First-Order Necessary and Sufficient Conditions

for CLMdn

The concept of saddle points is very important to discrete problems because, starting from

them, we can derive first-order necessary and sufficient conditions for CLMdn that lead to

efficient search procedures. These conditions are stronger than their continuous counterparts

because they are necessary and sufficient (rather than necessary alone). Moreover, they are

derived in an entirely different way using the concept of discrete-space saddle points rather

than that of regular points [128].

Theorem 3.2 First-order necessary and sufficient conditions for CLMdn. If H in (3.19)

is a continuous function satisfying H(x) = 0 if and only if x = 0 and is non-negative (or

non-positive), then a point in the search space of (3.18) is a CLMdn if and only if

• it satisfies the discrete-space saddle-point condition (3.23) for any λ ≥ λ∗, where

λ′ ≥ λ∗ means that each element of λ′ is not less than the corresponding element of

λ∗; or

• it satisfies the following discrete-space first-order conditions:

∆xLd(x, λ) = 0, (3.24)

and h(x) = 0, (3.25)

69

where ∆x is the DMPD operator defined on discrete neighborhoods.

Proof. The proof is done in three parts. In the first part, we prove that the saddle-point

condition is necessary and sufficient for (3.24) and (3.25).

“⇒” part: Given a SPdn (x∗, λ∗), we want to prove it to be a solution to (3.24) and

(3.25). Eq. (3.24) is true because Ld cannot be improved among Ndn(x∗) from the definition

of saddle points. Hence, ∆xLd(x
∗, λ∗) = 0 holds true, according to the definition of DMPD.

Eq. (3.25) is true because h(x) = 0 must be satisfied at any solution point.

“⇐” part: Given a solution (x∗, λ∗) to (3.24) and (3.25), we like to prove it to be a SPdn.

The first condition Ld(x
∗, λ∗) ≤ Ld(x, λ

∗) holds for all x ∈ Ndn(x∗) because ∆xLd(x
∗, λ∗) = 0.

Hence, no improvement of Ld can be found in the neighborhood of x∗. The second condition

Ld(x
∗, λ) ≤ Ld(x

∗, λ∗) is true for all λ because h(x∗) = 0 according to (3.25). Thus, (x∗, λ∗)

is a SPdn.

In the second part of the proof, we prove that if H(x) is a continuous function satisfying

H(x) = 0⇔ x = 0 and is non-negative (or non-positive), then for any CLMdn x
∗, there exists

a finite λ∗ to make (x∗, λ∗) a SPdn. We only prove the case in which H(x) is non-negative,

and the case in which H(x) is non-positive can be proved similarly.

To prove this part, we construct λ∗ for every CLMdn x
∗ in order to make (x∗, λ∗) a SPdn.

This λ∗ must be bounded and be found in finite time in order for the procedure to be useful.

a): Constructing λ∗. Given x∗, consider x ∈ Ndn(x∗). Let h(x) = (h1(x), . . . , hm(x)) be

an m-element vector, and the initial λ∗ = (λ∗1, . . . , λ
∗
m) = (0, . . . , 0). For every x such that

H(h(x)) > 0, there is at least one constraint that is not satisfied, say H(hi(x)) > 0. For this

constraint, we set:

λ∗i → max

(

λ∗i ,
f(x∗)− f(x)

H(hi(x))

)

. (3.26)

70

The update defined in (3.26) is repeated for every unsatisfied constraint of x and every

x ∈ Ndn(x∗) until no further update is possible. Since Ndn(x∗) has a finite number of

elements in discrete space, (3.26) will terminate in finite time and result in finite λ∗ values.

b) Proving that (x∗, λ∗) is a SPdn. To prove that (x∗, λ∗) is a SPdn, we need to prove

that:

Ld(x
∗, λ) ≤ Ld(x

∗, λ∗) ≤ Ld(x, λ
∗) ∀x ∈ Ndn(x∗). (3.27)

The first inequality is trivial because

Ld(x
∗, λ) = f(x∗) = Ld(x

∗, λ∗). (3.28)

In the second inequality, for all x ∈ Ndn(x∗) such that h(x) = 0, it is clear that

Ld(x
∗, λ∗) = f(x∗) ≤ f(x) = Ld(x, λ

∗) (3.29)

holds since x∗ is a CLMdn. For all x ∈ Ndn(x∗) such that h(x) 6= 0, there must be at least one

constraint that is not satisfied, say H(hi(x)) > 0. Moreover, from the construction method,

we know that

λ∗i ≥
f(x∗)− f(x)

H(hi(x))
. (3.30)

Therefore,

Ld(x
∗, λ∗) = f(x∗) ≤ f(x) + λ∗

iH(hi(x)) (3.31)

holds. Further, since
∑m

j=1,j 6=i λ
∗
jH(hj(x)) is non-negative (assuming all constraints are trans-

formed by H into non-negative functions), it is clear that

Ld(x
∗, λ∗) = f(x∗) ≤ f(x) +

m
∑

j=1

λ∗jH(hj(x))

≤ f(x) +

m
∑

j=1

λ∗jH(hj(x)) +

m
∑

j=1

1

2
H2(hj(x)) = Ld(x, λ

∗). (3.32)

71

Hence, (x∗, λ∗) is a SPdn.

In the last part, we prove that (x∗, λ′) is a SPdn for any λ′ ≥ λ∗. The proof is a

straightforward extension of the second part and is not shown here.

The theorem follows after combining the three parts of the proof.

We like to point out a few key features of the theorem.

The first condition in Theorem 3.2 states that finding any λ ≥ λ∗ suffices for finding a

SPdn. This is important in practice because a search procedure may not be able to find the

exact λ∗ but some λ ≥ λ∗.

The theorem also requires a transformation H that is non-negative or non-positive, but

not both. Examples of such transformation are the absolute-value function and the square

function. The use of such transformations is not allowed in the traditional theory of La-

grange multipliers that works in continuous space because the transformed constraint func-

tion H(h(x)) is not differentiable at h(x) = 0. This is not an issue in the Lagrange-multiplier

theory for discrete problems because it does not rely on derivatives to find descent directions.

Although not necessary, transformation H is sufficient to ensure that a CLMdn is a

SPdn based on the Lagrangian function with transformed constraints. To illustrate the

point, we show in the following example that CLMdn x
∗ may not be a SPdn when h(x) can

have both positive and negative values. In this case, it is not always possible to find λ∗ to

make (x∗, λ∗) a SPdn even when x∗ is a CLMdn in discrete space.

Example 3.1 Consider a two-dimensional discrete equality-constrained problem with ob-

jective f(x) and constraint h(x) = 0, where

f(0, 0) = 0, f(0, 1) = 1, f(0,−1) = 0, f(1, 0) = 0, f(−1, 0) = −1,

h(0, 0) = 0, h(0, 1) = 0, h(0,−1) = 1
2
, h(1, 0) = 0, h(−1, 0) = − 1

2
.

72

== DNDN

(3.24) & (3.25)
(3.23)

first-order
conditions

satisfying the
discrete-space

satisfying

Solutions

CLM SP

Figure 3.4: Relationships among solution sets of discrete constrained NLPs defined over dis-
crete neighborhoods. CLMdn and SPdn stand for CLM and saddle points defined over discrete
neighborhoods, respectively.

We like to show that (0, 0) is a CLMdn but not a SPdn.

Obviously, (x∗, y∗) = (0, 0) is a CLMdn based on the values of its objective and constraint

functions and those of its neighboring points. Further, from the definition of Lagrangian

function, we know that Ld((0, 0), λ) = 0 holds true for any λ because h(0, 0) = f(0, 0) = 0.

To draw a contradiction, assume that (0, 0) is a SPdn. Hence, there exists λ∗ such that

Ld((0, 0), λ∗) ≤ Ld((−1, 0), λ∗), (3.33)

and Ld((0, 0), λ∗) ≤ Ld((0,−1), λ∗). (3.34)

After substitution, we get the following equations:

0 ≤ f(−1, 0) + λ∗ · h(−1, 0) +
1

2
h2(−1, 0) = −1− λ∗ · 1

2
+

1

8
, (3.35)

0 ≤ f(0,−1) + λ∗ · h(0,−1) +
1

2
h2(0,−1) = 0 + λ∗ · 1

2
+

1

8
.

Adding the above two inequality equations yields a contradiction that 0 ≤ − 3
4
.

Figure 3.4 depicts the results in Theorem 3.2. Comparing Figures 3.4 and 2.3 that sum-

marizes the relationships among solution sets based on the traditional theory of Lagrange

multipliers defined over continuous neighborhoods, we find the following three notable dif-

ferences.

73

a) The traditional theory of Lagrange multipliers is defined over continuous neighbor-

hoods (1.3) and requires the differentiability of the objective and constraint functions and

CLMcn to be regular points (points with linearly independent derivatives along all dimen-

sions) [128]. The theory does not apply in discrete and (discretized) mixed-integer problems

defined over discrete neighborhoods and whose functions may not be differentiable.

b) The set of CLMcn satisfying the first-order and second-order sufficient conditions is

only a subset of all CLMcn (Figure 2.3). CLMcn whose derivatives do not exist or that

are not regular points cannot be found by existing algorithms in continuous space. Hence,

global optimization of points that satisfy the first-order necessary and second-order sufficient

conditions does not always lead to a CGMcn of the original problem. In contrast, the

theory of discrete constrained optimization using Lagrange multipliers shows a one-to-one

correspondence between SPdn and CLMdn. Hence, in discrete space, a global-optimization

strategy looking for saddle points (SPdn) with the minimum objective value will result in a

constrained global minimum (CGMdn). This property is utilized in the constrained simulated

annealing algorithm [213] described in Section 3.5.

c) Theorem 3.2 reduces the hard problem of finding CLMdn to the easier problem of

finding discrete-space saddle points (SPdn) or points satisfying (3.24) and (3.25). These

conditions are much easier to implement in practice than the search of points that explicitly

satisfy multiple nonlinear constraints simultaneously. In Chapter 4, we describe a first-order

search method that looks for discrete-space saddle points.

3.4 Handling Inequality Constraints

The results discussed so far apply only to discrete optimization problems with equality

constraints. We handle (3.18) with inequality constraints by transforming them into equality

74

1. procedure CSA
2. set starting point x = (x, λ);
3. set starting temperature T = T 0 and cooling rate 0 < α < 1;
4. set NT (number of trials per temperature);
5. while stopping condition is not satisfied do
6. for k ← 1 to NT do
7. generate a trial point x′ from Ndn(x) using G(x,x′);
8. accept x′ with probability AT (x,x′)
9. end for
10. reduce temperature by T ←− α× T ;
11. end while
12. end procedure

Figure 3.5: CSA: constrained simulated annealing procedure.

constraints using a maximum function.

gj(x) ≤ 0⇐⇒ max(gj(x), 0) = 0. (3.36)

Obviously, the new equality constraint is satisfied if and only if gj(x) ≤ 0. Since all inequality

constraints can be transformed into equality constraints in a similar way, we do not explicitly

represent inequality constraints in the rest of this thesis.

3.5 CSA for General Constrained NLPs

In this section, we describe constrained simulated annealing (CSA) [213, 211, 218], an ap-

plication of Theorem 3.2 to look for CGMdn with asymptotic convergence. CSA looks for

discrete-space saddle points by performing both probabilistic descents in the original variable

space and probabilistic ascents in the Lagrange-multiplier space in order to satisfy all the

constraints in (3.18).

75

3.5.1 CSA Procedure

Figure 3.5 shows the basic procedure of CSA. A detailed discussion of each line in Figure 3.5

can be found in [213, 211]. The fundamental idea is explained as follows. The annealing

process starts from an initial temperature T 0 and a randomly generated starting point. T 0

is decided empirically by sampling a certain number of points in the search space: it is large

if the samples differ a lot in their function values and constraint violations; otherwise, T 0 is

set to be a smaller value.

The number of trials at each temperature, NT , is related only to the number of constraint

functions and the number of dimensions of the original problem. In [213, 211] NT was set to

be ζ(20n+m), where ζ = 10(n+m), n is the number of variables, and m is the number of

equality constraints.

A trial point x′ in the neighborhood of the current point, x, is generated using a contin-

uous stochastic distribution, such as Cauchy or Gaussian. Trial points generated by these

continuous distributions can be used directly if the associated variable in the original NLP is

continuous. Otherwise, the trial points generated are rounded to the closest discrete points.

Ncsa(x), the neighborhood of a point in the joint space of the original variables and

Lagrange multipliers, is defined as follows:

Ncsa(x) = {(x′, λ) ∈ S where x′ ∈ Ndn(x)} ∪ {(x, λ′) ∈ S where λ′ ∈ Ncn(λ)} (3.37)

Ncn(λ) = {µ ∈ Λ | µ < λ, and µi = λi if hi(x) = 0}
⋃

{µ ∈ Λ | µ > λ, and µi = λi if hi(x) = 0}, (3.38)

where λ > µ means that every element of λ is larger than or equal to the corresponding

element of µ, and that at least one element of λ is strictly larger than the corresponding

element of µ. Hence, point x = (x, λ) has two sets of neighbors: (x′, λ) and (x, λ′). Trial

point (x′, λ) is a neighbor to (x, λ) if x′ is a neighbor to x in subspace X, and (x, λ′) is

76

a neighbor to (x, λ) if λ′ is a neighbor to λ in subspace Λ and h(x) 6= 0. Neighborhood

Ncn(λ) prevents λi from being changed when the corresponding constraint is satisfied, i.e.,

hi(x) = 0.

As in SA, an acceptance probability is used in CSA to decide whether a trial point

generated is to be accepted or rejected. The difference in CSA, however, is that an acceptance

probability needs to be defined for descents as well as ascents. The acceptance probability

for CSA is defined to be:

AT (x,x′) =











exp
(

− (Ld(x′)−Ld(x))+

T

)

if x′ = (x′, λ)

exp
(

− (Ld(x)−Ld(x′))+

T

)

if x′ = (x, λ′)

(3.39)

where (a)+ = a if a > 0, and (a)+ = 0 otherwise for all a ∈ R.

The probability defined in (3.39) allows a search to find points with smaller Lagrangian

value in a stochastic fashion. A smaller Lagrangian value implies either a smaller objective-

function value or a smaller total constraint violation, both of which are desirable. In contrast,

probabilistic ascents, which are absent from traditional SA, try to increase the Lagrange

multipliers on violated constraints stochastically in order to force them into satisfaction.

3.5.2 Asymptotic Convergence of CSA

CSA has been proved [211, 213] to converge asymptotically to a CGMdn. The proof is

done by modeling the annealing process by an inhomogeneous Markov chain, showing that

the Markov chain is strongly ergodic, proving that the Markov chain minimizes an implicit

virtual energy based on the framework of generalized SA (GSA) [197], and showing that the

virtual energy is at its minimum at any CGMdn. Details of the proofs can be found in [218].

The main result of CSA [211, 213] is summarized in the following theorem.

77

Theorem 3.3 Asymptotic convergence of CSA [213, 211]. The Markov chain modeling CSA

converges asymptotically to a CGMdn x
∗ ∈ Xopt with probability one.

To summarize, CSA is a powerful method in two aspects. First, it is able to solve

general discrete, continuous and mixed-integer constrained optimization problems in a unified

fashion. Second, it can find CGMdn asymptotically given a sufficiently slow cooling schedule.

Of course, it is not practical to use a cooling schedule that is infinitely long. To this end, Wah

and Chen [204] have developed an anytime schedule to allow a search to find an optimal (but

finite) cooling schedule with high probability. CSA has been tested to work well in solving

nonlinear benchmark problems [211].

3.6 Summary

In summary, the analysis in Section 3.1 shows that numerical algorithms implemented on

digital computers aiming to solve Porg actually solve, instead, Psub defined over a finite,

discrete subset of the original variable space. As shown in Theorem 3.1, the constrained

optimum solution to Psub is generally different, but within a prescribed upper bound, from

the constrained optimum solution to Porg. The three examples illustrate that the upper

bound is closely related to the value of c∗ and will be small if c∗ is close to zero. In contrast,

if the absolute value of c∗ is large, then the upper bound is poor due to the large spacing

between adjacent floating-point numbers that bound c∗. Note that Theorem 3.1 only gives

an upper bound. It is possible for Psub to have better objectives than Porg because the

constraints for Psub are relaxed. The results allow us to treat discrete, continuous, and

mixed-integer constrained NLPs in a unified fashion.

The theory of discrete constrained optimization using Lagrange multipliers, defined in

Theorem 3.2, is theoretically complete in the sense that we prove the one-to-one correspon-

78

dence among the sets of CLMdn, SPdn, and points satisfying the first-order necessary and

sufficient conditions defined over discrete neighborhoods. The theory leads to efficient search

algorithms that look for saddle points in discrete neighborhoods in order to implicitly satisfy

multiple nonlinear constraints simultaneously, instead of looking for points that attempt to

satisfy those constraints explicitly.

Finally, Table 3.1 lists the differences between the theory and methods of Lagrange

multipliers in continuous space and those in discrete space. 3

3For a formal comparison, check the various definitions, examples and proofs in Chapters 1 and 3.

79

Table 3.1: Differences between the theory and methods of Lagrange multipliers in continuous
space and those in discrete space.

Continuous constrained NLPs with
differentiable functions

Discrete constrained NLPs with non-
differentiable functions

Neighborhoods, Ncn(x), are open spheres
whose radius approaches zero asymptoti-
cally; the number of neighboring points can-
not be enumerated.

Neighborhoods, Ndn(x), are finite, user-
defined sets of discrete neighboring points
that may be very large but finite in size.

Constrained local minima (CLMcn) are fea-
sible points with the smallest objective value
in a neighborhood of an open sphere.

Constrained local minima (CLMdn) are de-
fined similarly, except that their neighbor-
hoods are finite and user-defined.

Augmented Lagrangian function is the sum
of the objective and the constraints weighted
by Lagrange multipliers.

Similar, except that a transformation is ap-
plied to each constraint function to convert
it to non-negative.

Saddle point (SPcn) is a local minimum
in the original-variable space and a lo-
cal maximum in the Lagrange-multiplier
space (based on a neighborhood of an open
sphere); there is no systematic procedure to
look for SPcn in continuous space.

Saddle point (SPdn) is defined similarly, ex-
cept that its neighborhood is finite and user-
defined; SPdn may be found by descents of
the augmented Lagrangian function in the
original-variable space and ascents in the
Lagrange-multiplier space.

Direction of descent is found by differentia-
tion.

Direction of descent is found by (limited)
enumeration or by sampling.

CLMcn that are regular points can be found
by looking for points that satisfy the first-
order necessary and second-order sufficient
conditions; methods require the differentia-
bility of functions.

CLMdn are the same as SPdn (necessary and
sufficient); solution methods rely on sam-
pling or (limited) enumeration.

No existing constrained global optimization
procedures.

Constrained simulated annealing (CSA) con-
verges asymptotically to SPdn with the min-
imum objective values (CGMdn).

Solution techniques cannot be generalized to
nonlinear optimization problems in discrete
or mixed-integer space.

Solution techniques can be generalized to
mixed-integer and continuous constrained
NLPs without differentiability or convexity
assumptions on functions.

80

Chapter 4

Discrete Space First-Order Search

Methods

This chapter extends the discrete-space first-order conditions defined in (3.24) and (3.25) into

a first-order search and presents DLM, our proposed first-order search procedure. DLM is

able to locate, in a systematic way, feasible points (or SPdn when DMPD is truly implemented

for selecting candidate points) for solving discrete constrained optimization problems. By

employing floating-point representations of continuous variables, DLM is further able to solve

continuous and mixed-integer constrained NLPs.

The framework and outline of DLM are introduced first in Section 4.1, followed by careful

explorations of five major components of DLM, including neighborhood search, dynamic

weight adaptation [215], global search, relax-and-tighten, and duration of run. In order to

choose suitable strategies and parameters in various components of DLM, we test twelve

benchmark problems on various combinations of parameters and strategies. Finally, we

present experimental results of DLM on discrete, continuous and mixed-integer constrained

NLP benchmarks in Section 4.3.

81

(4.1.1)

Search in

 Stopping

condition met?

(4.1.6)

Modify

x loop λ loop

value (4.1.1)

N

Y

N

N

Y

Accept candidate

λ (4.1.1)
value (4.1.1)

based on Lagrangian

candidate in x
subspace (4.1.2)

Lagrangian

Generate new

Apply global search (4.1.4),
dynamic weight (4.1.3),
relax and tighten (4.1.5)

Generate random
candidate with initial
λ (4.1.1)

Generate new Update
Start

λ space

Problem
Formulation

(4.1.1)

Figure 4.1: Framework of DLM, a first-order search for SPdn. Each component is discussed in
detail in the section marked in parenthesis.

4.1 A Discrete-Space First-Order Search Framework

The first-order necessary and sufficient conditions (3.24) and (3.25) provide a stopping con-

dition for a search to look for a saddle point but do not specify the mechanism to arrive at

such points. There are many ways to look for discrete saddle points, such as using simulated

annealing [213], genetic algorithms, and hill climbing. In this section, we first propose a gen-

eral framework (Figure 4.1) of first-order search method for locating feasible solutions (or

SPdn). We then present DLM-General, an implementation of the discrete-space first-order

search framework in Figure 4.1, and explore carefully five components of DLM-General.

82

procedure DLM-General

0. set %1 to be a positive real constant; set random seed; j:=0;

1. set starting point x; set initial value of λ (set to 0 in the experiments);

2. if using dynamic weight adaptation then weight initialization;

3. while stopping condition not satisfied do {
4. if modifying problem formulation then {
5. if using dynamic weight adaptation then dynamic weight adaptation;

6. if using global search then perform global search;

7. if using relax-and-tighten then perform relax and tighten; }
8. x Loop: update x to x′ only if this will result in Ld(x

′, λ) < Ld(x, λ);

9. λ Loop: if condition for updating λ is satisfied then λi ← λi + %1hi;

10. j++; }

Figure 4.2: DLM-General: An implementation of the general discrete first-order local-search

method. (The initial values of parameters are indicated here unless specified otherwise in the text.)

4.1.1 DLM: An Implementation of First-Order Search Framework

The framework in Figure 4.1 consists of two major loops. One loop is the “x loop” that

generates new candidate points (or trial points) in the original-variable space and accepts

them based on their Lagrangian values. The other loop, the “λ loop,” updates the Lagrange

multipliers in order to suppress constraint violations, if they exist.

Figure 4.2 shows an implementation of the framework in Figure 4.1. In the following, we

describe some of the considerations and trade-offs in implementing the procedure.

a) Initialization (Lines 0-2). We choose either a fixed or a randomly generated starting

point using a fixed initial seed. Both allow our results to be reproducible by others. We

initialize all Lagrange multipliers to zero. An optimal initial setting of x and λ is difficult

because it depends on the amount of constraint violation. Also, if dynamic weight adaptation

is to be used, then weight initialization is done. Variable j used in dynamic weight adaptation

83

counts the number of round robins in the search. It is initially set to zero in Line 0 and is

increased in Line 10.

b) Duration of each run (Line 3). We use the idea of iterative deepening proposed in [204]

to decide on the suitable duration of a run. See Section 4.1.6 for details.

c) Modification of problem formulations (Line 4). Many heuristics in DLM can be char-

acterized as some kind of modification of problem formulations. Three such modifications

are included in DLM and are discussed next.

d) Dynamic weight adaptation (Lines 2 and 5). Dynamic weight adaptation changes

the Lagrangian formulation by adding a weight to the objective and adjusts the weight

dynamically in order to improve convergence of DLM. Section 4.1.3 examines the issues and

alternatives of weight adaptation. This approach addresses a similar issue as our previous

approach [179] that scales the Lagrange multipliers periodically.

e) Global search (Lines 6). A search trajectory generated by DLM may be stuck in an

infeasible local minimum. For example, when the trajectory is at a local minimum of both

the objective and the constraint functions, then increasing the Lagrange multipliers at this

point will not help bring the trajectory out of the local minimum. Global search will be

performed to enable the search trajectory traverse wider regions in the search space. In

Section 4.1.4, we propose to add a distance penalty term to the Lagrangian formulation to

implement the above idea.

f) Relax-and-tighten (Lines 7). In applying DLM to solve constrained problems with many

equality constraints, we find that it is difficult to find feasible solutions. Section 4.1.5 ad-

dresses this issue by presenting relax-and-tighten, a strategy that relaxes the original equality

constraints into inequality constraints and that gradually tightens the relaxed constraints.

g) x Loop (Line 8) performs neighborhood search. Here, we evaluate some possible

neighboring points of x in order to find improvements in its Lagrangian value. We try

84

x1, . . . xn in a round-robin fashion, one variable at a time, and compare the Lagrangian

value of x with that of its neighbor. To save time, we apply a greedy strategy rather than

a hill-climbing strategy, switching from one variable to the next once any improvement

in its Lagrangian value has been found. For solving general nonlinear constrained NLPs,

neighborhoods are generated using a random distribution like Gaussian or Cauchy. Details

are discussed in Section 4.1.2.

A consequence of applying a greedy instead of a hill-climbing strategy is that the associ-

ated search trajectory is not guided by the DMPD of Ld. Hence, when the algorithm stops

at a feasible point x, the point may not be a CLMdn because not all neighboring points

in Ndn(x) have been examined. In general, our proposed search algorithm will only find a

feasible solution when it stops and has no guarantee that it will reach a CLMdn (or SPdn).

h) λ Loop (Line 9). The Lagrange multipliers are updated when the search reaches a local

minimum in the objective space. We do not update the multipliers more frequently due to

instability of the trajectory. The amount of update is controlled by an application-dependent

constant %1 (> 0).

A search based on DLM-General can be considered a local search in the Lagrangian

space because the search stops when all the constraints are satisfied and when there is

no improvement in the Lagrangian value of the neighboring points probed. However, the

search can be considered a global search in the original-variable space because a trajectory

can overcome local basins and minima in the original-variable space by manipulating its

Lagrange multipliers. When some of the constraints are not satisfied, Lines 8 and 9 of

DLM-General perform, respectively, descents in the original-variable space and ascents in

the Lagrange-multiplier space. Obviously, descents in the original-variable space will stop

after a certain number of iterations; that is, xk+1 = xk. However, Line 9 of DLM-General

will never stop as long as there are violated constraints, and λ will continue to increase to

85

suppress the unsatisfied constraints. Increases in λ allows Line 8 in DLM-General to move

on and get out of local minima in the original-variable space.

The following theorem ensures that when DLM-General stops, a feasible point will be

located.

Theorem 4.1 Termination condition. A feasible point x∗ is reached when Procedure DLM-

General stops.

Proof. When the procedure shown in Figure 4.2 stops at a point x∗, it is obvious that the

Lagrange multipliers stop to grow. Mathematically, it implies that λi = λi + %1hi. Hence,

hi(x
∗) = 0 for i ∈ {1, 2, . . . , m}, since %1 6= 0. It follows that x∗ is a feasible point.

It is important to note that a global search in the original-variable space does not imply

convergence in finite time. Similar to continuous Lagrange-multiplier methods, the time for

DLM-General to find a feasible solution may be unbounded, even if feasible solutions exist.

The framework of DLM-General is very general and can be implemented in many ways.

For example, in modifying a problem formulation, new objectives, additional constraints, or

relaxed constraints may be added; in generating trial points in the x subspace, deterministic

or stochastic neighborhoods may be selected; in determining the stopping condition, fixed

or adaptive strategies may be employed. Within these various possibilities, we select five of

the most important components of DLM-General and explore them carefully in the following

five subsections.

4.1.2 Neighborhood Search

The choice of neighborhoods is very critical to the efficiency of DLM-General because they

determine the probability that a trial point is accepted. Intuitively, one may tempt to

86

choose a small neighborhood in close vicinity to the current point because it allows descent

direction to be found efficiently and because it resembles the way that gradients are defined

in continuous space. This was done in our early studies [179] that use a small neighborhood

consisting of points with Hamming distance one away. A small neighborhood allows a hill-

climbing strategy to enumerate all neighboring points and find its DMPD.

Our recent work indicates that small neighborhoods unnecessarily limit the ability of a

strategy to find points with better Lagrangian values. In this thesis we propose to use a

large neighborhood that covers all the points of a variable in a search space and refines the

probabilities of reaching specific neighboring points depending on the current progress. We

also use a greedy strategy that stops after finding the first point with improved Lagrangian

value rather than enumerating all neighboring points. Specifically, we try x1, . . . xn in a

round-robin fashion, generate a point in the neighborhood of the variable picked based on a

probability distribution, round the point to the closest discrete point if the variable picked

is discrete, accept the new point if the Lagrangian value of the new point is better than that

of x, and change to the next variable in the round robin. (A round robin can be viewed as

a sequential examination of the n dimensions of a point.)

For neighborhood generation, we consider the following three choices of random distri-

butions:

• Cauchy distribution with a density function of fd(x) = 1
π

σ
σ2+x2 , where σ is a parameter

to be determined,

• Gaussian distribution with a density function of fd(x) = 1√
2πσ

e
(x−µ)2

2σ2 , µ is set to zero

in our implementation and σ is to be determined,

• Uniform distribution in the range [−σ, σ].

87

The spread/shape of the above three distributions are controlled by σ. Because there

are n dimensions, σ is a vector (σ1, σ2, . . . , σn) in which σi determines the spread in the ith

dimension. Once a variable is selected (say xi), we use one of the three random distributions

to generate a point centered around xi and bounded in [Rl
i, R

u
i].

Intuitively, σi should be decreased when most of the neighboring points of xi generated

do not lead to smaller Lagrangian values. In contrast, σi should be increased when there is

a large chance of finding points with improved Lagrangian values. Such considerations lead

to the following way of adapting σi.

At the beginning, we set σi = 0.1, i = 1, . . . , n, and initialize n counters ϑi, i = 1, . . . , n,

to zero. We use ϑi to measure the progress of neighborhood search with respect to xi and

increase it by one when the neighboring point x′i generated has a smaller Lagrangian value

with respect to that of xi. We update σi after 50 round robins of neighborhood search as

follows:

σi =



















σi · 1.001 if ϑi ≥ 40

σi/1.001 if ϑi ≤ 2

σi otherwise,

(4.1)

and clear all the counters to zero. The constants 2 and 40 in (4.1) were chosen experimentally.

The effects of these three random distributions on solution time and quality of DLM are

discussed in Section 4.2.

4.1.3 Dynamic Weight Adaptation

Lagrangian methods rely on ascents in the Lagrange-multiplier space and descents in the

objective space in order to reach equilibrium. The convergence speed and solution quality,

however, depends on the balance between f(x), h(x), and g(x). Although changes in λ and

µ lead to different balance between ascents and descents, convergence can be improved by

88

introducing a weight on f(x). These considerations lead to a new Lagrangian function as

follows.

L
′

d(x, λ) = w f(x) + λTH(h(x)) +
1

2
||h(x)||2, (4.2)

where w > 0 is a user-controlled weight on the objective. By using (4.2) in DLM-General in

Figure 4.2 with different w, we observe four possible behaviors of the search trajectory:

• The trajectory converges without oscillations.

• The trajectory gradually reduces in oscillations and eventually converges.

• The trajectory oscillates within some range but never converges.

• The magnitude of oscillations increases, and the trajectory eventually diverges.

Obviously, the first two cases are desirable, and the last two are not. Moreover, we like to

reduce the amount of oscillations and improve convergence time.

To demonstrate the four behaviors, we evaluate Problem 2.6 in [57] under different

weights. The original problem is a nonlinear, continuous minimization problem with 10

variables and 25 inequality constraints. Since it uses continuous variables in the range [0, 1],

we convert it into a discrete minimization problem by multiplying each variable xi by 1000

and restricting the new variable 1000xi to integer values.

Table 4.1 shows the average results in evaluating the discretized problem from 20 random

starting points. By changing w, results of different quality and convergence time can be

obtained. There is, however, no effective method for choosing a fixed w except by trial and

error.

Next we present a strategy to adapt w based on run-time search progress in order to

obtain high-quality solutions and short convergence time. This approach is more general

than our previous approach [179] that scales the Lagrange multipliers periodically in order

89

Table 4.1: Effects of static and dynamic weights on convergence time and solution quality from
20 randomly generated starting points for the discretized version of Problem 2.6 in [57]. (Weight
w is the initial weight in the dynamic case.)

Fixed/Initial Avg. Conv. Time Fraction Converged Average Solution Best Soluiton
weight w Static Dynamic Static Dynamic Static Dynamic Static Dynamic

0.00001 1099 1249 100% 100% -24.7 -29.0 -39.0 -39.0
0.0001 1247 1249 100% 100% -29.4 -29.0 -39.0 -39.0
0.001 1249 1248 100% 100% -29.3 -29.3 -39.0 -39.0
0.01 1254 1249 100% 100% -29.4 -29.3 -39.0 -39.0
0.1 1267 1265 100% 100% -28.3 -28.8 -39.0 -39.0
1 1230 1289 90% 100% -27.4 -27.4 -39.0 -39.0
10 1203 1377 75% 100% -27.8 -28.1 -39.0 -39.0
100 972 1902 40% 100% -34.8 -29.3 -39.0 -39.0
1000 679 1409 15% 100% -39.0 -38.5 -39.0 -39.0
10000 − 2182 0% 100% − -38.4 − -39.0
100000 − 2289 0% 100% − -33.3 − -39.0

to prevent them from growing to be very large when all constraint functions are positive.

The Lagrange multiplier of a non-negative constraint may grow without limit because its

value is always non-decreasing according to Line 9 of DLM-General, and a Lagrangian space

with large Lagrange multipliers is more rugged and more difficult to search by local search

methods. In our previous approach [179], the period between scaling and the scaling factor

are application dependent and chosen in an ad hoc fashion. Our current approach adjusts the

weight between the objective and the constraints, which is equivalent to scaling the Lagrange

multipliers. It is more general because it adjusts the weight according to the convergence

behavior of the search.

Figure 4.3 outlines the procedures for weight initialization and adaptation in order to

speed up convergence. Its basic idea is to first estimate the initial weight w(0) (Line 1),

measure the performance of the search trajectory (x(t), λ(t)) periodically, and adapt w(t) to

improve convergence time or solution quality.

90

procedure weight initialization
1. set w(0) (initial weight, set to 0.00001 in the experiments);
2. set Nu (major window for changing w, set to 30 in the experiments);
3. set δt (minor window for changing w, set to 5 in the experiments);
4. j (number of iterations since last divergence) is initialized in Line 0 of DLM-General

procedure dynamic weight adaptation
5. record useful information for calculating performance;
6. if (j mod δt = 0) then
7. if trajectory diverges then { reduce w; j ← 0 }
8. if (j mod Nu = 0) then {
9. compute performance metrics based on data collected;
10. change w when certain conditions are satisfied (see text) }

Figure 4.3: Procedures for weight initialization and adaptation in Figure 4.2. (The initial values
of parameters are indicated here unless specified otherwise in the text.)

Let (xj, λj) be the point in the jth iteration, and vmax(j) be its maximum violation:

vmax(j) = max

[

max
1≤s≤m

{|hs(x(t))|}, max
1≤s≤k

{gs(x(t)), 0}
]

(4.3)

To monitor the progress of the search, we divide iterations into non-overlapping major

windows of Nu iterations (Line 2), each of which is then divided into minor windows of δt

iterations (Line 3). We further record some statistics, such as vmax(j) and fj(x), that will

be used to calculate the performance in each minor/major window (Line 5).

At the beginning of a minor window (Line 6), we test whether the trajectory diverges or

not (Line 7). Divergence happens when vmax(j) is larger than an extremely large value (say

1020). If it happens, we reduce w, say w ← w
10

, and restart the window markers by resetting

j to 0.

At the beginning of a major window (Line 8), we compute some metrics to measure

the progress of the search relative to that of previous major windows (Line 9). In general,

application-specific metrics, such as the number of oscillations of the trajectory, can be used.

In our current implementation, we compute the averages of vmax(j) and objective fj(x) in

91

the uth major window:

v̄u =
1

Nu

uNu
∑

j=(u−1)Nu+1

vmax(j);

f̄u =
1

Nu

uNu
∑

j=(u−1)Nu+1

fj(x); u = 1, 2, · · · (4.4)

Based on these measurements, we adjust w accordingly (Line 10). Note that when

comparing values between two successive major windows u−1 and u, both must use the same

w; otherwise, the comparison is not meaningful because the terrain may be totally different.

Hence, after adapting w, we should wait at least two major windows before changing it

again.

To understand how weights should be updated in Step 10, we examine all possible behav-

iors of the search trajectory in successive major windows. We have identified four possible

cases.

First, the trajectory does not stay within a feasible region, but goes from one feasible

region to another through an infeasible region. During this time, vmax(i) is zero when the

trajectory is in the first feasible region, increased when it travels from the first feasible region

to an infeasible region, and decreased when going from the infeasible region to the second

feasible region. No oscillations will be observed because oscillations normally occur around

an equilibrium point in one feasible region. In this case, w is not changed.

Second, the trajectory oscillates around an equilibrium point in a feasible region. This can

be detected when the number of oscillations in each major window is larger than a threshold,

the trajectory is not always in a feasible region, and the trend of vmax does not decrease.

To determine whether the oscillations will subside eventually, we compute v̄u − v̄u+1, the

difference of the average of vmax(i) for two successive major windows u and u + 1. If the

92

difference is not reduced reasonably, then we assume that the trajectory has not converged

and decrease w accordingly.

Third, the search trajectory moves very slowly in a feasible region. This happens when

w is very small, and the constraints dominate the search process. As a result, the objective

value is improving very slowly and may eventually converge to a poor value. This situation

can be identified when the trajectory remains within a feasible region in two successive major

windows and is improving in successive major windows, but the improvement of the objective

is not fast enough and is below a threshold. Obviously, we need to increase w in order to

speed up the improvement of the objective. If the objective remains unchanged, then the

trajectory has converged and w will not be changed.

Finally, the trajectory does not oscillate when it starts from a point in a feasible region,

but rather goes outside the feasible region and then converges to a point on the boundary of

the feasible region. In this case, a large w on the objective makes it more difficult to satisfy

the constraints, causing the trajectory to move slowly back to the feasible region. At this

time, an appropriate decrease of w will greatly shorten the convergence time.

Table 4.1 shows the results after applying dynamic weight adaptation in DLM-General

to solve the same benchmark problem. Comparing the results with those of static weights,

we see that all the searches can now converge with better average solutions.

4.1.4 Global Search

We apply global search in DLM by guiding a trajectory away from points visited in the

past [229]. The key idea is to store in a queue, Q, a set of points visited recently in a

trajectory and to avoid these points explicitly in the future by imposing penalties when the

trajectory gets close to any of them. Since these penalties are to be minimized, a search is

therefore pulled away from those previously visited points and local minima are overcome

93

correspondingly. The idea is similar to that of the local-minimum penalty methods [34, 65]

that prevent multiple visits to the same local minimum by adding to the objective a penalty

term on each local minimum found.

We have modified the original objective function, leading to the following new augmented

Lagrangian function:

L′
d(x, λ) = Ld(x, λ)− |f(x)| · distance penalty(x) (4.5)

For efficiency in implementation, we limit Q to contain a fixed number q of points,

s1, . . . sq, visited previously and manage them in a FIFO fashion. Further, we update Q

by inserting the point reached after examining all n dimensions at the end of each round

robin. The size of the queue, q, needs to be selected properly: if it is too small, then its

effect on distance penalty is small; if it is too large, then the overhead in updating Q and

in calculating (4.5) is high.

To avoid bias when some dimensions have larger ranges, we normalize the Manhattan

distance in the jth dimension computed between the current trajectory xj and si,j by divid-

ing the distance by the size of the variable range Ru
j − Rl

j. Experimentally, we determine

distance penalty to be as follows:

distance penalty(x) = ψ · tan−1



100 ·
∑q

i=1

∑n
j=1

||xj−si,j ||
Ru

j −Rl
j

n · q



 , (4.6)

where ψ = 0.018 was determined experimentally. It should be obvious that distance penalty(x)

will have a large penalty on L′
d(x, λ) when x is close to one of the previously visited points,

and will have a small value when x is far away from all previously visited points. The effects

of the size of Q on selected benchmark problems are tested in the following section.

94

4.1.5 Relax-and-Tighten Strategy for Handling Equality Constraints

In solving benchmark constrained NLPs, we found some benchmarks with equality con-

straints (not the same as equality constraints transformed from inequality constraints using

(3.36)) that are very hard to satisfy. (An equality constraint is considered satisfied if its

violation Φ ≤ 10−5.) This is expected because it is difficult for a neighborhood search based

on random sampling to pinpoint exactly feasible solutions that satisfy multiple equality

constraints.

To address this difficulty, we propose a strategy called relax-and-tighten. Its key idea is

to first relax equality constraint h(x) = 0 to inequality constraint |h(x)| ≤ ε, where ε is a

positive threshold to be determined. The relaxed problem should be easier to solve by DLM

as it has a larger feasible space. After obtaining a feasible point x∗ to the relaxed problem,

we update ε to min(Vmax, ε)/v, where v is a positive constant larger than 1, and Vmax is

the maximum violation of the current solution x∗ with respect to the original problem with

equality constraints. The relaxed inequality constraints are then tightened gradually until

the original equality constraints are satisfied.

In order for relax-and-tighten to work well, the initial amount of constraint relaxation

must be chosen carefully. If ε is too large, then solutions to the relaxed problem are not

likely to be good starting points for problems with tightened constraints. In contrast, if ε is

too small, then the relaxed inequality constraints may be as hard to satisfy as the original

equality constraints. Similarly, it is important to determine the amount that constraints

should be tightened after a feasible solution to the relaxed problem has been found. If the

step size for constraint tightening is too small, then it will take a long time to find a feasible

solution that satisfies the equality constraints. In contrast, if this step size is too large, then

DLM may not be able find a feasible solution. Empirically, we found good performance by

95

setting the initial ε to V 0
max/v and by updating ε to min(Vmax, ε)/v after a feasible solution

to the relaxed problem has been found, where V 0
max is the initial maximum violation of the

equality constraints and v is a constant to be determined.

As an example, consider Problem 7.4 in [57]. With 38 variables, 23 equality constraints,

and V 0
max > 100.0, the problem is quite difficult to solve. If we apply DLM to solve a MINLP

version of the problem from a randomly generated starting point, the best solution found

has Vmax > 0.1 after running more than 20 hours on a Pentium III 500-MHz computer. In

contrast, applying the relax-and-tighten strategy led to a solution with Vmax < 10−5 in less

than 1000 seconds with v = 1.2. Our experience shows that relax-and-tighten allows better

solutions with smaller maximum violations to be found each time after the constraints are

tightened.

4.1.6 Duration of Each Run

A general goal of DLM-General is to find high-quality solutions efficiently. Specifically, given

a particular objective value f ∗, we want minimize the average time of multiple DLM runs in

order to find feasible solutions with objectives equal to or better than f ∗.

Let N be the maximum number of iterations (or round robins) allowed in DLM, and PR

be the probability of locating a solution with prescribed solution quality f ∗ in N iterations.

Clearly, PR is monotonically non-decreasing with increasing N . The average completion time

of finding a solution with quality f ∗ using multiple runs is, therefore [204]:

∞
∑

i=1

i ·N · (1− PR)i−1 · PR =
N

PR

(4.7)

Intuitively, if N is very small, then it is very unlikely for DLM-General to find a desired

solution, leading to a small PR and large N
PR

. On the other hand, when N increases, PR

96

will increase until it approaches one. At that point, further increases in N will cause N
PR

to increase monotonically. Figure 4.4 illustrates the behavior of (4.7) when applying DLM-

General to solve a typical continuous constrained NLP G5 [135, 121] with a desired solution

quality set to be 1.25 times the optimal solution. The curve demonstrates that N
PR

is convex

with respect to log(N).

Wah and Chen [204] have explored a novel way of designing an optimal anytime con-

strained simulated annealing (CSA) algorithm. In their algorithm (CSAAT−ID), iterative

deepening is applied to the cooling schedule. Using a fast initial cooling schedule, the cool-

ing schedule is doubled after a certain number of consecutive CSA runs until eventually a

feasible solution with a prescribed solution quality has been located. They [204] have proved

that the total time spent on CSAAT−ID using iterative deepening is of the same order as

the time of one CSA run with an optimal cooling schedule, where an optimal cooling sched-

ule [204] is defined as a schedule that leads to the shortest average total CPU time of multiple

CSA runs in order to find a solution of prescribed quality.

Due to the convexity of N
PR

with respect to log(N), as demonstrated in Figure 4.4, the

same idea of iterative deepening can be applied to determine the duration of each DLM run

in order to minimize the total average completion time of multiple DLM runs in locating

solutions with prescribed quality.

In our implementation, we start a DLM run with a maximum number, N 0
max, of iterations.

If a solution of prescribed quality is not found after three consecutive restarts, the maximum

number of iterations will be doubled. We define a DLM run as a sequence of DLM restarts,

each using a number of iterations that is increasing in a geometric fashion from the previous

restart. Mathematically, the (3i + j)th DLM restart in a DLM run will have a maximum

number of iterations equal to 2i ·N0
max for i ≥ 0, and j ∈ {0, 1, 2}. In CSAAT−ID, this kind of

97

0

1 · 105

2 · 105

3 · 105

4 · 105

5 · 105

6 · 105

7 · 105

8 · 105

1t 2t 3t 4t 5t 6t 7t 8t

N
PR

log2(N)

Figure 4.4: The average time to find a solution 1.25 times the optimal solution in G5 depicts a
convex behavior with respect to the number of iterations of each run of DLM- General.

iterative deepening is stopped once a solution with prescribed quality has been found. This

strategy, however, requires the knowledge of solution quality that is generally not available

for new problems. In practice, we use the following heuristic stopping condition. A DLM

run is stopped when either of the following two conditions is true: a) no improvement is

found on the objective value after a consecutive number, A, of restarts; b) no improvement

is found on the maximum constraint violation after a consecutive number, B, of restarts.

Experimentally, we found A = 3 and B = 6 are good choices for most of the benchmark

problems tested.

4.2 Performance Comparisons of Various Strategies

In this section, we apply DLM-General to solve 12 difficulty benchmark problems in order

to determine the effects of different combinations of strategies on solution time and quality.

Our goal is to select, if there exists, one combination of parameters or strategies that can

generalize to these 12 test problems in terms of solution time and quality. These 12 problems

98

are: G1, G2 and G5 from [135, 121], and 2.1, 2.7.5, 5.2, 5.4, 6.2, 6.4, 7.2, 7.3 and 7.4 from

[57]. Since these benchmark problems are continuous constrained NLPs, we have created

the corresponding discrete and mixed-integer versions. These versions are done in such a

way that allow solutions in the discrete or mixed-integer problems to be compared directly

to their continuous counterparts.

We transform a continuous constrained NLP with n variables, x1, . . . , xn, to a discrete

or mixed-integer version as follows. In creating a discrete NLP, we discretize all variables in

the original problem, whereas in creating an MINLP, we let variables with odd indices be

continuous and those with even indices be discrete. In discretizing continuous variable xj in

the range [Rl
j, R

u
j], we force it to take discrete values from the set:

Aj =







{

Rl
j + (Ru

j − Rl
j)

i
s
, i = 0, 1, . . . , s

}

if Ru
j − Rl

j < 1
{

Rl
j + i

s
, i = 0, 1, . . . , b(Ru

j − Rl
j)sc

}

if Ru
j − Rl

j ≥ 1
(4.8)

where s = 107. For example, if Ru
j − Rl

j = 1, then xj will be discretized into a set of

107 discrete points. Obviously, given an MINLP with n dimensions, the discrete subspace

created has at least 107bn/2c points, a space so huge that it is impossible for any algorithm to

enumerate. Using such a finely discretized space allows us to compare directly the solutions

in the original continuous versions and those found by DLM in the transformed discrete and

mixed-integer versions.

Next, we compare various combinations of parameters used in DLM-General. For neigh-

borhood search, we tested three different neighborhood generators governed by Cauchy (de-

noted by N1), Gaussian (denoted by N2), and uniform (denoted by N3) distributions. For

global search, we tested three different tabu-list (Q) sizes: 0 (denoted by S1), 6 (denoted

by S2) and 10 (denoted by S3). For the relax-and-tighten strategy, we tested three differ-

ent factors for tightening and relaxing constraints, v: ∞ (denoted by T1), 1.2 (denoted by

99

T2) and 1.5 (denoted by T3). Note that when S1 is adopted, global search is actually not

performed because the size of the tabu list Q is zero. Further, when T1 is employed, relax-

and-tighten is not used because V 0
max/v = V 0

max/∞ = 0. For simplicity, we use N?-S?-T? to

represent a combination of parameters/strategies chosen. As an example, N1-S3-T2 means

that DLM-General takes a Cauchy neighborhood generator, uses a tabu list Q of size 6, and

sets v to 1.2.

For each combination of parameters, we evaluate the aforementioned 12 problems (mixed-

integer versions) from randomly generated starting points until a feasible solution is found.

We call one of the above runs a feasible run that consists of one or more DLM runs (defined

in Section 4.1.6) and that finds a feasible solution in the last DLM run. We repeated until

100 feasible runs were performed and recorded the CPU times and corresponding solution

qualities. For a given combination of parameters, let tx(i) and fx(i) be the CPU time and

objective of the ith feasible run. In order to compare all these combinations of parameters, we

perform normalization by using one set of parameters as a reference. In our experiments, we

select N1-S3-T2 as the reference for normalizing all (27 in total) combinations of parameters

as follows:

rt(i) =







tx(i)/tr(i)− 1.0, if tx(i) > tr(i)

1.0− tr(i)/tx(i), if tx(i) ≤ tr(i)
(4.9)

rf (i) = (fx(i)− fr(i))/|fr(i)| (4.10)

where tr(i) and fr(i) are the CPU time and objective-function value of the ith feasible run

for the reference strategy N1-S3-T2, i = 1, 2, . . . , 100. In our normalizations, (4.9) measures

the symmetric speedup [205] in order to give equal weights to speedups and slowdowns in

CPU times. On the other hand, because objective-function values might be negative, (4.10)

measures relative improvements and degradations in objectives. The average rt and rf of all

100

the 100 normalized CPU times and solution qualities are computed as follows:

rf =
1

100

100
∑

i=1

rf(i), rt =
1

100

100
∑

i=1

rt(i) (4.11)

A combination of parameters is considered better than reference N1-S3-T2 if both rf and rt

are negative.

Figures 4.5 thru 4.7 show the results on evaluating the 12 difficult mixed-integer con-

strained NLP benchmarks. The left three diagrams (indexed by a, d and g) of Figures 4.5

thru 4.7 lead us to conclude that, without relax-and-tighten, some problems with many

equality constraints (7.4 for example) elude solutions even after 100 runs. On the other

hand, if v is set to be too large (v = 1.5 for instance), DLM-General cannot find solutions

to all the 12 benchmark problems, as shown in Figure 4.6. Global search truly improves

the solution quality. For example, when compared to the reference, N1-S2-T2 finds much

better CLMdn than N1-S1-T2. Moreover, solution times based on a Cauchy distribution

outperform those based on the other two distributions. This is expected because the Cauchy

distribution has a long, flat tail that enables a search to explore more effectively wider regions

in the search space. Overall, we conclude that strategies/parameters combination N1-S2-T2

gives the best performance; hence, we use it to solve general constrained NLPs in the rest of

the experiments.

Finally, Figures 4.8 thru 4.10 plot the performance of DLM-General using N1-S2-T2

(Cauchy, tabu-list Q size = 6 and v = 1.2) on the 12 benchmark problems in discrete,

continuous and mixed-integer forms, respectively. Each point in a graph represents a pair of

CPU time and solution quality for one feasible run of DLM-General. As a local search method

in Lagrangian space, DLM-General usually finds different solutions when using different

101

randomly generated starting points. Within 100 feasible runs, DLM-General is able to find

good solutions for most of the problems tested.

4.3 Experimental Results on Constrained NLP Bench-

marks

In this section, we fully evaluate DLM-General on a comprehensive set of constrained NLP

benchmarks: G1 thru G10 developed in the GA community [135, 121], all the 29 Floudas

and Pardalos’ benchmarks in [57], and all nonlinear problems from CUTE [26], a constrained

and unconstrained testing environment. These problems have objective functions of various

types (linear, quadratic, cubic, polynomial, and nonlinear) and linear/nonlinear constraints

of equalities and inequalities.

Tables 4.2 thru 4.4 present, respectively, the performance of DLM-General on discrete,

continuous and mixed-integer versions of G1 thru G10 [135, 121]. The first four columns of

Tables 4.2 and 4.4 list, respectively, the problem identifier, number of variables, total number

of constraints, and number of equality constraints. The fifth column shows the best-known

solutions for the original continuous version. The next twelve columns list, respectively, the

success ratios (SR) and average CPU times needed to find solutions that differ within 0%,

1%, 5%, 10%, 15% and 25% from the best-known continuous solution. As expected, the CPU

times increase and success ratios decrease as better solution qualities are specified. Finally,

the last column of Tables 4.2 thru 4.4 lists the CPU times required by CSA on the same set

of NLP benchmarks.

Tables 4.2 thru 4.4 also compare the performance of DLM and CSA [213, 211]. For a fair

comparison, CSA was run multiple times on the same computer using the same sequence of

starting points. We do not report the quality of solutions found by CSA as it always found

102

-4
-3
-2
-1
0
1
2
3
4
5
6

-1 -0.5 0 0.5 1 1.5 2 2.5 3

A
ve

ra
ge

 n
or

m
al

iz
ed

 C
PU

 ti
m

e

Average normalized objective value

1 problem is not solved.

-2

-1.5

-1

-0.5

0

0.5

1

1.5

-1 -0.5 0 0.5 1 1.5 2 2.5 3

A
ve

ra
ge

 n
or

m
al

iz
ed

 C
PU

 ti
m

e

Average normalized objective value

All 12 problems are solved.

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1 1.5 2 2.5 3

A
ve

ra
ge

 n
or

m
al

iz
ed

 C
PU

 ti
m

e

Average normalized objective value

All 12 problems are solved.

a) N1-S1-T1 b) N1-S1-T2 c) N1-S1-T3

-2
-1
0
1
2
3
4
5
6
7

-1 -0.5 0 0.5 1 1.5 2 2.5 3

A
ve

ra
ge

 n
or

m
al

iz
ed

 C
PU

 ti
m

e

Average normalized objective value

3 problems are not solved.

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

-1 -0.5 0 0.5 1 1.5 2 2.5 3

A
ve

ra
ge

 n
or

m
al

iz
ed

 C
PU

 ti
m

e

Average normalized objective value

All 12 problems are solved.

-2
-1.8
-1.6
-1.4
-1.2

-1
-0.8
-0.6
-0.4
-0.2

0
0.2

-1 -0.5 0 0.5 1 1.5 2 2.5 3

A
ve

ra
ge

 n
or

m
al

iz
ed

 C
PU

 ti
m

e

Average normalized objective value

All 12 problems are solved.

d) N1-S2-T1 e) N1-S2-T2 f) N1-S2-T3

-2
-1
0
1
2
3
4
5
6
7
8
9

-1 -0.5 0 0.5 1 1.5 2 2.5 3

A
ve

ra
ge

 n
or

m
al

iz
ed

 C
PU

 ti
m

e

Average normalized objective value

2 problems are not solved.

-1
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

-1 -0.5 0 0.5 1 1.5 2 2.5 3

A
ve

ra
ge

 n
or

m
al

iz
ed

 C
PU

 ti
m

e

Average normalized objective value

All 12 problems are solved.

-1.8
-1.6
-1.4
-1.2

-1
-0.8
-0.6
-0.4
-0.2

0
0.2

-1 -0.5 0 0.5 1 1.5 2 2.5 3

A
ve

ra
ge

 n
or

m
al

iz
ed

 C
PU

 ti
m

e

Average normalized objective value

All 12 problems are solved.

g) N1-S3-T1 h) N1-S3-T2 i) N1-S3-T3

Figure 4.5: Comparisons of average relative CPU times and average relative solution qualities

under different parameters/strategies (using Cauchy distribution) normalized with respect to the

reference strategy N1-S3-T2 (Cauchy distribution, tabu-list Q size = 10, v = 1.2) in solving 12

difficult mixed-integer constrained NLPs. All runs were made on a Pentium III 500MHz computer

with Solaris 7.

103

-2.6
-2.4
-2.2

-2
-1.8
-1.6
-1.4
-1.2

-1
-0.8
-0.6
-0.4

-1 -0.5 0 0.5 1 1.5 2 2.5 3

A
ve

ra
ge

 n
or

m
al

iz
ed

 C
PU

 ti
m

e

Average normalized objective value

5 problems are not solved.

-5

0

5

10

15

20

25

-1 -0.5 0 0.5 1 1.5 2 2.5 3

A
ve

ra
ge

 n
or

m
al

iz
ed

 C
PU

 ti
m

e

Average normalized objective value

All 12 problems are solved.

-2

0

2

4

6

8

10

12

14

-1 -0.5 0 0.5 1 1.5 2 2.5 3

A
ve

ra
ge

 n
or

m
al

iz
ed

 C
PU

 ti
m

e

Average normalized objective value

All 12 problems are solved.

a) N2-S1-T1 b) N2-S1-T2 c) N2-S1-T3

-1.1
-1

-0.9
-0.8
-0.7
-0.6
-0.5
-0.4
-0.3
-0.2
-0.1

0

-1 -0.5 0 0.5 1 1.5 2 2.5 3

A
ve

ra
ge

 n
or

m
al

iz
ed

 C
PU

 ti
m

e

Average normalized objective value

5 problems are not solved.

-5

0

5

10

15

20

25

-1 -0.5 0 0.5 1 1.5 2 2.5 3

A
ve

ra
ge

 n
or

m
al

iz
ed

 C
PU

 ti
m

e

Average normalized objective value

All 12 problems are solved.

-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

-1 -0.5 0 0.5 1 1.5 2 2.5 3

A
ve

ra
ge

 n
or

m
al

iz
ed

 C
PU

 ti
m

e

Average normalized objective value

2 problems are not solved.

d) N2-S2-T1 e) N2-S2-T2 f) N2-S2-T3

-1
-0.9
-0.8
-0.7
-0.6
-0.5
-0.4
-0.3
-0.2
-0.1

0

-1 -0.5 0 0.5 1 1.5 2 2.5 3

A
ve

ra
ge

 n
or

m
al

iz
ed

 C
PU

 ti
m

e

Average normalized objective value

5 problems are not solved.

-0.5

0

0.5

1

1.5

2

2.5

-1 -0.5 0 0.5 1 1.5 2 2.5 3

A
ve

ra
ge

 n
or

m
al

iz
ed

 C
PU

 ti
m

e

Average normalized objective value

All 12 problems are solved.

-1

-0.5

0

0.5

1

1.5

2

2.5

-1 -0.5 0 0.5 1 1.5 2 2.5 3

A
ve

ra
ge

 n
or

m
al

iz
ed

 C
PU

 ti
m

e

Average normalized objective value

All 12 problems are solved.

g) N2-S3-T1 h) N2-S3-T2 i) N2-S3-T3

Figure 4.6: Comparisons of average relative CPU times and average relative solution qualities

under different parameters/strategies (using Gaussian distribution) normalized with respect to the

reference strategy N1-S3-T2 (Cauchy distribution, tabu-list Q size = 10, v = 1.2) in solving 12

difficult mixed-integer constrained NLPs. All runs were made on a Pentium III 500MHz computer

with Solaris 7.

104

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

-1 -0.5 0 0.5 1 1.5 2 2.5 3

A
ve

ra
ge

 n
or

m
al

iz
ed

 C
PU

 ti
m

e

Average normalized objective value

5 problems are not solved.

-3

-2

-1

0

1

2

3

4

5

-1 -0.5 0 0.5 1 1.5 2 2.5 3

A
ve

ra
ge

 n
or

m
al

iz
ed

 C
PU

 ti
m

e

Average normalized objective value

All 12 problems are solved.

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

-1 -0.5 0 0.5 1 1.5 2 2.5 3

A
ve

ra
ge

 n
or

m
al

iz
ed

 C
PU

 ti
m

e

Average normalized objective value

All 12 problems are solved.

a) N3-S1-T1 b) N3-S1-T2 c) N3-S1-T3

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

-1 -0.5 0 0.5 1 1.5 2 2.5 3

A
ve

ra
ge

 n
or

m
al

iz
ed

 C
PU

 ti
m

e

Average normalized objective value

5 problems are not solved.

-1.5
-1

-0.5
0

0.5
1

1.5
2

2.5
3

-1 -0.5 0 0.5 1 1.5 2 2.5 3

A
ve

ra
ge

 n
or

m
al

iz
ed

 C
PU

 ti
m

e

Average normalized objective value

All 12 problems are solved.

-1.5

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1 1.5 2 2.5 3

A
ve

ra
ge

 n
or

m
al

iz
ed

 C
PU

 ti
m

e

Average normalized objective value

All 12 problems are solved.

d) N3-S2-T1 e) N3-S2-T2 f) N3-S2-T3

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

-1 -0.5 0 0.5 1 1.5 2 2.5 3

A
ve

ra
ge

 n
or

m
al

iz
ed

 C
PU

 ti
m

e

Average normalized objective value

5 problems are not solved.

-0.5

0

0.5

1

1.5

2

2.5

-1 -0.5 0 0.5 1 1.5 2 2.5 3

A
ve

ra
ge

 n
or

m
al

iz
ed

 C
PU

 ti
m

e

Average normalized objective value

All 12 problems are solved.

-1.5

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1 1.5 2 2.5 3

A
ve

ra
ge

 n
or

m
al

iz
ed

 C
PU

 ti
m

e

Average normalized objective value

All 12 problems are solved.

g) N3-S3-T1 h) N3-S2-T2 i) N3-S3-T3

Figure 4.7: Comparisons of average relative CPU times and average relative solution qualities

under different parameters/strategies (using uniform random distribution) normalized with respect

to the reference strategy N1-S3-T2 (Cauchy distribution, tabu-listQ size = 10, v = 1.2) in solving 12

difficult mixed-integer constrained NLPs. All runs were made on a Pentium III 500MHz computer

with Solaris 7.

105

-15

-14.5

-14

-13.5

-13

-12.5

-12

3.4 3.6 3.8 4 4.2 4.4 4.6 4.8

So
lu

tio
n

qu
al

ity

Time in seconds

-0.8

-0.78

-0.76

-0.74

-0.72

-0.7

-0.68

-0.66

12.5 13 13.5 14 14.5 15 15.5 16 16.5 17

So
lu

tio
n

qu
al

ity

Time in seconds

4200

4300

4400

4500

4600

4700

4800

0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

So
lu

tio
n

qu
al

ity

Time in seconds

a) Problem G1 b) Problem G2 c) Problem G5

-18
-16
-14
-12
-10
-8
-6
-4
-2
0
2

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6

So
lu

tio
n

qu
al

ity

Time in seconds

-4500

-4000

-3500

-3000

-2500

-2000

-1500

-1000

-500

0

4 5 6 7 8 9 10 11 12

So
lu

tio
n

qu
al

ity

Time in seconds

1.95

2

2.05

2.1

2.15

2.2

2.25

2.3

0 100 200 300 400 500 600 700 800 900

So
lu

tio
n

qu
al

ity

Time in seconds

d) Problem 2.1 e) Problem 2.7.5 f) Problem 5.2

1.864

1.86405

1.8641

1.86415

1.8642

1.86425

1.8643

16 18 20 22 24 26 28 30 32 34 36

So
lu

tio
n

qu
al

ity

Time in seconds

-400

-350

-300

-250

-200

-150

-100

-50

5 10 15 20 25 30

So
lu

tio
n

qu
al

ity

Time in seconds

-800

-700

-600

-500

-400

-300

-200

-100

0 10 20 30 40 50 60

So
lu

tio
n

qu
al

ity

Time in seconds

g) Problem 5.4 h) Problem 6.2 i) Problem 6.4

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

15 30 45 60 75 90 105

So
lu

tio
n

qu
al

ity

Time in seconds

1.1

1.2

1.3

1.4

1.5

1.6

1.7

200 400 600 800

So
lu

tio
n

qu
al

ity

Time in seconds

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

800 1600 2400 3200 4000

So
lu

tio
n

qu
al

ity

Time in seconds

j) Problem 7.2 k) Problem 7.3 l) Problem 7.4

Figure 4.8: Performance of DLM-General using N1-S2-T2 (Cauchy, tabu-list Q size = 6 and

v = 1.2) on 12 difficult derived discrete constrained NLPs. All runs were made on a Pentium III

500MHz computer with Solaris 7. The solutions in Problems 7.2-7.4 have been normalized by their

best-known solutions.

106

-15

-14.5

-14

-13.5

-13

-12.5

-12

3.4 3.6 3.8 4 4.2 4.4 4.6

So
lu

tio
n

qu
al

ity

Time in seconds

-0.8

-0.78

-0.76

-0.74

-0.72

-0.7

-0.68

-0.66

12.5 13 13.5 14 14.5 15 15.5 16 16.5

So
lu

tio
n

qu
al

ity

Time in seconds

4200

4300

4400

4500

4600

4700

4800

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7

So
lu

tio
n

qu
al

ity

Time in seconds

a) Problem G1 b) Problem G2 c) Problem G5

-18
-16
-14
-12
-10
-8
-6
-4
-2
0
2

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6

So
lu

tio
n

qu
al

ity

Time in seconds

-4500

-4000

-3500

-3000

-2500

-2000

-1500

-1000

-500

0

4 5 6 7 8 9 10 11 12

So
lu

tio
n

qu
al

ity

Time in seconds

2

2.05

2.1

2.15

2.2

2.25

2.3

0 100 200 300 400 500 600 700 800 900

So
lu

tio
n

qu
al

ity

Time in seconds

d) Problem 2.1 e) Problem 2.7.5 f) Problem 5.2

1.864

1.86405

1.8641

1.86415

1.8642

1.86425

1.8643

17 18 19 20 21 22 23 24 25

So
lu

tio
n

qu
al

ity

Time in seconds

-400

-350

-300

-250

-200

-150

-100

5 10 15 20 25 30 35

So
lu

tio
n

qu
al

ity

Time in seconds

-800

-700

-600

-500

-400

-300

-200

-100

5 10 15 20 25 30 35 40 45 50 55

So
lu

tio
n

qu
al

ity

Time in seconds

g) Problem 5.4 h) Problem 6.2 i) Problem 6.4

1
1.05
1.1

1.15
1.2

1.25
1.3

1.35
1.4

1.45
1.5

1.55

0 20 40 60 80 100 120

So
lu

tio
n

qu
al

ity

Time in seconds

1.1

1.2

1.3

1.4

1.5

1.6

1.7

0 200 400 600 800 1000 1200

So
lu

tio
n

qu
al

ity

Time in seconds

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

600 900 1200 1500 1800 2100

So
lu

tio
n

qu
al

ity

Time in seconds

j) Problem 7.2 k) Problem 7.3 l) Problem 7.4

Figure 4.9: Performance of DLM-General using N1-S2-T2 (Cauchy, tabu-list Q size = 6 and

v = 1.2) on 12 difficult continuous constrained NLPs. All runs were made on a Pentium III

500MHz computer with Solaris 7. The solutions in Problems 7.2-7.4 have been normalized by their

best-known solutions.

107

-15

-14.5

-14

-13.5

-13

-12.5

-12

3.4 3.6 3.8 4 4.2 4.4 4.6

So
lu

tio
n

qu
al

ity

Time in seconds

-0.8

-0.78

-0.76

-0.74

-0.72

-0.7

-0.68

-0.66

12 12.5 13 13.5 14 14.5 15 15.5 16 16.5 17

So
lu

tio
n

qu
al

ity

Time in seconds

4200

4300

4400

4500

4600

4700

4800

4900

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7

So
lu

tio
n

qu
al

ity

Time in seconds

a) Problem G1 b) Problem G2 c) Problem G5

-18
-16
-14
-12
-10
-8
-6
-4
-2
0
2

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7

So
lu

tio
n

qu
al

ity

Time in seconds

-4500

-4000

-3500

-3000

-2500

-2000

-1500

-1000

-500

0

4 5 6 7 8 9 10 11 12

So
lu

tio
n

qu
al

ity

Time in seconds

1.95

2

2.05

2.1

2.15

2.2

2.25

2.3

0 100 200 300 400 500 600 700 800 900

So
lu

tio
n

qu
al

ity

Time in seconds

d) Problem 2.1 e) Problem 2.7.5 f) Problem 5.2

1.864

1.86405

1.8641

1.86415

1.8642

1.86425

1.8643

14 15 16 17 18 19 20 21 22 23 24

So
lu

tio
n

qu
al

ity

Time in seconds

-400

-350

-300

-250

-200

-150

-100

5 10 15 20 25 30 35

So
lu

tio
n

qu
al

ity

Time in seconds

-800

-700

-600

-500

-400

-300

-200

-100

5 10 15 20 25 30 35 40 45

So
lu

tio
n

qu
al

ity

Time in seconds

g) Problem 5.4 h) Problem 6.2 i) Problem 6.4

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

10 20 30 40 50 60 70 80 90100110120

So
lu

tio
n

qu
al

ity

Time in seconds

1.15
1.2

1.25
1.3

1.35
1.4

1.45
1.5

1.55
1.6

1.65

200 400 600 800 1000

So
lu

tio
n

qu
al

ity

Time in seconds

1
1.05
1.1

1.15
1.2

1.25
1.3

1.35
1.4

1.45
1.5

600 900 1200 1500 1800 2100

So
lu

tio
n

qu
al

ity

Time in seconds

j) Problem 7.2 k) Problem 7.3 l) Problem 7.4

Figure 4.10: Performance of DLM-General using N1-S2-T2 (Cauchy, tabu-list Q size = 6 and

v = 1.2) on 12 difficult derived mixed-integer constrained NLPs. All runs were made on a Pentium

III 500MHz computer with Solaris 7. The solutions in Problems 7.2-7.4 have been normalized by

their best-known solutions.

108

Table 4.2: Performance comparison of DLM-General and CSA in solving discrete constrained
NLPs derived from continuous constrained NLPs G1-G10 [135, 121]. All timing results in seconds
were collected on a Pentinum III 500-MHz computer with Solaris 7. For all problems except G2,
CSA was able to find the optimal solutions in the times reported. For G2, CSA has a 97% success
ratio. ‘-’ stands for no solution found for the solution quality specified within 100 feasible DLM
runs. ‘SR’ stands for success ratio of finding solutions with specified quality within 100 feasible
DLM runs.

Problem Var. Constraints Best. 0% 1% 5% 10% 15% 25% CSA

ID no. total eq. known SR sec SR sec SR sec SR sec SR sec SR sec time

G1 13 35 0 -15 85 5.26 85 5.26 85 5.26 85 5.26 90 4.97 100 4.47 19.5

G2 20 42 0 -0.80362 0 - 3 486.53 52 28.07 83 17.59 95 15.36 100 14.60 54.0

G3 20 41 1 1.0 92 12.43 100 11.43 100 11.43 100 11.43 100 11.43 100 11.43 37.1

G4 5 16 0 -30665 7 14.87 46 2.26 100 1.04 100 1.04 100 1.04 100 1.04 3.12

G5 4 13 3 4221.9 20 4.40 85 1.03 93 0.95 96 0.92 99 0.89 99 0.89 1.95

G6 2 6 0 -6961.81 1 13.30 49 0.27 49 0.27 49 0.27 49 0.27 49 0.27 0.644

G7 10 28 0 24.3062 51 6.11 100 3.12 100 3.12 100 3.12 100 3.12 100 3.12 16.1

G8 2 6 0 0.095825 0 - 0 - 96 0.30 96 0.30 97 0.30 97 0.30 0.792

G9 7 18 0 680.63 0 - 100 1.55 100 1.55 100 1.55 100 1.55 100 1.55 4.75

G10 7 18 0 1.00 0 - 5 39.40 66 2.98 91 2.16 95 2.07 98 2.01 5.82

the best solution. The results show that if the requirement on solution quality is around 5%

to 25%, DLM usually takes less time than CSA. DLM, however, has no advantage over CSA

in terms of CPU times when locating optimal or near-optimal solutions. This is expected as

DLM is a local search, whereas CSA is a global-optimization algorithm. Besides CSA and

DLM, we know of no other algorithms in the literature that solve these problems in their

discrete and mixed-integer versions.

Next, Tables 4.5 thru 4.7 report, respectively, the performance of DLM on solving con-

tinuous and the corresponding discrete and mixed-integer versions of Floudas and Pardalos’

constrained NLP [57]. Besides listing columns with similar meaning as those in Table 4.2,

Tables 4.5 thru 4.7 also list the timing results of 100 runs of CSA, as CSA did not find the

best solution in each run. The results lead to similar observations as those on evaluating G1

thru G10.

109

Table 4.3: Performance comparison of DLM-General and CSA in solving continuous constrained
NLPs: G1-G10 [135, 121]. All timing results in seconds were collected on a Pentinum III 500-MHz
computer with Solaris 7. For all problems except G2, CSA was able to find the optimal solutions
in the times reported. ‘-’ stands for no solution found for the solution quality specified within 100
feasible DLM runs. ‘SR’ stands for success ratio of finding solutions with specified quality within
100 feasible DLM runs.

Problem Var. Constraints Best. 0% 1% 5% 10% 15% 25% CSA
ID no. total eq. known SR sec SR sec SR sec SR sec SR sec SR sec time
G1 13 35 0 -15 85 5.09 85 5.09 85 5.09 85 5.09 90 4.81 100 4.33 15.2
G2 20 42 0 -0.80362 0 - 3 488.30 56 26.16 87 16.84 97 15.10 100 14.65 53.8
G3 20 41 1 1.0 99 11.30 100 11.19 100 11.19 100 11.19 100 11.19 100 11.19 37.2
G4 5 16 0 -30665 10 10.01 45 2.22 100 1.00 100 1.00 100 1.00 100 1.00 1.76
G5 4 13 3 4221.9 20 4.22 85 0.99 94 0.90 96 0.88 99 0.85 99 0.85 1.62
G6 2 6 0 -6961.81 1 12.80 49 0.26 49 0.26 49 0.26 49 0.26 49 0.26 0.518
G7 10 28 0 24.3062 62 4.83 100 3.00 100 3.00 100 3.00 100 3.00 100 3.00 14.0
G8 2 6 0 0.095825 0 - 0 - 93 0.30 93 0.30 94 0.30 94 0.30 0.798
G9 7 18 0 680.63 0 - 100 1.47 100 1.47 100 1.47 100 1.47 100 1.47 4.48
G10 7 18 0 1.00 1 195.30 8 24.41 59 3.31 85 2.30 93 2.10 95 2.06 4.69

Finally, we apply DLM to solve continuous constrained NLP benchmarks in CUTE [26].

We select from CUTE those problems with at least a nonlinear objective or one or more

nonlinear constraints. These CUTE problems are all minimization problems; some of which

were constructed specifically by researchers to test optimization algorithms, while others

were from real applications, such as semiconductor analysis in physics, chemical reactions in

chemistry, economic equilibrium in economic analysis, and computer production planning in

operations research. Both the number of variables and the number of constraints in CUTE

can be as large as several thousands.

Table 4.8 reports the results on solving the selected nonlinear constrained problems in

CUTE [26] using the given starting point specified for each problem. The first two columns

show, respectively, the problem IDs and the number (nv = n) of variables. The next five

columns show the type of the objective function (linear, quadratic, or nonlinear), the num-

ber of linear equality constraints (nle), the number of nonlinear equality constraints (nne),

the number of linear inequality constraints (nli), and the number of nonlinear inequality

110

Table 4.4: Performance comparison of DLM-General and CSA in solving constrained MINLPs
based on continuous constrained NLPs G1-G10 [135, 121]. All timing results in seconds were
collected on a Pentinum III 500-MHz computer with Solaris 7. For all problems except G2, CSA
was able to find the optimal solutions in the times reported. For G2, CSA has a 95% success ratio.
‘-’ stands for no solution found for the solution quality specified within 100 feasible DLM runs. ‘SR’
stands for success ratio of finding solutions with specified quality within 100 feasible DLM runs.

Problem Var. Constraints Best. 0% 1% 5% 10% 15% 25% CSA

ID no. total eq. known SR sec SR sec SR sec SR sec SR sec SR sec time

G1 13 35 0 -15 84 5.23 85 5.17 85 5.17 85 5.17 90 4.88 100 4.40 18.8

G2 20 42 0 -0.80362 0 - 0 - 57 25.62 82 17.81 94 15.54 100 14.61 53.4

G3 20 41 1 1.0 99 11.43 100 11.32 100 11.32 100 11.32 100 11.32 100 11.32 36.2

G4 5 16 0 -30665 9 11.41 46 2.23 100 1.03 100 1.03 100 1.03 100 1.03 2.98

G5 4 13 3 4221.9 15 5.77 85 1.02 94 0.92 96 0.90 100 0.87 100 0.87 1.88

G6 2 6 0 -6961.81 0 - 49 0.27 49 0.27 49 0.27 49 0.27 49 0.27 0.605

G7 10 28 0 24.3062 59 5.17 97 3.14 100 3.05 100 3.05 100 3.05 100 3.05 15.6

G8 2 6 0 0.095825 0 - 0 - 94 0.30 95 0.30 96 0.29 96 0.29 0.759

G9 7 18 0 680.63 0 - 100 1.50 100 1.50 100 1.50 100 1.50 100 1.50 4.61

G10 7 18 0 1.00 0 - 9 22.48 65 3.11 89 2.27 96 2.11 96 2.11 5.43

constraints (nni). The last eight columns show the solutions and CPU times that we obtain

by using LANCELOT [42, 123], DONLP2 [192], CSA and DLM, respectively.

From the CPU times and solution qualities listed in Table 4.8, we conclude that methods

based on sampling, like CSA and DLM, cannot compete in CPU times with methods utilizing

gradients, like DONLP2 and LANCELOT. However, for problems like AVION2, CRESC4,

HIMMELBJ, HS109, LAUNCH, and NET1, neither DONLP2 nor LANCELOT can solve

them while CSA and DLM were able to find feasible solutions.

111

Table 4.5: Performance comparison of DLM-General and CSA in solving discrete constrained NLPs based on Floudas and Pardalos’
continuous constrained NLPs [57]. All timing results in seconds were collected on a Pentinum III 500-MHz computer with Solaris 7.
‘-’ stands for no solution found for the solution quality specified within 100 feasible DLM runs. ‘SR’ stands for success ratio of finding
solutions with specified quality within 100 feasible DLM runs.

Benchmark Continuous NLPs DLM CSA

Problem Var. Constraints Best. 0% 1% 5% 10% 15% 25% best avg. frac. avg.

ID no. total eq. known SR sec SR sec SR sec SR sec SR sec SR sec diff. diff. best time

2.1 5 11 0 -17 3 32.87 3 32.87 8 12.32 13 7.58 13 7.58 33 2.99 0 0.4 44 1.59

2.2 6 2 0 -213 5 22.76 8 14.22 100 1.14 100 1.14 100 1.14 100 1.14 0 0 100 2.18

2.3 13 35 0 -15 85 3.42 85 3.42 85 3.42 85 3.42 90 3.23 99 2.93 0 0 100 17.4

2.4 6 17 0 -11 1 123.20 9 13.69 69 1.79 69 1.79 69 1.79 97 1.27 0 0 100 3.09

2.5 10 31 0 -268 46 5.29 99 2.46 100 2.44 100 2.44 100 2.44 100 2.44 0 0 100 24.2

2.6 10 31 0 -39 18 11.27 18 11.27 18 11.27 26 7.80 27 7.51 52 3.90 0 0.1 96 11.0

2.7.1 20 50 0 -394.75 0 - 3 395.17 26 45.60 26 45.60 27 43.91 37 32.04 0 1.96 98 105.1

2.7.2 20 50 0 -884.75 0 - 23 50.42 38 30.52 60 19.33 69 16.81 100 11.60 0 6.52 92 102.7

2.7.3 20 50 0 -8695.0 0 - 0 - 3 377.07 62 18.25 95 11.91 100 11.31 0 0 100 98.9

2.7.4 20 50 0 -754.75 0 - 6 195.62 6 195.62 7 167.67 7 167.67 98 11.98 0 0 100 102.7

2.7.5 20 50 0 -4150.4 0 - 0 - 46 24.00 62 17.81 74 14.92 74 14.92 0 47.4 75 115.6

2.8 24 10 10 15639 0 - 0 - 0 - 0 - 0 - 0 - 0 0 100 81.7

3.1 8 22 0 7049.33 0 - 7 308.61 28 77.15 92 23.48 100 21.60 100 21.60 0 0 100 5.82

3.2 4 16 0 -30665.5 53 1.65 98 0.89 100 0.88 100 0.88 100 0.88 100 0.88 0 0 100 3.12

3.3 6 18 0 -310 0 - 10 14.62 33 4.43 48 3.05 58 2.52 67 2.18 0 0 100 2.70

3.4 3 9 0 -4 2 16.45 92 0.36 94 0.35 94 0.35 94 0.35 96 0.34 0 0 100 1.05

4.3 4 9 1 -4.51 7 13.43 7 13.43 12 7.83 17 5.53 20 4.70 30 3.13 0 0 100 1.78

4.4 4 9 1 -2.217 0 - 0 - 22 4.12 22 4.12 27 3.36 36 2.52 0 0.003 92 1.94

4.5 6 15 3 -13.4 9 20.20 11 16.53 29 6.27 75 2.42 80 2.27 85 2.14 0 0 100 3.95

4.6 2 6 0 -5.51 46 0.57 46 0.57 46 0.57 46 0.57 46 0.57 61 0.43 0 0 100 0.656

4.7 2 5 1 -16.74 28 0.89 99 0.25 99 0.25 99 0.25 99 0.25 99 0.25 0 0 100 0.601

5.2 46 86 36 1.567 0 - 0 - 0 - 0 - 0 - 1 9089.00 0.0 0.157 1 639.0

5.4 32 58 26 1.86 0 - 99 20.57 99 20.57 99 20.57 99 20.57 99 20.57 0 0.16 3 172.0

6.2 5 17 4 400 0 - 0 - 8 155.50 43 28.93 64 19.44 70 17.77 0 0 100 5.54

6.3 5 17 4 600 0 - 0 - 0 - 2 383.35 6 127.78 18 42.59 0 1.0 94 5.82

6.4 5 17 4 750 0 - 0 - 23 56.37 41 31.62 47 27.59 54 24.01 0 0 100 6.92

7.2 16 41 13 1.0 0 - 0 - 0 - 3 543.57 7 232.96 18 90.59 0.03 0.25 1 48.6

7.3 27 64 19 1.0 0 - 0 - 0 - 0 - 1 17395.80 20 869.79 0.15 0.46 1 153.8

7.4 38 90 23 1.0 0 - 0 - 1 99885.00 7 14269.29 15 6659.00 25 3995.40 0.03 0.15 1 332.3

112

Table 4.6: Performance comparison of DLM-General and CSA in solving Floudas and Pardalos’ continuous constrained NLPs [57].
All timing results in seconds were collected on a Pentinum III 500-MHz computer with Solaris 7. ‘-’ stands for no solution found for the
solution quality specified within 100 feasible DLM runs. ‘SR’ stands for success ratio of finding solutions with specified quality within
100 feasible DLM runs.

Benchmark Continuous NLPs DLM CSA

Problem Var. Constraints Best. 0% 1% 5% 10% 15% 25% best avg. frac. avg.

ID no. total eq. known SR sec SR sec SR sec SR sec SR sec SR sec diff. diff. best time

2.1 5 11 0 -17 3 31.53 3 31.53 8 11.82 13 7.28 13 7.28 33 2.87 0 0.32 52 1.26

2.2 6 2 0 -213 12 9.04 17 6.38 100 1.08 100 1.08 100 1.08 100 1.08 0 0 100 1.82

2.3 13 35 0 -15 85 3.26 85 3.26 85 3.26 85 3.26 90 3.08 100 2.77 0 0 100 15.2

2.4 6 17 0 -11 2 58.20 8 14.55 70 1.66 70 1.66 70 1.66 99 1.18 0 0 100 2.75

2.5 10 31 0 -268 46 5.13 99 2.39 100 2.36 100 2.36 100 2.36 100 2.36 0 0 100 23.1

2.6 10 31 0 -39 21 9.37 21 9.37 21 9.37 29 6.79 29 6.79 51 3.86 0 0.1 96 10.4

2.7.1 20 50 0 -394.75 0 - 0 - 24 47.89 24 47.89 24 47.89 34 33.81 0 0 100 79.5

2.7.2 20 50 0 -884.75 0 - 23 49.53 35 32.55 69 16.51 75 15.19 97 11.74 0 0 100 98.2

2.7.3 20 50 0 -8695.0 0 - 0 - 6 180.50 67 16.16 96 11.28 100 10.83 0 28.9 98 98.7

2.7.4 20 50 0 -754.75 0 - 5 230.40 5 230.40 5 230.40 6 192.00 98 11.76 0 0 100 98.1

2.7.5 20 50 0 -4150.4 0 - 0 - 50 21.56 62 17.39 72 14.98 74 14.57 0 37.6 78 108.0

2.8 24 10 10 15639 0 - 0 - 0 - 0 - 0 - 0 - 0 0 100 77.2

3.1 8 22 0 7049.33 0 - 1 2043.40 22 92.88 99 20.64 100 20.43 100 20.43 0 0 100 4.69

3.2 4 16 0 -30665.5 43 1.96 99 0.85 100 0.84 100 0.84 100 0.84 100 0.84 0 0 100 1.76

3.3 6 18 0 -310 2 69.95 11 12.72 34 4.11 47 2.98 57 2.45 66 2.12 0 0 100 3.04

3.4 3 9 0 -4 3 10.43 92 0.34 93 0.34 93 0.34 93 0.34 96 0.33 0 0 100 0.859

4.3 4 9 1 -4.51 5 18.36 6 15.30 11 8.35 15 6.12 22 4.17 32 2.87 0 0 100 1.51

4.4 4 9 1 -2.217 0 - 0 - 22 4.05 23 3.87 27 3.30 36 2.47 0 0.003 92 1.68

4.5 6 15 3 -13.4 8 22.38 11 16.27 32 5.59 74 2.42 78 2.29 87 2.06 0 0 100 3.63

4.6 2 6 0 -5.51 43 0.57 43 0.57 43 0.57 43 0.57 44 0.56 59 0.42 0 0 100 0.538

4.7 2 5 1 -16.74 26 0.92 98 0.24 98 0.24 98 0.24 98 0.24 98 0.24 0 0 100 0.481

5.2 46 86 36 1.567 0 - 0 - 0 - 0 - 0 - 0 - 0 0.153 1 485.1

5.4 32 58 26 1.86 0 - 100 19.79 100 19.79 100 19.79 100 19.79 100 19.79 0 0.17 2 176.1

6.2 5 17 4 400 0 - 0 - 3 393.70 42 28.12 64 18.45 70 16.87 0 0 100 4.71

6.3 5 17 4 600 0 - 0 - 0 - 4 188.10 7 107.49 17 44.26 0 0.3 98 5.37

6.4 5 17 4 750 0 - 0 - 26 49.07 44 29.00 47 27.15 54 23.63 0 0 100 5.95

7.2 16 41 13 1.0 0 - 0 - 2 816.90 10 163.38 13 125.68 20 81.69 0.02 0.24 1 41.83

7.3 27 64 19 1.0 0 - 0 - 0 - 0 - 2 9129.55 19 961.01 0.07 0.48 1 134.5

7.4 38 90 23 1.0 0 - 0 - 3 29468.00 16 5525.25 22 4018.36 39 2266.77 0.02 0.24 1 443.1

113

Table 4.7: Performance comparison of DLM-General and CSA in solving constrained MINLPs based on Floudas and Pardalos’
continuous constrained NLPs [57]. All timing results were collected on a Pentinum III 500-MHz computer with Solaris 7. ‘-’ stands for
no solution found for the solution quality specified within 100 feasible DLM runs. ‘SR’ stands for success ratio of finding solutions with
specified quality within 100 feasible DLM runs.

Benchmark Continuous NLPs DLM CSA

Problem Var. Constraints Best. 0% 1% 5% 10% 15% 25% best avg. frac. avg.

ID no. total eq. known SR sec SR sec SR sec SR sec SR sec SR sec diff. diff. best time

2.1 5 11 0 -17 3 32.50 3 32.50 8 12.19 13 7.50 13 7.50 33 2.95 0 0.4 41 1.48

2.2 6 2 0 -213 15 7.39 20 5.54 100 1.11 100 1.11 100 1.11 100 1.11 0 0 100 2.01

2.3 13 35 0 -15 85 3.37 85 3.37 85 3.37 85 3.37 90 3.18 99 2.89 0 0 100 16.8

2.4 6 17 0 -11 4 29.95 13 9.22 70 1.71 70 1.71 70 1.71 99 1.21 0 0 100 2.89

2.5 10 31 0 -268 49 4.87 97 2.46 100 2.39 100 2.39 100 2.39 100 2.39 0 0 100 23.6

2.6 10 31 0 -39 18 11.10 18 11.10 18 11.10 26 7.68 26 7.68 48 4.16 0 0.1 93 10.6

2.7.1 20 50 0 -394.75 0 - 0 - 25 46.56 25 46.56 25 46.56 37 31.46 0 0 100 103.4

2.7.2 20 50 0 -884.75 0 - 33 35.04 53 21.82 70 16.52 79 14.64 99 11.68 0 2.89 96 101.2

2.7.3 20 50 0 -8695.0 0 - 0 - 6 182.62 55 19.92 97 11.30 100 10.96 0 28.9 98 97.3

2.7.4 20 50 0 -754.75 0 - 5 233.14 5 233.14 6 194.28 6 194.28 98 11.89 0 0 100 101.1

2.7.5 20 50 0 -4150.4 0 - 0 - 48 22.67 58 18.76 73 14.91 73 14.91 0 31.1 81 114.0

2.8 24 10 10 15639 0 - 0 - 0 - 0 - 0 - 0 - 0 0 100 79.5

3.1 8 22 0 7049.33 0 - 5 432.24 27 80.04 94 22.99 100 21.61 100 21.61 0 0 100 5.43

3.2 4 16 0 -30665.5 46 1.89 99 0.88 100 0.87 100 0.87 100 0.87 100 0.87 0 0 100 2.98

3.3 6 18 0 -310 1 143.10 10 14.31 33 4.34 47 3.04 58 2.47 66 2.17 0 0 100 2.57

3.4 3 9 0 -4 3 10.70 93 0.35 93 0.35 93 0.35 93 0.35 96 0.33 0 0 100 1.01

4.3 4 9 1 -4.51 7 13.33 8 11.66 11 8.48 15 6.22 19 4.91 32 2.92 0 0 100 1.69

4.4 4 9 1 -2.217 0 - 0 - 22 4.12 22 4.12 27 3.36 34 2.66 0 0.003 92 1.86

4.5 6 15 3 -13.4 11 16.38 11 16.38 31 5.81 73 2.47 80 2.25 85 2.12 0 0 100 3.78

4.6 2 6 0 -5.51 43 0.59 44 0.57 44 0.57 44 0.57 44 0.57 58 0.43 0 0 100 0.618

4.7 2 5 1 -16.74 33 0.74 99 0.25 99 0.25 99 0.25 99 0.25 99 0.25 0 0 100 0.548

5.2 46 86 36 1.567 0 - 0 - 0 - 0 - 0 - 0 - 0.02 0.167 1 632.8

5.4 32 58 26 1.86 0 - 100 20.27 100 20.27 100 20.27 100 20.27 100 20.27 0 0.17 3 168.5

6.2 5 17 4 400 0 - 0 - 4 301.57 44 27.42 64 18.85 71 16.99 0 0 100 5.26

6.3 5 17 4 600 0 - 0 - 0 - 2 387.60 6 129.20 18 43.07 0 0.8 94 5.52

6.4 5 17 4 750 0 - 0 - 20 65.94 43 30.67 46 28.67 55 23.98 0 0 100 6.46

7.2 16 41 13 1.0 0 - 0 - 0 - 5 296.78 13 114.15 24 61.83 0.03 0.26 1 47.7

7.3 27 64 19 1.0 0 - 0 - 0 - 0 - 0 - 15 1194.05 0.17 0.46 1 153.3

7.4 38 90 23 1.0 0 - 0 - 2 46620.50 13 7172.38 25 3729.64 47 1983.85 0.02 0.17 1 333.5

114

Table 4.8: Comparison results of LANCELOT, DONLP2, CSA and DLM in solving selected
continuous problems from CUTE using specified starting points in the benchmark. All timing
results are in seconds and were collected on a Pentium-III 500-MHz computer running Solaris 7.
′−′ means that no feasible solution was found, and ′∗′ means that solutions were obtained by the
commercial version of LANCELOT (by submitting problems through [124]) but no CPU times
were available. Numbers in bold represent the best solutions among the four methods if they have
different solutions. Note that the objective functions f(x) in CUTE can be linear, quadratic or
nonlinear. For simplicity, we use L, Q and N to denote them respectively.

Problem nv f
h(x) g(x) LANCELOT DONLP2 CSA DLM

nle nne nli nni sol. CPU sol. CPU sol. CPU sol. CPU

ALJAZZAF 3 Q 0 1 0 0 75.0 0.46 - - 75.0 1.38 7.3683 · 109 0.07

ALLINITC 4 N 0 0 0 1 30.44 * 31.75 0.02 30.44 4.76 2.6733 · 1017 1.22

ALSOTAME 2 N 0 1 0 0 0.082 0.57 0.082 0.03 0.082 0.80 0.0821 0.24

AVION2 49 N 15 0 0 0 - - - - 9.47 · 10
7 946.7 9.7153 · 107 205.11

BATCH 46 N 12 0 60 1 - - - - 2.59 · 10
5 12465 - -

BRAINPC0 6907 N 0 6900 0 0 0.0015 55.5 - - - - - -

BRAINPC1 6907 N 0 6900 0 0 0.0 84.8 - - - - - -

BRAINPC2 13807 N 0 13800 0 0 4.1 · 10−8 93.2 - - - - - -

BRAINPC3 6907 N 0 6900 0 0 1.687 · 10−4 89.4 - - - - - -

BRAINPC4 6907 N 0 6900 0 0 1.288 · 10−3 79.1 - - - - - -

BRAINPC5 6907 N 0 6900 0 0 1.362 · 10−3 143.7 - - - - - -

BRAINPC6 6907 N 0 6900 0 0 5.931 · 10−5 85.2 - - - - - -

BRAINPC7 6907 N 0 6900 0 0 3.82 · 10−5 109.4 - - - - - -

BRAINPC8 6907 N 0 6900 0 0 1.652 · 10−4 112.8 - - - - - -

BRAINPC9 6907 N 0 6900 0 0 8.27 · 10−4 68.2 - - - - - -

BRIDGEND 2734 L 1304 1423 0 0 - - - - - - - -

BRITGAS 450 N 0 360 0 0 0 8.3 - - - - - -

BT11 5 N 1 2 0 0 0.825 0.62 0.825 0.02 0.825 3.73 1.4127 · 1014 0.31

BT12 5 Q 0 3 0 0 6.188 0.47 6.188 0.02 6.188 3.25 3401.0662 7.61

BT6 5 N 0 2 0 0 0.277 0.56 0.277 0.03 0.277 4.61 5.0386 · 1010 0.72

BT7 5 N 0 3 0 0 306.5 0.51 360.4 0.03 306.5 3.38 4.7796 · 1010 4.96

BT8 5 Q 0 2 0 0 1.0 0.57 1.0 0.02 1.0 2.93 1.4459 · 106 8.43

C-RELOAD 342 L 26 174 0 84 -1.027 51.1 - - - - -

CB2 3 L 0 0 0 3 1.952 0.60 1.952 0.03 1.952 2.49 1.9542 0.35

CRESC4 6 N 0 0 0 8 - - - - 0.872 37.9 29.6295 17.00

CSFI1 5 L 0 2 0 2 -49.07 0.63 0.0 0.02 -49.07 4.56 -4.3916 2.39

DEMBO7 16 Q 0 0 0 20 174.9 * - - 174.9 342.9 174.8034 61.70

DIPIGRI 7 N 0 0 0 4 680.6 0.68 680.6 0.03 680.6 9.19 3.9665 · 1011 0.04

DIXCHLNG 10 N 0 5 0 0 0.0 1.12 2471.9 0.04 0.0 44.12 4.3100 · 106 59.94

DNIEPER 61 N 0 24 0 0 1.87 · 10
4 0.83 - - 1.87 · 10

4 3703 18947.0180 1353.94

ERRINBAR 18 L 0 8 1 0 28.05 * - - 28.05 83.3 238.5364 127.40

EXPFITA 5 N 0 0 22 0 0.0011 0.65 0.0011 0.07 1.13 · 10
−3 89.44 7.0745 · 105 0.70

FEEDLOC 90 L 4 15 166 74 0.0 251.7 - - - - 0.554 159347.0

FLETCHER 4 Q 0 1 3 0 19.53 0.57 - - 12.18 3.46 7.9692 · 105 1.74

GAUSSELM 14 L 0 5 6 0 -2.25 0.55 - - -2.007 56.19 -1.9797 21.24

GIGOMEZ2 3 L 0 0 0 3 1.952 0.59 1.952 0.03 1.952 2.35 1.9554 0.02

HELSBY 1408 L 658 741 0 0 - - - - - - - -

HIMMELBI 100 N 0 0 12 0 -1735.6 1.23 - - -1735.6 14114 -1710.7390 1383.32

HIMMELBJ 45 N 14 0 0 0 - - - - -1910.3 2001 -378.0590 1835.66

HIMMELP2 2 N 0 0 0 1 -62.05 0.63 -62.05 0.03 -62.05 1.76 -62.0539 0.02

HIMMELP6 2 N 0 0 2 3 -59.01 0.69 -57.85 0.02 -59.01 2.88 -18.2407 0.02

HONG 4 N 1 0 0 0 22.57 0.50 22.57 0.03 22.57 2.90 22.5707 1.02

HS100 7 N 0 0 0 4 680.6 0.72 680.6 0.03 680.6 9.19 3.9665 · 1011 0.06

HS101 7 N 0 0 0 5 1809.7 * - - 1809.7 75.9 1810.6711 5.89

HS102 7 N 0 0 0 5 911.9 * - - 911.9 74.2 911.8949 24.91

HS103 7 N 0 0 0 5 - - 543.7 0.13 543.7 75.0 830.2559 0.28

HS104 8 N 0 0 0 5 3.95 0.58 3.95 0.03 3.95 30.62 3.9590 0.02

HS107 9 N 0 6 0 0 5055 0.59 5085.5 0.04 5055 42.6 12041.9850 2.11

HS108 9 Q 0 0 0 13 -0.866 0.58 -0.675 0.1 -0.866 52.69 -0.8652 14.71

HS109 9 N 0 6 2 2 - - - - 5362 48.38 5395.0698 5.90

HS111 10 N 0 3 0 0 -47.76 0.83 -47.76 0.05 -47.76 79.4 -39.0618 1.37

HS114 10 Q 1 2 4 4 -1768.8 1.64 - - -1768.8 43.4 -1486.5426 30.64

HS117 15 N 0 0 0 5 32.35 0.60 2400.0 0.04 32.35 54.7 1.1923 · 105 0.64

HS119 16 N 8 0 0 0 244.9 0.54 - - 244.9 421 252.7982 48.28

HS12 2 Q 0 0 0 1 -30.0 0.46 -30.0 0.03 -30.0 0.95 -27.1171 0.03

HS18 2 N 0 0 0 2 5.0 0.65 5.0 0.03 5.0 0.96 52.4232 0.01

continued on next page

115

continued from previous page

Problem nv f
h(x) g(x) LANCELOT DONLP2 CSA DLM

nle nne nli nni sol. CPU sol. CPU sol. CPU sol. CPU

HS19 2 N 0 0 0 2 -6961.8 0.58 -6961.8 0.03 -6961.8 1.27 -6960.1521 0.23

HS20 2 N 0 0 0 3 40.2 0.52 39.17 0.03 38.19 1.64 40.4699 0.02

HS23 2 Q 0 0 0 5 2.0 0.54 9.47 0.03 2.0 1.94 2.0002 0.19

HS24 2 N 0 0 3 0 -1.0 0.55 -1.0 0.03 -1.0 1.33 -0.9998 0.03

HS26 3 N 0 1 0 0 0.0 0.65 0.0 0.03 0.0 1.28 6.1697 · 106 0.47

HS27 3 N 0 1 0 0 0.04 0.49 0.04 0.03 0.04 1.27 1.9316 · 1013 0.45

HS29 3 N 0 0 0 1 -22.6 0.53 -22.6 0.03 -22.6 1.34 -1.0279 0.04

HS30 3 Q 0 0 0 1 1.0 0.52 3.0 0.02 1.0 1.44 1.0000 0.01

HS32 3 N 1 0 0 1 1.0 0.54 1.02 0.03 1.0 1.72 8.0936 0.05

HS33 3 N 0 0 0 2 -4.0 0.55 -3.0 0.03 -4.59 2.05 -4.5858 0.32

HS34 3 L 0 0 0 2 -0.834 0.38 -0.834 0.03 -0.834 2.12 -0.8339 0.12

HS36 3 N 0 0 1 0 -3300 0.55 -1000 0.03 -3300 1.26 -2936.3940 0.02

HS37 3 N 0 0 2 0 -3456 0.48 -3456 0.02 -3456 1.54 -2842.8167 0.03

HS39 4 L 0 2 0 0 -1.0 0.52 -1.0 0.03 -1.0 2.11 11.7132 1.84

HS40 4 N 0 3 0 0 -0.25 0.58 -0.25 0.03 -0.25 2.83 4.7297 1.60

HS41 4 N 1 0 0 0 1.926 0.52 1.926 0.03 1.926 1.37 1.9516 0.01

HS42 4 N 1 1 0 0 13.86 0.56 13.86 0.02 13.86 2.36 22.5895 0.15

HS43 4 Q 0 0 0 3 -44.0 0.49 -44.0 0.03 -44.0 4.48 -25.9903 0.04

HS46 5 N 0 2 0 0 0.0 0.54 0.0 0.02 0.0 4.28 4.6960 · 108 0.11

HS54 6 N 1 0 0 0 0.0 0.58 -0.156 0.03 -0.908 3.87 -0.3599 0.06

HS55 6 N 6 0 0 0 6.667 0.49 - - 6.333 6.91 6.8050 1.59

HS56 7 N 0 4 0 0 -3.456 0.55 -3.456 0.06 -3.31 8.35 -0.0001 10.98

HS57 2 N 0 0 0 1 0.03065 0.57 0.02846 0.03 0.02846 20.45 97.2118 4.72

HS59 2 N 0 0 0 3 -7.803 0.88 -6.75 0.03 -7.803 5.45 -6.7495 0.10

HS60 3 N 0 1 0 0 0.0326 0.62 0.0326 0.03 0.0326 1.65 6.1245 0.27

HS61 3 Q 0 2 0 0 -143.65 0.57 -143.65 0.04 -143.65 1.54 6.5567 · 106 5.37

HS62 3 N 1 0 0 0 -26273 0.61 -26273 0.03 -26273 2.20 -26225.9180 0.33

HS63 3 Q 1 1 0 0 961.72 0.55 961.72 0.03 961.72 1.87 963.2815 1.33

HS64 3 N 0 0 0 1 6299.8 0.43 6299.8 0.03 6299.8 1.68 6299.9009 0.08

HS68 4 N 0 2 0 0 -0.9204 0.72 -0.7804 0.04 -0.9204 6.76 -0.4048 0.03

HS69 4 N 0 2 0 0 -956.71 0.80 -956.71 0.04 -956.71 4.95 -949.3953 0.04

HS7 2 N 0 1 0 0 -1.732 0.56 -1.732 0.03 -1.732 0.94 1.6128 0.17

HS71 4 N 0 1 0 1 17.01 0.62 31.64 0.04 17.01 2.60 18.2356 0.02

HS73 4 L 1 0 1 1 29.9 0.52 29.98 0.03 29.9 3.12 33.9782 0.64

HS74 4 N 0 3 2 0 5126.5 0.50 5126.5 0.04 5126.5 5.25 5192.1899 0.12

HS75 4 N 0 3 2 0 5174.4 0.56 5174.4 0.04 5174.4 5.30 5228.0036 2.67

HS77 5 N 0 2 0 0 0.2415 0.56 0.2415 0.03 0.2415 4.09 3.0985 · 1016 0.31

HS78 5 N 0 3 0 0 -2.92 0.58 -2.92 0.03 -2.92 3.79 -0.0580 5.32

HS79 5 N 0 3 0 0 0.0788 0.57 0.0788 0.03 0.0788 4.10 4.7342 · 1010 0.84

HS80 5 N 0 3 0 0 0.054 0.58 0.054 0.03 0.054 4.25 0.0539 2.60

HS83 5 Q 0 0 0 3 -30666 0.52 - - -30666 5.68 -29818.0540 0.01

HS84 5 Q 0 0 0 3 - - −2.35 · 106 0.03 −5.28 · 10
6 7.69 −5.2122 · 106 0.50

HS87 6 N 0 4 0 0 - - 8997 0.04 8926 8.43 8997.4358 0.30

HS93 6 N 0 0 0 2 - - 135.1 0.03 135.1 4.96 135.9548 0.11

HS99 7 N 0 2 0 0 - - −8.31 · 10
8 0.06 −8.31 · 10

8 12.8 −8.0426 · 108 44.40

HUBFIT 2 N 0 0 1 0 0.0169 0.46 0.0169 0.02 0.0169 1.21 474.9145 0.01

HYDROELL 1009 N 0 0 1008 0 −3.582 · 10
6 70.5 - - - - - -

HYDROELM 505 N 0 0 504 0 −3.582 · 10
6 29.3 - - - - - -

HYDROELS 169 N 0 0 168 0 −3.582 · 10
6 2.7 - - - - −3.4673 · 106 3.46

LAKES 90 Q 60 18 0 0 - - - - - - - -

LAUNCH 25 N 6 3 12 7 - - - - 9.0 1941 10.8817 628.72

LEAKNET 156 N 73 80 0 0 8.0 25.7 - - - - - -

LHAIFAM 99 N 0 0 0 150 - - - - - - - -

LIN 4 N 2 0 0 0 -0.02 0.70 -0.0176 0.02 -0.02 6.69 -0.0196 0.01

LOADBAL 31 N 11 0 20 0 0.453 0.69 1.546 0.08 1.546 1712 - -

LOOTSMA 3 N 0 0 0 2 - - - - 1.414 2.10 1.4143 0.12

MADSEN 3 L 0 0 0 6 0.616 0.55 0.616 0.03 0.616 5.13 0.6184 0.12

MARATOS 2 Q 0 1 0 0 -1.0 0.40 -1.0 0.02 -1.0 0.839 -1.0000 0.54

MATRIX2 6 Q 0 0 0 2 0.0 0.52 0.0 0.04 0.0 3.93 1.3946 · 105 0.16

MESH 41 N 4 20 24 0 - - 0.0 0.16 −1.0 · 10
5 4009 - -

MISTAKE 9 Q 0 0 0 13 -1.0 0.58 -1.0 0.06 -1.0 55.0 -0.9989 15.92

MRIBASIS 36 L 1 8 43 3 18.218 1.88 - - 18.218 7612 19.2445 941.77

MWRIGHT 5 N 0 3 0 0 24.97 0.56 24.97 0.02 1.318 3.92 29146.6630 6.13

NET1 48 N 21 17 16 3 - - - - 9.41 · 10
5 6776 9.7000 · 105 1146.23

NET2 144 non. 64 59 32 5 - - - - 1.187 · 10
6 226271 - -

NET3 464 non. 195 199 110 17 - - - - - - - -

NGONE 8 Q 0 0 2 6 -0.5 0.51 0.0 0.03 -0.5 24.7 -0.4998 1.47

ODFITS 10 N 6 0 0 0 -2380 0.50 -2380 0.04 -2380 26.8 -2333.0398 0.92

OPTCNTRL 32 Q 10 10 0 0 550 0.51 - - 550 432 - -

continued on next page

116

continued from previous page

Problem nv f
h(x) g(x) LANCELOT DONLP2 CSA DLM

nle nne nli nni sol. CPU sol. CPU sol. CPU sol. CPU

OPTPRLOC 30 Q 0 0 5 25 -16.42 4.02 - - -16.42 1674 -14.3597 65.52

ORTHREGB 27 Q 0 6 0 0 0.0 0.76 0.0 0.04 0.0 218.3 - -

PENTAGON 6 N 0 0 15 0 1.51 · 10−4 0.56 1.37 · 10
−4 0.03 1.37 · 10

−4 32.1 0.0001 2.60

POLAK1 3 L 0 0 0 2 2.718 0.53 2.718 0.03 2.718 2.02 2.7196 1.69

POLAK3 12 L 0 0 0 10 5.933 0.82 - - 5.933 417.2 -

POLAK5 3 L 0 0 0 2 50.0 0.52 50.0 0.02 50.0 1.87 6501.9919 1.24

POLAK6 5 L 0 0 0 4 -44.0 0.74 -44.0 0.04 -44.0 11.8 669.4584 0.04

QC 9 N 0 0 4 0 -956.5 0.58 - - -956.5 28.5 -1046.5118 12.97

READING6 102 N 0 50 0 0 - - - - -132.3 28530 - -

READING7 1002 N 0 500 0 0 - - - - - - - -

READING8 2002 N 0 1000 0 0 - - - - - - - -

RK23 17 L 4 7 0 0 0.0833 0.75 - - 0.675 96.1 - -

ROBOT 14 Q 0 2 0 0 5.463 0.55 - - 5.463 34.8 5.5344 0.95

S316-322 2 Q 0 1 0 0 334.3 0.48 334.3 0.02 334.3 0.83 334.3219 0.40

SARO 4754 N 0 4015 0 0 252.3 3739.0 - - - - - -

SAROMM 5120 N 365 4015 730 0 57.35 9147.5 - - - - - -

SINROSNB 2 N 0 0 0 1 0.0 0.56 0.0 0.04 0.0 1.36 0.0001 2.08

SNAKE 2 L 0 0 0 2 - - 0.0 0.02 0.0 1.43 1.5297 0.70

SPIRAL 3 L 0 0 0 2 0.0 0.71 0.121 0.31 0.0 3.46 0.0006 1.06

STANCMIN 3 N 0 0 2 0 4.25 0.58 - - 4.25 1.72 4.2515 0.56

SVANBERG 10 N 0 0 0 10 15.73 0.59 16.5 0.03 15.73 85.3 15.7316 6.70

SYNTHES1 6 N 0 0 4 2 0.759 0.55 10.0 0.04 0.759 9.97 0.7593 4.10

SYNTHES2 11 N 1 0 10 3 -0.554 0.60 - - -0.554 94.3 0.4365 42.93

SYNTHES3 17 N 2 0 17 4 15.08 0.51 - - 15.08 261.7 15.0822 138.83

TENBARS4 18 L 0 8 1 0 368.5 * - - 368.5 84.9 - -

TWIRISM1 343 N 50 174 5 84 -1.01 136.1 - - - - -

TWIRIMD1 1247 N 143 378 5 186 -1.034 10158 - - - - -

TWIRIBG1 3127 N 292 630 5 312 - - - - - - -

TWOBARS 2 N 0 0 0 2 1.51 0.53 1.51 0.03 1.51 1.36 1.5107 0.03

WOMFLET 3 L 0 0 0 3 0.0 0.51 0.0 0.02 0.0 2.5 0.0000 0.41

ZAMB2-10 270 N 0 96 0 0 -1.58 2.99 - - - - -1.4404 30147.80

ZAMB2-11 270 N 0 96 0 0 -1.116 1.83 - - - - - -

ZAMB2-8 138 N 0 48 0 0 -0.153 1.20 - - -0.153 46156 -0.1338 16278.72

ZECEVIC3 2 Q 0 0 0 2 97.31 0.54 97.31 0.03 97.31 1.32 104.2501 0.01

ZECEVIC4 2 Q 0 0 1 1 7.558 0.59 7.558 0.02 7.558 1.23 7.5589 0.42

ZY2 3 N 0 0 0 2 2.0 0.46 7.165 0.03 2.0 2.35 6.2498 0.03

In comparing DLM and CSA, DLM-General generally cannot find as good solutions as

CSA because DLM-General is a local search and there is only one starting point provided.

This is the reason why DLM-General found feasible solutions with very large objective values

for problems like ALJAZZAF, BT11, BT12 and BT6. However, DLM is usually faster than

CSA. For example, for problems like DNIEPER, HIMMELBI, HIMMELBJ, MRIBASIS,

NET1, ZAMB2-8 and ZAMB2-10 in which CSA took over over 1000 CPU seconds, DLM

performs better in terms of solution times. Moreover, for problems DEMBO7 and QC, DLM

outperforms any of the other three methods in terms of solution quality.

117

4.4 Summary

In this chapter, we have presented a general search framework to look for saddle points

and have proposed DLM, an implementation of the framework utilizing local search. We

have further investigated and explored in detail strategies for neighborhood search, dynamic

weight adaptation, global search, relax-and-tighten, and duration of run. We have tested

and compared various heuristics and trade-offs in implementing the method. By testing our

strategy on 12 difficult benchmark problems, we have selected one suitable combination of

parameters that can be generalized to other constrained NLPs. Finally, we have applied

DLM to solve three sets of constrained NLP benchmarks. Our experimental results on

these benchmark NLPs show that our search method is able to find high-quality solutions

efficiently.

118

Chapter 5

Application I - Designing

Multiplierless Filter Banks

In this chapter, we apply discrete-space first-order search method (DLM) to design multi-

plierless QMF (quadrature mirror filter) banks [210]. The filter coefficients in these filter

banks are in powers-of-two (PO2), where numbers are represented as sums or differences

of powers of two (also called Canonical Signed Digit–CSD–representation), and multiplica-

tions are carried out as additions, subtractions and shifts. We formulate the design problem

as a nonlinear discrete constrained optimization problem, using the reconstruction error as

the objective, and the stopband and passband energies, stopband and passband ripples and

transition bandwidth as constraints. Using the performance of the best existing designs as

constraints, we search for designs that improve over the best existing designs with respect

to all the performance metrics. We apply DLM to find good designs, and dynamic weight

adaptation to improve the convergence speed of Lagrangian methods without affecting their

solution quality. Our method can find designs that improve over Johnston’s benchmark de-

signs using a maximum of three to six ONE bits in each filter coefficient, instead of using

119

Filter Minimization Objectives

Overall Amplitude distortion

Filter Aliasing distortion

Bank Phase distortion

Stopband ripple (δs)

Single Passpand ripple (δp)

Filter Stopband energy (Es)

Passband energy (Ep)

Transition bandwidth (Tt)

1−δ

1+δ
1

δ ω

p

p

s

π0

|H(ejω)|

ωspω

Εp

sΕ

Figure 5.1: Possible design objectives of filter banks and an illustration of the design objectives

of a single low-pass filter. ([0, ωp] is the pass band; [ωs, π], the stop band; [ωp, ωs], the transition

band.)

floating-point representations. The approach here is quite general and is applicable to the

design of other types of multiplierless filter banks [216].

5.1 Introduction

Digital filter banks have been applied in many engineering fields. Figure 5.1 summarizes the

various design objectives for measuring quality. In general, filter-bank design problems are

multi-objective, continuous, nonlinear optimization problems.

Algorithms for designing filter banks are either optimization-based or non-optimization

based. In optimization-based methods, a design problem is formulated as a multi-objective

nonlinear optimization problem [198] whose form may be application- and filter-dependent.

The problem is then converted into a single-objective optimization problem and solved by

existing optimization methods, such as gradient-descent, Lagrange-multiplier, quasi-Newton,

SA, and GA [112, 104]. On the other hand, filter bank-design problems have been solved

120

by non-optimization-based algorithms, which include spectral factorization [120, 199] and

heuristic methods (as in IIR-filter design). These methods generally do not continue to find

better designs once a suboptimal design has been found [199].

In this chapter, we apply DLM to designing multiplierless QMF banks. These filter banks

are an important class of filter banks that have been studied extensively. In a two-band QMF

bank, the reconstructed signal is:

X̂(z) =
1

2
[H0(z)F0(z) + H1(z)F1(z)] X(z)

+
1

2
[H0(−z)F0(z) + H1(−z)F1(z)] X(−z) (5.1)

where X(z) is the original signal, and Hi(z) and Fi(z) are, respectively, the response of the

analysis and synthesis filters. To perfectly reconstruct the original signal based on X̂, we

have to eliminate aliasing, amplitude, and phase distortions. QMF banks with FIR filters

implement perfect reconstruction by setting:



















F0(z) = H1(−z),
F1(z) = − H0(−z),
H1(z) = H0(−z),

(5.2)

leading to a filter bank with one prototype filter H0(z), linear phase, and no aliasing distor-

tions.

Traditional FIR filters in QMF banks use real numbers or fixed-point numbers as filter

coefficients. Multiplications of such long floating point numbers generally limit the speed

of FIR filtering. To overcome this limitation, multiplierless (powers-of-two or PO2) filters

have been proposed. These filters use filter coefficients that have only a few bits that are

ones. When multiplying a filter input (multiplicand) with one such coefficient (multiplier),

121

the product can be found by adding and shifting the multiplicand a number of times corre-

sponding to the number of ONE bits in the multiplier. For example, the multiplication of y

by 0100001001 can be written as the sum of three terms,

y · 28 + y · 23 + y · 20, (5.3)

each of which can be obtained by shifting y. A limited sequence of shifts and adds are

usually much faster than full multiplications. Without using full multiplications, each filter

tap takes less area to implement in VLSI, and more filter taps can be accommodated in a

given area to implement filter banks of higher performance.

The frequency response of a PO2 filter, H(z), is

H(z) =

γ−1
∑

i=0

xiz
−i =

γ−1
∑

i=0

(

d−1
∑

j=0

ei,j2
j

)

z−i where (5.4)

d−1
∑

j=0

|ei,j| ≤ l for all i, ei,j = −1, 0, 1.

Here, γ is the length of the PO2 filter, l is the maximum number of ONE bits used in each

coefficient, and d is the number of bits in each coefficient.

The design of multiplierless filters has been solved by integer programming that optimizes

filter coefficients with restricted values of powers-of-two. Other techniques used include

combinatorial search [163], SA [32], GA [167], linear programming [119], and continuous

Lagrange-multiplier methods in combination with a tree search [182].

This chapter is organized as follows. We formulate in Section 5.2 the design problem as

a single-objective constrained optimization problem. In Section 5.3, we present our DLM-

QMF that finds saddle points in discrete space and examines the issues related to the imple-

mentation of DLM-QMF to design multiplierless filter banks. Finally, Section 5.4 presents

experimental results, and conclusions are drawn in Section 5.5.

122

5.2 Problem Formulation

The design of QMF banks can be formulated as a multi-objective unconstrained optimization

problem or as a single-objective constrained optimization problem.

5.2.1 Multi-Objective Unconstrained Formulation

In a multi-objective formulation, the goals can be to:

• Minimize the amplitude distortion (reconstruction error) of the overall filter bank, or

• Optimize the individual performance measures of the prototype filter H0(z).

One possible formulation using a subset of the measures in Figure 5.1 is as follows:

minimize Er and Es (5.5)

where Er =

∫ π
2

ω=0

(|H0(e
jω)|2 + |H0(e

j(ω−π))|2 − 1)2 dω

and Es =

∫ π

ω=ωs

|H0(e
jω)|2dω

Unfortunately, optimal solutions to (5.5) are not necessarily optimal solutions to the original

problem that considers all the performance measures. Oftentimes, performance measures

not included in the formulation are compromised. Note that in QMF banks, Er is non-zero.

A multi-rate filter bank that enforces perfect reconstruction (Er = 0) can be formulated as

a constrained optimization problem with a goal of minimizing Es [110, 104].

In general, optimal solutions of a multi-objective problem form a Pareto optimal frontier

such that one solution on this frontier is not dominated by another. One approach to find a

point on the frontier is to optimize a weighted sum of all the objectives [112, 53, 198, 36, 141].

This approach has difficulty when frontier points of certain characteristics are desired, such as

123

those with certain transition bandwidth. Different combinations of weights must be tested by

trial and error until a desired solution is found. When the desired characteristics are difficult

to satisfy, trial and error is not effective in finding feasible designs. Instead, constrained

formulations should be used.

5.2.2 Single-Objective Constrained Formulation

Another approach to solve a multi-objective problem is to turn all but one objectives into

constraints, and define the constraints with respect to a reference design. The specific

measures constrained may be application- and filter-dependent [198].

Constraint-based methods have been applied to design QMF banks in both the fre-

quency [112, 36, 43, 120, 183, 187] and time domains [140, 185]. In the frequency domain,

the most often considered objectives are Er (reconstruction error) and δs (stopband rip-

ple). As stopband ripples cannot be formulated in closed form, stopband attenuation is

used instead (represented as Es in Figure 5.1). In the time domain, Nayebi [140] gave a

time-domain formulation with constraints in the frequency domain and designed filter banks

using an iterative time-domain design algorithm.

Next we formulate the design of QMF banks in the most general form as a nonlinear

constrained optimization problem using the reconstruction error as the objective and other

measures (stopband ripple, stopband energy, passband ripple, passband energy and transition

bandwidth) as constraints:

minimize Er (5.6)

subject to Ep ≤ θEp, Es ≤ θEs ,

Tt ≤ θTt, δp ≤ θδp ,

δs ≤ θδs

124

where θEp, θEs , θδp , θδs and θTt are constraint bounds found in the best-known design (with

possibly some bounds relaxed or tightened in order to obtain designs of different trade-offs).

The goal here is to find filter banks of a finite word length whose performance measures are

better than or equal to those of the reference design. Since the objective and the constraints

are nonlinear, the problem is multi-modal with many local minima.

The original optimization problem with inequality constraints (5.6) can be transformed

into an optimization problem with equality constraints as follows:

minimize f(x) = VEr =
Er−θEr

θEr
(5.7)

subject to VEp = max
(

Ep−θEp

θEp
, 0
)

= 0, VEs = max

(

Es − θEs

θEs

, 0

)

= 0,

Vδp = max
(

δp−θδp

θδp
, 0
)

= 0, Vδs = max

(

δs − θδs

θδs

, 0

)

= 0, (5.8)

VTt = max
(

Tt−θTt

θTt

, 0
)

= 0,

where x is a vector of discrete coefficients, θEr is the reconstruction error of the best-known

design, and all functions have been normalized with respect to the values of the best-known

design.

5.3 DLM-QMF: An Implementation of Discrete First-

Order Search Method

Based on (5.7) and (5.8), the discrete Lagrangian function for optimizing PO2 filter banks

is:

Ld(x, λ) = f(x) +
∑

i∈{Ep,Es,δp,δs,Tt}
λi · Vi +

1

2

∑

i∈{Ep,Es,δp,δs,Tt}
V 2

i , (5.9)

125

procedure DLM-QMF

1. set c (positive real constant for controlling the speed of change of Lagrange multipliers);

2. set imax (maximum number of iterations);

3. set starting point x;

4. set initial value of λ (set to 0 in the experiments);

5. if using dynamic weight adaptation then weight initialization;

6. while stopping condition not satisfied do {
7. x Loop: update x to x′ only if this will result in Ld(x

′, λ) < Ld(x, λ);

8. λ Loop: if condition for updating λ is satisfied then λi ← λi + c ·max(0, gi);

9. if using dynamic weight adaptation then dynamic weight adaptation }

Figure 5.2: DLM-QMF: An implementation of discrete first-order method for designing PO2

filter banks. (The initial values of parameters are indicated here unless specified otherwise in the

text.)

where x is a vector of coefficients, each of which is in CSD form of the sum of several signed

binary bits, such as 2−1 + 2−3 − 2−6. Since we have only equality constraints transformed

from inequality constraints, we use λ as our Lagrange multipliers in the following discussion.

Figure 5.2 shows an implementation of the discrete-space first-order conditions for design-

ing PO2 filter banks formulated as nonlinear discrete constrained minimization problems.

The procedure shows several aspects that can be tuned in order to improve its performance.

• Starting points (Line 3). We choose a starting point based on a discrete approximation

of an existing QMF bank with real coefficients (Section 5.3.1).

• Initial Lagrange-multiplier values (Line 4). We initialize all Lagrange multipliers to

zero in order to allow our results to be reproduced easily. An optimal initial setting is

difficult because it depends on the amount of constraint violation.

• Time constraint (Lines 2 and 6). The search algorithm will terminate if it has converged

or the number of iterations is larger than imax.

126

• x Loop (Line 7). Here, we evaluate all possible neighboring points of x in order to find

improvements in its Lagrangian value (Section 5.3.2).

• λ Loop (Lines 1 and 8). The Lagrange multipliers are updated when the search reaches

a local minimum in the objective space. We do not update the multipliers more

frequently due to instability of the trajectory. The amount of update is controlled by

an application-dependent constant c and other filter-related parameters (Section 5.3.3).

• Dynamic weight adaptation (Lines 5 and 9). Weight adaptation adjusts the weight

between the objective and the constraints in order to adjust their relative importance

and to improve convergence (Section 4.1.3).

5.3.1 Generating a Starting Point

There are two alternatives in selecting a starting point (Line 3 in Figure 5.2): using the

parameters of an existing PO2 QMF bank, or using a discrete approximation of an existing

QMF bank with real coefficients. The first alternative is not always possible because not

many such filter banks are available in the literature. In this section, we discuss the second

alternative.

In the second approach, we first transform the real coefficients of the best-known design

to PO2 forms using a CSD representation. Given a real coefficient and b, the maximum

number of ONE bits to represent the coefficient, we apply Booth’s algorithm [27] to repre-

sent consecutive 1’s using two ONE bits and then truncate the least significant bits of the

coefficients. This approach generally allows a number to be represented in a few ONE bits.

As an example, consider a binary fixed-point number 0.10011101100. After applying Booth’s

algorithm and truncation, we can represent the number in 2 ONE bits:

0.10011101100 =========⇒
Booth′sAlgorithm

0.1010001̄01̄00 =======⇒
Truncation

2−1 + 2−3.

127

Table 5.1: Comparison of a PO2 filter bank obtained by truncating the real coefficients of John-
ston’s 32e QMF bank [112] to 3 bits and a similar PO2 filter bank whose coefficients were scaled
by 0.5565 before truncation. (Performance has been normalized with respect to the performance
of the original filter bank.)

Performance Metrics Er Ep Es δp δs Tt

Filter bank A with Truncated Coefficients 6.93 9.61 1.09 1.89 1.05 1.00
Filter bank B with Scaling and Truncation 0.99 1.08 0.96 1.20 0.98 0.99

Previous work [127, 163, 37] shows that scaling has a significant impact on the optimiza-

tion of coefficients in PO2 filters. That is, if each coefficient is scaled properly before the

search starts (based on a heuristic objective), the quality of the final design can be improved

significantly. In our case, the performance of a PO2 filter obtained by truncating its real

coefficients to a fixed maximum number of ONE bits is not as good as one whose real coeffi-

cients were first multiplied by a scaling factor. We illustrate this observation in the following

example.

Consider Johnston’s 32e filter bank [112] as a starting point. Table 5.1 shows the metrics

of two PO2 filters: Filter Bank A was obtained by truncating each of the original coefficients

to a maximum of 3 ONE bits, whereas Filter Bank B was obtained by multiplying each of the

coefficients by 0.5565 before truncation. Filter Bank B performs better and is almost as good

as the original design with real coefficients. In fact, a design that is better than Johnston’s

32e design can be obtained by using Filter B as a starting point, but no better designs were

found using Filter A. This example illustrates that multiplying the filter coefficients by a

scaling factor changes the bit patterns of the coefficients, which can improve the quality of

the starting point when the coefficients are truncated.

Experiments also show that it is possible to find good designs without requiring the

PO2 coefficients to have the same degree of precision as that of continuous coefficients. For

instance, in our experiments, we restrict the minimum exponent of the ONE bits in each

128

procedure find scaling factor

1. LeastSum = +∞;

2. for ScaleFactor := 0.5000 to 1.0 step 0.0001 do {
3. Multiply each filter coefficient by ScaleFactor;

4. Get the PO2 form of the scaled coefficients;

5. Compute the weighted sum of constraint violation: sum :=
∑5

i=1 wi · gi;

6. if (sum < LeastSum) then { LeastSum := sum; BestScale := ScaleFactor }}
7. return BestScale

Figure 5.3: Algorithm for finding the best scaling factor, where wi is the weight of constraint i.

coefficient (in the range [−1, 1]) to be −22, even though the real coefficients have a minimum

exponent of −31.

To find the best scaling factor, we enumerate over different scaling constants and scale all

the coefficients by a common constant before the search begins. Figure 5.3 shows a simple

but effective algorithm to find the proper scaling factor to be multiplied before the coefficients

are truncated. We evaluate the quality of the resulting starting point by a weighted sum

of its performance metrics. Since under most circumstances, the constraint on transition

bandwidth is more difficult to satisfy, we give it a weight of 100 and a weight of 1 for the

other four metrics. Note that our objective in finding a good scaling factor is different from

that in the previous work [127, 163, 37]. Further, note that the filter output in the final

design will need to be divided by the same scaling factor.

Experimental results show that the algorithm in Figure 5.3 works fast and can complete

in a few minutes, and that the scaling factors chosen are reasonable and suitable. It is

important to point out that scaling does not help when the number of ONE bits allowed to

represent each coefficient is large. For instance, when the maximum number of ONE bits

129

allowed is larger than 6, the performance of all the filters is nearly the same for all scaling

factors.

As an illustration, consider the design of a PO2 QMF bank [209] based on Johnston’s

32d design [112] as our constraints. Assuming a minimum exponent of −22 in each ONE

bit, we enumerate and find the best scaling factor for all the coefficients to be 0.9474.

5.3.2 x Loop

The value of x is updated in Line 7 in Figure 5.2. There are two ways in which x can be

updated: greedy update and hill climbing. In greedy updates, the update of x leading to

the maximum improvement of Ld(x, λ) is found before an update is made. This approach

is very time consuming and may not lead to the best filter bank when DLM-QMF stops.

On the other hand, in hill climbing, x is updated as soon as an improvement in Ld(x, λ) is

found. This approach is efficient and generally leads to good designs. For this reason, we

use hill climbing as our update strategy.

We process all the bits of all the coefficients in a round-robin manner. Suppose γ is the

filter length, l is maximum number of ONE bits that can be used for each coefficient, and

the ith coefficient is composed of l elements bi,1, bi,2, . . . , bi,l. We process the elements in the

following order repetitively:

b1,1, b1,2, . . . , b1,l, b2,1, . . . , bγ,1, . . . , bγ,l.

For each element bi,j, we perturb it to be b′i,j that differs from bi,j by either the sign or

the exponent or both, while maintaining b′i,j to be not the same in its exponent as another

element of the ith coefficient. Using bi,1, · · · , bi,j−1, b
′
i,j, · · · , bi,l while keeping other coefficients

the same, we compute the new value Ld(x
′, λ) and accept the change if Ld(x

′, λ) < Ld(x, λ).

130

5.3.3 λ Loop

Lines 1 and 8 in Figure 5.2 is related to the condition when λ should be updated. In

traditional Lagrangian methods on continuous variables, λ is updated in every iteration.

This approach does not work in DLM-QMF because if λ were updated after each update

of x, then the search behaves like random probing and restarts from a new starting point

even before a local minimum is reached. For this reason, λ for violated constraints should be

updated less frequently, only when no further improvement in Ld(x, λ) can be made in Line

7 of DLM-QMF for all the bits in all the coefficients. This is the approach we have taken in

solving satisfiability problems [179, 226, 207]. However, we have found that more frequent

updates of λ may lead to better PO2 filters. In our implementation, we update λ every time

three coefficients have been processed. Since λ is updated before all the filter coefficients

have been perturbed, the guidance provided by λ may not be exact.

When updating λ before the search reaches a local minimum of Ld(x, λ), we set c in Line

8 of Figure 5.2 to be a normalized value as follows:

c =
θspeed

maxn
i=1 gi

(5.10)

where θspeed is a real constant for controlling the speed of increasing λ. Experimentally, we

have determined θspeed to be 0.6818.

When the search reaches a local minimum of Ld(x, λ), perturbing any single bit in any

coefficient will result in no improvement of Ld(x, λ). At this point, we need to update λ

differently in order to bring the search out of the local minimum. This is done by choosing

a proper value of c in Line 8 of DLM-QMF. If λ is increased too fast, then the search will

restart from a random starting point. On the other hand, if λ is increased too slowly, then the

trajectory will remain in the current local minimum, and updates of x in the next iteration

131

of DLM-QMF will bring the search to the same local minimum! Hence, we like to set c so

that it will bring the search out of the current local minimum in one step, and local descents

in the next iteration will head to an adjacent local minimum. This means that, after λ has

been changed to λ′, there exists x′ in Ndn(x) such that

Ld(x, λ) ≤ Ld(x
′, λ) and Ld(x

′, λ′) < Ld(x, λ
′) (5.11)

Replacing Ld(x, λ) by

f(x) +

n
∑

i=1

λ ·max(0, gi(x)) (5.12)

in (5.11), we get the condition before λ changes:

f(x) +

n
∑

i=1

λ ·max(0, gi(x)) ≤ f(x′) +

n
∑

i=1

λ ·max(0, gi(x
′)) (5.13)

and that after λ is updated to

λ′i = λi + c ·max(0, gi(x)), (5.14)

we have

f(x) +

n
∑

i=1

λ′i ·max(0, gi(x)) > f(x′) +

n
∑

i=1

λ′i ·max(0, gi(x
′)) (5.15)

where max(0, gi(x
′)) is the new violation of the ith constraint at x′. After transformations,

we get

c >
Ld(x

′, λ)− Ld(x, λ)
∑n

i=1max(0, gi(x)) · (max(0, gi(x))−max(0, gi(x′)))
(5.16)

When c is large enough to satisfy (5.16) for all x′, and λ is increased according to Line

8 of DLM-QMF, we are assured that there is a new x′ that will cause Ld to decrease in the

next iteration.

132

1e-06

1e-05

0.0001

0.001

0.01

0.1

0 100 200 300 400 500 600 700

N
or

m
al

iz
ed

 v
io

la
tio

n
of

 tr
an

si
tio

n
ba

nd

Iterations

0

100

200

300

400

500

600

700

800

900

1000

0 100 200 300 400 500 600 700

L
ag

ra
ng

e
m

ul
tip

lie
r

va
lu

e

Iterations

(a) Violation values of Tt (b) Corresponding λTt

Figure 5.4: Performance progress measured during the search of Problem 32e.

As an example, consider in Figure 5.4a the violation of transition bandwidth Tt in a typical

search based on the constraints derived from Johnston’s 32e filter bank [112]. Figure 5.4a

shows that the value of the violation on Tt can be extremely small, on the order of 10−5 in

the later part of the search. For such small violation values, the update of λTt using c defined

in (5.10) will result in a large number of iterations before the violation can be overcome.

Using c defined in (5.16) to increase λTt, we see in Figure 5.4b that λTt jumps three times

when the condition for updating λ was satisfied. These saved at least half of the total search

time in order to find the solution.

5.4 Experimental Results

We have applied DLM-QMF to solve the QMF-bank design problems formulated by John-

ston [112]. In this section, we compare the performance of designs found by DLM-QMF

and those by Johnston [112], Chen et al. [37], Novel [208], simulated annealing (SA), and

genetic algorithms (GA). All the experiments were run on Pentium Pro 200 computers with

Linux unless specified otherwise. Note that all the filter-bank coefficients can be found at

ftp://manip.crhc.uiuc.edu/pub/papers/PostScript/J66/J66.coefficients.

133

0

100

200

300

400

500

600

700

800

-5 -4 -3 -2 -1 0 1 2 3 4

C
on

ve
rg

en
ce

 T
im

e

Initial relative weight in log scale

static weighting
dynamic weighting

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

-5 -4 -3 -2 -1 0 1 2 3 4

Q
ua

lit
y

of
 S

ol
ut

io
n

Initial relative weight in log scale

static weighting
dynamic weighting

(a) Problem 32d with static weights (b) Problem 32d with dynamic weights

0

500

1000

1500

2000

2500

-4 -3 -2 -1 0 1 2

C
on

ve
rg

en
ce

 T
im

e

log(initial relative weight)

static weighting
dynamic weighting

0.82
0.83
0.84
0.85
0.86
0.87
0.88
0.89

0.9
0.91
0.92

-4 -3 -2 -1 0 1 2
Q

ua
lit

y
of

 S
ol

ut
io

n

log(initial relative weight)

static weighting
dynamic weighting

(c) Problem 48e with static weights (d) Problem 48e with dynamic weights

Figure 5.5: Comparison of convergence time and quality of solution between static weighting
and dynamic weighting for multiplierless QMF-bank design problems 32d and 48e, where quality is
measured by the ratio of the reconstruction error of our design to that of Johnston’s design [112].
Hence, better designs have smaller values of solution quality.

Our goal is to find designs that are better than the baseline results across all six perfor-

mance measures. Hence, we use (5.7) with the constraint bounds defined by those of the

baseline designs.

5.4.1 Performance of DLM-QMF with Dynamic Weights

To design multiplierless QMF banks, we allow the maximum number of ONE bits to be 6

and the minimum exponent to be -22 for each filter coefficient. The Lagrangian method

uses both static weights and dynamic weights to solve 32d and 48e problems. We compare

both the convergence time and the quality of solution in terms of reconstruction error. The

134

starting points were obtained from Johnston’s design, and the control parameters were the

same as those used in the previous subsection except that the window size Nu is 10.

A comparison of DLM-QMF with static weights and that with dynamic weights is shown

in Figure 5.5. Even though the initial weights have very large ranges, [10−5, 104] for 32d

and [10−4, 102] for 48e, the dynamic weight-adaptation algorithm converges in less than 300

minutes for the 32d problem and 510 minutes for 48e. However, using DLM-QMF with static

weights, when the initial w is larger than 1.0, the search cannot converge within 15 hours

for 32d and 32 hours for 48e.

Note that, for 48e, the solution quality of DLM-QMF with static weights is slightly

better than our dynamic weight-adaptation algorithm for some initial weights. This happens

because the latter may change the terrain during the search and find different solutions.

Finally, Table 5.2 shows the results of solving all the Johnston’s benchmarks using filter

coefficients with a maximum of six ONE bits. Our results show that we were able to find

designs that have better reconstruction errors, while the other performance metrics are either

the same or better.

5.4.2 Comparisons of DLM-QMF and Johnston’s Designs

In this section, we compare the performance of designs found by DLM-QMF and those by

Johnston [112].

There are two parameters in a PO2 filter bank design: the maximum number of ONE

bits in each filter coefficient and the number of filter taps. In our experiments, we have

varied one while keeping the other fixed when evaluating a PO2 design with respect to a

benchmark design.

We have used closed-form integration to compute the performance values. In contrast,

Johnston [112] used sampling to compute energies. Hence, designs found by Johnston are

135

Table 5.2: Experimental results of DLM-QMF in solving multiplierless QMF-bank design prob-
lems. The initial points of the run were from six ONE-BIT expressions of scaled Johnston’s solu-
tions.

Filter Er δp Ep δs Es Tr Scaling Factor Time (hrs)

16a 0.99 0.99 0.94 0.99 0.95 0.99 0.9747 1.6

16b 0.99 0.99 0.90 0.99 0.98 0.99 0.8524 2.1

16c 0.96 0.99 0.98 0.99 0.99 0.99 0.5967 3.0

24b 0.97 0.99 0.87 0.96 0.99 0.99 0.9661 5.6

24c 0.89 0.99 0.58 0.99 0.99 0.99 0.6413 12.0

24d 0.81 0.99 0.83 0.99 0.99 0.99 0.5342 13.1

32c 0.96 0.99 0.75 0.99 0.99 0.99 0.5706 12.0

32d 0.83 0.95 0.61 0.99 0.99 0.99 0.6971 3.1

32e 0.72 0.99 0.90 0.99 0.99 0.99 0.5019 7.2

48c 0.88 0.95 0.85 0.99 0.99 0.99 0.7914 18.0

48d 0.95 0.99 0.75 0.99 0.99 0.99 0.7138 23.0

48e 0.91 0.99 0.80 0.99 0.99 0.99 0.5793 8.0

64d 0.87 0.99 0.83 0.76 0.99 0.99 0.9955 9.5

64e 0.85 0.99 0.73 0.99 0.99 0.99 0.8026 24.1

not necessarily at the local minima in a continuous sense. To demonstrate this, we applied

local search in a continuous formulation of the 24D design, starting from Johnston’s design.

We found a design with a reconstruction error of 3.83E-05, which is better than Johnston’s

result of 4.86E-05. By applying global search, we can further improve the design to have a

reconstruction error of 3.66E-05.

We have evaluated PO2 designs obtained by DLM-QMF with respect to Johnston’s de-

signs whose coefficients are 32-bit real numbers. Using the performance of Johnston’s 32e

design as constraints [112], we ran DLM-QMF from 10 different starting points obtained

136

0

0.2

0.4

0.6

0.8

1

1.2

32 36 40 44 48 52 56 60 64

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

Filter Length

passband ripple
passband energy

transition bandwidth
stopband ripple

stopband energy
reconstruction error

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

48 52 56 60 64

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

Filter Length

passband ripple
passband energy

transition bandwidth
stopband ripple

stopband energy
reconstruction error

(a) Problem 32e (b) Problem 48e

Figure 5.6: Normalized performance for PO2 filter banks with a maximum of 3 ONE bits per
coefficient and different number of filter taps.

by randomly perturbing 1% of all the coefficients of Johnston’s design [112]. Each run was

limited so that each ONE bit of the coefficient was processed in a round robin fashion 400

times. We then picked the best solution of the 10 runs and plotted the result in Figure 5.6,

which shows the normalized performance of PO2 designs with increasing number of filter

taps, while each filter coefficient has a maximum of 3 ONE bits. (The best design is one

with the minimum reconstruction error if all the constraints are satisfied; otherwise, the one

with the minimum violation is picked.) Our results show a design with 32 taps that is nearly

as good as Johnston 32e’s design. For filters with 32, 36, 40 and 44 taps, we used a starting

point derived from Johnston’s 32e design with filter coefficients first scaled by 0.5565 and

truncated to a maximum of 3 ONE bits, and the filter coefficients of the remaining taps

set to zeroes initially. Starting points for filters with longer than 44 taps were generated

similarly, except that a scaling factor of 0.5584 was used instead. Our results show that,

as the filter length is increased, all the performance metrics improve, except the transition

bandwidth, which remains close to that of the benchmark design.

With respect to Johnston’s 48e design [112], we set a limit so that each ONE bit of the

coefficient was processed in a round-robin fashion 800 times, and ran DLM-QMF once from

the truncated Johnston’s 48e design. (The scaling factor was 0.5584 for filters with 48, 52,

137

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

3 4 5 6
N

or
m

al
iz

ed
 P

er
fo

rm
an

ce
Maximum Number of ONE bits in each Coefficient

passband ripple
passband energy

transition bandwidth
stopband ripple

stopband energy
reconstruction error

Figure 5.7: Normalized performance with respect to Johnston’s 48e QMF bank [112] for PO2
filters with 48 taps and different maximum number of ONE bits per coefficient.

56, and 60 taps. The scaling factor was 0.6486 for filters with 64 taps.) Our results show

that our 48-tap PO2 design is slightly worse than that of Johnston’s, while PO2 designs

with 52 taps or longer have performance that are either the same or better than those of

Johnston’s 48e design. In particular, the reconstruction error of our 52-tap PO2 design is

62% of Johnston’s 48e design, while that of our 64-tap PO2 design is only 21% of Johnston’s

48e design.

In the next set of experiments, we kept the same number of taps as Johnston’s 48e design

and increased the maximum number of ONE bits in each coefficient from 3 to 6. We set

a limit so that each ONE bit of the coefficient was processed in a round-robin fashion 800

times, and ran DLM-QMF once from the truncated Johnston’s 48e design. Figure 5.7 shows

a design that is better than Johnston’s 48e design when the maximum number of ONE bits

per coefficient is 6. In this case, the reconstruction error is 91% of Johnston’s 48e design.

(The scaling factors used are 0.5584 for 3 bits, 0.8092 for 4 bits, 0.7409 for 5 bits, and 1.0

for 6 bits.)

138

Table 5.3: Comparison of normalized performance of filter banks with discrete coefficients de-
signed by DLM-QMF and those with continuous coefficients designed by Johnston, Chen, Novel,
simulated annealing (SIMANN), and genetic algorithms (EA-Ct and EA-Wt). Columns 2-4 show
the performance of DLM-QMF using 3 ONE bits for 32-tap filters and 6 ONE bits for 64-tap filters
normalized with respect to that of Johnston’s 32e, 64d, and 64e filter banks [112]. Columns 5-6
show the performance of DLM-QMF using 3 ONE bits normalized with respect to that of Chen et
al.’s 64-tap and 80-tap filter banks [37]. Columns 7-10 show the performance of 32-tap filter banks
designed using Novel [208], SA, and EA, normalized with respect to that of Johnston’s 32e filter
bank and using Johnston’s design as constraints.

Type Discrete Coefficients Continuous Coefficients

Method DLM-QMF Novel SA EA-Ct EA-Wt

Problem J-32e J-64d J-64e C-64 C-80 J-32e J-32e J-32e J-32e

Er 0.83 0.90 0.89 0.91 0.95 0.712 0.500 0.724 0.507

Ep 1.00 0.82 0.83 0.80 0.96 0.896 0.582 0.905 0.590

Es 1.00 1.00 1.00 1.00 0.86 1.000 1.000 1.000 0.999

δp 1.00 0.97 1.00 1.00 1.00 1.000 1.000 1.000 0.997

δs 0.99 0.75 1.00 1.00 1.00 1.000 1.000 1.000 0.999

Tt 1.00 1.00 1.00 1.00 1.00 1.000 1.013 1.000 1.013

With respect to Johnston’s 64d and 64e designs, Table 5.3 shows improved PO2 designs

obtained by DLM-QMF using a maximum of 6 ONE bits per coefficient and 64 taps. No

improvements were found when the maximum number of ONE bits is less than 6.

5.4.3 Comparisons of DLM-QMF and Other Optimization Meth-

ods

In this section, we compare the performance of designs found by DLM-QMF and those by

Chen et al. [37], Novel [208], SA, and GA. Table 5.3 shows improved designs found by DLM-

QMF with respect to Chen et al.’s designs with, respectively, 64 and 80 taps, all using a

maximum of 3 ONE bits per coefficient. In these designs, we used Chen et al.’s designs as

139

starting points and ran DLM-QMF once with a limit so that each ONE bit was processed

in a round-robin fashion 1,000 times.

We also compare in Table 5.3 the performance of 32e PO2 filter banks obtained by DLM-

QMF with a maximum of 3 ONE bits per coefficient, and those obtained by Novel, simulated

annealing (SA), and evolutionary algorithms (EAs). Novel uses a continuous trace function to

bring a search out of local minima rather than restarting the search from a new starting point

when the search finds a feasible design. The SA we have used is SIMANN from netlib that

works on a weighted-sum formulation. The EA is Sprave’s Lice (Linear Cellular Evolution)

that can be applied to both constrained and weighted-sum formulations. SIMANN and EA-

Wt use weighted-sum formulations with weight 1 for the reconstruction error and weight

10 for the remaining metrics. EA-Ct works on the same constrained formulation defined in

(5.6). All methods were run significantly long with over 10 hours on a SUN SS20 workstation

in each run.

We have tried various parameter settings and report the best solutions in Table 5.3. Novel

improves Johnston’s designs consistently. SIMANN and EA-Wt have difficulty in improving

over Johnston’s design across all measures and have found designs with larger transition

bandwidth. EA-Ct found a design that improves Johnston’s across all measures, although

it is not as good as the one found by Novel. Note that all these designs have continuous

coefficients that will need either a complex carry-save adder or a 32-bit multiplier in each

tap in their hardware implementations. In contrast, DLM-QMF obtained a design that

improves Er, while the other metrics are either exactly the same or slightly better than

those of Johnston’s. Moreover, the design uses a maximum of five additions in each tap,

leading to very cost-effective implementations.

Since existing optimization packages like SIMANN and EA works in continuous space, we

have also constructed our own simulated annealing package call discrete simulated annealing

140

(DSA) that works directly in discrete space. As SA cannot handle constraints directly, we

create a single objective based on a weighted sum of the objective and the constraints using

static weights:

F = w0VEr + w1Vδp + w2VEp + w3VTt + w4Vδs + w5VEs (5.17)

DSA first defines an initial temperature T0, and selects a starting point and scaling factor

in the same way as that in Section 5.3.1. It then generates a new x′ in discrete space and

accepts the new point at the current temperature T according to the following probability:

probability of accepting x′ = e−
((L(x′)−L(x)))+

T where a+ =







a if a > 0

0 otherwise
(5.18)

Periodically, T is scaled down by scaleT when the maximum violation does not decrease over

a period of time (set to 10 round robins in our experiments). Finally, DSA reports the best

solution when the search converges.

In our experiments using DSA, we found it very difficult to set T0, scaleT , and the

static weights in (5.17) that lead to better feasible PO2 designs. A set of improperly chosen

parameters will lead to violations of certain constraints. This phenomenon is obvious because

the weights define the relative importance of the constraints.

Our experience on DSA is illustrated in the search of a better design of Johnston’s 24c

filter bank. After extensive experimentation, we initialized the weights to be w0 = 1.0,

w1 = w2 = w4 = 5.0, w3 = 15.0, w5 = 25.0, and scaleT = 0.95. We further set the scaling

factor to be 0.6413, the same as that in DLM-QMF for 24c. Table 5.4 lists the eight designs

found by DSA. When the initial temperature was too high (≥ 5.0), DSA did not find any

meaningful design, but found near feasible designs when the initial temperature is lower.

When the initial temperature is 0.005, DSA found a feasible PO2 design with six ONE bits

141

Table 5.4: Experimental results of DSA in designing multiplierless QMF-bank problem 24c,
starting from a six ONE-BIT expression of scaled Johnston’s solutions.

T0 Er δp Ep δs Es Tr Search Time(Hours)

5.0 - - - - - - 1.5

1.0 0.81 0.81 0.65 1.04 0.83 0.94 0.9

0.5 0.99 1.008 0.99 0.99 0.99 0.99 1.0

0.1 0.91 0.76 0.72 1.01 0.94 1.01 1.5

0.05 0.96 0.97 0.88 1.009 0.90 1.01 1.6

0.01 0.88 0.91 0.75 1.006 0.97 0.99 1.2

0.005 0.98 0.96 0.93 0.99 0.99 0.99 2.4

0.001 0.87 0.94 0.70 1.003 0.96 0.99 1.7

that is slightly better than Johnston’s 24c. Note that we did not find any feasible design

after trying many other combinations of parameters.

In short, we found it difficult to use global search strategies, like SA and GA, to design

PO2 filter banks formulated as weighted sum of the objective and the constraints. Without

dynamically changing the weights as in DLM-QMF, it is hard to choose a proper set of

weights (except by trial and error) that will allow SA or GA to converge to feasible designs.

The best that SA and GA can find are designs with trade-offs on different metrics. For this

reason, the method studied in this thesis represents a significant advance in solving discrete

constrained optimization problems.

5.5 Summary

We have presented in this chapter an efficient implementation of discrete Lagrangian method

(DLM-QMF) for designing multiplierless powers-of-two (PO2) QMF banks. Our results

show that DLM-QMF can find better PO2 filter banks with very few ONE bits in each filter

coefficient than other discrete and continuous optimization methods. Our design method

142

is unique because it starts from a constrained formulation, with the objective of finding a

design that improves over a benchmark design. In contrast, existing methods for designing

PO2 filter banks can only obtain designs with different trade-offs among the performance

metrics and cannot guarantee that the final design is always better than the benchmark

design with respect to all the performance metrics.

143

Chapter 6

Application II - Solving Hard

Satisfiability Problems

In this chapter we study the solution of SAT problems formulated as discrete decision and

discrete constrained optimization problems. Constrained formulations are better than tradi-

tional unconstrained formulations because violated constraints may provide additional forces

to lead a search towards a satisfiable assignment. We examine in this chapter various formu-

lations of the objective function, choices of neighborhood in DLM, strategies for updating

Lagrange multipliers, and heuristics for avoiding traps. Experimental evaluations on hard

benchmark instances pinpoint that traps contribute significantly to the inefficiency of DLM

and force a trajectory to repeatedly visit the same set of or nearby points in the original

variable space. To address this issue, we propose and study two trap-avoidance strategies.

The first strategy adds extra penalties on unsatisfied clauses inside a trap, leading to very

large Lagrange multipliers for unsatisfied clauses that are trapped more often and making

these clauses more likely to be satisfied in the future. This is an indirect strategy because it

only imposes conditions in such a way that makes it less likely for a trajectory to repeat the

same traps, rather than identifying traps explicitly and avoiding them. The second strategy

144

is a direct strategy that stores information on points visited before, whether inside traps or

not, and avoids visiting points close to points visited before. It can be implemented by mod-

ifying the Lagrangian function in such a way that, if a trajectory gets close to points visited

before, an extra penalty will take effect and force the trajectory to a new region. It special-

izes to the first strategy because traps are special cases of points visited before. Finally, we

show experimental results on evaluating benchmarks in the DIMACS and SATLIB archives

and compare our results with existing results on GSAT, WalkSAT, LSDL, and Grasp. The

results demonstrate that DLM with trap avoidance is robust as well as effective in solving

hard SAT problems.

6.1 Introduction

Satisfiability (SAT) problems are the most fundamental discrete constraint-satisfaction prob-

lems among all NP-complete problems. Many real-world applications, like artificial intelli-

gence, computer-aided design, database processing, and planning, can be formulated as SAT

problems. These problems generally require algorithms of exponential complexity in the

worst case in order to obtain satisfiable assignments.

A general satisfiability (SAT) problem is defined as follows. Given a set of n clauses

{C1, · · · , Cn} on m variables x = (x1, · · · , xm), xj ∈ {0, 1}, and a Boolean formula in

conjunctive normal form:

C1 ∧ C2 ∧ · · · ∧ Cn, (6.1)

find a truth assignment to x in order to satisfy (6.1), where a truth assignment is a com-

bination of variable assignments that makes the Boolean formula true. For example, the

assignment (1, 0, 0, 0) is a solution to the following simple SAT problem with four variables

145

and four clauses:

(x1 ∨ x3 ∨ x4) ∧ (x1 ∨ x̄2 ∨ x̄3) ∧ (x̄1 ∨ x̄2 ∨ x4) ∧ (x̄1 ∨ x̄3 ∨ x̄4).

In this chapter, we formulate a SAT problem in two forms: the first as a discrete con-

strained decision problem, and the second as a discrete constrained optimization problem:

Discrete Decision Problem: Uj(x) = 0 ∀j ∈ {1, 2, . . . , n}, (6.2)

Discrete Optimization Problem: minimize objective (6.3)

subject to Uj(x) = 0 ∀j ∈ {1, 2, . . . , n},

where Uj(x) is a binary expression equal to zero when the j th clause is satisfied and to

one otherwise, and n is the number of clauses. The selection of a suitable objective in

(6.3) is discussed in Section 6.3. We formulate SAT problems using the two formulations,

transform them into discrete Lagrangian functions, and solve them using efficient global-

search strategies.

We have used a constrained formulation instead of the traditional unconstrained formu-

lation because constraints allow a search strategy to better focus its effort on unsatisfied

clauses instead of searching blindly. We have found experimentally that some clauses are

more difficult to satisfy than others and need to be handled differently. By choosing a con-

strained formulation and by assigning a dynamically changing penalty (Lagrange multiplier)

according to the duration that the corresponding clause is unsatisfied, our search strategy

has a better chance to focus on hard-to-satisfy clauses and find a satisfiable assignment. In

contrast, all clauses in an unconstrained formulation have some fixed relative weights. Fixing

the weights is undesirable because different clauses may have different degrees of difficulty

to be satisfied at different times during a search, making it hard to choose suitable weights

ahead of time.

146

This chapter is organized as follows. We survey existing work on solving SAT problems in

Section 6.2. We discuss in Section 6.3 various considerations in choosing objective functions,

neighborhoods, updates of Lagrange multipliers, and trap avoidance. Base on the alterna-

tives, we then present a basic implementation of DLM used in [179] for solving SAT problems

and explain why some hard instances cannot be solved. To solve those hard instances, we

propose in Sections 6.4 and 6.5, respectively, efficient trap-avoidance strategies based on

a constrained decision formulation and a constrained optimization formulation. The gen-

eral idea of trap avoidance is to avoid visiting the same regions in the Lagrangian-function

space repeatedly. Finally, Section 6.6 presents our experimental results and compares our

algorithms to other well-known methods in this area.

6.2 Previous Work

Many algorithms and heuristics have been developed to solve SAT problems. In this section,

we classify existing methods based on their problem formulations, first according to whether

the problem variables are discrete, and second according to whether constraints are included.

Methods in each class are further classified according to whether they are complete (proving

feasibility as well as infeasibility) or incomplete (finding a feasible solution if one exists).

6.2.1 Discrete Formulations

In a discrete formulation, variables can only take two values, 0 or 1. This mapping is natural

for SAT problems because a Boolean variable can be mapped to 0 (false) or 1 (true). The

major benefit of discrete formulations lies in their efficiency of implementation.

a) Discrete constrained decision formulations , defined in (6.1), entail the search of

solutions that can satisfy all the clauses. Existing methods in this class are generally complete

147

methods. Examples include resolution [14, 157, 68, 45], backtracking [154], and consistency

testing [84, 89]. Due to the exhaustive nature of these search methods, they are expensive

to use and normally have difficulty to address large-size problems.

There is little work on incomplete methods for solving problems using constrained de-

cision formulations because incomplete methods generally focus on all the constraints in a

single objective function, rather than individual constraints. However, we find that such

a formulation is natural for SAT problems, after combining all the constraints into a La-

grangian function based on the theory of discrete constrained optimization using Lagrange

multipliers. We show in Section 6.3.1 such a formulation and present in Section 6.4 the

corresponding trap-avoidance strategies.

b) Discrete unconstrained formulations involve the minimization of f(x), an objective

function on the number of unsatisfied clauses. Obviously, a solution is reached when f(x) is

zero.

Methods in this class are generally incomplete methods and cannot prove infeasibility.

They can be classified as local- and global-search strategies. Since local-search methods may

be trapped by local minima in the objective space, various global-search strategies have been

proposed. Next, we discuss briefly some existing methods using unconstrained formulations

Gu [87, 190, 86, 85] proposed a number of local search and parallel local search for solving

SAT problems. The various strategies proposed include iterative perturbation of trajectories

and randomized search for overcoming local minima [188, 189, 184, 86, 85, 89, 87, 88].

Selman et al. proposed GSAT [175], a randomized local search that takes the best possible

moves whenever possible, and that randomly picks one variable and flips its assignment when

there are several moves (or flips of variables) with the same effect. Flat moves, or sideway-

148

moves, are allowed to better explore plateaus in the variable space. GSAT can quickly solve

randomly generated 3-SAT problems with up to 2000 variables.

WalkSAT [174, 173, 172] adds random walks (‘noise’) in GSAT by picking a variable

in some unsatisfied clauses with probability p and flips its assignment, and by performing

greedy local search (GSAT) with probability 1 − p. It resembles simulated annealing (SA)

that accepts descents with a predetermined probability and allows a certain level of ascents

in variable space. WalkSAT has been very successful in solving many hard SAT problems.

Some theoretical analysis of GSAT/WalkSAT can be found in [101, 70].

Tabu search [75] is a method that records previously-seen patterns using a simple data

structure and tries to avoid those patterns in the future. A possible implementation is to

maintain a tabu list in order to force a search to explore unknown/unvisited regions in the

variable space. Its underlying idea of avoiding visits of historical points is quite general

and can be found in many global-search heuristics. In fact, the two trap-avoidance strategies

proposed in Sections 6.4 and 6.5 can be classified as Tabu search, although we use constrained

formulations instead of unconstrained ones. An adaptive way of performing Tabu search can

be found in [15].

There are algorithms that address each clause individually by introducing a weight on

each clause [172, 139, 61] and by updating the weights when descents cannot be performed.

In general, they can help a search overcome local minima and find solutions quickly.

Stochastic methods, such as GA and SA, have more systematic mechanisms to bring

a search out of local minima. However, as reported in [173] and based on our experience

in applying SA and CSA [213], they are not effective in solving large SAT problems. The

major difficulty of SA lies in its requirement of an exceedingly slow cooling schedule in solving

large SAT problems in order for the search to converge to satisfiable assignments. Recently,

149

there is some research on combining global optimization schemes, like GA, with local-search

methods [60].

c) Discrete constrained optimization formulations represent a SAT instance as a

constrained optimization problem in which each clause is defined as a constraint. In a typical

approach, a SAT instance is formulated as an integer linear programming (ILP) problem and

solved by existing algorithms, like branch-and-bound [23], cutting-plane [100], and interior-

point [115, 181] methods. Although these methods sometimes perform better than resolution,

they are computationally expensive and cannot solve hard-to-satisfy instances.

A second approach adds an artificial objective function N(x) to the constraints defined

on the clauses. The following formulation adds an objective on the number of unsatisfied

clauses [179, 207]:

minx∈{0,1}m N(x) =

n
∑

i=1

Ui(x) (6.4)

subject to Ui(x) = 0 ∀i ∈ {1, 2, . . . , n}.

Based on the this formulation, the discrete Lagrange-multiplier method has successfully

solved many hard SAT instances in the DIMACS archive [179]. However, this objective does

not add any new information in the formulation because it is simply a summation of all the

constraint functions. Hence, its benefit in guidance during a search is doubtful.

6.2.2 Continuous Formulations

In continuous formulations, a SAT problem is transformed in such a way that a solution

in continuous space will also be a solution to the original problem in discrete space. Such

a formulation may be helpful because a search does not have to commit a variable to ei-

ther 0 or 1 prematurely but allows it to take continuous values within a specified range.

150

However, search algorithms that work in continuous space are very expensive to apply and

can only solve small SAT instances. Algorithms in this class have been developed for both

unconstrained and constrained formulations.

a) Continuous unconstrained formulations define an objective as follows:

min
x∈Rm

f(x) =
n
∑

i=1

Ci(x), (6.5)

where R is the set of real numbers, and Ci(x) is a function of clause Ci:

Ci(x) =

m
∏

j=1

ai,j(xj) (6.6)

and

ai,j(xj) =



















(1− xj)
2 if xj in Ci

x2
j if x̄j in Ci

1 otherwise

Many existing methods can be applied to solve (6.5). Typical local-search methods in-

clude gradient descent, conjugate gradient, Quasi-Newton methods, and sequential quadratic

programming (SQP). They are fast but may be trapped easily by local minima [128, 86, 87,

88] and do not work well for large SAT instances with thousands of variables. Global-search

techniques, such as clustering, generalized-gradient, Bayesian, stochastic, and trajectory

methods [203, 177] can also be applied; however, they are usually much more computation-

ally expensive than descent methods.

151

b) Continuous constrained-optimization formulations define a new objective together

with the set of constraints defined in (6.6):

minx∈Rm f(x) (6.8)

subject to Ci(x) = 0 ∀i ∈ {1, 2, . . . , n}.

Existing approaches generally construct f(x) as a (redundant) combination of all the con-

straint functions.

Typical methods for solving continuous constrained optimization problems include tra-

ditional Lagrange-multiplier methods [128], SQP [108, 192], CSA [213, 211], and genetic

algorithms. Our experience with continuous formulations is that they do not reduce the

number of local minima, and continuous algorithms are an order-of-magnitude more expen-

sive to apply than the corresponding discrete algorithms [35].

Previous results in the area motivate us to study global-search strategies based on con-

strained decision/optimization formulations. A SAT instance can be formulated naturally

as a constrained decision problems or as a constrained optimization problem, provided that

a meaningful objective function can be defined. We discuss in Sections 6.4 and 6.5 two such

formulations. In the next section, we present the implementation details of DLM for solving

SAT problems.

6.3 Solving SAT using Lagrange-Multiplier Formula-

tions in Discrete-Space

We describe the solution of SAT as a discrete Lagrangian search in this section. We first

present alternative ways of formulating the heuristic objective function. This is followed by

a discussion of various components of a basic implementation of DLM and its performance

in solving some standard benchmark SAT instances.

152

Although the overall strategy for updating Lagrange multipliers may resemble existing

weight-update heuristics [61, 139], our proposed formulation is based on a solid mathematical

foundation of discrete constrained optimization using Lagrange multipliers. The Lagrangian

search, when augmented by new heuristics presented in the following sections, provides a

powerful tool to solve hard-to-satisfy SAT instances.

6.3.1 Formulations of Objective Function

Since the original discrete decision problem (6.2) does not have an objective function f(x), an

artificial objective function needs to be created before the problem can be transformed into

a Lagrangian function (3.19). We have studied the following alternative objective functions:

a) Constant f(x). Variations include setting f(x) to zero and to the number of violated

constraints [179]. In this case, the objective does not have any effect on search in a Lagrange-

multiplier formulation. Although results in [179] demonstrate good performance using this

formulation, better performance can be accomplished by using a suitably chosen objective.

Section 6.4 presents global-search strategies based on setting f(x) to zero.

b) f(x) = −∑i vi(x), where vi(x) is the number of variables in Clause Ci that can make

Ci satisfied. For example, v1(x) = 1 when C1 = x1 ∨ x2 and x = (x1, x2) = (1, 0), because

only x1 can make this clause satisfied. Note that vi(x) = 0 when Ci is unsatisfied. The

intuitive reason for choosing this objective is to maximize the number of variables that can

make at least one clause satisfied, since a trajectory will be quite close to a solution when

there are many variables that can satisfy different clauses. However, this choice does not

perform well experimentally when applied to solve hard SAT benchmarks. A possible reason

is that there is no direct connection between such f(x) and constraint satisfaction, and a

small f(x) does not necessarily mean that it is better in terms of constraint satisfaction.

153

c) Setting f(x) to be the sum of a few hard-to-satisfy constraints. This approach aims to

emphasize a few specific constraints in the objective. It does not work well because whether a

constraint is hard to satisfy may depend on its current assignment, and it is hard to identify

all of them ahead of time.

d) f(x) =
∑

i T (ui(x)), where ui(x) is the number of times that Clause Ci is unsatisfied,

and T is an exponential function. The goal here is penalize clauses that are unsatisfied

more often than others by assigning a large weight to them in order to force them into

satisfaction in the future. This approach does not work well because the constraint part in

the Lagrangian function will carry smaller and smaller relative weight as more constraints

are satisfied, making the search biased too much towards its historical information.

e) Setting f(x) to measure the coverage of variable space by a search trajectory. The

approach here is to find a trajectory that covers the variable space evenly, while avoiding

the repetition of the same subspaces searched before. It is intuitively sound because it aims

to explore the variable space efficiently, although its success depends on a suitable coverage

measure that can be implemented efficiently. We study in Section 6.5, distance penalty(x),

a new objective that measures the sum of Hamming distances between the current point and

points visited recently in the trajectory.

In short, our experimental results show that the first and last choices of the objective

function work well in solving SAT problems. There are other choices that may be intuitively

sound but do not lead to constraint satisfaction.

6.3.2 Major Components in Discrete-Space Lagrange-Multiplier

Method

There are three components in DLM that may affect performance:

154

A) Choice of neighborhood. The neighborhood of a point defines the set of points

with different original-variable assignments that need to be evaluated in order to carry out a

greedy search (or hill climbing) in the Lagrangian-function space. Its choice involves trade-

offs between the quality of descent directions found and the overhead in finding them.

The main advantage of using small neighborhoods is its low cost in finding descent direc-

tions. However, small neighborhoods with only nearby points may not be as good as large

neighborhoods with a combination of nearby and distant points because the latter may lead

to better descent directions and have a smaller chance of getting stuck in a trap (defined

later) or in a flat region.

In this research, we have studied four different neighborhoods x′ ∈ N (x):

a) N1(x) is the set of variable assignments that differ from x by one variable. That is, x

can be changed to x′ by flipping just one variable, and vice versa.

b) N2(x) is the set of variable assignments that differ from x by one variable, and the flip

must be a variable in an unsatisfied clause. That is, N2(x) only allows flips in N1(x) that

will change at least one unsatisfied clause into satisfaction.

c) N3(x) is the set of variable assignments that differ from x by multiple variables. That

is, x will change to x′ by flipping one or more variables, and vice versa. Normally, we set an

upper bound on the number of flips that can be performed all at once.

d) N4(x) is the set of variable assignments that differ from x by multiple variables, and

each of those flips must be a variable in an unsatisfied clause. This is similar to N2(x) except

that it allows multiple flips at the same time.

Obviously, N2(x) is smaller in size than N1(x), and N4(x) is smaller than N3(x). Both

N3(x) and N4(x) allow multiple flips at the same time, hence providing more effective ex-

ploration of a variable space but at a significant overhead.

155

Our experimental results show that N2(x) is better than N1(x) because the latter is

more closely related to unsatisfied clauses and is more pertinent to our goal of constraint

satisfaction. Similarly, N3(x) is better than N4(x) for the same reason. Both N3(x) and

N4(x) are much more expensive to apply in a neighborhood search than N2(x), with only

a marginal gain in terms of quality of descent directions found. For this reason, we select

N2(x) in our algorithms. Note that our implementation of neighborhood search is similar to

that in GSAT because they both carry out greedy local searches.

Based on N2(x), we define a trap as a combination of x and λ such that a point in it

has one or more unsatisfied clauses, and any change to a single variable in x will cause the

associated Lagrangian-function value Ld to increase. Note that a satisfiable assignment is

not a trap because all its clauses are satisfied, even though its Ld may increase when x is

perturbed.

B) Strategies for updating Lagrange multipliers. As discussed earlier, updates of

Lagrange multipliers are critical in bringing a trajectory out of traps in the original variable

space.

We have tried to increase Lagrange multipliers of unsatisfied clauses periodically and

when trajectories get stuck in flat regions or in traps. Experimentally, we have found that

periodic increases is not beneficial and may actually lead to oscillations in a trajectory. The

reason is that a search may not have enough time to explore a region in detail before it is

forced to leave after increasing its Lagrange multipliers. As a result, we increase Lagrange

multipliers only when a search reaches a trap or a flat region.

Another observation of DLM is that a direct implementation of the discrete-space first-

order conditions will cause Lagrange multipliers to grow without bound if some constraints

remain unsatisfied. Large Lagrange multipliers result in a rugged Lagrangian-function space,

making it difficult for a trajectory to escape from infeasible local minima. Hence, Lagrange

156

multipliers need to be decreased periodically in order to change the relative weights of clauses.

So far, we have tried the following alternatives:

a) Setting all Lagrange multipliers to zero periodically. This strategy does not work well

because all valuable historical information accumulated in a trajectory will be lost after

resets.

b) Controlling the ratio of the maximum to the average values of Lagrange multipliers.

The idea here is to limit the “ruggedness” of a Lagrangian-function space by scaling all

Lagrange multipliers or by subtracting a common factor when the ratio is larger than a

threshold. It does not work well because it is hard to choose a suitable problem-dependent

threshold.

c) Subtracting a common factor from all Lagrange multiplier periodically. This strategy

generalizes well to various SAT instances. We have adopted this strategy in our current

implementation.

d) Subtracting a common factor from all Lagrange multipliers of satisfied clauses pe-

riodically. Intuitively, decreasing the Lagrange multipliers of all satisfied clauses actually

increases the relative weights of unsatisfied clauses, thereby making them easier to be satis-

fied. Unfortunately, this strategy does not prove to be useful experimentally.

e) Scaling all Lagrange multipliers by a common factor if their average is larger than

a threshold. This strategy is similar to the last two strategies except that it is triggered

when the average is larger than a threshold, rather than periodically. It is used in our

implementation to solve the hanoi problems but does not generalize well to other problems.

In short, a simple strategy to reduce all Lagrange multipliers periodically works well.

More complex strategies do not because they have problem-dependent and difficult-to-tune

parameters.

157

C) Strategies for trap avoidance. The occurrence of traps is a consequence of the

interleaved application of descents in the original-variable space and ascents in the Lagrange-

multiplier space, and is specific to our implementation of discrete-space first-order conditions.

Due to the use of neighborhood function N2(x), we flip one variable at a time in our imple-

mentation if the flip can decrease Ld and continue until no new single-variable flips can be

found.

In general, traps cannot be prevented, and it is undesirable to get into the same set

of traps repeatedly because it is obviously wasteful. To this end, we study trap-avoidance

strategies using indirect controls in Section 6.4 and direct controls in Section 6.5.

A typical scenario is as follows. A clause is initially unsatisfied but becomes satisfied

after a few flips due to increases of its λ. It then becomes unsatisfied again after a few more

flips due to increases of λ of other unsatisfied clauses. Such cyclic state changes on a set of

clauses are tremendously inefficient because the trajectory remains in an unsatisfiable state.

Note that, although DLM performs global search in the variable space and can escape from

traps after getting there, they cannot prevent a trajectory from revisiting the same set of

traps in the future.

The occurrence of traps is illustrated in a simple implementation of the discrete-space

first-order conditions. The output profiles show that some clauses are flipped frequently from

being satisfied to unsatisfied, meaning that the trajectory traverses in cycles in a small region

or is stuck in the original-variable space for an indefinite period of time. To demonstrate

that some clauses are more likely to be unsatisfied, we plot the number of times a clause is in

a trap. This is not the same as the number of times a clause is unsatisfied because a clause

may be unsatisfied when outside a trap. We do not consider the path a search takes to reach

a trap, during which a clause may be unsatisfied, because the different paths to reach a trap

are not crucial in determining the strategy to escape from it.

158

0

500000

1e+06

1.5e+06

2e+06

2.5e+06

Fr
eq

ue
nc

y
(n

um
be

r
of

 ti
m

es
 c

la
us

e
w

as
 in

 a
 tr

ap
)

Clause Index

Avg. No. of Flips = 90938; Max. = 2.4*106; Total = 1.11*108

0

200

400

600

800

1000

1200

1400

1600

1800

Fr
eq

ue
nc

y
(n

um
be

r
of

 ti
m

es
 c

la
us

e
w

as
 in

 a
 tr

ap
)

Clause Index

Avg. No. of Flips = 120; Max. = 1601; Total = 5*106

a) Hanoi4 b) Par-16-1
Figure 6.1: Large disparity between the maximum and the average numbers of times a clause is
in traps.

Figure 6.1 shows that some clauses reside in traps more often than average in using DLM

to solve hanoi4 and par16-1, two hard SAT instances in the DIMACS archive. This behavior

leads to an inefficient search because the trajectory may be trapped in a small region for a

long time.

Ideally, we like a trajectory to never visit the same point twice in solving an optimization

problem. This can be achieved if we can store all the points traversed by a trajectory in

the past. It is, however, impractical in terms of memory usage and computation overhead

in calculating DMPD for the ever-increasing number of points visited before.

We present in the following five approximate methods to force a trajectory not to repeat

itself. The first three methods identify explicitly when a trajectory is in traps before taking

corrective actions. The remaining two methods involve steps that are carried out periodically

and not specific to the case when a trajectory is inside traps.

a) Flipping multiple variables at a time. Since a trap is defined with respect to the

perturbation of one variable, we can perturb multiple variables at a time to see if Ld de-

creases. This is impractical due to the large number of neighborhood points that need to be

considered.

159

procedure DLM-BASIC-SAT

1. Reduce the original SAT problem;

2. Generate a random starting point using a fixed seed;

3. Initialize λi ←− 0;

4. while solution not found and time not used up do

5. x Loop: pick xj /∈ TabuList that reduces Ld the most;

6. Maintain TabuList;

7. Flip xj ;

8. λ Loop: if #F latMoves > θ1 then

9. λi ←− λi + δo;

10. if #Adjust% θ2 = 0 then

11. λi ←− λi − δd end if

12. end if

13. end while

end

Figure 6.2: DLM-BASIC-SAT [179]: An implementation of the basic discrete-space first-order

method for solving SAT.

b) Random restarts. Although restarts are effective to bring a trajectory out of traps,

valuable historical information accumulated in a trajectory will be lost. It is also impractical

to maintain historical information on all the traps visited by a trajectory.

c) Extra penalties on clauses in traps. The idea is to add extra penalties on unsatisfied

clauses inside traps, leading to very large Lagrange multipliers for unsatisfied clauses that

are trapped more often and making these clauses less likely to be unsatisfied in the future.

This is an indirect strategy because it only imposes conditions to make it less likely for a

trajectory to repeat the same traps, rather than identifying traps explicitly and pushing a

trajectory away from them. The strategy has been found to be very useful and is evaluated

in Section 6.4.

d) Keeping historical information on trajectories. The idea is to avoid visiting points,

whether inside traps or not, close to points that have already been visited before in a tra-

jectory. It can be implemented by modifying the Lagrangian function in such a way that,

160

if a trajectory gets close to points visited before, then an extra penalty will take effect and

force the trajectory to a new region. Of course, one can only keep track of a part of a

search trajectory due to space and computation limits. Experimental results show that even

keeping a small part of the historical information is very helpful in reducing the time to find

satisfiable assignments. This is a direct strategy because it stores explicit information on

points visited before. It is investigated thoroughly in Section 6.5.

e) Periodic decreases of Lagrange multipliers can bring a trajectory to a new region in a

Lagrangian-function space. Hence, if a trajectory is inside a trap, it will be out of the trap

once the space changes. This indirect trap-avoidance strategy has been studied in the basic

DLM in [179].

6.3.3 Basic DLM for Solving SAT Problems

Figure 6.2 shows a basic implementation of DLM [179] that uses some of the concepts

discussed in this section: constant f(x), N2(x), and periodic reduction of all Lagrange

multipliers by a common factor. In addition, it uses heuristics based on tabu lists [75] and

flat moves [173]. We explain each step of this algorithm when we present our proposed

trap-avoidance strategy in the next section.

Table 6.1 lists the average performance of our current implementation of DLM-BASIC-

SAT in solving DIMACS/SATLIB benchmark problems, each evaluated from ten randomly

generated starting points.

161

Table 6.1: Performance of DLM-BASIC-SAT in solving DIMACS/SATLIB SAT problems. All
experiments were run on a 500-MHz Pentinum-III computer with Solaris 7. (aim is on artificially
generated random-3-SAT; ii is from inductive inference; jnh is on random SAT with variable-length
clauses; par8 is for learning parity functions; ssa is on circuit fault analysis; ais is on all-interval
series; uf is on uniform random-3-SAT; flat is on “flat” graph coloring; logistics is on logistics
planning; and sw is on “morphed” graph coloring [69].)

Problem Succ. CPU Num. of Problem Succ. CPU Num. of

ID Ratio Sec. Flips ID Ratio Sec. Flips

aim-50-1-6-yes1-1 10/10 0.01 3645 aim-50-1-6-yes1-2 10/10 0.01 1466

aim-50-1-6-yes1-3 10/10 0.01 984 aim-50-1-6-yes1-4 10/10 0.01 2060

aim-50-2-0-yes1-1 10/10 0.00 987 aim-50-2-0-yes1-2 10/10 0.01 1169

aim-50-2-0-yes1-3 10/10 0.01 2736 aim-50-2-0-yes1-4 10/10 0.01 2292

aim-50-3-4-yes1-1 10/10 0.01 1639 aim-50-3-4-yes1-2 10/10 0.01 1126

aim-50-3-4-yes1-3 10/10 0.01 729 aim-50-3-4-yes1-4 10/10 0.01 665

aim-50-6-0-yes1-1 10/10 0.01 199 aim-50-6-0-yes1-2 10/10 0.01 197

aim-50-6-0-yes1-3 10/10 0.00 171 aim-50-6-0-yes1-4 10/10 0.00 148

aim-100-1-6-yes1-1 10/10 0.02 6031 aim-100-1-6-yes1-2 10/10 0.02 4512

aim-100-1-6-yes1-3 10/10 0.02 5768 aim-100-1-6-yes1-4 10/10 0.01 2912

aim-100-2-0-yes1-1 10/10 0.03 9460 aim-100-2-0-yes1-2 10/10 0.03 9473

aim-100-2-0-yes1-3 10/10 0.02 5077 aim-100-2-0-yes1-4 10/10 0.02 7797

aim-100-3-4-yes1-1 10/10 0.05 10503 aim-100-3-4-yes1-2 10/10 0.02 2783

aim-100-3-4-yes1-3 10/10 0.04 7667 aim-100-3-4-yes1-4 10/10 0.02 4898

aim-100-6-0-yes1-1 10/10 0.01 476 aim-100-6-0-yes1-3 10/10 0.01 680

aim-100-6-0-yes1-2 10/10 0.01 229 aim-100-6-0-yes1-4 10/10 0.01 819

aim-200-1-6-yes1-1 10/10 0.17 80877 aim-200-1-6-yes1-2 10/10 0.07 29595

aim-200-1-6-yes1-3 10/10 0.15 68990 aim-200-1-6-yes1-4 10/10 0.06 29865

aim-200-2-0-yes1-1 10/10 0.44 174356 aim-200-2-0-yes1-2 10/10 0.15 57462

aim-200-2-0-yes1-3 10/10 0.10 36183 aim-200-2-0-yes1-4 10/10 0.33 129955

aim-200-3-4-yes1-1 10/10 0.54 99393 aim-200-3-4-yes1-2 10/10 0.11 18354

aim-200-3-4-yes1-3 10/10 0.11 19583 aim-200-3-4-yes1-4 10/10 0.53 98180

aim-200-6-0-yes1-1 10/10 0.02 894 aim-200-6-0-yes1-2 10/10 0.04 1961

continued on next page

162

continued from previous page

Problem Succ. CPU Num. of Problem Succ. CPU Num. of

ID Ratio Sec. Flips ID Ratio Sec. Flips

aim-200-6-0-yes1-3 10/10 0.03 1700 aim-200-6-0-yes1-4 10/10 0.02 632

ii8a1 10/10 0.01 59 ii8a2 10/10 0.00 147

ii8a3 10/10 0.02 365 ii8a4 10/10 0.02 1068

ii8b1 10/10 0.01 78 ii8b2 10/10 0.01 429

ii8b3 10/10 0.03 772 ii8b4 10/10 0.03 796

ii8c1 10/10 0.01 433 ii8c2 10/10 0.04 1714

ii8d1 10/10 0.02 1098 ii8d2 10/10 0.05 2720

ii8e1 10/10 0.01 307 ii8e2 10/10 0.03 1767

ii16a1 10/10 0.20 9360 ii16a2 10/10 0.22 10116

ii16b1 10/10 0.32 6673 ii16b2 10/10 0.23 5395

ii16c1 10/10 0.18 2696 ii16c2 10/10 0.25 8303

ii16d1 10/10 0.22 12289 ii16d2 10/10 0.49 18479

ii16e1 10/10 0.14 1042 ii16e2 10/10 0.28 8132

ii32a1 10/10 0.13 5478 ii32b1 10/10 0.01 451

ii32b2 10/10 0.03 870 ii32b3 10/10 0.05 2139

ii32b4 10/10 0.12 6268 ii32c1 10/10 0.01 254

ii32c2 10/10 0.02 325 ii32c3 10/10 0.04 1490

ii32c4 10/10 0.41 7506 ii32d1 10/10 0.03 971

ii32d2 10/10 0.08 2904 ii32d3 10/10 0.33 8676

ii32e1 10/10 0.01 168 ii32e2 10/10 0.03 892

ii32e3 10/10 0.06 2426 ii32e4 10/10 0.04 2083

ii32e5 10/10 0.11 5083

jnh1 10/10 0.01 899 jnh7 10/10 0.01 632

jnh12 10/10 0.02 1491 jnh17 10/10 0.02 1250

jnh201 10/10 0.01 155 jnh204 10/10 0.02 2401

jnh205 10/10 0.03 2732 jnh207 10/10 0.05 6829

jnh209 10/10 0.04 4146 jnh210 10/10 0.01 506

continued on next page

163

continued from previous page

Problem Succ. CPU Num. of Problem Succ. CPU Num. of

ID Ratio Sec. Flips ID Ratio Sec. Flips

jnh212 10/10 0.24 33197 jnh213 10/10 0.02 1459

jnh217 10/10 0.01 381 jnh218 10/10 0.02 1104

jnh220 10/10 0.08 9918 jnh301 10/10 0.10 11039

par8-1-c 10/10 0.03 7698 par8-2-c 10/10 0.05 14421

par8-3-c 10/10 0.83 271275 par8-4-c 10/10 0.07 21763

par8-5-c 10/10 0.09 26736 par8-1 10/10 0.13 41810

par8-2 10/10 0.17 57521 par8-3 10/10 0.38 122311

par8-4 10/10 0.15 48256 par8-5 10/10 0.40 135212

ssa7552-038 10/10 0.13 16250 ssa7552-158 10/10 0.07 8816

ssa7552-159 10/10 0.08 8084 ssa7552-160 10/10 0.10 13742

ais6 10/10 0.01 416 ais8 10/10 0.07 7242

ais10 10/10 0.23 18916 ais12 10/10 2.19 140294

uf200-01 10/10 0.14 11810 uf200-02 10/10 0.20 22446

uf200-03 10/10 0.07 1851 uf200-04 10/10 0.11 8248

uf200-05 10/10 0.17 16162 uf200-06 10/10 0.66 80804

uf200-07 10/10 0.13 12457 uf200-08 10/10 0.08 7199

uf200-09 10/10 0.17 15005 uf200-0100 10/10 0.12 12732

flat100-1 10/10 0.36 108069 flat100-2 10/10 0.17 49512

flat100-3 10/10 0.05 11072 flat100-4 10/10 0.47 150496

flat100-5 10/10 0.09 23146 flat100-6 10/10 0.17 46834

flat100-7 10/10 2.64 859110 flat100-8 10/10 2.77 900221

flat100-9 10/10 0.06 16428 flat100-100 10/10 0.07 18502

logistics-a 10/10 0.16 17427 logistics-b 10/10 0.16 18965

logistics-c 10/10 0.21 16870 logistics-d 10/10 1.65 48603

sw100-1 10/10 0.62 117577 sw100-2 10/10 1.43 288571

sw100-3 10/10 0.97 192017 sw100-4 10/10 1.02 203461

sw100-5 10/10 0.65 127605 sw100-6 10/10 1.75 352747

continued on next page

164

continued from previous page

Problem Succ. CPU Num. of Problem Succ. CPU Num. of

ID Ratio Sec. Flips ID Ratio Sec. Flips

sw100-7 10/10 0.83 160884 sw100-8 10/10 0.99 197997

sw100-9 10/10 0.89 171101 sw100-10 10/10 0.55 104940

sw100-11 10/10 0.83 163650 sw100-12 10/10 1.64 331097

sw100-13 10/10 0.68 130571 sw100-14 10/10 0.50 93632

sw100-15 10/10 0.52 98793 sw100-16 10/10 1.79 364416

sw100-17 10/10 0.71 136542 sw100-18 10/10 0.83 162783

sw100-91 10/10 1.57 312889 sw100-92 10/10 1.04 207944

sw100-93 10/10 0.89 172169 sw100-94 10/10 1.19 237928

sw100-95 10/10 0.45 84771 sw100-96 10/10 0.71 136622

sw100-97 10/10 0.77 150486 sw100-98 10/10 1.46 295163

sw100-99 10/10 1.28 247702 sw100-100 10/10 0.47 89026

sw100-8-p0-c5 10/10 1.00 191275

Although quite simple, DLM-BASIC-SAT can find solutions within seconds to most

satisfiable DIMACS benchmarks, such as all the problems in the aim, ii, jnh, par8, and ssa

classes, and most problems in SATLIB, like uniform 3-SAT uf, flat graph coloring flat, and

morphed graph coloring sw. DLM-BASIC-SAT is either faster than, or at least comparable

to, competing algorithms like GSAT and Grasp [130]. However, it has difficulty in solving

problems in the par16, hanoi, g, f2000, and par32 classes.

165

6.4 Trap Avoidance based on Constrained Decision For-

mulations

The Lagrangian function when SAT is formulated as a constrained decision problem (6.2) is:

Ld(x, λ) =
n
∑

i=1

λiUi(x), (6.9)

where Ui(x) is a binary function equal to zero when the ith clause is satisfied and to one

otherwise. Here, we assume that a constant objective function is used.

Figure 6.3 shows the pseudo code of DLM with Strategy (c) on trap avoidance (discussed

in Section 6.3) in which extra penalties are added to clauses when they are found in traps [228,

227, 229]. It defines a weight for each Lagrange multiplier, identifies the location of traps,

and increases the weights of all unsatisfied clauses each time the search reaches a trap. When

an undesirable imbalance happens in which some clauses are trapped more often than others,

the Lagrange multipliers of clauses with the largest weight are increased in order to force

these clauses into satisfaction. In our implementation, imbalance happens when the ratio

of the largest weight to the average is larger than a predefined threshold. If the increments

to the corresponding Lagrange multipliers of those trapped clauses are large enough, these

clauses are likely to be satisfied in the future. Also, the chance for the trajectory to hit the

same traps again is much lower. We explain each line of the procedures in Figure 6.3 in

detail next.

• Line 1 performs some straightforward reductions on all clauses with a single variable.

For all single-variable clauses, we set the value of that variable to make the clause

satisfied and propagate the assignment. For example, if a clause has just one variable

x4, then x4 must be true. Reduction stops when there are no single-variable clauses.

166

procedure DLM-Trap-Avoidance-SAT

/* An implementation of the discrete first-order method for solving SAT problems */

1. Reduce original SAT problem;

2. Generate a random starting point using a fixed seed;

3. Initialize λi ←− 0 and ti ←− 0;

4. while solution not found and time not used up do

5. x Loop: pick xj /∈ TabuList that reduces Ld the most;

6. If search is in a trap then

7. For all unsatisfied clauses u, tu ←− tu + δw end if

8. Maintain TabuList;

9. Flip xj ;

10. λ Loop: if #FlatMoves > θ1 then

11. λi ←− λi + δo;

12. if #Adjust%θ2 = 0 then

13. call DECREASE-LAMBDA end if;

14. call SPECIAL-INCREASE;

15 end if

16. end while

end

procedure SPECIAL-INCREASE

/* Special increases of λ on certain clauses when their weights are imbalanced */

17. Pick a set of clauses S;

18. if maxi∈S ti�
i∈S

ti/n ≥ θ3 then

19. For clause i in S with the largest ti, λi ←− λi + δs;

20. end if

end

procedure DECREASE-LAMBDA

/* Two alternatives to decrease Lagrange multipliers */

21. Alternative-1: λi ←− λi − δd for all clauses

22. Alternative-2: λi ←− λi/δd for all clauses when

the average λ of all clauses is larger than θ4

end

Figure 6.3: Pseudo code of DLM-Trap-Avoidance-SAT.

167

• Line 2 generates a random starting point using a fixed seed. Note that we use the long-

period random-number generator of L’Ecuyer with Bays-Durham shuffle and added

safeguards rather than the default generator provided in the C library in order to

allow our results to be reproducible across different platforms.

• Line 3 initializes ti (temporary weight) and λi for Clause i to zero in order to make

the experiments repeatable. Note that increases to λi are faster if ti is larger.

• Line 4 defines a loop that will stop when time (maximum number of flips) runs out or

when a satisfiable assignment is found.

• Line 5 (x Loop) chooses xj that will reduce Ld the most among all variables not in

TabuList. If such a variable cannot be found, then it picks xj that will not increase Ld.

Such a flip is called a flat move [173]. We allow flat moves in order to help a trajectory

explore flat regions.

• Lines 6-7 locate a trap and increase tu by δw (= 1) for all unsatisfied clauses in that

trap.

• Line 8 maintains TabuList [75] that is important in helping a search explore flat regions

effectively. Each time a variable is flipped, it will be put in TabuList in a FIFO order,

and the oldest element will be removed from TabuList.

• Line 9 flips the xj chosen (from false to true or vice versa). It also records the number

of times the trajectory is doing flat moves.

• Lines 10-11 (λ Loop) increase the Lagrange multipliers of all unsatisfied clauses by δo

(= 1) when the sum of up-hill and flat moves exceeds a predefined threshold θ1 (50 for

f , 16 for par16 and par32, 26 for g, and 18 for hanoi4). After increasing the Lagrange

multipliers of all unsatisfied clauses, we increase Counter #Adjust by one.

168

• Lines 12-13 implement Strategy (e) on trap avoidance (discussed in Section 6.3) that

reduces the Lagrange multipliers of all clauses by calling Procedure DECREASE-

LAMBDA when #Adjust reaches threshold θ2 (12 for f , 46 for par16, 56 for par32, 6

for g, and 40 for hanio4). This step helps change the relative weights of all the clauses

and may allow the trajectory to go to another region in the Lagrangian-function space

after the reduction.

• Line 14 calls Procedure SPECIAL-INCREASE when some clauses appear in traps more

often than other clauses.

• Line 17 picks S, a problem-dependent set of clauses (for par16-1 to par16-5, the set of

all currently unsatisfied clauses; for others, the set of all clauses).

• Lines 18-19 compute the ratio between the maximum and the average weights to see if

the ratio is imbalanced, where n is the number of clauses. If the ratio is larger than θ3

(3 for par16, par32, and f , 1 for g, and 10 for hanoi4), then we increase the Lagrange

multiplier of the clause with the largest weight by δs (1 for all problems).

• Lines 21-22 provide two alternatives to reducing Lagrange multipliers. The first alter-

native reduces Lagrange multipliers by a common integer δd (set to 1 in our experi-

ments), whereas the second calculates the average of all Lagrange multipliers before

decreasing them by a common factor δd (= 2) if the average is larger than θ4 (set to 4.0

in our experiments). The second alternative was used in DLM-Trap-Avoidance-SAT

when solving hanoi4 and hanoi4-simple because it allowed satisfiable assignments to

be found in time shorter by an order of magnitude when compared to using the first

alternative [228].

169

0

200000

400000

600000

800000

1e+06

1.2e+06

Fr
eq

ue
nc

y
(N

um
be

r
of

 T
im

es
 in

 a
 T

ra
p)

Clause Index

Avg. No. of Flips = 109821; Max. = 1098206; Total = 1.11*108

0

200

400

600

800

1000

1200

Fr
eq

ue
nc

y
(N

um
be

r
of

 T
im

es
 in

 a
 T

ra
p)

Clause Index

Avg. No. of Flips = 97; Max. = 1032; Total = 5*106

a) Hanoi4 b) Par-16-1
Figure 6.4: Reduced disparity between the maximum and the average numbers of times a clause
is in traps using SPECIAL-INCREASE.

Intuitively, increasing the Lagrange multipliers of unsatisfied clauses in traps can reduce

their chance to be in traps again. Figure 6.4 illustrates this point by plotting the

number of times that clauses appear in traps after using SPECIAL-INCREASE. When

compared to Figure 6.1, we see that SPECIAL-INCREASE has controlled the large

imbalance in the number of times that clauses are unsatisfied. For hanoi4 (resp. par16-

1), the maximum number of times a clause is trapped is reduced by more than 50%

(resp. 35%) after the same number of flips.

Note that imbalance is controlled by θ3 and δs. If we use smaller θ3 and larger δs, then

better balance can be achieved. However, better balance does not always lead to better

solutions because a search may leave a trap quickly, thereby missing some solutions for

hard problems.

Table 6.2 lists the experimental results on all the hard instances solved by DLM-Trap-

Avoidance-SAT. Besides listing the success ratios, average CPU times, and average number of

flips, we also show the standard deviations of number of flips in the fifth and tenth columns.

Obviously, the standard deviations of the number of flips are of the same order as the average

170

Table 6.2: Performance of DLM-Trap-Avoidance-SAT in solving some hard SAT instances and
the g-class problems that were not solve well before [179]. Experiments were run on a 500-MHz
Pentinum III computer with Solaris 7.

Problem Succ. CPU Number of Flips Problem Succ. CPU Number of Flips

ID Ratio Sec. avg. std. dev. ID Ratio Sec. avg. std. dev.

par16-1 10/10 96.5 1.6 · 107 1.3 · 107 par16-1-c 10/10 28.8 4850828 4990514

par16-2 10/10 95.7 1.7 · 107 1.5 · 107 par16-2-c 10/10 61.0 10138948 8953101

par16-3 10/10 125.7 2.2 · 107 2.4 · 107 par16-3-c 10/10 35.3 5920445 6394110

par16-4 10/10 54.5 9.2 · 106 1.3 · 107 par16-4-c 10/10 46.1 7786958 5056654

par16-5 10/10 178.5 3.0 · 107 4.2 · 107 par16-5-c 10/10 44.6 7386779 9140594

hanoi4 10/10 14744 5.4 · 108 3.0 · 108 hanoi4-simple 10/10 14236 9.2 · 108 8.3 · 108

par32-1-c 1/20 8622 8.9 · 108 0 g125-17 10/10 144.8 754560 620193

par32-2-c 1/20 102590 9.2 · 109 0 g125-18 10/10 3.98 6819 3519

par32-3-c 1/20 154607 1.4 · 1010 0 g250-15 10/10 12.9 2426 228

par32-4-c 1/20 115963 1.1 · 1010 0 g250-29 10/10 331.4 354453 257111

f600 10/10 0.664 39935 39182 f1000 10/10 3.7 217062 156537

f2000 10/10 16.2 655100 461838 bw-large-d 10/10 311.8 1328274 1073476

number of flips. DLM-Trap-Avoidance-SAT is, therefore, robust and insensitive to different

starting points.

In Figure 6.5, we plot the distribution of number of flips for applying DLM-Trap-Avoidance-

SAT to solve benchmark problem bw-large-d from 100 randomly generated starting points.

The average number of flips for this particular problem is around 1.3 · 106, as shown in the

last row of Table 6.2. Clearly, the maximal number of flips, 6.0 · 106, is of the same order as

the average number of flips over 100 runs of DLM-Trap-Avoidance-SAT. It proves again the

robustness of DLM-Trap-Avoidance-SAT. The averages and standard deviations presented

are better than those by R-Novelty [102].

We leave comparisons of DLM-Trap-Avoidance-SAT to other algorithms in the area in

Section 6.6. Note that DLM-Trap-Avoidance-SAT is one of the few methods that can solve

171

par16-1 to par16-5, hanoi4, hanoi4-simple, and par32-1-c to par32-4-c, among existing local-

and global-search methods for solving SAT.

6.5 Trap Avoidance based on Constrained Optimiza-

tion Formulations

The trap-avoidance strategy presented in the last section is an indirect strategy because it

only imposes conditions in such a way that makes it less likely for a trajectory to repeat the

same traps. In this section we present a direct strategy that remembers points visited recently

in a trajectory and avoids revisiting them explicitly by imposing penalties on these points.

The strategy specializes to trap avoidance because traps are special cases of points visited

before. Since these penalties are to be minimized, we have included them in the objective

of a constrained optimization problem, leading to the following Lagrangian function with a

new heuristic objective:

Ld(x, λ) = −distance penalty(x) +
n
∑

i=1

λiUi(x), (6.10)

where distance penalty(x) is the sum of Hamming distances from the current point x in a

trajectory to points visited in the recent past. Hence, if a trajectory is stuck in a trap, then

the penalties from the current point to points in the trap will be large, leading to a large

objective in (6.10) and steering the trajectory away from the trap. On the other hand, if

the trajectory is not inside a trap, then the penalties to points visited before will be large,

again steering the trajectory away from regions visited before.

The exact form of distance penalty(x) is:

distance penalty(x) = (−CL ·
∏

j

(1− Uj(x))) +
∑

i

min(θt, |x− xs
i |), (6.11)

172

0

0.2

0.4

0.6

0.8

1

0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06
PD

F
Number of Flips

Figure 6.5: Distribution of number of flips for applying DLM-Trap-Avoidance-SAT to solve
benchmark problem bw-large-d from 100 randomly generated starting points.

where θt is a positive threshold, |x− xs
i | is the Hamming distance between x and xs

i visited

before in a trajectory, i is an index to all the points saved, j is an index to all clauses, and CL

is a large positive constant. If x is not a solution, then (−CL ·
∏

j (1− Uj(x))) in (6.11) will be

zero, and distance penalty(x) only measures the sum of Hamming distances. On the other

hand, if x is a feasible solution that satisfies all the constraints, then (−CL ·
∏

j (1− Uj(x)))

will be −CL, making the solution point a CLM as compared to neighboring feasible points.

Parameter θt is used to control the search and put an upper bound on distance penalty

so that it will not be a dominant factor in the new Lagrangian function. Without θt, the

first-order search will prefer a far-away point than a point with less constraint violation,

which is not desirable. In our experiments, we set θt to be 2. This means that, when the

Hamming distance between the current point and each stored historical point of a trajectory

is larger than 2, the impact of all the stored historical points on distance penalty will be the

same.

Due to limitations in memory usage and computation overhead in calculating DMPD on

Ld, we only keep a fixed-size queue of size qs of historical points and periodically update this

queue in a FIFO manner. The period of update is based on ws flips; namely, after ws flips,

we save the current search point in the queue and remove the oldest element from the queue.

173

procedure DLM-Distance-Penalty-SAT

1. Reduce the original SAT instance;

2. Generate a random starting point using a fixed seed;

3. Initialize λi ←− 0;

4. while solution not found and time not used up do

5. x Loop: pick xj /∈ TabuList that reduces Ld the most;

6. Flip xj ;

7. If #F lips%ws = 0 then

8. Update the queue on historical points end if

9. Maintain TabuList;

10. λ Loop: if #F latMoves > θ1 then

11. λi ←− λi + δo;

12. if #Adjust%θ2 = 0 then

13. λi ←− λi − δd; end if;

14 end if

15. end while

end

Figure 6.6: Pseudo code of DLM-Distance-Penalty-SAT

Figure 6.6 shows the DLM-Distance-Penalty-SAT procedure for solving general SAT in-

stances. Since a large part of it is similar to that in Figure 6.3, we only explain the differences

next.

Line 3 does not initialize temporary weights ti as in DLM-Trap-Avoidance-SAT because

we need not identify explicitly the locations of traps here. Such situations will be handled

by distance-penalty(x) automatically in the objective function.

Lines 7-8 maintain a queue on a fixed number of historical points. After a predefined

number of flips, the algorithm inserts the current search point in the queue and deletes the

oldest historical point. Note that this queue needs to be designed carefully in order to make

the whole scheme efficient. In our experiments, we choose the queue size qs to be in the

range [3, 20].

174

Lines 12-13 reduce λi of all clauses by δd (= 1) when #Adjust reaches threshold θ2 (12 for

f , 46 for par16, 7 for g, and 40 for hanio4). These reductions are critical in our strategy

because they help maintain the effect of distance penalty(x) in Ld by keeping λTh(x) in Ld

in a suitable range, given that distance penalty is in a fixed range that can be computed

from ws and θt. Without these reductions, distance penalty will be relatively small when λ

becomes too large and has no significant effect in avoiding regions visited before.

As compared to DLM-Trap-Avoidance-SAT in Figure 6.3, the new approach is simpler

and has less parameters to tune. We do not show frequency diagrams like those in Figures 6.1

and 6.4 because we do not identify traps explicitly, and the Lagrangian function is different

with the addition of distance-penalty. Note that there is more overhead in searching for a

suitable variable to flip (Line 5); that is, each flip will take more CPU time than a similar flip

in DLM-Trap-Avoidance-SAT. However, the overall CPU time is actually much shorter for

most benchmark problems tested because the new trap-avoidance strategy can avoid visiting

the same regions more effectively.

We have applied DLM-Distance-Penalty-SAT to solve some hard, satisfiable SAT in-

stances in the DIMACS archive. Table 6.3 shows that it can solve quickly f2000, par16-1-c

to par16-5-c, par16-1 to par16-5, hanoi4 and hanoi4-simple with 100% success ratio. Simi-

lar to the case of DLM-Trap-Avoidance-SAT, we apply DLM-Distance-Penalty-SAT to solve

benchmark problem bw-large-d from 100 randomly generated starting points. The distribu-

tion of number of flips over 100 runs is plotted in Figure 6.7. From the distribution shown

in Figure 6.7 and the standard deviations of number of iterations listed in Table 6.3, we

conclude that DLM-Distance-Penalty-SAT is robust and insensitive to starting points.

Comparisons to other algorithms are shows in the following section.

175

Table 6.3: Performance of DLM-Distance-Penalty-SAT in solving hard SAT instances. Experi-
ments were run on a 500-MHz Pentinum-III computer with Solaris 7.

Problem Succ. CPU Number of Flips Problem Succ. CPU Number of Flips

ID Ratio Sec. avg. std. dev. ID Ratio Sec. avg. std. dev.

par16-1 10/10 101.7 1.3 · 107 1.4 · 107 par16-1-c 10/10 20.8 2786081 4651849

par16-2 10/10 154.0 2.1 · 107 1.8 · 107 par16-2-c 10/10 51.6 6824355 6773141

par16-3 10/10 76.3 9.8 · 106 8.3 · 106 par16-3-c 10/10 27.5 3674644 3301287

par16-4 10/10 83.7 1.1 · 107 6.6 · 106 par16-4-c 10/10 35.8 4825594 3489535

par16-5 10/10 121.9 1.5 · 107 1.4 · 107 par16-5-c 10/10 32.4 4264095 3480451

hanoi4 10/10 6515 6.3 · 108 4.3 · 108 hanoi4-simple 10/10 9040 1.1 · 109 1.2 · 109

g125-17 10/10 41.4 434183 346459 bw-large-a 10/10 0.10 6176 4324

g125-18 10/10 4.8 22018 20025 bw-large-b 10/10 1.55 67946 61441

g250-15 10/10 17.7 2437 222 bw-large-c 10/10 72.36 1375437 1031397

g250-29 10/10 193.1 289962 200066 bw-large-d 10/10 146.28 1112332 660373

f600 10/10 0.80 73753 59421 anomaly 10/10 0.00 259 353

f1000 10/10 3.21 285024 345406 medium 10/10 0.02 1537 798

f2000 10/10 19.2 1102816 819142 huge 10/10 0.19 10320 8611

6.6 Performance Comparisons with Some Existing Al-

gorithms

In this section, we compare our trap-avoidance strategies to some well-known global-search

methods in solving DIMACS/SATLIB benchmark instances. As most other methods do not

report the number of flips, we omit this measure in our comparisons. The results demon-

strate the robustness and effectiveness of DLM and trap avoidance in solving satisfiable SAT

instances.

Table 6.4 compares our results to GSAT/WalkSAT and LSDL, two incomplete stochastic

search methods in the area.

When compared to GSAT/WalkSAT, DLM with trap avoidance can solve many hard-to-

satisfy problems, like par16-, par32-1-c to par32-4-c, hanoi4, and hanoi4-simple, that cannot

176

Table 6.4: Performance comparisons of DLM-Trap-Avoidance-SAT, DLM-Distance-Penalty-SAT,
WalkSAT/GSAT, and LSDL [41] on solving some hard SAT instances. Our experiments were run
on a 500-MHz Pentinum-III computer with Solaris 7. WalkSAT/GSAT was evaluated on an SGI
Challenge with MPIS processor, model unknown. The timing results of LSDL, using two different
strategies GENET and MAX, were collected on a SUN Sparc classic, model unknown. So far,
DLM-Distance-Penalty has not found any solution to par32-?-c, as denoted by ‘-’ in the table.
(“NR” in the table stands for “not reported.”)

DLM-Distance DLM-Trap WalkSAT/ LSDL
Problem Penalty Avoidance GSAT GENET MAX

ID Succ. Ratio Sec. Succ. Ratio Sec. Succ. Ratio Sec. Sec. Sec.

par16-1 10/10 101.7 10/10 96.5 NR NR NR NR
par16-2 10/10 154.0 10/10 95.7 NR NR NR NR
par16-3 10/10 76.3 10/10 125.7 NR NR NR NR
par16-4 10/10 83.7 10/10 54.5 NR NR NR NR
par16-5 10/10 121.9 10/10 178.5 NR NR NR NR

par16-1-c 10/10 20.8 10/10 28.8 NR NR NR NR
par16-2-c 10/10 51.6 10/10 61.0 NR NR NR NR
par16-3-c 10/10 27.5 10/10 35.3 NR NR NR NR
par16-4-c 10/10 35.8 10/10 46.1 NR NR NR NR
par16-5-c 10/10 32.4 10/10 44.6 NR NR NR NR

par32-1-c - - 1/20 9556 NR NR NR NR
par32-2-c - - 1/20 113714 NR NR NR NR
par32-3-c - - 1/20 171372 NR NR NR NR
par32-4-c - - 1/20 128537 NR NR NR NR

f600 10/10 0.80 10/10 0.664 NR 35∗ NR NR
f1000 10/10 3.21 10/10 3.7 NR 1095∗ NR NR
f2000 10/10 19.2 10/10 16.2 NR 3255∗ NR NR

hanoi4 10/10 6515 10/10 14744 NR NR NR NR
hanoi4-s 10/10 9040 10/10 14236 NR NR NR NR

g125-17 10/10 41.4 10/10 144.8 7/10∗∗ 264∗∗ 282.0 192.0
g125-18 10/10 4.8 10/10 3.98 10/10∗∗ 1.9∗∗ 4.5 1.1
g250-15 10/10 17.7 10/10 12.9 10/10∗∗ 4.41∗∗ 0.418 0.328
g250-29 10/10 193.1 10/10 331.4 9/10∗∗ 1219∗∗ 876.0 678.0

anomaly 10/10 0.00 10/10 0.01 NR NR NR NR
medium 10/10 0.02 10/10 0.01 NR NR NR NR

huge 10/10 0.19 10/10 0.18 NR NR NR NR
bw-large-a 10/10 0.10 10/10 0.12 0.3∗∗∗ NR NR NR
bw-large-b 10/10 1.55 10/10 2.43 22∗∗∗ NR NR NR
bw-large-c 10/10 72.36 10/10 126.86 670∗∗∗ NR NR NR
bw-large-d 10/10 146.28 10/10 254.80 937∗∗∗ NR NR NR

*: Results from [173] for similar but not the same problems in the DIMACS archive
**: Results from [171]
***: Results from [116]

177

0

0.2

0.4

0.6

0.8

1

0 2e+06 4e+06 6e+06 8e+06 1e+07 1.2e+07 1.4e+07
PD

F
Number of Flips

Figure 6.7: Distribution of number of flips for applying DLM-Distance-Penalty-SAT to solve
benchmark problem bw-large-d from 100 randomly generated starting points.

be solved by GSAT/WalkSAT. Our results on the f-class problems are around 100 times

faster and have 100% success ratio from all ten randomly generated starting points on the

g-class problems. In contrast, GSAT/WalkSAT were not 100% successful on g125-17 and

g125-29. For problems in Blocksworld [166], DLM with trap avoidance also has significant

improvements.

When compared to LSDL [41] on hard graph coloring problems, our algorithms outper-

form LSDL on g125-17 and g250-29, using 60% less CPU time, whereas LSDL is faster in

solving the easier g125-18 and g250-15 problems. The latter happens because DLM incurs

additional overhead in maintaining information used in trap avoidance. Hence, there is no

apparent advantage of using trap avoidance for very simple problems. Moreover, LSDL

uses a more efficient representation specific to graph coloring by representing a constraint

violation as a link between two nodes.

Table 6.4 shows that DLM-Trap-Avoidance-SAT performs worse than DLM-Distance-

Penalty-SAT on par16-, hanoi-, g-, and Blocksworld problems. DLM-Trap-Avoidance-SAT

takes 50% more CPU times to solve hanoi4, g125-17, and g250-29. However, it performs

better on the f-class problems that are randomly-generated 3-SAT problems. Further, it has

178

Table 6.5: Performance comparisons of Grasp [130], DLM-Trap-Avoidance-SAT and DLM-
BASIC-SAT on some typical DIMACS benchmarks. The timing results of Grasp were collected on
a SUN SPARC 5/85 computer. ‘-’ stands for ‘not solved.’

Problem Class Success Ratio CPU Seconds
GRASP

Success Ratio CPU Seconds

aim50- 10/10 0.01∗∗ 10/10 0.4
aim100- 10/10 0.02∗∗ 10/10 1.8
aim200- 10/10 0.32∗∗ 10/10 10.8

ii8- 10/10 0.02∗∗ 10/10 23.4
ii16- 10/10 0.25∗∗ 10/10 10311
ii32- 10/10 0.09∗∗ 10/10 7.0

ssa- 10/10 0.095∗∗ 10/10 6.5
f- 10/10 7.7∗ - -
g- 10/10 64.3∗ - -

par8- 10/10 0.25∗∗ 10/10 0.4
par16- 10/10 108∗ 10/10 9844
hanoi- 10/10 7778∗ 5/10 14480

*: Average computed using values in Table 6.3
**: Average computed using values in Tables 6.1

found solutions to par32-1-c to par32-4-c that cannot be found by DLM-Distance-Penalty-

SAT.

Finally, we compare our algorithms to Grasp [130], one of the best complete algorithms.

Since Grasp performs the best on most DIMACS benchmarks [130] when compared to other

complete methods, such as POSIT [62], CSAT [49], H2R [152] and DPL—a recent implemen-

tation of the Davis-Putnam procedure [14], we compare our results with respect to Grasp

only.

Since Grasp is a complete method that can prove unsatisfiability, we expect it perform

not as well on satisfiable problems. Table 6.5 shows that Grasp cannot solve problems in

the f- and g- classes, and that DLM have consistently better performance on the problems

tested.

179

6.7 Summary

We have demonstrated in this chapter the theory of discrete constrained optimization using

Lagrange multipliers that provides a solid mathematical foundation for handling nonlinear

discrete constraints and its application in solving large yet satisfiable SAT problems. Two

important observations that can be made from our results are the significance of historical

information found in a search and the way this information is represented and used.

The first aspect in improving a search is to gather and maintain as much useful yet simple

information as possible. In this chapter, we collect information on traps in DLM-Trap-

Avoidance-SAT and locations of points visited in the past in DLM-Distance-Penalty-SAT.

Although our experimental results demonstrate that such information is useful, it is by no

means complete. Other information that can be collected include the locations of basins,

their sizes, profiles on the difficulty of satisfaction of each clause/constraint, the relationship

of one clause to another in terms of constraint satisfaction, and the lengths of cycles that a

trajectory has experienced.

The second aspect in improving a search is to represent efficiently the information col-

lected in order for it to be recalled in the future. The information can be represented as a new

objective, or new constraints, or both, in a Lagrangian formulation. The secret, however,

lies in the efficiency of implementation, since some of the unsolved yet feasible DIMACS

benchmarks may require billions of flips, making it critical that each flip be very fast. Our

experience in designing DLM-Distance-Penalty-SAT illustrates this point because early ver-

sions of our design were inefficient and performed poorly. Only careful re-implementations

led to the current version that performs well.

In short, the keys to a successful SAT algorithm lie in the identification of useful historical

information in a search and its efficient representation and recall.

180

Chapter 7

Conclusions and Future Work

In this chapter, we conclude our research on discrete constrained optimization using Lagrange

multipliers and point out some possible future directions.

7.1 Summary of Work

In this thesis, we have developed a new theory of discrete constrained optimization using

Lagrange multipliers and an associated first-order search procedure DLM for solving general

discrete constrained NLPs without convexity or differentiability assumptions. Our proposed

discrete-space first-order conditions are able to characterize all CLMdn to a discrete con-

strained NLP. Based on the first-order conditions, we have developed a first-order search

framework for locating CLMdn. Together, our proposed theory and first-order methods

provide a systematic way to solve discrete constrained NLPs.

In order to solve, in a unified fashion, discrete, continuous and mixed-integer constrained

NLPs, we have explored carefully floating-point representations (or discretization) of con-

tinuous variables and have proved that there exists an upper bound on the error between

a CGMcn to a continuous or mixed-integer NLP and a CGMdn to its discretized version.

Such a characterization of the error introduced by discretization is very important because

181

it allows discrete, continuous, and mixed-integer NLPs to be solved in a unified way with

bounded errors.

To make DLM an efficient search method, we have proposed various heuristics and have

evaluated various combinations of these heuristics in solving constrained NLP benchmarks.

Finally, we have demonstrated the power of our proposed theory and search methods by

solving two real-world applications: the design of multiplierless filter banks and the solution

of hard satisfiability problems.

There are two significant contributions of this research. First, we have established for

the first time a systematic way to characterize and locate constrained solutions to general

constrained optimization problems in discrete, continuous and mixed-integer space. Second,

we have proposed an efficient DLM search framework that has been applied to solve some

real-world applications successfully.

7.2 Future Work

It is our belief that there is a bright future for the theory of discrete constrained optimization

using Lagrange multipliers and the first-order search method DLM. Our proposed theory and

methods are general, simple and mathematically sound; and most important of all, they have

been proved to be effective and efficient by the applications we have solved. However, there

is always plenty of room for improvement.

A general direction of improvement is to reduce the CPU time required to find a desirable

solution. Two such possibilities for achieving this goal are discussed next.

182

7.2.1 Development of More Efficient Heuristics

One promising future direction is to develop more efficient heuristics in order to locate saddle

points more efficiently. For example, the neighborhood search used in this thesis has a special

way to adapt its neighborhood size and is purely heuristic. One possible improvement is to

use several neighborhoods of different sizes and select (in a random or a deterministic order)

one in order to generate a trial point. Based on statistics collected on the quality of trial

points over a period of time, the neighborhood size can then be adapted periodically.

The global search strategies adopted in this thesis are Tabu search. Although it is effec-

tive, the size of a tabu list needs to be tuned carefully in order to achieve good efficiency.

Hence, better representations of previously-seen solutions and better ways of avoiding those

solutions need to be developed. Also, trajectory or trace-based methods are potential can-

didate global-search strategies that are worth trying.

7.2.2 Reducing The Number of Probes

A second promising direction of improving solution time is to reduce the number of probes

required for finding a solution with prescribed quality. One approach is to consider the

tradeoffs between time and quality of a probe.

Intuitively, more probes should be performed in promising regions than in other regions.

Although a pure random probe is efficient to implement, it is not intelligent in the sense that

knowledge or information gathered from previous probes are ignored. Consider, for example,

starting a search from inside a deep valley with no solution and a small neighborhood that

does not cover solutions outside the valley. Clearly, random probing will not find anything

useful. However, after a certain number of probes, the algorithm should learn that this region

is not promising and should start over from other regions. Hence, an intelligent algorithm

183

should analyze its previous probes in order to decide where to probe next. As an example,

Wah and Qian [206] have applied successfully Bayesian analysis to data sampling. In their

approach, although each probe is more expensive due to Bayesian analysis, the overall CPU

time is shortened significantly.

To further extend the above idea, we may generalize the concept of a probe. A probe is not

necessarily one function evaluation of a given trial point x. Rather, it can be a local descent

(greedy or gradient descent for example) from x or a certain number of algorithmic steps

(iterations) by an existing search algorithm. Clearly, such a probe is much more expensive

than a function evaluation. However, it may be able to locate very good solutions or guide

a search to a promising region, leading to shorter overall CPU time. For example, some

preliminary results have shown that, by combining LANCELOT [123] as an efficient search

component in CSA, better results can be found than those of LANCELOT or CSA alone.

Another approach is to extend the idea of anytime search (CSAAT−ID) in CSA [204] to

other search heuristics. The basic philosophy of the anytime approach is to start a search

with very short runs and prolong the length of subsequent runs using iterative deepening.

Obviously, shorter runs usually have smaller probabilities in finding a desirable solution. The

average CPU time, however, is not a monotonic function of the length of a run. If the average

CPU time to find a desirable solution is convex (or has a finite minimum) to the length of a

run, then it is possible to use iterative deepening to find an optimal duration of a run. This

idea can be generalized to GA in order to decide a suitable population size and the number

of generations performed in GA. Some preliminary results have already demonstrated that

it is a very promising research direction.

184

Bibliography

[1] E. Aarts and J. Korst. Simulated Annealing and Boltzmann Machines. J. Wiley and

Sons, 1989.

[2] M. M. Ali and C. Storey. Modified controlled random search algorithms. Int. Journal

of Computer Mathematics, 53:229–235, 1994.

[3] M. M. Ali and C. Storey. Aspiration based simulated annealing algorithms. Journal

of Global Optimization, 11:181–191, 1997.

[4] M. M. Ali, A. Torn, and S. Viitanen. A direct search simulated annealing algorithms

for optimization involving continuous variables. Technical report, Turku Centre for

Computer Science, Abo Akademi University, Finland, 1997.

[5] M. M. Ali, A. Torn, and S. Viitanen. A numerical comparison of some modified

controlled random search algorithms. Journal of Global Optimization, 11:377–385,

1997.

[6] S. Anily and A Federgruen. Simulated annealing methods with general acceptance

probabilities. Journal of Appl. Prob., 24:657–667, 1987.

[7] K. J. Arrow and L. Hurwicz. Gradient method for concave programming, I: Local

results. In K. J. Arrow, L. Hurwica, and H. Uzawa, editors, Studies in Linear and

Nonlinear Programming. Stanford University Press, Stanford, CA, 1958.

[8] T. Back, F. Hoffmeister, and H. P. Schwefel. A survey of evolution strategies. In Proc.

of 4th Int’l Conf. on Genetic Algorithms, pages 2–9, 1991.

[9] T. Back and H. P. Schwefel. An overview of evolutionary algorithms for parameter

optimization. Evolutionary Computation, 1(1):1–23, 1993.

[10] E. Balas. Minimax and Duality for Linear and Nonlinear Mixed-Integer Programming.

North-Holland, Amsterdam, Netherlands, 1970.

185

[11] S. Baluja. An empirical comparison of seven iterative and evolutionary function op-

timization heuristics. Technical report, CMU-CS-95-193, Carnegie Mellon University,

Pittsburgh, PA, 1995.

[12] S. Baluja and S. Davies. Fast probabilistic modeling for combinatorial optimization.

In Proc. of 15th National Conf. on Artificial Intelligence (AAAI), 1998.

[13] S. Baluja and W. T. Scherer. Local optimization using simulated annealing. IEEE

Systems, Man, and Cybernetics Conference Proceedings, pages 583–588, 10 1992.

[14] P. Barth. A Davis-Putnam based enumeration algorithm for linear pseudo-boolean

optimization. Technical Report MPI-I-95-2-003, Max-Planck-Institute fur Informatik,

1995.

[15] R. Battiti and G. Tecchiolli. The reactive tabu search. ORSA Journal on Computing,

6(2):126–140, 1994.

[16] M. S. Bazaraa and J. J. Goode. A survey of various tactics for generating Lagrangian

multipliers in the context of Lagrangian duality. European Journal of Operational

Research, 3:322–338, 1979.

[17] Benchmarks on nonlinear mixed optimization problems. available through ftp

(ftp://elib.zib-berlin.de/pub/mp-testdata/ip/index.html), 1992.

[18] J. C. Bean and A. B. Hadj-Alouane. A dual genetic algorithm for bounded integer pro-

grams. Technical Report 92-53, Department of Industrial and Operations Engineering,

1992.

[19] J. E. Beasley and P. C. Chu. A genetic algorithm for the set covering problem. European

Journal of Operational Research, 94:392–404, 1996.

[20] A. Ben-Tal, G. Eiger, and V. Gershovitz. Global minimization by reducing the duality

gap. Mathematical Programming, 63:193–212, 1994.

[21] J. F. Benders. Partitioning procedures for solving mixed-variables programming prob-

lems. Numer. Math, pages 238–242, 1962.

[22] D. P. Bertsekas. Constrained Optimization and Lagrange Multiplier Methods. Academic

Press, 1982.

[23] C. E. Blair, R. G. Jeroslow, and J. K. Lowe. Some results and experiments in pro-

gramming techniques for propositional logic. Computers and Operations Research,

13(5):633–645, 1986.

186

[24] P. T. Boggs and J. W. Tolle. Sequential quadratic programming. Acta Numerica,

pages 1–52, 1995.

[25] J. S. De Bonet, C. L. Isbell, and J. Paul Viola. MIMIC: Finding optima by estimating

probability densities. In Advances in Neural Information Processing Systems, 1997.

[26] I. Bongartz, A. R. Conn, N. Gould, and Ph. L. Toint. Cute: Constrained and uncon-

strained testing environment. ACM Trans. on Mathematical Software, 21(1):123–160,

1995.

[27] A. D. Booth. A signed binary multiplication technique. Quart. J. Mech. Appl. Math.,

4:236–240, 1951.

[28] J. A. Boyan and A. W. Moore. Using prediction to improve combinatorial optimization

search. In Proc. of 6th Int’l Workshop on Artificial Intelligence and Statistics, 1997.

[29] J. A. Boyan and A. W. Moore. Learning evaluation functions for global optimization

and Boolean satisfiability. In Proc. of 15th National Conf. on Artificial Intelligence

(AAAI), 1998.

[30] D. W. Bulger and G. R. Wood. Hesitant adaptive search for global optimization.

Mathematical Programming, 81:89–102, 1998.

[31] Y. J. Cao and Q. H. Wu. Mechanical design optimization by mixed-variable evolution-

ary programming. Proc. 1997 IEEE Int’l Conf. on Evolutionary Computation, pages

443–6, 1997.

[32] R. A. Caruana and B. J. Coffey. Searching for optimal FIR multiplierless digital filters

with simulated annealing. Technical report, Philips Laboratories, 1988.

[33] The Optimization Technology Center. What is optimization. WWW site: http://www-

fp.mcs.anl.gov/otc/Guide/OptWeb/opt.html, 2000.

[34] B. C. Cetin, J. Barben, and J. W. Burdick. Terminal repeller unconstrained subenergy

tunneling (TRUST) for fast global optimization. Journal of Optimization Theory and

Applications, 77, April 1993.

[35] Y.-J. Chang and B. W. Wah. Lagrangian techniques for solving a class of zero-one

integer linear programs. In Proc. Computer Software and Applications Conf., pages

156–161, Dallas, TX, August 1995. IEEE.

[36] C.-K. Chen and J.-H. Lee. Design of quadrature mirror filters with linear phase in

the frequency domain. IEEE Trans. on Circuits and Systems - II, 39(9):593–605,

September 1992.

187

[37] C.-K. Chen and J.-H. Lee. Design of linear-phase quadrature mirror filters with powers-

of-two coefficients. IEEE. Trans. Circuits Syst., 41(7):445–456, 7 1994.

[38] K. Chen, C. Parmee, and C. R. Gane. Dual mutation strategies for mixed-integer

optimization in power station design. Proc. 1997 IEEE Int’l Conf. on Evolutionary

Computation, pages 385–90, 1997.

[39] Q. Chen and M. C. Ferris. FATCOP: A fault tolerant condor-pvm mixed integer

program solver. Mathematical Programming Technical Report 99-05, University of

Wisconsin, 3 1999.

[40] Q. Chen, M. C. Ferris, and J. T. Linderoth. FATCOP 2.0: Advanced features on

an opportunistic mixed integer programming solver. Data Mining Institute Technical

Report 99-11, University of Wisconsin, 12 1999.

[41] K. F. M. Choi, J. H. M. Lee, and P. J. Stuckey. A Lagrangian reconstruction of a

class of local search methods. In Proc. 10th Int’l Conf. on Artificial Intelligence Tools.

IEEE Computer Society, 1998.

[42] A.R. Conn, N. Gould, and Ph. L. Toint. LANCELOT, A Fortran Package for Large-

Scale Nonlinear Optimization. Springer Verlag, 1992.

[43] C. D. Creusere and S. K. Mitra. A simple method for designing high-quality prototype

filters for m-band pseudo QMF banks. IEEE Trans. on Signal Processing, 43(4):1005–

1007, April 1995.

[44] L. Davis. Adapting operator probabilities in genetic algorithms. In J. D. Schaffer,

editor, Proceedings of the Third International Conference on Genetic Algorithms, pages

61–69. Morgan Kaufmann Publishes, San Mateo, CA, 1989.

[45] M. Davis and H. Putnam. A computing procedure for quantification theory. J. Assoc.

Comput. Mach., 7:201–215, 1960.

[46] A. Dekkers and E. Aarts. Global optimization and simulated annealing. Mathematical

Programming, 50:367–393, 1991.

[47] DIMACS SAT benchmark suite. ftp://dimacs.rutgers.edu/pub/challenge/, 1994.

[48] DONLP2. Spellucci’s mixed SQP/ECQP method for general continuous nonlinear

programming problems. ftp://plato.la.asu.edu/pub/donlp2, 2000.

[49] O. Dubois, P. Andre, Y. Boufkhad, and J. Carlier. SAT versus UNSAT. In DIMACS

Workshop on Satisfiability Testing, New Brunswick, NJ, 1993.

188

[50] M. A. Duran and I. E. Grossmann. A mixed-integer nonlinear programming algorithm

for process systems synthesis. Chemical Engineering J., pages 592–596, 1986.

[51] M. A. Duran and I. E. Grossmann. An outer approximation algorithm for a class of

mixed-integer nonlinear programs. Mathematical Programming, pages 306–307, 1986.

[52] R. W. Eglese. Simulated annealing: A tool for operational research. European Journal

of Operational Research, 46:271–281, 1990.

[53] M. H. Er and C. K. Siew. Design of FIR filters using quadrature programming ap-

proach. IEEE Trans. on Circuits and Systems - II, 42(3):217–220, March 1995.

[54] L. Eshelman and J. Schaffer. Real-coded genetic algorithms and interval schemata.

In L. Whitley, editor, Foundations of Genetic Algorithms, volume 2, pages 187–202.

Morgan Kaufmann Publishes, San Francisco, 1993.

[55] Y. G. Evtushenko, M. A. Potapov, and V. V. Korotkich. Numerical methods for global

optimization. In C. A. Floudas and P. M. Pardalos, editors, Recent Advances in Global

Optimization, pages 274–297. Princeton University Press, 1992.

[56] C. A. Floudas. Nonlinear and Mixed-Integer Optimization. Topics in Chemical Engi-

neering. Oxford University Press, 1995.

[57] C. A. Floudas and P. M. Pardalos. A Collection of Test Problems for Constrained

Global Optimization Algorithms, volume 455 of Lecture Notes in Computer Science.

Springer-Verlag, 1990.

[58] C. A. Floudas and P. M. Pardalos, editors. Recent Advances in Global Optimization.

Princeton University Press, 1992.

[59] D. B. Fogel. An introduction to simulated evolutionary optimization. IEEE Trans. on

Neural Networks, 5(1):3–14, January 1994.

[60] G. Folino, C. Pizzuti, and G. Spezzano. Combining cellular genetic algorithms and

local search for solving satisfiability problems. Proc. Tenth IEEE Int’l Conf. on Tools

with Artificial Intelligence, pages 192 –198, 1998.

[61] J. Frank. Learning short-term weights for GSAT. Proc. 15’th Int’l Joint Conf. on AI,

pages 384–391, 1997.

[62] J. W. Freeman. Improvements to Propositional Satisfiability Search Algorithms. Ph.D.

Thesis, Dept. of Computer and Information Science, Univ. of Pennsylvania, May 1995.

189

[63] M. R. Garey and D. S. Johnson. Computers and intractability, a guide to the theory

of NP-Completeness. W. H. Freeman and Company, 1979.

[64] B. Gavish. On obtaining the ‘best’ multilpliers for a Lagrangean relaxation for integer

programming. Comput. & Ops. Res., 5:55–71, 1978.

[65] R. P. Ge and Y. F. Qin. A class of filled functions for finding global minimizers

of a function of several variables. Journal of Optimization Theory and Applications,

54(2):241–252, 1987.

[66] S. Geman and D. Geman. Stochastic relaxation, Gibbs distribution and the Bayesian

restoration in images. IEEE Trans. on Pattern Analysis and Machine Intelligence,

6:721–741, 1984.

[67] S. Geman and C-R Hwang. Diffusions for global optimization. SIAM J. Constr.

Optimization, 24(5):1031–1043, 9 1986.

[68] M. R. Genesereth and N. J. Nilsson. Logical Foundation of Artificial Intelligence.

Morgan Kaufmann, 1987.

[69] I. P. Gent, H. H. Hoos, P. Prosser, and T. Walsh. Morphing: Combining structure and

randomness. Proc. Sixteenth National Conf. on Artificial Intelligence, pages 654–660,

1999.

[70] I. P. Gent and T. Walsh. An empirical analysis of search in GSAT. Journal of Artificial

Intelligence Research, 1:25–37, 1993.

[71] A. M. Geoffrion. Generalized Benders decomposition. J. Optim. Theory and Appl.,

pages 237–241, 1972.

[72] A. M. Geoffrion. Lagrangian relaxation for integer programming. Mathematical Pro-

gramming Study, 2:82–114, 1974.

[73] B. Gidas. Non-stationary Markov chains and convergence of the annealing algorithm.

J. Statist. Phys., 39:73–131, 1985.

[74] F. R. Giles and W. R. Pulleyblank. Total Dual Integrality and Integer Polyhedra,

volume 25. Elsevier North Holland, Inc., 1979.

[75] F. Glover. Tabu search — Part I. ORSA J. Computing, 1(3):190–206, 1989.

[76] F. Glover and G. Kochenberger. Critical event tabu search for multidimensional knap-

sack problems. In Proc. of Int’l Conf. on Metaheuristics for Optimization, pages 113–

133, 1995.

190

[77] F. Glover and M. Laguna. Tabu search. In Modern Heuristic Techniques for Combi-

natorial Problems (C. R. Reeves ed.), 1993.

[78] F. Glover and E. Woolsey. Further reduction of zero-one polynomial programs to

zero-one linear programming. Operations Research, 1(21):156–161, 1973.

[79] F. Glover and E. Woolsey. Converting the 0-1 polynomial programming problem to a

0-1 linear program. Operations Research, 22:180–182, 1975.

[80] D. E. Goldberg. Genetic Algorithms in Search, Optimization, and Machine Learning.

Addison-Wesley Pub. Co., 1989.

[81] R. L. Graham, D. E. Knuth, and O. Patashnik. Concrete Mathematics. Addison-

Welsley publishing company, 1994.

[82] D. Granot, F. Granot, and J. Kallberg. Covering relaxation for positive 0-1 polynomial

programs. Management Science, 3(25):264–273, 1979.

[83] D. Granot, F. Granot, and W. Vaessen. An accelerated covering relaxation algorithm

for solving positive 0-1 polynomial programs. Mathematical Programming, 22:350–357,

1982.

[84] J. Gu. Parallel Algorithms and Architectures for Very Fast AI Search. PhD thesis,

Dept. of Computer Science, University of Utah, August 1989.

[85] J. Gu. Efficient local search for very large-scale satisfiability problems. SIGART

Bulletin, 3(1):8–12, January 1992.

[86] J. Gu. The UniSAT problem models (appendix). IEEE Trans. on Pattern Analysis

and Machine Intelligence, 14(8):865, Aug 1992.

[87] J. Gu. Local search for satisfiability (SAT) problems. IEEE Trans. on Systems, Man,

and Cybernetics, 23(4):1108–1129, 1993.

[88] J. Gu. Global optimization for satisfiability (SAT) problems. IEEE Trans. on Knowl-

edge and Data Engineering, 6(3):361–381, Jun 1994.

[89] J. Gu and W. Wang. A novel discrete relaxation architecture. IEEE Trans. on Pattern

Analysis and Machine Intelligence, 14(8):857–865, August 1992.

[90] P. L. Hammer, I. Rosenberg, and S. Rudeanu, editors. Boolean Methods in Operations

Research and Related Areas. Springer, New York, 1968.

[91] E. R. Hansen. Global optimization using interval analysis. M. Dekker, New York, 1992.

191

[92] P. Hansen, B. Jaumard, and V. Mathon. Constrained nonlinear 0-1 programming.

ORSA Journal on Computing, 5(2):97–119, 1993.

[93] W. E. Hart. A theoretical comparison of evolutionary algorithms and simulated an-

nealing. In Proc. of 5th Annual Conf. on Evolutionary Programming (EP96), pages

147–154, 1996.

[94] L He and E. Polak. Multistart method with estimation scheme for global satisfying

problems. Journal of Global Optimization, 3:139–156, 1993.

[95] N. J. Higham. Accuracy and Stability of Numerical Algorithms. SIAM, 1996.

[96] J. H. Holland. Adaption in Natural and Adaptive Systems. University of Michigan

Press, Ann Arbor, 1975.

[97] K. Holmberg. On the convergence of the cross decomposition. Mathematical Program-

ming, pages 269–316, 1990.

[98] K. Holmberg. Generalized cross decomposition applied to nonlinear integer program-

ming problems. Optimization J., pages 341–364, 1992.

[99] A. Homaifar, S. H. Y. Lai, and X. Qi. Constrained optimization via genetic algorithms.

Simulation, 62:242–254, 1994.

[100] J. N. Hooker. Resolution vs. cutting plane solution of inference problems: some com-

putational results. Operations Research Letters, 7:1–7, 1988.

[101] H. H. Hoos. On the run-time behaviour of stochastic local search algorithms for SAT.

Proc. Sixteenth National Conf. on Artificial Intelligence, pages 661–666, 1999.

[102] H. H. Hoos and T. Stutzle. Local search algorithms for SAT: An empirical evaluation.

Journal of Automated Reasoning, 24:421–461, 2000.

[103] J. J. Hopfield and D. W. Tank. Neural computation by concentrating information in

time. In Proc. National Academy of Sciences, volume 84, pages 1896–1900, Washing-

ton, D.C., 1987. National Academy of Sciences.

[104] B. R. Horng and A. N. Wilson, Jr. Lagrange multiplier approaches to the design

of two-channel perfect-reconstruction linear-phase FIR filter banks. IEEE Trans. on

Signal Processing, 40(2):364–374, February 1992.

[105] R. Horst and P. M. Pardalos. Handbook of Global Optimization. Kluwer Academic

Publishers, 1995.

192

[106] R. Horst, P. M. Pardalos, and N. V. Thoai. Introduction to Global Optimization.

Kluwer Academic Publishers, Amsterdam, 1995.

[107] R. Horst and H. Tuy. Global optimization: Deterministic approaches. Springer-Verlag,

Berlin, 1993.

[108] M. E. Hribar. Large scale constrained optimization. Ph.D. Disertation, Northeasten

University, 1996.

[109] L. Ingber. Adaptive Simulated Annealing (ASA). Lester Ingber Research, 1995.

[110] V. K. Jain and R. E. Crochiere. Quadrature mirror filter design in the time domain.

IEEE Trans. on Acoustics, Speech and Signal Processing, 32(2):353–361, April 1984.

[111] I. K. Jeong and J. J. Lee. Adaptive simulated annealing genetic algorithm for system

identification. Eng. Applic. Artificial Intell., 9(5):523–532, 1996.

[112] J. D. Johnston. A filter family designed for use in quadrature mirror filter banks. IEEE

Proc. Int’l Conf. on ASSP, pages 291–294, 1980.

[113] J. Joines and C. Houck. On the use of non-stationary penalty functions to solve

nonlinear constrained optimization problems. In Proc. of the First IEEE Int’l Conf.

on Evolutionary Computation, pages 579–584, 1994.

[114] A. E. W. Jones and G. W. Forbes. An adaptive simulated annealing algorithm for

global optimization over continuous variables. Journal of Optimization Theory and

Applications, 6:1–37, 1995.

[115] A. P. Kamath, N. K. Karmarkar, K. G. Ramakrishnan, and M. G. C. Resende. Com-

putational experience with an interior point algorithm on the satisfiability problem.

Annals of Operations Research, 25:43–58, 1990.

[116] H. Kautz and B. Selman. Pushing the envelope: Planning, propositional logic, and

stochastic search. Proc. the AAAI National Conf. on AI, pages 1194 – 1201, 1996.

[117] J. Kim and H. Myung. Evolutionary programming techniques for constrained opti-

mization problems. IEEE Trans. on Evolutionary Computation, 1(2):129–140, 1997.

[118] S. Kirkpatrick, C. D. Gelatt, Jr., and M. P. Vecchi. Optimization by simulated an-

nealing. Science, 220(4598):671–680, May 1983.

[119] D. Kodek and K. Steiglitz. Comparison of optimal and local search methods for de-

signing finite wordlength FIR digital filters. IEEE Trans. Circuits Syst., 28:28–32, 1

1981.

193

[120] R. D. Koilpillai and P. P. Vaidyanathan. A spectral factorization aparoach to pesudo-

QMF design. IEEE Trans. on Signal Processing, 41(1):82–92, January 1993.

[121] S. Koziel and Z. Michalewicz. Evolutionary algorithms, homomorphous mappings, and

constrained parameter optimization. Evolutionary Computation, 7(1):19–44, 1999.

[122] V. Kvasnicka and J. Pospichal. A hybrid of simplex method and simulated annealing.

Chemometrics and Intelligent Laboratory Systems, 39:161–173, 1997.

[123] LANCELOT. http://www.dci.clrc.ac.uk/activity/lancelot.

[124] LANCELOT Solver. http://www-neos.mcs.anl.gov/neos/solvers/NCO:LANCELOT/.

[125] E. L. Lawler and M. D. Bell. A method for solving discrete optimization problems.

Operations Research, 14:1098–1112, 1966.

[126] Y. X. Li and M. Gen. Nonlinear mixed integer programming problems using genetic

algorithm and penalty function. IEEE Int’l Conf. on Systems, Man and Cybernetics,

Information Intelligence and Systems, 4:2677–82, 1996.

[127] Y. C. Lim and S. R. Parker. FIR filter design over a discrete power-of-two coefficient

space. IEEE Trans. Acoust. Speech, Signal Processing, ASSP-31:583–519, June 1983.

[128] D. G. Luenberger. Linear and Nonlinear Programming. Addison-Wesley Publishing

Company, Reading, MA, 1984.

[129] C. Y. Maa and M. A. Shanblatt. A two-phase optimization neural network. IEEE

Trans. on Neural Networks, 3(6):1003–1009, 1992.

[130] J. P. Marques-Silva and K. A. Sakalla. GRASP: A search algorithm for propositional

satisfiability. IEEE Trans. on Computers, 48(5):506–521, May 1999.

[131] O. C. Martin and S. W. Otto. Combining simulated annealing with local search heuris-

tics. Technical Report CS/E 94-016, Oregon Graduate Institute, 1994.

[132] Z. Michalewicz. Genetic Algorithms + Data Structure = Evolution Programs. Springer-

Verlag, Berlin, 1994.

[133] Z. Michalewicz, D. Dasgupta, R. G. LeRiche, and M. Schoenauer. Evolutionary algo-

rithms for constrained engineering problems. Computers and Industrial Engineering

Journal, 30(2):851–870, 1996.

[134] Z. Michalewicz and C. Z. Janikow. Handling constraints in genetic algorithms. In

Proc. of 4th Int’l Conf. on Genetic Algorithms, pages 151–157, 1991.

194

[135] Z. Michalewicz and M. Schoenauer. Evolutionary algorithms for constrained parameter

optimization problems. Evolutionary Computation, 4(1):1–32, 1996.

[136] J. Mockus. Bayesian Approach to Global Optimization. Kluwer Academic Publishers,

Dordrecht-London-Boston, 1989.

[137] J. Mockus. Application of Bayesian approach to numerical methods of global and

stochastic optimization. Journal of Global Optimization, 4:347–365, 1994.

[138] R. Moore and E. Hansen amd A. Leclerc. Rigorous methods for global optimization.

In C. A. Floudas and P. M. Pardalos, editors, Recent Advances in Global Optimization,

pages 321–342. Princeton University Press, 1992.

[139] P. Morris. The breakout method for escaping from local minima. In Proc. of 11th

National Conf. on Artificial Intelligence, pages 40–45, Washington, DC, 1993.

[140] K. Nayebi, T. P. Barnwell III, and M. J. T. Smith. Time-domain filter bank analysis:

A new design theory. IEEE Transactions on Signal Processing, 40(6):1412–1429, June

1992.

[141] T. Q. Nguyen. Digital filter bank design quadratic-constrained formulation. IEEE

Trans. on Signal Processing, 43(9):2103–2108, September 1995.

[142] A. E. Nix and M. D. Vose. Modeling genetic algorithms with Markov chains. Annals

of Math. and Artificial Intel., 5:79–88, 1992.

[143] D. Orvosh and L. Davis. Shall we repair? genetic algorithms, combinatorial optimiza-

tion, and feasibility constraints. In Proc. of 5th Int’l Conf. on Genetic Algorithms,

1993.

[144] P. M. Pardalos and J. B. Rosen. Constrained Global Optimization: Algorithms and Ap-

plications, volume 268 of Lecture Notes in Computer Science. Springer-Verlag, Berlin,

1987.

[145] J. Paredis. Co-evolutionary constraint satisfaction. In Proc. of 3rd Conf. on Parallel

Problem Solving from Nature, pages 46–55, 1994.

[146] K. Park and B. Carter. On the effectiveness of genetic search in combinatorial optimiza-

tion. In Proc. of 10th ACM Symposium on Applied Computing, Genetic Algorithms

and Optimization Track, pages 329–336, 1995.

[147] N. R. Patel, R. L. Smith, and Z. B. Zabinsky. Pure adaptive search in Monte Carlo

optimization. Mathematical Programming, 43:317–328, 1988.

195

[148] V. Petridis, S. Kazarlis, and A. Bakirtzis. Varying fitness functions in genetic algorithm

constarined optimization: The cutting stock and unit commitment problems. IEEE

Trans. on System, Man, and Cybern. - Part B: Cybernetics, 28(5):629–640, 1998.

[149] J. D. Pinter. Global Optimization in Action. Nonconvex Optimization and Its Appli-

cations. Kluwer Academic, 1996.

[150] D. Powell and M. M. Skolnick. Using genetic algorithms in engineering design opti-

mization with non-linear constraints. In Proc. of 5th Int’l Conf. on Genetic Algorithms,

pages 424–431, 1993.

[151] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical Recipes

in Fortran 77. Cambridge University Press, 1992.

[152] D. Pretolani. Efficiency and stability of hypergraph SAT algorithms. In D. S. Johnson

and M. A. Trick, editors, Second DIMACS Implementation Challenge, volume 26, pages

479–498. American Mathematical Society, 1993.

[153] W. L. Price. A controlled random search procedure for global optimization. In L. C.

Dixon and G. P. Szego, editors, Towards Global Optimization 2, pages 71–84. North-

Holland, Amsterdam, Holland, 1978.

[154] P. W. Purdom. Search rearrangement backtracking and polynomial average time.

Artificial Intelligence, 21:117–133, 1983.

[155] R. L. Rardin. Optimization in Operations Research. Upper Saddle River, N.J. : Pren-

tice Hall, 1998.

[156] J. T. Richardson, M. R. Palmer, G. Liepins, and M. Hilliard. Some guidelines for

genetic algorithms with penalty functions. In Proc. of 3rd Int’l Conf. on Genetic

Algorithms, pages 191–197, 1989.

[157] J. A. Robinson. A machine-oriented logic based on the resolution principle. J. Assoc.

Comput. Mach., pages 23–41, 1965.

[158] H. E. Romeijn and R. L. Smith. Simulated annealing for constrained global optimiza-

tion. Journal of Global Optimization, 5(2):101–126, September 1994.

[159] I. Rosenberg. Minimization of pseudo-Boolean functions by binary development. Dis-

crete Mathematics, 7:151–165, 1974.

[160] T. J. Van Roy. Cross decomposition for mixed integer programming. Mathematical

Programming, pages 25–46, 1983.

196

[161] G. Rudolph. Convergence analysis of canonical genetic algorithms. IEEE Trans. on

Neural Networks, 5(1):96–101, 1994.

[162] T. Sakurai, B. Lin, and A. R. Newton. Fast simulated diffusion: An optimization algo-

rithm for multi-minimum problems and its application to MOSFET model parameter

extraction. IEEE Transactions on Computer-Aided Design, 11(2):228–234, 2 1992.

[163] H. Samueli. An improved search algorithm for the design of multiplierless FIR fil-

ters with powers-of-two coefficients. IEEE Transactions on Circuits and Systems,

36(7):1044–1047, 1989.

[164] E. Sandgren. Nonlinear integer and discrete programming in mechanical design opti-

mization. J. of Mechanical Design, pages 223–229, 1990.

[165] M. S. Sarma. On the convergence of the Baba and Dorea random optimization methods.

Journal of Optimization Theory and Applications, 66:337–343, 1990.

[166] SATLIB suite. http://www.informatik.tu-darmstadt.de/AI/SATLIB.

[167] J. D. Schaffer and L. J. Eshelman. Designing multiplierless digital filters using genetic

algorithms. In Proc. Int’l Conf. on Genetic Algorithms, pages 439–444, San Mateo,

CA, 1993. Morgan Kaufmann.

[168] F. Schoen. Stochastic techniques for global optimization: A survey on recent advances.

Journal of Global Optimization, 1(3):207–228, 1991.

[169] M. Schoenauer and Z. Michalewicz. Evolutionary computation at the edge of feasibility.

In Proc. of 4th Parallel Problem Solving from Nature, 1996.

[170] M. Schoenauer and S. Xanthakis. Constrained GA optimization. In Proc. of 5th Int’l

Conf. on Genetic Algorithms, 1993.

[171] B. Selman. Private communcation, 1995.

[172] B. Selman and H. Kautz. Domain-independent extensions to GSAT: Solving large

structured satisfiability problems. In Proc. of 13’th Int’l Joint Conf. on Artificial

Intelligence, pages 290–295, 1993.

[173] B. Selman, H. Kautz, and B. Cohen. Local search strategies for satisfiability testing.

In Proc. of 2nd DIMACS Challenge Workshop on Cliques, Coloring, and Satisfiability,

Rutgers University, pages 290–295, oct 1993.

[174] B. Selman, H. Kautz, and B. Cohen. Noise strategies for improving local search. In

Proc. of 12th National Conf. on Artificial Intelligence, pages 337–343, Seattle, WA,

1994.

197

[175] B. Selman, H. J. Levesque, and D. G. Mitchell. A new method for solving hard

satisfiability problems. In Proc. of AAAI-92, pages 440–446, San Jose, CA, 1992.

[176] Y. Shang. Global Search Methods for Solving Nonlinear Optimization Problems. Ph.D.

Thesis, Dept. of Computer Science, Univ. of Illinois, Urbana, IL, August 1997.

[177] Y. Shang and B. W. Wah. Global optimization for neural network training. IEEE

Computer, 29:45–54, March 1996.

[178] Y. Shang and B. W. Wah. Discrete Lagrangian-based search for solving MAX-SAT

problems. In Proc. Int’l Joint Conf. on Artificial Intelligence, pages 378–383. IJCAI,

August 1997.

[179] Y. Shang and B. W. Wah. A discrete Lagrangian based global search method for

solving satisfiability problems. J. of Global Optimization, 12(1):61–99, January 1998.

[180] J. F. Shapiro. Generalized Lagrange multipliers in integer programming. Operations

Research, 19:68–76, 1971.

[181] R. C. J. Shi, A. Vannelli, and J. Vlach. An improvement on Karmarkar’s algorithm

for integer programming. COAL Bulletin of the Mathematical Programming Society,

21:23–28, 1992.

[182] J.-J. Shyu and Y.-C. Lin. A new approach to the design of discrete coefficient FIR

digital filters. IEEE Trans. on Signal Processing, 43(1):310–314, 1 1995.

[183] M. J. T. Smith and T. P. Barnwell III. Exact reconstruction techniques for tree-

structured subband coders. IEEE Trans. on Acoustics, Speech and Signal Processing,

34(3):434–441, June 1986.

[184] R. Socic and J. Gu. Fast search algorithms for the N-queen problem. IEEE Trans. on

Systems, Man, and Cybernetics, 21(6):1572–1576, November 1991.

[185] Iraj Sodagar, Kambiz Naybei, and Thomas P. Barnwell III. Time-varying filter banks

and wavelets. IEEE Trans. on Signal Processing, 42(11):2983–2996, November 1994.

[186] F. J. Solis and R. J-B. Wets. Minimization by random search techniques. Math.

Operations Res., 6:19–30, 1981.

[187] A. K. Soman, P. P. Vaidyanathan, and T. Q. Nguyen. Linear phase paraunitary

filter banks: Theory, factorizations and designs. IEEE Trans. on Signal Processing,

41(12):3480–3496, December 1993.

198

[188] R. Sosič and J. Gu. A polynomial time algorithm for the n-queens problem. SIGART

Bulletin, 1(3):7–11, October 1990.

[189] R. Sosič and J. Gu. 3,000,000 queens in less than one minute. SIGART Bulletin,

2(2):22–24, April 1991.

[190] R. Sosič and J. Gu. Efficient local search with conflict minimization: A case study of

the n-queens problem. IEEE Trans. on Knowledge and Data Engineering, 6(5):661–

668, 1994.

[191] R. Spaans and R. Luus. Importance of search-domain reduction in random optimiza-

tion. Journal of Optimization Theory and Applications, 75(3):635–638, December 1992.

[192] P. Spellucci. An SQP method for general nonlinear programs using only equality

constrained subproblems. Mathematical Programming, 82:413–448, 1998.

[193] R. E. Steuer. Multiple Criteria Optimization: Theory, Computation and Application.

Krieger Publishing Company, 1989.

[194] H. Szu and R. Hartley. Fast simulated annealing. Phys. Lett. A, 122(3-4):157–162,

1987.

[195] J. Tind and L. A. Wolsey. An elementary survey of general duality theory in mathe-

matical programming. Mathematical Programming, pages 241–261, 1981.

[196] A. Törn and A. Žilinskas. Global Optimization. Springer-Verlag, Berlin, 1989.

[197] A. Trouve. Cycle decomposition and simulated annealing. SIAM Journal on Control

and Optimization, 34(3):966–986, 1996.

[198] T. E. Tuncer and T. Q. Nguyen. General analysis of two-band QMF banks. IEEE

Trans. on Signal Processing, 43(2):544–548, February 1995.

[199] P. P. Vaidyanathan. Multirate Systems and Filter Banks. Printice-Hall Inc., 1993.

[200] T. L. Vincent, B. S. Goh, and K. L. Teo. Trajectory-following algorithms for min-max

optimization problems. Journal of Optimization Theory and Applications, 75(3):501–

519, December 1992.

[201] C. Voudouris and E. Tsang. Guided local search and its application to the traveling

salesman problem. European Journal of Operational Research, 113:469–499, 1999.

[202] A. Žilinskas. A review of statistical models for global optimization. Journal of Global

Optimization, 2:145–153, 1992.

199

[203] B. W. Wah and Y.-J. Chang. Trace-based methods for solving nonlinear global opti-

mization problems. J. of Global Optimization, 10(2):107–141, March 1997.

[204] B. W. Wah and Y. X. Chen. Optimal anytime constrained simulated annealing for con-

strained global optimization. Sixth Int’l Conf. on Principles and Practice of Constraint

Programming, September 2000.

[205] B. W. Wah, A. Ieumwananonthachai, L. C. Chu, and A. Aizawa. Genetics-based

learning of new heuristics: Rational scheduling of experiments and generalization.

IEEE Trans. on Knowledge and Data Engineering, 7(5):763–785, October 1995.

[206] B. W. Wah and M.-L. Qian. Data sampling using Bayesian analysis and its appli-

cations in simulated annealing. In Proc. Fifth Int’l Conf. on Computer Science and

Informatics, volume 1, pages 643–646, February 2000.

[207] B. W. Wah and Y. Shang. A discrete Lagrangian-based global-search method for

solving satisfiability problems. In Ding-Zhu Du, Jun Gu, and Panos Pardalos, edi-

tors, Satisfiability Problem: Theory and Applications, pages 365–392. DIMACS Series

in Discrete Mathematics and Theoretical Computer Science, American Mathematical

Society, 1997.

[208] B. W. Wah, Y. Shang, T. Wang, and T. Yu. QMF filter bank design by a new global

optimization method. In Proc. Int’l Conf. on Acoustics, Speech and Signal Processing,

volume 3, pages 2081–2084, Munich, Germany, April 1997. IEEE.

[209] B. W. Wah, Y. Shang, and Z. Wu. Discrete Lagrangian method for optimizing the

design of multiplierless QMF filter banks. In Proc. Int’l Conf. on Application Specific

Array Processors, pages 529–538. IEEE, July 1997.

[210] B. W. Wah, Y. Shang, and Z. Wu. Discrete Lagrangian method for optimizing the

design of multiplierless QMF filter banks. IEEE Transactions on Circuits and Systems,

Part II, 46(9):1179–1191, September 1999.

[211] B. W. Wah and T. Wang. Constrained simulated annealing with applications in non-

linear constrained global optimization. In Proc. Int’l Conf. on Tools with Artificial

Intelligence, pages 381–388. IEEE, November 1999.

[212] B. W. Wah and T. Wang. Efficient and adaptive Lagrange-multiplier methods for non-

linear continuous global optimization. J. of Global Optimization, 14(1):1–25, January

1999.

200

[213] B. W. Wah and T. Wang. Simulated annealing with asymptotic convergence for non-

linear constrained global optimization. Principles and Practice of Constraint Program-

ming, pages 461–475, October 1999.

[214] B. W. Wah and T. Wang. Tuning strategies in constrained simulated annealing for

nonlinear global optimization. Int’l J. of Artificial Intelligence Tools, 9(1):3–25, 2000.

[215] B. W. Wah, T. Wang, Y. Shang, and Z. Wu. Improving the performance of weighted

Lagrange-multiplier methods for nonlinear constrained optimization. Information Sci-

ences, 124(1-4):241–272, May 2000.

[216] B. W. Wah and Z. Wu. Discrete Lagrangian method for designing multiplierless two-

channel PR-LP filter banks. J. of VLSI Signal Processing, 21(2):131–150, June 1999.

[217] B. W. Wah and Z. Wu. The theory of discrete Lagrange multipliers for nonlinear

discrete optimization. Principles and Practice of Constraint Programming, pages 28–

42, October 1999.

[218] T. Wang. Global Optimization for Constrained Nonlinear Programming. Ph.D. Thesis,

Dept. of Computer Science, Univ. of Illinois, Urbana, IL, December 2000.

[219] T. Wang and B. W. Wah. Adaptive Lagrange-Multiplier methods for continuous non-

linear optimization. In Proc. Symposium on Applied Computing, pages 361–365, At-

lanta, GA, February 1998. ACM.

[220] T. Wang and B. W. Wah. Handling inequality constraints in continuous nonlinear

global optimization. J. of Integrated Design and Process Science, 2(3):1–10, 1998.

[221] X. D. Wang. An algorithm for nonlinear 0-1 programming and its application in struc-

tural optimization. Journal of Numerical Method and Computational Applications,

1(9):22–31, 1988.

[222] Y. Wang, W. Yan, and G. Zhang. Adaptive simulated annealing for optimal design of

electromagnetic devices. IEEE Trans. on Magnetics, 32(3):1214–1217, 1996.

[223] L. J. Watters. Reduction of integer polynomial programming to zero-one linear pro-

gramming problems. Operations Research, 15:1171–1174, 1967.

[224] M. H. Wright. Interior methods for constrained optimization. In A. Iserles, editor,

Acta Numerica 1992, pages 341–407. Cambridge University Press, 1992.

[225] S. J. Wright. Primal-dual interior-point methods. Philadelphia: Society for Industrial

and Applied Mathematics, 1997.

201

[226] Z. Wu. Discrete Lagrangian Methods for Solving Nonlinear Discrete Constrained Opti-

mization Problems. M.Sc. Thesis, Dept. of Computer Science, Univ. of Illinois, Urbana,

IL, May 1998.

[227] Z. Wu and B. W. Wah. Solving hard satisfiability problems: A unified algorithm

based on discrete Lagrange multipliers. In Proc. Int’l Conf. on Tools with Artificial

Intelligence, pages 210–217. IEEE, November 1999.

[228] Z. Wu and B. W. Wah. Trap escaping strategies in discrete Lagrangian methods for

solving hard satisfiability and maximum satisfiability problems. In Proc. 1999 National

Conf. on Artificial Intelligence, pages 673–678. AAAI, July 1999.

[229] Z. Wu and B. W. Wah. An efficient global-search strategy in discrete Lagrangian

methods for solving hard satisfiability problems. In Proc. 2000 National Conf. on

Artificial Intelligence, pages 310–315. AAAI, July-Aug. 2000.

[230] X. Yao. Simulated annealing with extended neighborhood. Int. Journal of Computer

Mathematics, 40:169–189, 1991.

[231] T. Yokota, M. Gen, and Y.-X. Li. Genetic algorithm for nonlinear mixed integer

programmig problmes and its applications. Int’l J. of Comp. and Indust. Eng., 30(4),

1994.

[232] Z. B. Zabinsky. Stochastic methods for practical global optimization. Journal of Global

Optimization, 13:433–444, 1998.

[233] Z. B. Zabinsky, et al. Improving hit-and-run for global optimization. Journal of Global

Optimization, 3:171–192, 1993.

[234] C. Zhang and H. P. Wang. Mixed-discrete nonlinear optimization with simulated

annealing. Engineering Optimization, pages 277–291, 1993.

[235] A. A. Zhigliavskii. Theory of Global Random Search. Kluwer Academic Publishers,

Boston, 1991.

202

Vita

Zhe Wu received his B.E. degree from the Special Class for Gifted Young, University of

Science & Technology of China in 1996. He received a M.S. degree in Computer Science

from the University of Illinois at Urbana-Champaign in May, 1998. From 1996 to 2000, his

research focused on discrete constrained optimization using Lagrange multipliers. Various

applications have been solved during this period. Examples include very hard satisfiability

problems, multiplierless QMF and PR-LP filter-bank designs, and discrete, continuous, and

mixed-integer constrained NLP benchmarks.

His interests include nonlinear optimization, efficient algorithm designs, database, soft-

ware engineering, computer networks and computer security.

203

