PARALLEL PROCESSING OF COMBINATORIAL SEARCH PROBLEMS

A Thesls
Submitted to the Faculty
This 1s dedicated
of to the memory of my dad

Purdue University
by
Guo-Jie Lt

In Partial Fulfitiment of the
Requirements for the Degree

of
Dactor of Philosophy

December 1985

ACKNOWLEDGMENTS

The author would llke to expreas the most sincere gratiiude and appreciation
1o his major Professor Benjamin W, Wah, for his invaluable guidance, suppori, and
Inapiration during the entire course of this rescarch. e is slso grateful to the other
advisory commitiee members, Professor Kal Hwang, Professor Jose A. B. Fortes,
and Professor Susanne Hambrusch, for thelr guidance and comments. The author
expressos his deepest sorrow 1o the late Professor King-Sun Fu, who served on his
doctoral advisory commilice. .

The author would like 1o gratefully acknowiedge the support of the Purdue
Research Foundstion through & David Ross Fellowship, the National Sciernce Foun-
dation through grants ECS80-16380, ECS 81-035968, and DMCH3-19649, and CID-
MAC, a rescarch unit of Purdue University, sponsored by Purdue University, Cin-
cinnati Milikcron Corporation, Coatrol Dats Corporution, Cummins Engine Com-
pany, Ransburg Corporstion, and TRW.

iv

TABLE OF CONTENTS

Page

LIST OF TABLES vil
LIST OF FIGURES viil
ABSTRACT xt
CHAPTER I - INTRODUCTION 1
1.1 The Ublquity of Search 1
1.1} Problem Solving and Search 2

1.1.2 Elements of & Search Algorithm 3

1.2 Parallel Processing of Combinatorial Search 10
1.2.1 The Power and Limitation of Paraliel Search 1

1.2.2 Issues of Parallel Search » 12

1.2.3 Computer Architectural Requirements 13

1.3 Objectives of This Thesis 15
1.4 Significance of This Research 16
CHAPTER 11 - PARALLEL PROCESSING OF AND-TREE SEARCHES ivvvessisssnsns 19
2.1 Previous Werk on Parallel AND-Tree Search 19
2.2 Opumal Granularity of Paraliel AND-Tree Search 21
2.2.]1 Optimal Processor Utilization 21

2.2.2 Opumal Computer Eficiency 27
CHAPTER Il - PARALLEL PROCESSING OF OR-GRAPH SEARCHES....oooccccuruenes 43
3.1 OR-Graph Search Versus OR-Tree Search 43
3.2 Basic Rules of OR-Oraph Search 44
3.2.1 Seiection Rule Using a General Heuristic Function...cuesrisenr et

3.2.2 Lower-Bound Elimination and Termination Rules 30

3.2.3 Dominance EllmInation Rules 51

3.2.4 Branch-and-Bound Algorithm 53

3.3 Parallel Branch-and-Bound Algorithm 34

3.4 Bounds of Computational Efficiency

Page

of an OR-Troe Search 36
3.4.1 Basic Nodes and Its Properties 57
3.4.2 Parsllel Best-First Searches b1
3.4.3 Paralle) Depth-First Searches 64
3.4.4 Parallel Breadth-Flrst Searches b6
3.3 Computsr Architecture for Parallel OR-tree search. 67
3.5.1 Previous Work on Parallel OR-Tree Searches 67
3.52 MANIP — A Multiprocessor for Parallel Best-First
Search Without Dominance Tests 68
3.5.3 Parallel Dominance Tests y 73
3.6 Summary 77
CHAPTER IV - COPING WITH ANOMALIES
IN PARALLEL OR-TREE SEARCH 80
4.1 Model of Efficlency Analysis 80
4.2 Anomalics of Parallel OR-Tree Search 82
4.3 Coping With Serial-1o-Paralle) Anomalies 86
4.3.1 Sufficient Conditions to Eliminate
Detrimental Anomalies 87
4.3.2 Necessary Conditions to Allow
Acceleration Anomalies . c ol
4.4 Coping With General Anomalics 92
4.4.1 Sufficient Conditions o
Eltminate Detrimental Anomalies 92
4.42 Necessary Conditlons to
Allow Acoeteration Anomalies 93
4.4.3 Coping With Anomalies Under Approximation 97
4.4.4 Coping With Anomalies Under DOMINANCE TESE serrammssasssssmmscsssrsssresssTI
4.4.5 Multiple Subproblem Lists 100
4.5 Comparison of Best-First, Depth-First,
and Breadth-First Searches 101
4.6 Summary 105
CHAPTER V - PARALLEL PROCESSING OF AND/OR-GRAPH SEARCH.....c00. 109
5.1 AND/OR-Tree and AND/OR-Graph Search 109

5.2 Previous Work of Paratlel AND/OR-Tree Search

1t

5.2.1 Parallel Game-Tree Search

111

5.2.2 Parallel Logic Programming

3.3 Besi-First Search of AND/OR-Trees

wasensa113

117

i —

Iv

TABLE OF CONTENTS

Page

LIST OF TABLES vil
LIST OF FIGURES vil
ABSTRACT xi
CHAPTER 1 - INTRODUCYTION 1
1.1 The Ubiquity of Search 1
1.1.1 Problem Solving and Search 2

1.1.2 Elements of & Search Algorithm 3

1.2 Paraliel Processing of Combinatorial Search 1]
1.2.1 The Power and Limitation of Paraliel Search 11

1.2.2 Issugs of Paralicl Search i2

1.2.3 Computer Architeciural Requirements 13

1.3 Objectives of This Thesls 15
1.4 Significance of This Research 111
CHAPTER 1 - PARALLEL PROCESSING OF AND-TREE SEARCHES.....cussinreenrs 19
2.1 Previous Work on Parallel AND-Tree Search 19
2.2 Optimal Granulerity. of Parailel AND-Tree Search 21
2.2.1 Optimal Processor Utilization 21

2,22 Optimal Computer Efficiency 27
CHAPTER IT - PARALLEL PROCESSING OF OR-GRAPH SEARCHES....cccovarensess 43
3.4 OR-Graph Search Versus OR-Tree Search 43
3.2 Basic Rules of OR-Graph Search 44
32.1 Selection Rule Using a General Heuristic FUnCUOB wrsmmmmrsstsisssrmsssses 46

3.2.2 Lower-Bound Ellmination and Termination Rules 50

3.2.3 Dominance Elimination Rules 51

3.2.4 Branch-and-Bound Algorithm 53

3.3 Parallel Branch-and-Bound Algorithm 34

3.4 Bounds of Computational Efficiency

of an OR-Tree Search 56
3.4.1 Basic Nodes and Its Properties 37
3.4.2 Parallel Best-First Searches 61
3.4.3 Parallel Depth-First Searches Hd
3.4.4 Parallel Breadth-First Scarches 66
3.5 Computer Architecture for Parallel OR-rec search 67
3.5.1 Previous Work oo Paralle] OR-Tree Searches 67
3.52 MANIP — A Multlprocessor for Parallel Best-Flrst
Search Without Dominance Tests..... 68
3.5.3 Parallel Dominaoce Tests A 73
3.6 Summary 17
CHAPTER IV - COPING WITH ANOMALIES
IN PARALLEL OR-TREE SEARCH 80
4.1 Model of EBCIEnCY ADBLYEIE cviresimssssrsenssssvssmmsmssstasionssinsiimstasssarmissisyes s 80
4.2 Anomalics of Paraliel OR-Tree Scarch 82
4.3 Coping With Serial-to-Paratiel Anomalles . .86
4.3.1 Sufficent Conditions to Eliminste
Detrimental Anomalles 27
4.3.2 Necessary Conditions 10 Allow
Acceleration Anomalles . ‘ -
- 4.4 Coping With General Anomalles 92
4.4.1 Suffictent Conditions to
Eliminste Detsimental Anomalics 92
4.4.2 Necessary Conditions to
Allow Acceleration Anomalies 95
4,4.3 Coping With Anomalies Under Approximation 97
4.4.4 Coping With Anomalies Under Dominance TESAE vunsrrermsensssssnossissiassrsne 3D
4.4.5 Muluiple Subproblem Lists 100
4.$ Comparison of Best-First, Depth-First,
and Breadth-First Searches 101
4.6 Summery {14}
CHAPTER V - PARALLEL PROCESSING OF AND/OR-GRAPH SEARCH ..coonnee 109
5.1 AND/OR-Tree and AND/OR-Oraph Search 109

5.2 Previous Work of Paraitel AND/OR-Tree Search

4.2.1 Parallel Game-Tree Search

111

5.2.2 Parallel Logic Programming

113

5.3 Best-First Search of AND/OR-Trees

wien 117

- p—
e

R

N e————y

vild

LIST OF FIGURES

Figure

1.2 An AND/OR graph

phase of an AND-tree evaluation

2.4 The proof of Theorem 2.2

3.1 The path numbers of & tree

using the knapsack problem

3.3 The proof of theorem 3.1

(average = 20)

4.1 Examples of detrimental anomalies.

4.2 Examples of acceleraiion anomalies

Page
1.1 The state-space graph for the knapsack problem 5
7
2.1 Decomposition and composition phases in an XY I MTTSPTI LI Jo—
22 Al-busy and wind-down subphases in the composition -
2.3 Simulation results of Ginding the optimal granularity of
paraliel divide-and-conquer algorithms N = 4096} X1}
33
A8
3.2 An Example of branch-and-bound algorithm o
59
3.4 Architecture of MANTP—a mulliprocessar
for parallel best-first search {wLYas} 69
3.5 An example of load balancing ia v ring petwork "
83
85
4.3 Anomaly in performance between depth-first -

and best-first searches.

Figure

4.4 Aversge speedup and space requirements .oq
paraiiel branch-and-bound algorithms for
10 knapsack problems with 35 objects

Page

106

3.1 An exampte of a logic program represcated
as an AND/OK tree

14

5.2 A plot of the search cost versus
the success probability of the root.

19

$.3 A binary AND/OR search tree with high success probability
and the corresponding fall-token-Sow graph, G,

123

5.4 A binary AND/OR search tree with high failure probability
and the corresponding fall-token-flow graph, G,

123

5.3 Computation of the heuristic values

9

3.6 Tilustraticn of the BAO procedure using
the same example shown tn Figure 3.1

133

3.7 The architecture of MAKIP-2, & muliiprocessor for panatiel
heuristic search of logic programs and AND/OR graphs

136

6.1 Examples of multisiage graphs

144

6.2 A pipetined version of systolic array for '
computing & string of matrix multiplications

isi

6.3 A systolic array with broadcasts for computiog
a string of matrix multiplications.

153

6.4 A systolic array with serial Inputs and outpuls

156

10 solve & monadic-serial DP problem.

6.5 An AND/OR graph representation of the reduction ia finding
an optimal path ia a 3-siage graph io a 1-stage graph.

161

Figure

6.6 An AND/OR graph representation of finding
the optimal order of multiplying a string of
four matrices

6.7 A structural AND/OR graph represeatation
of finding the optimal order of multiplying
a string of four matrices

Page

168

170

Appendix
Figure

A.1 Proof of Theorem 4.4

190

ABSTRACT

14, Guo-Jie. Ph.D., Purdue University. December 1983 Parallel Processing of
Combisatorisl Scarch Problems. Major Professor: Benjamin W. Wab.

The scarch for solutions in & combinatoriaily large problem space is a major
problem In artificis! intelligence and operations research. Parallel processing of
combinatorisl searches has become a key lssue In designing aew gencration com-
puter systems. The rescarch givesa theoretical foundation of paratlel processing of
various combinatorial searches upon which the architectures ave based. In this
thesis parallel processing of searching AND trees {graphs), OR trees (graphs), aad
AND/OR trees (graphs) are investigated, and different functional requirements of
the architecture are identified.

Some of the dificulties in buiding parallel computers for searching arise from
the tnability 1o predict the pecformance of the resulting systems. One Important
Issue In implementing AND-tree searches is to determine the granularity of paral-
felism. In thiz thesis, the optimal granulasity of AND-tree searches 18 found and
analyzed. Another important result of this research Is in finding the bounds of
performance of paraliel OR-tree searches and a variety of conditions 1o cope with
anomalies of parallel OR-iree searches that lnvolve approximations and dominance
tests. In contrast to previous resulis, our iheoretical analysis and simulations show
{hat & near-linear speedup can be achleved with respect L0 a Yarge number of pro-
€SS0S

Loglc programming, onc of the foundations of new generation computers, can
be represented as searching AND/OR trees. In this research, an opilmal search sira-
tegy that minimizes the expecied averhead of searching AND/OR trees Is found. An

efficient heuristic search strategy for evaluating logle programs, which can be
implemented on & multiprocessor architecture (MANIP-2), is proposed.

Dynamic programming probleras, a class of problems that can be formulated
in multiple ways sod solved by different architectures, are used to Hlustrate the
results obtained on graph and iroe searches. Dypamic programming formulations
are classified into four types and various pasaliel processing schemes for imple-
menting different formulations of dyoamic programming problems are presented.
In particular, efficient systolic arrays for solving monadic-serial dynami program-
ming problems are developed.

CHAPTER1
INTRODUCTION

Basic concepts of paratlel processing of combinatorial searches are Introduced in
this chapter. We explain the elements of a search algorithm, such as heuristic
guiding and pruning, and characterize combinatorial searches as AND/OR-graph
searches. Two special cases of AND/OR-graph search, the AND-graph and OR-
graph searches, are deait with separately. The power, limitations, and issues of
parallel processing of combinatorial searches, and the corresponding requirements
of compuler architecture are discussed. To highlight the key ideas of this thesis, the
abjectives and significance of lhis rescarch are 2iso Included in this chapter.

1.1 The Ubiquity of Search

A wide class of problems arising in artifictal intelligence, operations research,
decision making. and various sclentiic and engineeting fields are to Gnd one of
more, oplimal (suboptimal) or leasible solutlons in a comblnatortal large problem
space. The only technique avallable to solve many problems of ihis kind is to
enumerate some of all elements of the problem space untll the solution is found.
This universal method Is referred to as a combinaforial search, or in short, a search.
In this section, applications using search algorithms are exemphified and the scarch

strategles are characterized from the viewpoint of lmplementations by computers.

1.1.1 Problem Solving and Scarch

In well-developed sclence and englneering, simple yel quantitattvely
prediciive modei have been constructled by using the language of mathemalics, e.g..
Maxwell's equations for electromagaellsim. Solving this kind of problems is to
implement deterministic numerlcal slgorithms, However, for many other
important problems, the domaln specliic Informatlon Is not enough to construct &
rigorous mathematical model, and combinatorial search becomes loevitable. We
can conslder search to Imply a complement of knowledge. More knowledge means
Jess search. We wlll concenirate on problems In artificlal intelligence and operations
sesearch In which combinatorlal search is prevalllng.

1n ariihctal Intelligence, the terms “problem solving” and “search” refer to the
large body of core ideas that deal with deduction, tnference, planning,
commonsense Teasonlng, lheorem proving, and related processes iBaF81). Most
cognitive tasks can be cast as explorations through & ralher enormous search space.
General ideas on search have been applied 1o natural-language undersianding.
robotics, computer vision, game playing, experi sysiems, and others
m.:.mo.mqsu&.wgwmm.zoi...m.:i—.mw_. In operations research, comblnatorial search
is an essential 1001 of solving a varlety of discrete optimizalion problems.

Generally speaking, combinatorlal search problems can be classified Into iwo
types. The Grst type Is decislon problems or satishabilily problems that decide
whether at least one solution exlsts and sallsfies a glven set of constraints. No
distinction Is made between the feastble solutions, and the atm of the search is Lo
reach any of the feasible solutlons. Theorem-proving, experl syslems, and most
problem-solving programs in artifictal Intelligence betong to this class {SIK75). The
propertles of decision problems and the corresponding search siralegles are
discussed in Chapter 5 of this thesis, The sccond 1ype ts combinatorial extremum-
search or optlmization problems thal are characterized by an objective function to
be minimized or maximized and a set of constrainis to be sattshed. The alm of the

search Is to discover a solutlon bearing the maxtmum (or minbmum} value and

3

satisfying the constraints. Practical problems such &s bading the shoriest path,
planning, Bnding the shortest tour of a travellng salesman, warehouse locatlon.
job-shop scheduling, packing a knapsack, vertex cover, and Integer programmIng
belong 1o this class.

1.1.2 Elements of & Search Algorithm

Many _.Sv._nas requiring combinatorlai search appent Intractable, in the sense
that every known solullon method experlences a combinatorial exploslon in Its
worse-case ruAning time as a function of the Input size. For instance, the search
space of & chess game can be as large & 10" pesttions. Exhauslive search 15
usually Impractical and prohibitively expensive for solving large search problems,
especially when (he problem Is NP-hard [GaJ?9].

One approach 1o solving Lhese hard problems Is 1o design specialized eflclent
algorithms tallored to the characteristics of each problem. Most of the proposed
polynomial-time approximallon -mno,:Saﬁ with guaranteed bounds belong to this
type [Grabb,Gal76.5ah77L 'Soma researchers have addressed the probabilistic
approach that guaraniee o obtain ouﬂ& or near-optimai solutions for almost atl
problem Instances [Kar76]). Others _.s_<o studied polyaomial-time algorithms that
optimize the average performance [Smi84}. Experlence nas revealed that efficlent
algorithms for slightly different problems are usually different and cannol be
generalized. Moreover, good algorithms are generaliy difficult to design. This
approach Is not taken in this thests.

On the othes hand, research has been conducied on designing a few unlfed
methods for 2 wide variety of problems {KoS74,1ta?6b,SekB1l. Among the most
general techniques are divide-and-conquer, Eﬁ.ﬁ..-ﬁ.ﬁ-vac:& (B&B), dynami
programming, and other graph-search sirategies such as A', AO", and 555", All
these general approaches involve search algorithms, Vhe search space for these
unified methods is often excessive large. Studies on Improving the search eficiency

s, thus, of considerable Importance. There are several complementary approaches

4

10 reduce the amount of lime and space to find & solution, One important way I5 1o
choose an appropriate representation of the problem to be solved, that is, to recast
the problem such that the size of the search space i reduced. In artificlal
intelligence, state-space and problem-reduction ave iwo major representation
schemes.

A state-space representation of a problem employs two kinds of entitles:
states, which are data structure glving "snapshots® of the condition of the problem
at each stage of Iis solution, and operators, which are means for transforming the
problem from one stale into another. The knepsack problem of packing n objecls
into a knapsack Is used to Hlustrats the state-space representation. Object | has &
welght w, and the knapsack hes a capacity M. If Object | is placed into the
knapsack, then a profit p, Is earned. The objective Is to fill the knapsack such that
the proht is maximized. The corresponding state-space graph is depicied in Figure
1.1, In this graph, each node denotes a state, and branches represent the
transformation of states. For example, node B represents the staie thal object | has
been placed Into the knapsack and object 2 Is being considered. Two alternallve
operations applied 10 this state are possible: (a) Objkct 2 is Included in the
knapsack, and (b) Object 2 Is not Included. In case (a), the state |5 transformed Into
state C, otherwise, It 1s transformed into state D.

In the problem-reduction approach, the principle data structures are problem
descriptions or goals. An Imital problem Is solved by a sequence of
transformations that ullimately change it Into a set of subproblems whose
solutlons are immediate. A problem may be transformed Into several subproblems,
all of which must be solved in order to solve the former. This expansion process
can be presented by an AND-pode In the graphical representation. In addition,
several different operators (transf ormations) may be applicable to a single problem,
and It sufices to solve the subproblem produced by any one of operator
applicatlons. This process can be ropresented as an OR-node In the graphical
representation. Problem-reduction can be regarded as searching an AND/OR-graph.

(1.2.3)

G 3 W 23 @) Q) (i

Figure 1.5 The state-space graph for the knapsack problem

§ 4]

Figure 1.2 shows a3 AND/OR graph In which problem A Is transformed Into three
subproblems B, C, and D and will be solved If any one of subproblems B, C, and D
Is solved. Problem B Is in turn reduced to subproblems E and F, and solving both E
and F implles solving B. Note that a jlate-space graph tan be undersiood as an
AND/OR-graph coataining only OR-nodes, each state of which corresponds 1o the
problem of gelling from this state to a goal slate. A goal stale of the state-space
becomes the primiiive problem of getting from the goal siate 1o Itself. In this

- thesls, we adopt the AND/OR-graph as a unified represeniation scheme and define
the AND/OR-graph according 1o Ils nonterminal modes withoul distinguishing
between siates and subproblems.

We represent a search problem es an acyclic AND/OR- graph! The
representation is characterized by a rool node with no edge entering It, and one or
mare terminal nodes with no edge exiting 1. In a search graph, there may be one or
more edges entering a node except the root, An edge in a search graph represents an
assignment of value 10 an unassigned parameter. For example, ta the 0/1 knapsack
problem shown In Figure L.}, the unassigned paramelers are the sel of objects that
have not been considered.

The non-terminal nodes in & search graph can be classified as AND-nodes and
OR-nodes. An AND-node represents a {sub)problem that Is solved only if all iis
children have been solved. An example of an AND-node is one that adds the
solutions from all subtrees expanded from this node. In Figure 1,2, nodes Band C
are AND-nodes. In contrast, an OR-node represents a {(sub)problem that Is solved
if any one of its children can be solved.? In Flgure 1.2, node A is an OR-node. The
expansion of a O/ knapsack problem by choosing an object to be included or
excluded corresponds to a transformatlon of the problem {rom one state o another

unU} the goal stale is found. In this sense, lhe resulting iree contalns only OR-
e ———

Ak acyclic graph b ons whihout cycles. More geaerally, some graphs whh cycles con be seavched.
w_oeaﬁq. this & beyond the scope of this thesin.

o thiz thesh the defialtions of AND-sad OR-nodes ase taken from [MaMT31 Yhe zeles of the AND-aad
OR-nodes In sa AND/OR-trea are revensed in Nilison's definitions [Hils0)

Figurei.2 An AND/OR graph

nodes.

To facllitate the design of multiprocessing systems for solving a search
problem, the problem Is transformed Into one of the following paradigms according
to the functlons of the nodes:

(1) AND/OR-graph: The non-terminal nodes are elther AND- or OR-nodes.

(11) AND-graph: This Is a special case of an AND/OR-graph In which all non-
terminat nodes are AND-nodes. Searching an AND-graphs is implemented
deterministicaily and s quite different from searching an >z_!c=.n..u_..? We
investigaie AND-graph searches first since some results of analysis can be
applted to AND/OR-graph searches.

(UL) OR-graph: This is another special case of an AND/OR-graph in which al} non-
terminal nodes are OR-nodes. An OR-graph search is essentially a state-space
approach.

A search tree 15 a speclal case of a search graph. In a search tree, each node
except the root has exactly one edge entering it. In fact, & search graph can be
coverted Into a search tree by dugplicating common nodes, Likewlise, a tree-scarch
procedure can be converied Into graph-search procedure by modifying ihe action
performed each time a node Is generaled such that only nodes that bave not been
created before are added 1o the graph. Searching trees I8 easler than searching
graphs, and mosi practical problem-solving procedures ara based on tree scarches.
For example, game playing and loglc programs can be represented as AND/OR-
trees; divide-and-conguer algorithms ave AND-tree searches; conventlonal branch-
and-bound algorithms are viewed 25 OR-tree searches.

A problem can be represented in mulliple forms. For example, the knapsack
problem may either be represented o an OR-tree and sotved by a branch-and-
bound algorithm [HoS78), or formulated in dynamic programming and solved by
an acyclic AND/OR-graph search. As another example, the search of the exirema
from a set of numbers can be solved by elther a divide-and-conquer {AND-1ree)

algorithm fAITU74) or a decislon-irce (OR-tree) search. In gemeral, the search

9

proceduses for varipus representations are equivalent in the sense that ihey
geaerate the same golution(s). Kumar and Kanal have shown that various
heuristic search procedures for statc-space represeniations (eg. A', SS5° [Nngob),
AND/OR-geaph searches {eg. AD' [NUBOD), and game-tree searches (eg. o-B
[KnM75]) are equivalent to branch-and-bound searches with dominance lesls
[KuK83), .

The eficiency of sofving a given problem depends on the representation.
Although eficlent search procedures for some problems have been established, the
general question of deciding the representation that leads to an efficlent scarch is
stil open for many problems, especlaily when multiprocessing 1s concerned. We
will study the varlant architectures required by muitiple probiem representations
in Chapter 6.

A second way to improve the search efficiency k5 1o guide the search by
heuristic Information. To avold combinatorial exgiosion, it is often necessary o
compromise between processing efficiency snd optimality of the resulting solutions,
A hewristic search 1S a melhod that wtilizes additional Information about the
properties of the specific problem domain 10 be solved beyond the Information built
into the data structures. A node Is active if its solution value has pot been found;

. otherwise, i1 Is sald to be terminated. In a serlal algorithm, the set of aclive nodes

are matntained In a single list. A heuristic value defined by a heuristic functlon Is
computed for each node. The aclive node with the mintmum heuristic value Is
always expanded first. A search is called :.&..S.b_.h search if the negatlon of the
tevel number is used as the heurisitc function. In this case the nodes In the active
list are expanded In a last-In /firsi-out order, A search Is called breadth-first search
If the level number is used as the heuristic funcilon. In this case the nodes In the
active list are expanded In a first-In/irst-oul order. The Information bullt into the
dala structures is considered as syniactic knowledge, while other problem-domatn
Information Is semantic knowledge. Depth-brst and breadth-brst searches thal use

syntactic knowledge only are regarded as speclad cases of heurlstic searches.

10

Heuristic search of loglc uEm_.Ew_E_:n problems Is discussed in Chapter 3.

The last way to reduce the search space Is Lo prune unnecessary expansions by
elimination ruies. The mest important eilmination rule is a dominance fest. When
s subproblem P, domlnaies another subproblem Py, it Implies that the subtree
rooted at Py contains a solutlon with a value no more {or less) than the mintmum
(or maxtmum) solutlon value of the subtree rooted at P Az an example, suppose
that the assignment for a subset of the objects 1o be packed Into & knapsack In the
0/1 knapsack problem has been determined. For two assignments, Py and Py, on
this subsel of objects, If the total probt of the objects assigned lo the knapsack for
P, Is more than that of Py, and the to1al weight of the objects assigned In Py is less
than that of P, then the best solution expanded from Py will be better thaa the
best solulion expanded from Py. In this case, Py dominates Py A speclal case of
dominance tests s the lower-bound fests thal are used In branch-and-bound
algorithms 1o solve mintmization problems. Suppose that a terminai node wiih
value v has already been found. Then all acllve nodes with lower bounds greater
than v can be terminated since they would not lead to better solutions. The
mialmum of the solution values obtalned at any tlme can be convenlently kept in a
single locatlon called the incumbent. The propertles and paraliel Implemeniation of
dominance tests will be discussed In Chapler 3. o-B pruning on AND/OR trees will
be discussed in Chapter 3.

1.2 Parallel Processing of Combinatorial Search

Within the past two decades, slgnlficant advances have occurred in computer
architecture and microelectronlcs. New ways to construct the archilecture of
computers enable compulatlons to be processed In parallel, leading to large
Improvement In machine performance. Due 1o the huge amounti of computations in
combtnatorlal searches, pargllelism or ultra-parallelism are required. In this

seclion the issucs of parallel processing of combinatorial searches are discussed.

1.2.1 The Power and Limitation of Parallel Scarch

Search problems can be evaluated In paraliel by exploring simultaneously
several nodes sprung from the single root node provided thal they are Independent.
The potential for paralielism s usually large because there are a great number of
subproblems that are independent of each other, especialiy for OR-tree searches, In
applications In which the computational compiexity 18 exponential, the search
algorithms are characlesized by relatively large compulational overheads as
compared to the Inpui-oulput overheads. In this case, parallelism using Very-
Large-Scate-Integrated {VLS]) technology is sultable.

It is imporiant to nole that parallel processing is nol an approach to
circumvent the difically of combinatorial explosion. The limitatlon of paraliel
processing Is an Important issue 1o be constdered before designing parallel scarch
schemes. The problem should be _-.23.8_35 solvable by a serial computer. In
other words, parallel processing Is applicable when the problem is solvable In
polynomial time, or when the problem is NP-hard, but is solvable In polynomlal
Ume on the average fSmiB4al or with probabllity ene, Le., aimost always solvable
[Kar76], or the problem s heuristicaly soivable in polynomial time {such as
compuler game playing and expert &a—es&. It is not practical to use parakiel
processing to solve a problem with an exponenilal complexily on the average
because an exponentfal aumber ol processors Er& be used to solve the problem in
polynomial time.

Muitiprocessing 15 generally used to improve the compultatlonal efficiency of
solving & glven problem, and nof fo extend the solvable problem space of the problem.
Suppose the best serfal algorithm for the problem has a polynomial time
complexiy of n®, where n is the problem size and k Is a conslant (Z1). Fhenin
the Heme {1 takes the serlal algorithm to solve the problem of size n, a parallel
atgorithim with n processors can only solve the problem af size alt V) ascuming a
linear speedup. For k=3, this is o', Simtlariy, for a sertal algorithen with an

exponential time complexsty of k* k>, the solvabie problem size using n
processors Is n+log,n.

2

1.2.2 Issues of Parallel Search

Combinatorial searches are guite different from conventionat deterministic
pumerical computations. Some Important Issues oR parallel searches are Hsted here.

(a) Predication of performance:; One of the major dificulties assoclated with
combinatortal searches Is the inability to predict either the efficlency of » given
algorithm or the performance difierence belween different approaches withoul
actually executing the search program. This is due to ihe aondeterminism of
combinatorial search algorithms. The estimation of performance of combinatorial
searches 1s, clearly, an Imporiant lssue, especially when mulliple processors are
used.

(b} Linear Scaling: When 8 1arge aumber of processors are used, it is expected
that the speed of computation wiil Increase in direct proportion to the number of
computing elements without any feprogramming. This Jinear scaling rule, usually,
does not hold for paratiel searches even though the communlication time Is jgnored,
Further, it Is possible that using more processors might degrade the performance.
Attentlon must be pald 1o coping with the anomalous behaviors when designing
multiprocessor systems for paralle} searches.

(c) Granularity of paralielism: in parallel searches, determining the minimum
size of & subproblem that witl be evaluated by a single processor 15 an imporiant
{ssue. If 1he granularity is large, then the processors can be loosely coupled;
otherwlse, tight coupling as In systolic arrays may be necessary. The proper
granutarity depends on the capaclty of the communication network and the
complexity of the search problems.

(d) Paralle! selection: In paratlel heurlstic searches, multiple subprablems with
the smallest heuristic values must be selected [rom the active list{s). Whether all
acltve subproblems are maintained in & very large heap or subproblems are selected

in muktiple active lists through a selection network, the selection overhead IS high.

13

Notice that for some problems, selection Is pecessary 1o assure the correctness of
{he solutlon; whereas in some other cases, the arder of evaluation Is insignificant.
For performing parallel searches, a cost-efective parallel selection stralcgy Is
required.

{e) Communication of pruning information: When 1wo sublroes (subgraphs) are
searched in parallel, more work than necessary might be performed if the pruning
information of one processor is unavallable 1o other processors. The exira work
that must be .a-_._.—n— out due 1o a lack of pruning information is calied the
information-deficiency overhead. Pruaing Information can be exchanged by
messages or {hrough a common memory. This increased communication overhead

nceded for passing this information is called Lhe information-transfer overhead. In

. general, a tradeoff exists between the information-deficiency and information-

transfcr overheads. If better pruning is obtained by increasing the Information-
transfer overhead, then the Information-deficlency overhead will decrease. A good
parallel search algorithm should coasider these tradeoffs and reduce the run-time
overheads by proper assignments of tasks to processors. This tradeofl is especlally
critical in parailel dominance 1ests.

{f) Interconnection strucivre: To take sdvantage of VLS technologles, a
regular structure of interconnections of the architecture is desired. The mapptng of
a regutar tree or graph onlo regular structures such as systollc arrays Is
stralght{orward, but an (rregular tree or graph might have to be transformed Into a
regular ane before an efficlent implementation can be found. The transformation of

an trregular tree or graph 1ato a regular one Is an interesting research toplc.

" 123 Compater Architectural Requirements

Efficient archltectures to evaluate varfous scarch algorithms are different. It is
dificult to map search algorithms to generat purpose archiieciures, since they have
different architeciural reguirements. One of our objeclives in this thesis s,

therelore, 1o obiain the functional requirements of various search algorithms. Some

14

[

of the general funciional requiremenis of the necessary compuler architeclure is
described in 1his sectlon. In subsequent chaplers, we will investigate the problem-
dependent functional requirement.

Combinatorial search Is extensively applied In artlhclal intelligence problems
that require symbolic processing operations such as comparison, selection, sorting,
matching, and loglc set operatlons. In a higher level, these applications may requlire
the processing of nonnumerical data such as sentences, speech, graphical dala, and
tmages, Effictent computers designed for these applications should possess
hardware for symbolic processing functions.

Most comblnatorial search algorithms are nondeterministic, that s, It Is
impossible 10 plan In advance the procedures to execule and to terminaie with the
available informatlon. Therefore, dynamic allocatfon of computational resonices Is
essentlal In the architeclures. Further, an efficlent broadcast bus or Inierconnection
network Is needed to dissemtnate information for the scheduler. Owing 1o this
nondeterminism, the detection of dependencles that control the level of paralielism
is more dificuli for combinatorifal searches. Load balancing is also essentlal because
there may be a great disparity In the workload of different processors, Moreover,
efficient garbage collection is required because of the dynamicaliy allocated storage.

Another Important functlonal requirement for a parallel search sysiem is &
large degree of parallellsm and a large memory space due 1o the huge amount of
data and computations. To prevent the bottieneck of a centrallzed controller,
Inteltigence In such a system should be decentralized. To gulde the search by
heuristics and to prune unnecessary expansions, local Informallon is oflen
inadequate, and the architeclure should be capable of distributing global
informatlon efficlently. A secondary storage Is indispensable in such a system. Due
10 difference in locabily of access of search algorithms, the staging of data between
the main and secondary storage Is an lmporiant problem to consider [Yuws4).

The archilecture should also suppart changes In granulariiy and data

structures when the problem size Is changed.

13

1.3 Objectives of This Thesis

This primary purpose of this thests is fo give ihe theorerical foundation of
parallel processing of various combinatorial searches upon which the architecture &s
dased. The emphasis of this thesis Is In analyzing the computational efficiency and
in showing the reasonableness of the propased paraiiel search scheme, That Is, we
are Inlerested 1o And the functional sequirement of varkous combinalorial search
problems and not to describe the detalls of the underlylng architecture.

. Stnce eficient archilectures to evaluate varlous search algorithms differ, the
functional requirements are studied with respect to the paradigm of classifying
search problems, ..-50.«.. AND-tree {graph), OR-tree (graph) and AND/OR-tree
(graph). The results derived for one search sirategy may shed light on
understanding other search sirategles. Based on these requirements, a general-
puspose architecture can be assessed as whether It {5 suitable for a given search
algorithm, and the most eficient way of mapping the aigorithm can be developed.
Special-purpose architectures can also be developed from the f unctional
requirements. fn what follows, we list the objectives of this thesls with respect to
different search paradigms.

For a paralle! AND-tree search, we will find the optimal granularity of
paraiielism, that 15, determing the number of processors that achieves the optimal
processor utHlzatlon or the maximal computational efictency. The optimal
granularity is problem-dependent when an OR-tree or AND/OR graph Is searched
due to the nondeterminism In the problem.

¥or an OR-tree {graph} search, we concentrale on understanding the Impacts
of various problem paramelers of search on ihe computational efficlency and
developlng & theory for predicating the performance. This Is done by derlving the
bounds of computational time to perform parallel best-fisst, depth-brst, and
breadth-first searches, respeciively, Condltlons for coping with anomalles of
parallel search, and the appropriaie parallel search strategy upder which a near-

lincar speedup will hold for a considerable number of processor will be

16

determlned.

Satishabllity problems such as evaluaiing a loglc program is generally soived
by depth-first search. Ia this thesis, we will prove an cptimal AND/OR-1ree search
strategy In the sense of the minimizing average search effort and provide an
efficient parallel best-first AND/OR-tree search heuristic for solving loglc
programs.

Finally, to show the dependence between architecture and problem
representation, we will model dynamic programming problems as searching an

. AND-tree, folded OR-tree, Tolded AND/QR-tree, and AND/OR-graph. Various
paraliel schemes according to the problem formulation will be proposed. The
melhod for iransforming irreguiar AND/OK-graphs into regular ones will also be
discussed.

We do nol attempt to enumerate all possible cases in this thesls, but will
IMustrate the diferent approaches generously with examples. It Is hoped that these
guldelines and examples can ald the deslgners to select the appropriate paraliel

processing system in solving combinatorial search problems.

1.4 Significance of This Research

Combinatorial search is a fundamental of artificial Intelligence and operations
research. Afier a good heurisuc algorithm Is developed, searching is inevitable, and
parallel processing of combinatorial search becomes a key (ssue in designing new
generation computer systems. A lot of Interesting projecis are In progress today on
designing highly parallel architecture for comhbinatorial searches. Examples
tnclude the Parallel inference Engine (PIE) in the core of the Japanese Fifth
Generation Computer Systems project fGTMB4], DADO designed at Columbla
University [StM84], and ALICE developed al the Impertal College {CFR85).

Flowever, results in this direction are premature and cannot be termed successful.

17

Some of the dificulties in buiding parallel search systems arise from an
Inability 1o predict the pecformance a priorl. Before 2 design declslon 1 made, a set
of questions should be answered on the potential paraliclism, the ideal problem
representation, the optimak search siralegy, ...8 aumber of processors, the optimal
granularity, and the predicted speedup. Tt I more important to Initially
understand ihe applicability of the architecture 10 3 class of problems than to
strive for high perfocmance in a prototype Implementation. Thus, to know that a
¥00-processor system gives a 30-fold increase In performance over a single
processor is more imporiant than krowing the maximurn instruction rate with a
protatype. The computer architects should be guided by well tested theory before
implemenating & prototype. To build & 100-processor system 1o test the theory Is
1ot a5 Imporant as 10 predict the performance (accurately) with any number of
Pracessors, .

We advocale the theoretical approach In this thesis, Although we do nol try to
undermine ihe tmporiance of protolype Implementation, some simptifying
assumplions may have been made In the analysis, and the sesults have 1o be
verlhed In a reatistic prototype. The signlficance of this thesis lles In the theoretical
foundations of paraltel processing of comblnatoriat searches. Near-linear speedup
can be guarantecd with a considerable sumber of processors as long as cerialn
conditlons are met. The conditlons discovered In this thesis 10 cope wlith anomalies
will assure a conlinuous increase In the performance when more processors are
used. Morsover, the funcilonal requirements derived for diffierent kinds of problem
formulations will help deslgners 1o map search algorithms onto general-purpose
computer systems of o design new compnier archilectures for paratle! searches.

In contsast to Japanese Fifth Generation Comgputer System In which the
depth-first search Is used, we emphasize on the use of heuristic Information to
reduce the search complexity. A optimal search sirategy for evaluatlng an
AND/OR tree Is proved and a practical heuristic search method for solving logic
programs Is proposed In this thesis. This approach s Interesiing because i

Intcgrates ihe research resuits in bolh aruficial Intelligence and parallel computer
§

architecture. One of the future directions to Jead 10 better search algorithms lies In

the use of domaln knowledge lo cut down unnecessary enumerations. We hope

that this research will contribute to the design of new generatlon compuler syslem.

)]

CHAFTER B
PARALLEL PROCESSING OF AND-TREE SEARCHES

As discussed in Chapler One, an AND-graph Is » special case of an AND/OR-
graph ia which all nonterminal nodes aro AND-nodes. Searching an AND-graph Is
deterministic, and ihe search space Is fixed. In many practical problems, such a5
fnding the maximum {(or minlmum), merge-sort, and quiksort, a (sublproblem is
divided Into smatler distinct subproblems. This kind of problems can be
represeniod as AND-tree searches. An AND-graph can be coaverled into 2a
equivalent AND-tree by duplicating shared child nodes. In what follows, we witl
only discuss parallel AND-tree searches.

2.i Previous Work on Parallel Divide-sand-Conguer Algorithms

A well-known AND-tree search strategy io soive many combinatorlal search
problems is the divide-and-conquer aigorithm. It partitions a problem into smaller
distinct subproblems, finds solutions for the subproblems, and combines the
golutions into a solution for the original problem. The procedure i3 applied
recursively unul the subproblems are 5o small that they can be solved directly.

Divide-and-conquer algorithms naturally suggest implementation on parallel
machines due to the independeace of subprobiems. Studies conducted on paratlel
compuiers for executing divide-and-conquer aigorithms can be classified into three
types. First, multiprocessors that are connected in the form of a tree, especlally a
binary iree, can be used to exploit the polentlal parallelism of divide-and-conquer
algorithms [Ha$79,BroB0.PetBi]. A tree machine has a simple, planar wiring

20

scheme that 18 suitable for VLS implementation {BeK79) It also permits fast
access (0 any processor In the struciure and has a constant external connection
function. The mapping of a divide-and-conguer algorithm on this srchitecture (s
casy due 1o Lhe resemblance between the intercannection and the logical structure
of the algorithm. However, to arrange the processors into & tree physically hos
certaln disadvantages. For Instance, the root processor is often a bottieneck for
problems such as merge sorting, and the fixed tree structure is not Sexible enough.

A second approsch (s the virtual tree machine [Buli8d) This cooalsts of a
number of processors with private memory connected by an interconnection
network, such as the binary a-cube, and a sultable algorithm to decide when and
where each subproblem should be solved. The hierarchy of process
communications in divide-and-conquer algorithms allows them 1o be mapped
eastly onio this architecture. This approach may circumvent the drawback of the
physical trec network by allowing cach processor to execule programs originaily
designated 1o » number of different processors. Care shouid be taken to keep the
communication times wilhin reasonable Lmits. Martln bas described how an
arbitrary binary ires of computations may be mapped onio & finlie network of
machines [Mar79)

The third approach Is & variation of the above approaches thal uses & common
memory. All processars are connected to the memory by a common bus [HoZ83)
Since data must be shared in the execution, the memory or bus may become a
botlleneck. Multi-moduie memory augmenied by caches has been proposed 1o
reduce the memory and bus contentions.

Divide-and-conguer algorithms are common i programming. A top-down
synthesis of divide-end-conquer algorithms has been presented for the derivation
of algorithms from & formal specification of & problem and has been implemenied
in a program-synihesis system called CY. PRESS [SmisSE

21

22 Model of Parsilel AND-Tree Searches

To analyze the optimal granularity of paratlel AND-iree searches, &
synchronous model for paratiel computation 15 described below. An AND-tree
search can be viewed as & process with two phases, the top-down decomposition of
(sub)problem and the bottom-up composition of resulted subproblems. I practice,
these phases may be Interleaved but it belps to analyze them sepazately. We now
show that the assumplion of separating the two phases l reasonable.

Figure 2.1 shows an example of an AND-tree search. Suppose that the
decomposition and composition phases are interleaved, for instance, the sequence of
evaluation s Ty, T;, Ty, and T;, and the corresponding tmes needed are t;, 41
and 1;. Then the total time from splitting nodes B and C to returaing the results 10
nodes B’ and C' 15 the sum of 1, and 4, | = 1, 2, because all these computations are
iadependeat. Without loss of computational efficiency, we can reorder lhe
computation in the sequence of Ty, Ty, Ty, and Ty, This means that in the analysis
we can assume that the composition phase begins until the problem to be solved is
fully decomposed, Le., ail terminals of the AND-tsee are available. Further, the
composition and decomposition are dual processes. The resulis of the efficiency
analysls for one phase can be extended 1o another phase castly. Therefore, we wili
analyze the optimal granularity of paraliet AND-tree scarches only for the
composition phase In subsequent discussion.

1a the composition phase, & node or{or subproblem) is sald to be active if the
result to this subprablem has been obiained but 15 parent subproblem has not been
solved yet. A node Is sald 10 be executable if all Its children are active. After a
computationak -—.n? some (or all) executable nodes wilt become active nodes. If one
or more sibling nodes of an active node i not active, then they cannot be combined
until all the sibling nodes are active. In this case, Lhis node Is called a waited-active
pode. As shown In Figure 2.2, in Step 3 of an AND-tree search, nodes B, D, and F
are execulable nades, all shaded node are active nodes, and node E Is a waited-
active node. In Step 4, only one node, C, is executable and Nodes B and D become

12

N o N e R LR L S .'.o-oo-.oo Oy - -

Composttion

Flgure 2.1 Decomposition and composition phases

tn an AND-tree evaluallon

23

4§ cxecutable
@ active
® walied-active

Figure 2.2 Al-busy snd wind-down subphases in the compasition

phase of an AND-tree evaluation

A

wailed-active nodes because nodes A and C are inactive.

In paralicl AND-tree searches, a composition phaso can be divided Into two
subphases: all-dusy and wind-down. During the all-busy period, ail the processors
are kept busy uniil the number of executable nodes Is ess than the number of
processors. In the wind-down period, the results are combined together, and some
processors wouild be idie because of lnsufficient number of exccutabls nodes. For
example, if four processors are used 10 evaluate the binary AND-tree in Figure 2.2,
ooe of the possible boundary between the atl-busy and wind-down phases I8
indicated by the dashed line.

The following proposition shows an imporiant property of AND-tree searches
with respect to the executable nodes.

Propasition 2.1: During the composiiion phase of searching an AND-iree, the
aumber of executable nodes decreases monotonously.
Proof: Suppose that there are n aclive nodes and p executable nodes in Step | This
means that among the n active nodes, m nodes (m & n) are immediate descendants
of the p executable nodes. The otber {n-m) sodes are waited-active nodes. If the
number of processors used Is larger than or equal 0 p, then all executable nodes
can be fired and become active; otherwise, some execulable nodes romain. In the
next siep, any new execuiable node must have at least one immedlate descendant
thal was an execulable node and evaluated in the last step. A node whase
mmediate descendants were ail waited-active nodes In the last siep cannot become
executable in this siep; otherwise it would have been executable in the last step.
This implies that this node 15 not a “new" executable node, & contradiction! The
number of executable node 1o Step (i+1), as a result, cannot be greater han p.

s}

If AND-trees 10 be searched are complete or the time nesded to evaluate each
node is 2 constaat and ke completion tme Is to be mintmized, then nodes no less
than 1he number of processors used should be evaluated as long as the number of

executable nodes are larger than or equal to the number of processors. This means

s
that the all-busy phase can follow the decompesition phase If the number of
terminals of the AND-tree is nol less than the number of processoss. According to
Proposition 2.1, once the wind-down phase begins, it cannoi become the all-busy
phase again. That is, the two phases are separated. in the fallowing section, we will
discuss ths optimal granularity to E-u_B_u_._ processor utilization or processor-time
eficiency with respect to the problems for which the separation of the all-busy and
wind-down phases are valld. For general AND-trex searches, dynamic scheduling

is needed 1o assign subproblems to processors, and the opilmal granuiarily is
problem-depeadent.

2.3 Optimal Granularity of Parailel ANI-Tree Searches

The functicnal requirement for evaluating an AND-tree is an Intercoanected
coaglomerate of processors. One _B_!:E-. issue is 1o determine the granulariry of
parallelism. This is the minimum size of & subproblens thai will be evaluated by &
single processor to achieve the oplimal performance. The criteria generally used
are the processor utitization, kT2, or AT3, where k is the number of processors, T is
the computational time, and A Is the arca of a VLS! implementation.

231 Optimal Processor Utitization

The complexity of divide-znd-conguer algorithms In an SIMD model and the
conditions that assure ihe oplimal processor utilization have been studied
[HoZ83,TalB3l. We now investigate the asymptotic utitization.

In the composition phase, the processor utilization depends on the ratio of the
amount of times speat in the sli-busy and wind-down phases. The Ume
complexity of searching a binary AND-tree of N leaves, T(N), can be formulated In
the following vecursive equation:

DIN}+2T +CIN} N>1

N
3

26

where D{N) and C(N) are, respocuively, the complexitics of the decomposition and
composliion computations and B indicates 1he set of funciions of the same order.
In fact, C{N) reflects the time needed o solve the problem of size N when the
resulis of subproblems of size N/2 are oblained. The granularity thai results in
the optimal processor utliization Is relsted to the complexity of D(N} snd C(N). In
the problem of fGading the sum or the maximum of N aumbers,
D{NHC(N) = 8{1}, and using N/{log;N} processors will achleve the maximum
processor utilization EKuc77] In sorting N oumbers, D{NH-CIN) = 8(N), and
log,N processors should be used to maximlze the processor uiilization. Note that
the higher the orders of complexity of D(N) and O{N) are, the larger the
granularity & When the orders of complexity of D(N) and C{N) sre high, the
times spent In Eadoooa_ui_:.aa snd wind-down phases are dominating the iime in
the all-bugy phase, and the gain in the ali-busy phase with a amall granulerity is
negligible. In other words, & small granularity will result in under-utiiization of
processors.

The following proposition shows the asymptotic wiilizavlon, PU, when
different number of processors are used in parallel AND-tree search algorithms.
Proposition 2.2: Let PU(k,N) be the processor utilization in the composition phase
of performing a parailei binary AND-tree search algorithm with k processors on an
AND tree of belght __onuz_ and N terminal nodes. Assuming .that each processor

evaluales any nonterminal node In the binary AND-tree In a constant time of 6{1),

By defining c,, = wmmm. ﬂ“%mz.. the asymplotic processor ulilization Is

0

= fe,—~ o
Jm PUKN) | = .I_I 0<c < oo (2.2)
= fec,=0

Proof: The number of nodes evaluated in the first iteration of the wind-down phase
is al least k/2 and at most k-1. Hence, the 1otal number of nodes evaluated In the

27

wind-dowo phass is at least k-) and at mosi 2k-3. As the lotal number of
nonterminal nodes Is N-1, the total aumber of the nonterminal nodes evaluaied In
Lhe computation phase s at Jeast (N-1)-(2k-3) = N+2-2k, and at most (N-1)-(k-1}
= N-k. I, the number of iteralions in the compuiation phase, is bounded by:

L LTS (23)

According 10 the bound of tree-height reduction, i, the aumber of iterations In the
wind-down phase, ts bounded by:

log(2k~3) K I, € logyk—1) (24)
By the definition of PU, we have

=E Pk, Zul-w_...w...m.ﬂ—.lﬂ (2.5)

We now discuss three separate cases.
(a) ¢, = oot From Eg's (2.3){2.5), we gt

Im PUCK,N) € Um N-1 _ (2.6)

N
k ﬂmm -2+ log,{2k-3)

N-1 1
< sy =y ¢ T ACTE=31=3]

1 +¢, lim
H—+m _Oﬂuz

Since c,—o0, we can assume thst k> NflogN for N > N, and

tog,((2k—3}—2) > log)k > log,N — log,log;N. This means that
um (232 lnplylog that PU(KN) §0. As PU(K.N) must be
N mcnuz

nonnegative, the first case of Eq. (2.2) s proved.

28

(b) ¢ = & From Eq's (231{2.3), we get

tia PUCK, N) 3 lim NI i @n
N Nete N
k _.rn -1+ _onpﬁwl_u_

N-1
? i i1

Sluce ¢_—+c0 We Can mssume bl x <NfloggN for N > No and
toga{(k—1) = 1) < logk < logaN — logzlog,H. This means that

lim g ((-D-1) implylag that PU(kN) 3 1. As PUCKIN) & 1, the third
’

case of Bq. (2.2) is proved.
. N
aavenolAS.QBBE&EEE:QP.!-E&:—H.-w .-.—.ﬂ...ﬂﬂ-aa

" togk - 108,60 + logaN — logsloggN _ !
N Tog,N ¥-= Tog,N

From Eq's (2.6){2.8), 1t is easy 1o 50 that

(28)

L« 1
T¥en Tog (=D — 1)

e MmN
| | 1
R 7 (1=) B T
1+¢, lim
Netos mnz

€ PU(KN) 29

This proves the second case of Eq. (22). O
As an example In applying Eq. {2.2), suppose that there are VN processors. 1t

gm._z
is easy 1o show Eu..nln.w.a._-.llm.mu'HP Euﬁiw.zun-.Zeﬁpgpﬁn

above proposition holds in the case In which each node I5 evaluated in 8(1) time, as
the constant complexity does not affect the Umits In Bq's (2.6) and (2.7)

9

232 Optimal Processor-Time Efficlency

Since PU Increases monotonically with decresing number of processors, 1t Is
not an adequate measure for the effects of parailel processing. Another appropriate
measure Is the YT? criterion, which coasiders both PU and computational time.
The followiag theorem proves the lower-bouad XT* complexity of paraliel binary
AND-tree-search algorithms. This lower bound Is attained when k(N) is
B(N{{tog;N)) and the time required to svaluate any node is (1), 1.e., C(N) has a
complexity of 6(1).

Theorem 2.1; Suppose that (o the composition phase of a paraltel binary AND-iree
search, N laputs (1eriminals) sre combined by k(N) processors in Ume T(N) and
E—.ﬂvggﬁﬁgmaﬁosggﬂ AND-tree In a constant T,
Ume units. Then X(NJTH(N) > 6(Nlog;N)T§, sod equality holds when
k(N}=0{N/log,N).

Proof: Since Inputs are represented by the terminal nodes, and theee are N terminal
nodes in the binary AND-tree, the number of computational steps or the aumber of
pontermianls is N—i. According 1o our model, In the composition phase, the zll-
busy and wind-down phases are separated. During the sll-busy phase, ail
processois are kept busy until the executable nodes are less than the number of
processors. In the all-busy phase, there are (N—1)—(x(N)—1} = N—k(N) nodes 10
be evatuaicd, and at least (N/K(N) = 1}T, time uaits are needed. In the wind-
down phase, some processors wouid be idle. According le ihe data dependence, at
least log,k(N}T, tme units sre required in this phase. Let Ty (N} be ihe ttme
needed In the composition phase of evalualing an AND-tree with N terminal nodes
by k processors. Thevefore, the following lower bound of Ume complexity holds.

N

TN > oy~ 1+ _a,:zu_.ﬁ. (2.10)

where | € k(N} € N. For simpiicity, the constaat term In Fq. {2.10) can be
jgnored without affecting the validity of the tollowing proof. The KT? lower

bound is derived as
i
KN)TAN) » ﬁmﬂa + 2N-log,k(N) + :zrauizu—q.u 2.1

To bad the order-of-magnitude minimum of Eq. {2.11), it is necessary to compare
the following three cases. When k(N)= &(Nilog;N), K(N)TH{N)=
O((N-1og;NJTJ). In contrast, whea X(N) < 6(Nflog;N), the first term on the
right-hand side of Eq. (2.11) s

a.mmqvﬁz._ézu (2.12)

When k(N) > 6(Njlog;N), the third term oa the right-band sids of Eq. (2.11) is
k(N)log FK(N} > O(N-log,N} (2,13}

since logk(N) 3 6(log{N). The above analysis shows that the kT? complexity is
O((N-1og;N)TJ), snd that &(Nilog,N) 15 the optimal granularity (o achieve this
lower bound, n

To tnvestigaie the relationship between k and kT2, the exact time required 1o
search a binary AND-tree usiog k processors is derived here. The total time
required is

T, (2.14)

T(N) = _m_mlp‘ To+ _§T+»|_1w. w_.m._u

The numcrical evaluations of Eg. (2.14) for N-409 is shown Ia Figure 2.3, In
which kT? 15 mintmum when 431 or 465 processors are used. The simulalion
results for different vaives of N verify that the optimal granularity is close 1o
Nilog,N. .

Ia general, CXN), the complexity of merging two subproblems, may be highes
then 8(1). Ln this case, the Ume needed to evaluate a node depends oa the level in
which the node is located. A complicated scheduling strategy, therefore, is required

for an asynchronous computer system. Moreover, the all-busy and wind-down

i

(¥]
4.8
36
-y
=
x
2. 297
F'S
1.2
1] 7

0 S5 10 18 28 23 3.8 3.5 %0
NUMBER OF PROCESSORS Tnouv

Figure 2.3 Simulation results of finding the opiimal granularity of paraliel
divide-and-conguer algorithms (N - 4096)

3z

phases might be interleaved. For simplicity, in the following theorem and the
subsequent efficiency analysis of AND-1ree searches, we assume that 2 synchronous
model is adopted and the AND-tree 4o be searched is complete.

From the propesty of minmax computations, suppose that a(k) and y{k) e,
respectively, monotonlcally increasing and decreasing functions of k. then the
minimum of the function max{x(k), y{)) will be achieved when k equals & value
such that x(k) = y(k). This will be used used a5 a basis in proving the following
theatem.

Theorem 2.2: For searching » complete binary AND-tres of N terminals using k
v%ﬂ.&ui%e-é-ﬁa&rﬂazu%ﬁﬁaaﬁauan
BT (N,K)) = B(T(Nx)), where N and k are powers of twe.

Proof: Let O(N) be time need to merge two subprobleras of size N/2 in & complete
binary AND-tree. In view of the fact that N and k are powers of two, T(NX) and
T {Nk) can be derived as follows. As shows In Figure 2.4, If merging N tesminal
sodes meeds (C(2YNJ2)/k units of time, then {(O(4}Ni4)/x uaits of time are
required to merge the intermediate results obialned. The last iteration in the ail-
_.E«Egvo&trﬂomz?vg_ﬁonagnp&saapag—uwa&ﬂ—s:._n
Jevel, and cach subproblem {aode) has u size of N/k. Therefore,

=

TNK) = ..m..Ww mwnw..u. _ (2.15)
It 1s clear from Eq. (2.15) that T,(N} s monotoalcaliy decreasing with srespect to k
as both N/k and Enasago-..nnai—pﬁomﬁsﬁu:os-a%iwgw Is
increased. To account for the Ume required in the wind-down subphase, w¢
consider the Ume in each leration from Level (log,k—1) to Level O. The

33

=log,k
1lotd N)
j=logak—1 Qumuﬁlu
=
) N3}
R erlu
»

o ‘ N
k . QrV J
L J
i * N-C(2% P
. k2 T,
[]
. *
N-O(4)

=2 \)
i=1 / Z.qu\

Figure 2.4 The proof of Theorem 2.2

1)

corresponding times are shown j Figure 2.4.
oy,
T, K= ¥ n_z k3 (2.16)
=

To sec that To{N,k) is monotonically increasing with respect o Increastng k, Eq.
(2.16) can be converted into the following equatlon:

g
T Ni)= £ C
st

qu— (2.17)

1n Eq. (2.17), the tmes are accounted from ihe root 1o Level (logak — 1). When k
W increased, so Is the number of terms in the summation of Eg. (2.i7), and
consequently, T, {N,k) is increascd. Noto Lhat

B(THND) = B((TNX) + T, (NK)P) = max(O{THN6))S(TJN.LIN

min(kTN = min(max(S(kTHN.L)).&ETINL)) {2.18)

It 15 easy to soe that kTJ(N.k) is increasing monotonically with respect to k. To
show that kTXNk) 15 monotonically decreasing with respect 10 K, We compare
KTHNK) with kTHN,k'), where k' is an lateger end k' > k.

1 3
_..5, s.;.
9= nG; - o)
KTHNK) - RTHNK) _Tn M K d. M -
3 3
.ﬁ ¥ i
-N 3 o) —._.H o2)

* In terms of the properly of minmax value of two monolonic functions, the
mintmum of 8(kTHN,k}) will be achieved when B(T(N.k}) = 8(T(NX)). ©

According to Theorem 2.2, the optimal granularities with respect to varlous
C(N) can be found. This wilt be {ilustrated in the followlng corollarles.

Corollary 2.1: For searching a complete binary AND-tree of N terminals, In case

KA

when O(N) = 8(10gN), s » 0, the optimal granularity for the composition phase Is

ot}

Proof; Lot O(N) = ¢ log}N, where c is a constant. From Eq. (2.15) we obtain
TAN) = M (2.19)

a =52 M .m_ﬂ {2.20)

Subtraciing Eg, (2.20) from Bg. {2.19) resulta in

._. ()= EN ﬂi..—. | — k(log,N -~ loggk)

T(N}=¢ amu —2-logN + _au.w—

In Theorem 2.1, we have showa that the optimal granularity 1s 8(N}logh if C(N)
= 6(1). In case when O(N} = 8{log}N), the optimal granuianity, k), should be
less than 6(N). Hence,

=8N
B(T(N) o_ﬂ_

From Eg. (2.16) and n— _ __onu.ﬂ + __. we get

r... z
._...Azuun.M .£.ﬂ+_
[]

og i
N
!wqm _omu.ﬂ

[
+6 ﬂbM” p._
=l

T, (N)=0| —m_..s-__.n 4

From a resull derived by Knuth [Kou73),

36

(T (N))=0 __..-...ﬂ._&u_. + O(log}*'k)

From Theorem 2.2, we can conclude that whea CIN) = 8(log}N), s 3 0, KT(N}
achleves the miaimwm when

bt

Only 8(k)= e_..mawﬂﬂ— satishies Eq. (2.21). That is, the optimal granularity is

+ 8(log} k) (2.21)

N
] in this (0]
—..lﬂl_oau. z_— case.

g&-&vn"moqéusﬁawsggnagzgﬁw.ig

when C(N) =~ @(N'logiN), 0 <r<1,s3 0, ihe oplimat graaularity for the
Z—l-

logfN
- Proof: In substituting ¢(2¢) for (2} 1n Eq(2.15), where ¢ s & constant, we
oblain

composition phase is 6

oN'UE gy zx.u..m)
= Ta! 1), A
rov= F B =3 Facto 2.22)

Since r< 1, we have
140 Mx-1)
—-m.-“ANA+ -.I-.I .A—u-.‘.—ﬁw "-—:—-—.”NT__ <1

by
This implies that the series T, (2%4*) converges to a constant, and hence
=

N
¥
o—lum un...:.__.— =6(1)
=l

N
T, (N)) =0 —.m_ : (2.23)

From Eq. (2.17), we get

TAN)=¢ m_z —caz-?.:
-] mu-. ?

E.—B_.m— ! -E_rmwcl:. coaverge to consiants, we get
o R L "

(T (N)) = 8(N'log{N) (2.24)

From Theorem 22, Eq's (223), and (224), we conclude that when

Z-lu
TogX N}

C(N) = 8(N'logJ{N), 0 < r < 1, the optimai granularity is & (]

Covollary 2.3: For scarching a complete binary AND-tree of N terminaiz, and ciN)
= O(N-dogiN), 50, the oplimal granularity for he composition phase iz
0(log,N).

Proof: CIN) = 6(N-log}N) implies that O(N} = ¢/N-log}N, where ¢ is a constant.
From Eq. (2.13) we obtain [Knu73)

-a-ul
o= 5N .m..._.
O(T,(N) =0 _m§»+,z_ (225)
From Eq. (2.16) and a result derived by Kouth {Kna?3],
T N)=¢ mr.m_mm..:osm + ;.—

=l

= N .Z.p-ur_ Z-ou-r.
oﬁLzslo_ﬂ_ﬁ.ﬂwn_s‘o .ﬂ,mm \

kL

+ (N log k) (2.26)

=9 _z_a..._m
From Theorem 2.2, we can concluds that when O(N) = 8(N-logN), s # 0, kT(N)
achleves the minimum when
8 _._m_os.:ﬂ. _ =8 _z_sr.m _+ 8(Niog}k) (2.27)
Only &(k) = 6{log;N) satishies Eq. (2.27). That 15, the optimal granularily Is
8(iog;N) when O(N) - 8{Nlog{N). O

Coroliary 2.4: For searching a complete binary AND-tree of N terminals, the
optimal granulariiy for the composition phase Is 8(1), when C(N) = (N, p> 1.
Proof: Similar 1o the proofs of the above corollarics, we can derive TIN) and
T(N) as:
NP
(T N)=@ ﬂ_
(T, (N) = 8(N*)

To make ©

m _ SE_SQZ-U,QESE”ZQS.;EEF& E.n ov:ay_

granularity 1= 8(1) whea C(N) = (NP} and p > L. O

The above corollaries give the optlmal granularitles in the sense minimizing
68(kT?) under our synchronous model. To find the optimai granuiarity precisely,
we need 1o solve the equation below, In which k is viewed as & continuous varlable.
Stmulations have verified that this relaxation is reasonable.

BeTé
T

T,
=T+ nﬁ.wwm =0

39
oamely,

T, + uwmﬂ.. =0 (2.28)

Eq. (2.28) may oot have a closed-form soluiion, bui It Is easy to evaluale the

optimal solutlon numerically, For instance, In & mesge sort problem, C(N)-8(N),
and

Ty(N) = (log,N — ss:.m_. +2N

_1
t- ﬂ_ (2.29)

where the first term on the R.HS of Eq. {2.28) 13 T, and tbe second term is T,
Bq, (2.28) can be verified In the two extreme cases. if k-1, i.¢, & single processor is
used, po wind-dowa phase exists (T, =0), and T,(N) = N*log,N. In conlract, if
k=N, ali evaivations are carrled out in the wind-down phase {T,=0). [n this case,

TN} =2+4+8+ -+ +N=2N-2
Substtuting Eq. (2.29) into Eq. (2.28) yields
k + log;k = log,N (2.30)

The solution of Egq. (2.30) i close 1o k = log,N. This iliusirates that ihe exact
optimal granularity will be near o log;N.

24 Architectural Requirements

The functional requirement for evaluating an AMND tree s an inlerconnecied
conglomerale of processors. The proper granularity of parallelism depends Jargely
on the complexity of DINMC(N). ko the last sectfon, an assumptlon that D(N) 1s
equal io zero was made. In general, the sum of D(N) and C(N) should be con-
sidered. All results obtained in the last section are vaiid provided that C(N) Is
replaced by D{IN}XCIN}. A lot of sesearchers have studled the refationshig among
the granularily, communication overhead, and Bexibility in load balancing

40

[KLT84,Mag85). Among the previous studies, a lager granularity was chosen to
reduce the communication overhead [KLT84k while a small granularily was
chosen 10 balance the workload more evenly and o achieve a high speedup. Little
atteation has bocn paid 1o the lmitation of parallel AND-tree searches due 1o the
complexity of DINHOIN).

According 10 our efficlency analysis of parallel AND-tree searches, if the com-
plexity of D{NHC(N) 8 @(N?), p > 1, and a large number of processors are used,
then the processor-time efficlency, KT2. must be poor regardiess of the capacity of
the interconnection network and the load balancing policy. in this case, the tine
needed 1o evaluate a subproblem will be increased quickly during the reduction
process, and the rool of the troc i an cbvious bottleaeck, Paratiel divide-and-
conguer algorithms wilk not be sultable for solving this kind of problems. A more
coct-effcctive computer architecture is & sequential processor of 8 multiprocessor
with few processing uniis and a shared memory [Hoza3l

In contrast, if DIN)Y#C(N) is 8(1), then the time needed to evaluate any sub-
problem 15 bound by a consiant, and the oot wiil not be a bottleneck. For exam-
ple, when a logic program is evaluated, each subproblem returns oaly TRUE or
FALSE, (sometimes a pointer needs 10 be returned). In this case, a fine-grain archi-
tecture is appropriate and a large speecup will be obtained by using & large number
of processors. Free-structused computer architectures [HaS579,Bro80,Mag85} and
virtual-tree computers {Buki84] may be good candidates for this kind of applica-
\lons. Carlson bas proved that tree-like computational problems of the form
 hat "R TR AR & T whese + Is an associative operation such as additlon,
muluplication, booleas AND, and boolean OR, can be implemented by B(Njlogh)
processors connected by 8 perfect-shufle o hypercube pelwork In ©(log N) paral-
leb tme [Car84) In fact, C(N) = €(1) for this kind of computations and the
optlmal granularity was found, though not with respect 0 14

In case whea C(N) = 8(N) or 8(log'N), s 2 0, the time needed lo evaluate a
subproblem Is increased slowly during the reduction Process. A medium-grain

41

srchitecture t-—.. be more cost-efective. For example, 1o sori about 4000 elements
by a paralle] merge-sort algorithm, E—.»Et&?-%&ﬁ%_?
optimal granularitics and architectural requirements with cespect to vasious (N}
are summaried in Table 2.1. .

In paralle} processing of AND-tree searches, the ideal sltuation is a singte inl-
s} scheduling decision that sends equal-sized grains to all processing vnits. i
seldom possible 1o make such & priori decision. Instead, in many applications, the
problems to be solved are usually Irgegulariy-structured, and the workloads may
be data dependent. An important functional vequirement for parallel AND-1ree
searches Is the ability to dynamically distribute worklosd fa the architecture, For
& compwler architecture with a small granularity, an efficient Interconnection net-
work I8 required to transfer data and control .Eu.o_.n.-ga. In a ioosely coupled

computer system with a coarss graln, an effective load balancing mechanism 1s also
neoded.

Table 2.1 Opumal granularity of parallelism in AND-1ree searches

42

(Qrder-of-magritude minimum of kT?)

Complez, of C{N){Optimai granu.| Arch. Requirementa
N
8{lo,
(logfN}] o A very lazge number
s»0 of processors; iree of other
efficient interconnectlon
Ni-—
(N1 —
{N'logiN) 8 o A large number of
0<e < PFOCESSOrE, Lree or olher
s»0 efficient interconnection
S(NlogfN) 8(iog;N) A smull number of
s 0 processors: loosely coupled:
simple inierconnection
{NF) ol1) Single or few processors;
P>13 shared memory

43

CHAPTER I
PARALLEL PROCESSING OF OR-GRAPH SEARCHES

In this chapter we Investigate strategles for OR-graph searches. In particuiar,
wa develop & general heurlstic function for guiding the search, study demloance
teats for pruning, propose a computer archiiecture for tmplementing branch-and-
bound algorithms with dominance tests, and find performance bounds of parailel
OR-iree searches. The conditions to cope with snomalies of parallei OR-iree
searches will be derived In the next chapler.

31 OR-Graph Search Versus OR-Tree Search

An OR-graph Ix an acyclic graph In which all nonterminal nodes are OR-nodes.
An OR-pode represents a (sub)problem that is solved If any one of Its descendenis
(or decomposed) subproblems can be solved. An OR-ires Is & special case of an
OR-graph, tn which, each node except the rool has exactly one parent node, thal is,
exactly ose edge entering Il. The conventional branch-and-bound algorithm
without dominance tesis Is a typical OR-tree search aigorithm.

Two techaigues, dominance lesis and equivalence tsts, can be used 1o
convert OR-tree searches into OR-graph searches. If dominance lesis are applied, a
set of nodes ave compared with each other, and oniy one node that Is not
dominated is active. In other words, all nodes that are connected by the dominance
relation can be represented as a single node. As a resulf, several nodes, can share a
common descendent node. Wilh dominance tests, a branch-and-bound (BXB)

algorithm can be viewed as an OR-graph search gigorithm. An equlvalence relatlon

a4

5 a special case of the dominance relation. If oaly oo solution s sought, sll
oquivalent nodes except one are eliminated; that is, all equivalent subproblems are
denoted by a single node. The equivalence relation s lllustrated by the knapsack
problem. A subpcoblem (1,2) representing that Objects § and 2 are included in the
knapeack, and another subproblem (2,1} representing that Objecis 2 and | are
included are equivaleni. Stace the order of selections 18 not imporiant in the
knapsack probiem, it 18 oaly necessary 10 continue the search from one of the
equivalent subproblems.

In general, Implementing an OR-1ree search is simple and requires litile
bookkeeping. However, If a transformation is applied to transform the OR-geaph
to an OR-tree, then It may resull In the same node being generated in diffesent
paths and so being processed more than once. Trealing the search process as & graph
search rather than a tree search reduces the amount of redundascy. However, an
additional effort may be needed each time & node is generated to see If it has been
generated before. Whether this effort 18 justified depeads on the particular problem
under consideration. I it Is very Likely that elther the same node will be generated
in several different ways or the dominance relation is strong (the dominance
relation exists among many nodes), then it i3 worthwhile to use a graph-search
procedure. In Section 3.3.2, we address the problem on parallel domloance tesis
that cormesponds to OR-graph searches. Since dominance tests are systematically
used in solving dymamic programming problems, they witl be discussed in more
details in Chapter 6.

3.2 Basic Rules of an OR-Graph Search

Many theoretical properties on OR-graph search algorithms, especially OR-tree
search alzorithms, have been developed by Nilsson [NIL8D), Kohier and Steiglitz
[Ko$74), and Ibaraki [Iba76a,Iba76b tbaA772]. In this section, & summary of Lhese
properties that will be used In the following sections are given. Conventlonal B&B

43

algorithms will be extended to include (s) & generatized heuristic function 2s the
selection rule and {b) approximate lower-bound and dominance lesis as general
climication rules. Some new properties on beuristic functions and dominance tesis
will also be developed.

The way In which & minimization problem P, Is vepeatedly decomposed into
smalter subproblems can be represeated as a finite rooted acyclic graph, B ~ (P, E),
where P is a set of disjunctive subproblesms, and E is 3 set of edges. The root of the
acyclic graph Is Py If a subproblem —u_. is obtained from P, by decomposition, then
(r, v..v € E. Nots ihat during decompoattion an edge exists only between a pair of
nodes that have the parent-children refation. The decomposition of & problem will
result i the construction of & iree called the underlying free that must be divided
into levels. An acyclic graph iz formed by intreducing dominance tesis. The fevel
number of & nods in the underlying tree is the number of odges leading from the
root 10 this node (the root i at level 0). Let [(P,) be the vatue of the best solution
obtalned by evaluating all the subproblems decomposable from Py, let Py, be the j'th
subproblem decomposable From Py, and let k; be the number of such subproblems
(te., k;= H{(P,x) (PX)EE| V). Then f satishies:

()= mio (e®)) n,_.:

Each subproblem Is characterized by a lower-bound value that is computed
from s lower-bound function g. Let T be the set of ali Frasible solutlons. The
lower-bound function sallshies the following properties:

(s) g(P,) € 1(P) for P,€P (g5 a lower—bouad estimate of {) (3.2}
(b) g(P) = (P for PET (g is exact when P, is feasibte) (33)
(c) g(P) & P} for (PP)EE (lower bounds always Increase) (3.4)

OR-Graph search algorithms can be characlerized by four constituenis: a

branching rule, a selection rule, an eilmination rule and a termlnation condition.

45

The first 1wo ruies are used »ﬂ. decomposs problems lnto aimpler subproblems and
to appropriately order the scarch. The last iwo rules are used to 1o cifminate
generated subproblems that are not better then ihe ones already knowan.
Appropriately ordering the search and restricling the reglon searched are the key
ideas behind branch-and-bound aigorithms.

32.1 Selection Rule Uaing a General Hewristls Function

The active subproblems arc selocted based oa cortain criterion. I the list of
active subproblems is malolained In a first-lo/first-out order, the algorithm is
called a breadth-Arst search. I the lst 5 malotained Io a lasi-In/Brsi-out order,
the aigorithm s callod & depth-frst search. Lasily, if the list Is malptatned in
Increasing order of lower bounds, the search algorithm s called & bext-frst search.
lbaraki mapped these searches loto a gencral form called Aawistic searches
(1ba76b). In a general heuristic search?, 8 beuristic function is defined fo govern the
order in which subproblems are selected and decomposed. The slgorithm always
decompases the subproblem with the minimum heuristic vaive. In a best-first
scarch, the lower-bound values define the order of expansion. Therefore, the
lower-bound function can be taken as the heuristic function. ln a breadih-first
scarch, subproblems wilh the minlmum level numbers are expanded first. The
level aumber can, thus, be taken a8 the heuristic function. Lastly, In a depth-frst
search, subproblems with the maximum level numbers are expanded frst. The
negatlon of the level number can be taken as the henristic function. If U is the
current Uist of active subproblems in the process of expansion and h is the heuristic
functlen, then the search funciion for a seral branch-and-bound algorithm Is:

Jncun_w.nwm._uﬂ __ﬁw ._Q._u_ 8.&

—————
Difwzlag from the coaventional detinftion of hevtlitic scarch fn artificla) latelligencs, the definition of

peaensl haurlitic sarch ia this thels b tbes from lbarakl faT6h) Depth-Brnt sad besadth-Srt
ssarchs ase cassidered as apeciel casss of heurlistic soarches.

47

However, searches based on Bq. (3.3) are poteatiaily angmelous when parallel
expansions are allowed. An anomaly Implies that the speedup is not Unear with
respect 10 the number of processors. For instance, the performance of using
multipls processors may be worse than thai of & single processor. Anomalies are
resulted partly from the ambiguily in the heuristic function. For exampls, in the
serial depth-Arel search, the subproblems aro malntainzd in 8 last-tn-Grst-out Ust,
and the subproblem with the maximum level number s expanded first. When
multiple subproblems have identical level numbers, the node chasen for expansion
depends on the order of insertion into the siack. The level aumber aloge does nol
give adequate Information 1o uniquely seiect & node for expansion. The same
situation bappens tn & best-first search when some nodes have identical lower
bounds. Anomalous behavior of parallel OR-iree scarches will be discussed o
detail In the next chapter.

To resolve the ambiguity of the selection of subproblems, distinct heuristic
valugs must be defined for the nodes. In this thesis, # path number I8 proposed g
uniquely ileotily & node. The path nranber of & nods in a tree Is & sequence of d+1
inicgers representing the path from the root to this sode, where d is the maximum
aumber of levels of the tree. The path number E = ege,e;...¢4 s defined recursively
a4 follows. The root P exists at Level 0 and has » paih number of B,=000..0. A
node -.__ea Level ¢, which s the J'th child {couniing from the feft} of P, with path
number Ej=egn .0 4000, has path asumber m_,ﬂonn?.a. —)0... As an
example, the path numbers of all nodes In the tree of Pigure 3.t are shown next @
the nodes.

To compare path oumbers, the relations *>* and ‘=" must be defined. A path

' pumber E,=¢le].. 16 less than another path number £, =efel... (B, <E) if

there exists 0K]€d such that ¢! =¢}, 0€i<}, and ¢ < ¢, The path numbers are
oquat if ¢! =¢? for 0KiKd. For exampie, the path pumber 01000 Is less than
101, According 10 our definition of paib sumbers, nodes can have equal path
numbers If they have the ancestor-descendant relationship. Since these nodes

fevel D

level 1

"~
®

>
L

01110 oIN

01610

evel 4

Figure 3.1 The path anmbers of a tree

49

pever coexist simultancously In the active kst of subproblems of a B&B algorithm,
the subproblems in the active list always have distinct path numbers.

The path number is now Included In the general heurisiic function. The
primary key is sill the lower-bound value or the level number. The secondary or
ternary key is the path number and is used 1o break tes in the primary key.

(level aumber, path number) breadth—first search
(path oumber) depth—first search

B(P) = § (1ower bound, level number, path nusmber) (.6
or (lower bound, path number} besi—first search

where the level number, path number, and lower bound are defined for Py, For a
best-Arst search, nodes with ideatical lower bounds can be searched in & breadih-
Rucst or depth-firet fashion,

A heuristic function is sald 10 ba monotons whea the following inequality 1s
satished:

b(P)<B(P) If P,isa descendant of P, Gan

Tbaraki has proved that, for any heuristic function, there exist an equivalent
monotons heuristic function [Iba76b).
A beuristic function is said 10 be unambiguous when:

FASU‘-A—U—u ir ‘-‘1& m-_. —v_ P {3.8)

The property of uaambigulty is very lmporiant ko predicating the performance of
paraltel OR-troe scarches. In general, unamblguous heuristic functions are not
restricted 10 the use of path numbers. Any tie-breaking rule can be adopted as
long »s Eg. (3.8) 15 satishied. Hnpmblguous heuristic functions other than Eq, (3.6)
can also be designed. For example, the Jower bound can be used as the secondary
key and the path number as the ternary key in a breadth-first search,

50

322 Lower-Bound —EHEL:R. and Termination Rules
A lower bound s calculated for a subproblem when It 18 created. If &
subproblem is & feasible solution with the best objective-function value so far,
then the solullon velue becomes the incumbent 7. The tacumbent represents the
best solution obtained a0 far o the expansion process. In minimization problems, i
tha lower bound of a subproblem excoods the valuo of the incumbent, then this
subproblem cac be pruned because it will ot lead to an optimal solution, The
decomposition process continues until al} the subproblems are either expanded or
- pruned.
During the expansion process, P, is werminatod If
gP) o2 (3.9)

Let L denotes the lower-bound cutoff text, that Ls, P L P, means thai -v_ is & feasible
solution and that f(P)<g(P,). For simplicity, oaly the search for a singlo optimal
%olution i considered In this thesis. The computational efficiency for searching atl
optimal solutions can be investigated similarly.

The above lower-bound test for obtalning an exact aptimal solution can be
Telaxed to obtain a suboptimal solution with guaranieed socuracy [Lawée).
Suppose it were decided that a deviation of 10% from the opUmum was tolerable,
If & feasible solution of §30 ta obtalned, all subproblems with lower bounds of
1364 (or 150/(140.1)) or more can be terminated since they cannot lead to a
solution hat deviates by more than 10% from 150, Fhis technigue significantly
reduces the amount of lotermediate #orage and the time peeded to arrive at a

suboptimal solution. Define an allowance function dz) R—R (set of teals) such
‘that P, is terminated If

Py 32— da). (3.10)

The final incumbent value zy obtained by the modified lower-bound test deviates
from the optimal-solution value Zg by [1ba76a}

p—dzg) K7, € 32, (3.11)

|

Examples of often used allowsnce funciions are

dz) = s 0 (abtwoluis error deviation) and {3.12)
d2)= .—m..l-. Le, ..u.ﬂo..d.m. € ¢ 0,230 (relative error devistion). (3.13)

Propertion of ihese atlowance functions are similer, in this thesis, the function for
relative error deviation is sssumed,

323 Domlnance Eliminaticn Rules

Dominance tesis are powerful elimination rules that are systematically
applied ta decision problems and’ in dynamic programming to reduce the
complexity of enumeration [BeDD62,MoMT6]L For some problems that are solvable
in polynomiul time, the branch-and-bound approsch with lower-bound tests is not
competitive with exisling slgorithms. For exsmple, the shortesi-path and the
iwo-sisge Bowshop acheduling problems require exponeniis} time using fower-
bound tests only, but can be solved in Yinear time on the averzge with dominance
tests (1ba77bl Some of the well-known dominance selations are defined for the
knapeack, the n-job two-macking mens-fnishing-time Sowshop [CMM67), and the
o-job one-machine scheduling with deadlines [Sah76) probiems. Dominance tests
are rarely used when the problem is inhereatly intractable.

A dominance relation is » binary relatton ouch that POP, (or
(P,P))€ D) implies P, dominates Py [KoS74,/ba76al This means that the subtree
rooted at Py containg & solution node with a value no more than the minimum
solution vaiue of the sublree rooted at P, Thus If P, and Py are generated and
PyDP, then P) can be terminated. A dominance relatlon satishes the following
condliuons [[ba?7bk

() P, D P Implies that ((P,) € £(P,) and that P, Is not a proper descendant
, 3.14
of Py (3.14)

(b) D 15 a partial—ordering (refiexive, antisymmetric and transitive); (3.15)

2
(c) P, D Pand PP, imply that for any proper descendant Py of P, there
exists a descendant -q AEEE —-u of —v_ such that —v-. D —v—t Hw. —Ou

A dominance relation is & partial order, that is, for & palr of aodes P, and Py, it
Is possible that aeither P, D P, nor P, D P, holds. In this case, P, and P, are said 1o bo
incomparable. I s dominance relalion 18 weak, then most of the nodes are
Incomparable. A nods P, 1s sald 1o be & cuvent dominating rode if It has been
generated and has not been dominated so far. All current dominating nodes are
Incomparable to each other.

‘Fo use dominance tests, cnly the set of current dominating nodes {denoted by
N,) bas 10 be stored. In genesal, the set of aciive nodes i not suflicent 1o
detormine N; because F;D Py does not imply that there must exist a proper
descendant Py of P, such that P, D P, {Eq. (3.16)). This means that some or atl of
the geacraled nodes have 1o be avallable to carry out the dominance tests. The size
of Ny is exponentially large for NP-bard problems. Suppose on the contracy that
this size (s a polynomial function of problem sizs, win), that the degree of the
branch-and-bound tree is bounded by m, and that the heighi of the tree is &
polynomial function of n, ¢ (o). Since the set of aclive nodes 1 & gubset of Ny,
there exists at most win) acilve nodes at any time. Thore arc at most mxwin)
nodes after branching, and win) active nodes remain after O{m*w(n)) dominance
teste. For 0 {n) jevels of the tree, the total computation time is O{m*w¥n)¥ (o)),
which contradicts the NP-hardness of the problem. This fact WB—_——S that
dominance tests are not space-efeclive for intractable problems. Indeed,
dominance test 1S & strategy lbat saves the computationai ime by using more
memory space 10 store informatioa which can prune unnecessery expansions. This
tlme-space tradeoff shoutd be considered when dominance tests are applied.

53
3.2.4 Branch-and-Bound Algorithm
The operations of 8 branch-and-bound algorithm are summarized below:

Serial Branch-snd-Bound Algorithm (Single Sclution)

g = Jowar-bound function; &= allowance function;

D = dominance relation;

¢ = serial selection function; 2 ~ lacumbent value;

N, = set of current dominating nodes;

U = set of active subproblems.

(1) (Initialize): z = 0o} 1 = {Pol; Ny [Pk

€2) (Select): i U = @, then go o Step 8 else kot Py o s(U), U o U—PL &
g(P) » 2—dz2), then go to Step 2;

(3) (Docompase): Generate sons Py, Py, Py of PyN; =Ny U 1B, ... kU

~UU IR, R}

{4) (Feasibllity test): For all §€{1, ..., iy}, If P, 1s a feasible solution,
then U o U-{Pjand z minfz, (P,)k
(5) (Lower-bound est); For all §€[4, ..., k), If na—u..u » ~d2), thea U o- U—{P};
(6) (Domisance et} For all J€{1, .., k), If thero exists P, (»+P) €N, such that
P D P, then U o U-{P I P, DP, thea Ny o NP
(7) (Terminate): Go to Step 2;
(8) (Ealt): f(P,) sauishies z—dz) € (P € 2.

In the above algorithm, if one or both of the slimination rules (Steps 3, 6) are ot
used, then the corresponding steps are skipped, Further, elimloatlons are done
after branching tnstead of afier selection as in Thareki's algorithm (iba76a) This
reduces the memory space required for storing the active subproblems.

To Hlustraie the algorithm, consider the knapsack problem [Gal79k Given n
objecis with positive probis and welghts, the objective is to pack objects into a

54

knapsack of fixed capacily such mwa- the total profit is maximized. It Is assumed
that each object is allocated as an unlt, MEBFEE-BEEEEBEUSE.GS
upper bound u is calculsted lnstead. Furthermore, the bounding tests in Eq's (3.9)
or {3.10) bocome u(P)&z or w(P)&z+dz). A good upper bound can be computed
by arranging the objects In decreasing probit-to-welght ratios and allocating as
many objects as possible into the knapsack while sllowing fractional allocation of
the last object packed. A branch-and-bound iree with depth-Lrst search on &
knapsack problem with throe cbjects Is showa In Figure 3.2. The pumber inslde
each EBEo&ﬂFéEggnﬂﬂﬁgEEbEv&Sg&%
represents the object included or excluded. z and ub are the updated values st the
end of each Heratlon. Nodes 3 and 5 sre infeasible because the knapsack capaciiy is
exceeded. Node B is dominated by node 4 because, for the same sei of objecta {1, 2,
the total profit (=£1) 15 larger and the total weight (=4) is smaller for nods 4.
Node 11 is terminated by the upger-bound test becauss u(Py)<z. In this example,
the allowance function used is o-0. If a relative error function, Eg. (3.13), with
0.2 15 used, Ebnuonaoia—-?ovo#g-:-ﬁvwcﬁnggg.ar A
#olution with value 11 that deviates by no more 20% from the optimal value of 12
is obtained.

33 Parallel Branch-and-Bound Algorithm

Branch-and-bound algorithms have lanberent paralietsm. Bach of the four
rules of serizl branch-end-bound slgorithms can be implemented by parsliel
processing.

(a) Paraltel selection of subproblems: In the parallel case, & set of subproblems
less than or equal In size to the number of processors have to be selected for
decomposition in each iteration. The selection problem is especlally critical under a
best-first search because a set of subproblems with the minlmumn lower bounds
must be seiected. The seiection funcion of Eq. (3.5) becomes

oBECT | PROFIT | WEICHT

U u 1 Knapiack weight
3 10 3 capatity # 3
) [} é

fzub=14 f=uh=13

infeasible first feasible sofution optimsl salution ypper-bound
test

Figure 3.2 An Example of branch-and-bound algorithm using the knapsack
problem

56

—‘ § Ay ‘f—

..ruumvnaﬂuﬁ.a MUl >k

W= |, (3.17)
WUl €K

where k Is the oumber of processors. This returns the set of k subproblems with
the minimum heuristic values from U.
ncuEE&?E"EEEE%EEEEE
decomposed in parailel. Egnﬁﬁgisfszsz_—u&.ssgg
RS:&-:E.E&FE-%E&EnB-EEErFE_Rﬂg

(c) Purallel termination test; Muitiple infeasible nodes can be eliminated in
each iteration. Further, multiple fessible solvtions may be generatod, and the
tncumbent has to be updated in paraliel.

(d) Porallel elimination test; The lower-bound test (Eq's (3.9) or (3.10)) can be
sped up by compariag lower bounds of multipte subprobiems with the incumbent.
E.:BE-:?&EEWB.E.?BFEBERE!B?EE&&E
parallel. However, the bounding function and the dominance test are problem-
depeadent, and software impiementiation is more fexible.

3.4 Bounds of Computational Eficiency of an OR-Tree Scarch

To predict ths number of processors needod 1o assure a near-linear speedup,
we need 1o derive the bounds of computational performance of an OR-tree search,
The results in this section Indicate the relationship among the number of iierations
required in a parallel search, the pumber of %E.EESE@KE@&
the problem to be solved.

In presenting the performance Egﬁsgg.u-v.nn!dgﬁa&a_s
assumed, that 15, all processors must finish an iteration before proceeding 1o the
next lteration together. The 3..?358# is difficult to ,ucu—u:zm ?w.. the search
algotithm is evaluated asynchronously in each processor, The performance results

-

for synchronous models form a lower bound to that of asyachronous models.

In this section, Theorems 3.2, 3.3 and 3.4 show the bounds la performance for
a parallel best-fizst, depth-fret and breadth-first search, respectively. The proofs of
these theorems require the following definitions. A node, Py, expanded by a serial
OR-tree search, Is sald 10 be an exsential node, otherwise it is called a ron-essentfal

- node. ?iuvﬁo?ﬂgoﬂu:ﬁg%ﬁaﬁggacsgagg

podes selected in each iteration. An iteration ks sald to be a perfect iteration if the
pumber of essential nodes selected In an iteration is oqual lo the number of
processors, otherwiss it is sald 1o be an imperfect dreration. ‘The performance is not
afected by koeping the active subproblemu in a single or multiple subproblem lists.
We deaote T (k0), T,(k.0), and T, (kD) a3 the aumber of ileraticas requircd by
using k (k»$) processors in a best-ficst, depth-first, and breadth-first scarch,
respectively. ‘The subscripts b, d, or r will be omttied when more than one search
sirategy Is coocerned, Before proving the theovems, we need to explain an
importent concepl oa the besic node, which is a key to studying the performance.

3.4.1 Basic Nodes and Its Propertics
A basic node s the node with the smallest heuristic value in each iteration.
Basic nodes have the following property.

Lemma 3.1: Let P, be a basic node, thea for any node Py such that w{PJ<h(P), P,
must be edther expanded or terminated when P, s expanded.

Proof: Suppase that in the current active list, U, P,€U is a basic node. Assume that
there exists & node P, such that h(P,)<b(P,) and that P, bas not been expanded of
terminated when P, is expanded. Since Py has the mintmum heuristic valuc among
1he aclive nodes in U, Py must not be active at that me. That Is, Py s » descendant

o, A]
of some node Py, P, €U, and h(P,)<b(P,). By Eq. (3.8), (P} <b{P,}<k(P), which

contradicts the assumption that h(P)<k(P). O

38

Let $%,k 31, be the et of podes expanded n the OR-tree using k processors, Lo
fact, ©' is a 96t of essential nodes. In what follows, we show Lhat aay beuristic
scarch with an unambiguous heuristic function can guarantss st least one node Io
@' 10 be sxpanded In each leration of the parallel search, whea an exact optimal
wolution ts sought and dominance lesis are Inactive.

Thearem 3.0: Lot £=0, Le., an exact oplimal solullon s sought, and D=I, 1.,
dominance tesis are inactive. For any parallel beuristic search with a beurisiic
funcuion satisfying Eq's {3.7) and (3.8}, all basic nodes are essential podes, 1., all
basic nodes belong to $F.

Froof: The proaf (s by contradiction. Supposs that there exists a basic nods P ln
the paralicl search such that P, § &' {see Figure 3.3). This moans that either P, or

its ancestor I8 terminated by » lower-bound test In the serial case. Heoce there
must exist a feasiblo solution P, €4 such that f(P,)<g(P,) and that P, has not

been obtalned whea P, is axpanded In the parallel case. It implies thai a proper
ancestor P €' of P, extsts n the serlal case such that h(P,)<h(P,), and that P is
obtained before P, and terminates P,. Since P, is a basic node In the parallel
search, b(P,)<b(P,), and P, has not been expanded when P, 15 expanded n the
parallel case, P, must be terminated acconding to Lemma 3.k For the parallel
search, there must exist a feasible solution Py €0 such that (P,)€g(P,). and that
P, has not been obtained whea P, ls expanded in the serial case. Two cases are
possible,

Fimt, P, I2 not generated when 1_- is expanded In the serlal case, Le., & proper
ancestor P €% of Py exlsts when P, is active and b(P,}>h(P). According to the

propertles of lower-bound funcilons (Eq's (3.2), (3.3), and (3.4)), we have
(P) < g(P) < K(P,) £I(P,) € 2(P,). Moreover, In the paralle] case, P,, shouid

be oblalned before P, Is expanded (otherwise, P, would not be terminated by P,).
Heace P, bas 10 be terminated by P, !o the parallel algorithm, which contradicts

39

s ,
» LH” b LYF .-
i o @ b P, _.
b "7 - \
.,'. _.,.
« 'M)
’]
S —-. I n — W
' P, Vo
- —-.- [- i P
Vo~ :H "
4 .
-...__ﬂ —.m. - Ul -
- Y
™o —... © —v.__ ol Y
0- éw .u.- #r ¢! Gr
© a feasible solution -——— parent-child relationship
» Jower-hownt test = seqience of node expansions

and Llepminations

Figure 3.3 The proof of Theorem 3.1

60
the assumption that P, €¢*.

Second, (P)<b(P.). and P, as well as its descendant P, bave been

lerminated i the serial case and not In the parallel case. We can then apply the
above argument sgaln to Py and eventually obtain a sequence of nodes

P Py oo Py as depicted in Figure 3.3, In which P is not terminated by any

lower-bound test. There are three posaibilities.

(a) The first node Py oocurs in the serdal case (Figure 3.3(a)). Since P_ & a
feasible solution, we have: g(P)SA(P,)<g(P_ <P,)<4(P_)€ ---
€f(P,)<g(P,). Furtber, since b(P,)<h(P,) (atherwise, P, could not have
been terminated by P, in the serial casc) and since b(P J<b{P,) (by the
same argument a8 b(PL)<K(P,)), we have h(P, J<h(P). Repeating this, we
get -.a.rqu:-..v By Lemms 3.5, Py_ must be expanded in the parallel case
and terminates Py, which contradicts that P, €%,

(b) The Brst node P,_ cocurs in the paratiel case (Figure 3.3(b)). Similar to the
argument for P, discussed before, we can explain that _...f,. bas been obiained
when P, is selocted. Therefore, P, must be terminated in the parallel case,
which contradicts that P, €%

(c) There is a cycle of cutoffs such that P LP_, P LP_ P LP,and
P, LP,, where L denotes & lower-bound-cutolf test (Figure 3.3(c)). By
tracsitivity, we have (P)KA(P_)P, JKe(P), which implics that
(B)=f(P,_)=f(P,). The beuristic value of all nodes of the cycle are less
than b{P,), 80 a feasible sotution has been obtained before Py, Is sclected. Thus
P, must be terminated in the parallel case, which contradicts that P, €¢° O

61

3.4.2 Parailel Best-First Searches
The performance of a parallel best-first search Is described in Theorem 3.2.
The proof of Theorem 3.2 requires the result ia the foliowing Lemma.

Lemma 3.2: In & paraliel OR-tree scarch, all essential nodes must be expanded If
the following property s satisfied: P,L Py and P, Is the parent of P, implies that
Py < h(P).

Proof; Suppose that an essential node Py 15 eliminated by node Py, and that Py 18 the
pacent of Py By assumption, WP;) must be less than hiP,). Since ln a serial
search, the nodes are expanded according to the heuristic values, hence node Py
should be selected before P;, and Py must be eliminated in the serial case. A
contradictiont 0O

Theorem 3.2: Suppose ¢ =0, D=1, Let the root be in levet 0 and h be the maximum
number of levels in an OR-tree. I the heuristic function is defined as h(P) =
{lower bound, level number, path number), then the following bounds hold for the
paraliel best-first search with k processors,

Mum%w...w +1 $TYk0) € H@mw... L (3.18)
Proof; All the required lterstions to find an optimal solution can be classified into
elther perfect or tmperfect. Let by, (x) be the minimum level In which some active
essential nodes reside in the x'th iteration. For levels less than b, (x), all active
nodes are non-essential. We show that iteration x can be imperfect only if all the
essential nodes in b, (x) are selected for expansion. Suppose that iteration x is an
tnperfect Heration and that some essential nodes, say Py, in by (x) sre not selected
for expansion, then this contradicis with the sefection rule of a best-first search,
since In this case at least one node whose heuristic value Is greater than h(P,) is
setected. {Note that in a best-first search, aif ub_.u.gn._w_ nodes have heurlstic
values greater than that of essential nodes according to the given definition of
k(). Thus after an imperfect iteration x i3 carried out, b (x) must be increased

62

by at least ons, that ls, s!-ni.zwv b (x ML,

As b {x+1) must be less than the maximum number of levels, b, and the
rool 1s defined as level 0, thers can be at most b Imperfect terations. From our
assumptlons that aodes with lower bound equal to ihe optimal solutlon are
searched In & breadth-first seorch fashion, that = (), and thai D w1, i is true that
once all essential nodes are expanded, the optimal solution Is found. Recall that in
each iteration at lcast one essentlal node must be selected according to Theorem .
The upper bound of T,(k,0) satisfies:

.—:tﬁ—-@ul.n— +h €

T(1.0) 4+ k1 .
k I S

T,(k0) € b

To find the lower bound of T,(k,0), we show that all essential nodes must be
expanded (n the parallel case. Owing to €= 0and D=I, all nodes whose lower
bounds are less thao the optimal solution valus have to be expanded. Kf there
euists multipls nodes whose lower bounds are equal 1o the oplimal sotullos, then
they are searched (o a breadth-fuwt search fashlon. Note that breadth-fret searches
bave the property that PLP, and Py is the parent of P, imply that u(P) < nlPy.
Based on the property of the best-first scarch mentloned above and Lemma 3.2, we
know that ali essentlal nodes have to be expanded in a parallel best-first search. On
the other hand, the hrst iteration during which the root node Is expanded is
imperfect for k2> 1. Hence,
Tk0) » It;,m.le..:.el +1
In case that a feasible solution must be located In levels greater than or equal
1o b, then b’ iterations are necessary, and Ty(k,0) 3 max(h, (T(1,0}-1)k ~ 1). In
this thesis, we assume that (T,(1,8}-1)k — 1 > b, If the OR-trec is regular, Le.,
each node has m branches, then we can derive a tighter lower bound of T,(k,0) as

-.n
kD) = Hm%u. + __8._._, _.. ﬁ._%.ﬂwm.,.

u]

63

This is true because Io a regular tree, the number of selecied nodes tn the 1'th
Iteration ts st most m* and the Girst __S-w _ {terations srust be imperfect.

Nottce that f we know the maximal level, ¢ _,,, st which at least one
csscntial node exists, Le. there s no essentlel node 18 ievels larger than ¢ _,,, the
upper bound can be tighted by substituting ¢ ... for b in Eg, (3.18). In practice,
the information ca @ ., is usually not avallabie in advance®,

The assumptions In Theorem 3.2 that 4= 0, D=] and &(P,) = (lower bound,
levei number, path oumber) uniquely define the number of essential nodes
expanded. If dominance tesis are active, some nodes eliminated by dominance test
in the serial case may be expanded fn the paralisl case. The number of imperfect
iteration, a¥ a result, may be greater than b, On iho other hand, if ¢ > O or the
houristic function b(P,) = (lower bound, path sumber), then some essential nodes
may not be expanded in the parailel case. Ea both cases, the lower bound of T,(k,&
wiil be sauch less thao that in Eq. (3.18).

Bq. {3.18) shows that a aear-linear speedup may be obtalned when a large
aumber of processors are used as long as T\(1.0)/% is much larger than h. As an
example, if b=30, T{1,6)=10° (for a typical traveling-salesman problem), and
k=1000, then T,(1000,0) € 1049, Thiz means that a near-lnear speedup can be
attaiced with one thousand processors.

From Theorem 3.2, It is also easy 1o determinsie the maximum aumber of
processors that guaranice s near-lnear speodup. Assume that the speedup required
18 T,(LONT,(k,0) 3 (nk), 0<n<1 and #™1. From Eq. (3.18),

TOD | ¢y Ty(1.0}
Tk <€ —5— -t < -

This results in:

Vot yapw lacluding the resuit similer 10 theorsm 3.2 has teoa pulllshed in \he Frocesdings of the 1984
Iniernaitonal Confurence on Puralisd Procassing [LIWS4a]l Lt snd Spragus’s poper, in which the musjos
raault be sbncat the ssme as theorsm 3.3 sxcept for U sssnsspiion thet the maxims) level, ¢ aax ¥
kaows, was publlshed s the Procesdings of the I#45 Jaternational Confarence an Parallal Processing
[LaS#3%] aad tw IEEX Trenseciion Compuiars, Oct. 1985 [LasSs 50}

k< _Iaum_.._...:.si

For instance, if »=0.9, h=50, aod T,(1.0)=10F, then k£2223. Thal is, & misimum
of 0.9k speadup is obtained if 2223 or lesg processors &ro used.

3.4.3 Parailel Depth-First Searches

The performance of » paraliel depth-first search can be snalyzed (n terms of
the generalized heuristic function. The following theorem demonstrates that the
bounds on T,{k,0) are Jonser than ths cosrrespondiog bounds on T(k,0).

Theorem 3.3: For a parallel depth-first search with k proocssors, ¢=0, D=1, a
generailzed heuristic function of b(P,) = (path number), and g(#,)s1" if P; is not an
optimal-solution node, then

SO Ly e < IQ9 , Klenm (319)
where ¢ s the pumber of the distinct incumbents oblained during the serial search.
Proof: The sequence of (erations obtained dusing » seriak depth-Brst scarch can be
divided into c+1 subsequences acconding 1o the ¢ distinct monotonicaily decreasing
incumbentz obtained. Let the ¢ feasible solutions and their parenis ba denoled as
PP, . F,and Py, P, .. P, and assume that F, Py, F, are obtalned in ihe
1th, 17th ., 1'th Iterations respectively. Then, lerattons from } 1o 1, belong to first

subsequence, iterations from 1;+1 1, belong to second subsequence, and 5o on.

To begin with, lzt us consider the first subsequence of iterations. Suppose that
the Jth iteration (1%)<},) Is imperfect, only two cases are possible: either less
than k nodes are selected due to the absence of enough active subproblems, or some
podes that are eliminated in the serial depih-first search are expanded In the
paraliel case. Note that in the istter case the path pumbers of these nodes must be
greater than h{P,). This is irue because the initia} Incumbents that are either glven
to be Infinite or ylelded by the same heuristic algorithm for the serial and parailel

63

cases are identical, and If the path numbers of all expanded nodes in an leration
are loss than b(P;), then this iteration Is necessarily & perfect Meration. Let byu{x)
be the minimum level in which some active nodes whose path numbers are less
than h{P,) residp In the X'th leration. Stmilsr to the proof of Theorem 3.2, we
have

Bou(x+1) 3 b (x) + 1

Conscquently, after wt most b imperfect iterations, the fisst feasible solution, F),
that Is beiter than the initlsl incumbent mwst be found.

Analogous 1o the above argumént, we can prove that In the f'th (1<i€e)
subssquence of iterations, at most b lmperfect ierations will be eacountered
before a betier feasible solution nodes is obtained. During the last subsequence of
iterations, since the optimal solution has been generated, all Imperfect ierations
occur caly If Jess than k nodes have been selecied in an ieration. In other words,
an imperfoct Heration implics that all active nodes at hat Ume will be expandod
snd oaly thetr descendents can be active in the next iteration. Henco, no active node
g!ﬁksnplgsﬁilﬁ_ggszsg!gg The previous
analysis shows that at most {c+1) * h imperfect iterations can appear in a parallel
depth-Birst search. Sinoe at leasi one nods In each parallel Heration belongs to oL,
the upper bound of ‘¥,(k,0) can be derived ax:

T,0) & E +(c+1)h

To derive the lower bound, it 15 observed that all aodes whose lower bounds
are less than the optimal solution Le., all essential nodes in & serial best-first
search, must be expanded In & parallel &-.9#..5 search. Since no nodes have
fowes bounds equal to optimal solution, it Is easy 10 prove the lower bound of
T{0)inEq.(339). O

If alt feasible solutions are located In ihe maximum level of the OR-tree, then
the condition in Lemma 3.2 Is satished. This implies that all essential sodes must

66

be expandad 1o & parallel .E.E.na_ search, Hence, we get a tighter lower bound of
T,k 0} v

Tl10) -1
....]mil +1 € T,(k0) {3.20)
Theorem 3.3 predicts the performance of parallel depth-first seaiches. The
comparison of bext-first with depth-Arst searches with yespoct to speedup and
anomalous behavior will be discussed in the next chapter.

344 Parallel Breadih-Ficst Searches
The following thoorem prescats the bounds on Tk, .

Theorem 34: For a parallel breadth-first search with k processors, De=l, and
satisfylng the generalized houristic functions tn Eq's. (3.7) and (3.8), then

Hm%u.: +1 €T A€ mmm.w + Eliom) (3.21)

Proof: For a breadth-first search, regardiess of whether approximats lower-bound
teats are applied or not, there are two possible cases in which imperfect iterations
may exist. Flrsl, when the number of active subproblemas ls less than &, an
imperfect Ierallon occurs. These happen at most b times from our discussion In
Theorems 3.2, and 3.3. Second, imperfect iterations may occur #f there exist some
nodes that are ¢liminaled In the serial case by a feasible solution but are expanded
simultaneously with the ascendant of the feasible solution In the paraliel case,
This is possible becauss in our parallel OR-tree algorithm, the feasibllity test is
performed afier ihe selected nodes are expanded. The upper bound of T,(k,d Is,
thereby, obtained as follows:

T(Ld

T, € 5 + Kl (crn)

On the other hand, tn {approximaie) breadth-first searches, ali esseatial nodes have

10 be expanded in the parallel case (Lemma 3.2). This argument resulls ln the

67
lower bound of T(k.€

m..m.%.h +1€TO O
Clearly, 1he upper bound of T,{k,0) is looser ihan that of k0 if ¢>).

The performance bounds of parallel OR-iree searches derived tn thiz section
provide & foundation io determine the pumber of processors needed to assure &
aear-linear speedup. Choosing a proper number of processors Lo configure a paraliel
omputer system Is ooe of the hrst lssues in designing & cost-efective computer
architecture, Once the number of processors has beea determined, we nced 1o

consider the connectlon of these processors. This wiil be discussed in the next two
sections.

33 Computer Architecture for Paraliel OR-Tree Search

A aumber of computer architectures hive becn proposed to support paraitet
OR-tree searches. In this section, we discuss MINIP, s multiprocessor for parailel
besi-first searches with {possibly) parallel domisance tests.

331 Previous Work on Parsllel OR-Tree Scarches

Several studies have been done on parailel processing of branch-sznd-bouad
slgarithms with lower-bouad tesis. Desal used implicit enumeration to find the
opiimat soiutica of NP-hard problems [Des78). The system dedicates one processor
o each swbprobiem, and this processor _%o.,r ¢ I3 parent processor when ihe
evalustion Ix compleied. Emplicit obE_.u_.o:oh. is time-consuming and wasteful for
large problems.

Imal, ot al. studied parallel branch-and-bound algorithms with & depth-first
search (n & mulliprocessor with shared memory {IFY79% Depth-first search Is used
owing to memory Umitations. Stmilarly, EL-Dessouk! and Huen studled the same

sigorithm on & general-purpose petwork architecture with slow Inter-processor

68

communicatipns [EIH80L Recently, soms compuier architectures are being
developed to support OR-pasalletism of logic programming. Examples Include PIE,
a parallel toference engine [MotBd], and Bagof, an OR-Paraliel token machios
[CiH84]. In all of these projects, a depth-first search steategy is adopted.

It 15 well-known that a depth-frst search (s not effective in mialmizing the
execution tme because a serial best-first search expands the minimum sumber of
nodes when all lower bounds are distinct [LaW66l However, the best-Birst scarch
is space-consuming because all activa subproblems must be stored as intermedinte
data In the computer. Currently, with the availabiiity of VLSI techaology, larger
and Inexpensive memories, and faster communication medis, redudog the
exccution lime bocomes an important problem.,

332 MANIP-A Multiprocassor for Parallel Best-First Search Without
Daminance Testa

The architeciure of MANIP is shown In Figure 3.4 fWaMB4,WLYB4) It
consists of five major componentis: selection and redistribution network, secondary
slorage, processors, global data register, and gubproblem memory controllers.

The seleciion network selects subproblems with the minimum lower bounds
for expansion in each iteration, and connecls the memory coatrollers for load
balancing. Bxcess subproblems that cannot be stored in the memaory controllers are
stored i the secondary storage. The memory controllers manage the local list of
subprobloms, mainiain the secondary storage, and communicate with other
controliers through the selection and redistribution nelwark. The processors are
general-purpos¢ computers for partitioning subproblems and evaluating lower
bounds. The global data regisier is a reglster accessible 10 alk memory controtiers
and contains the value of the incumbent, To svold coatention during updates, this
register .Nu be tmplemented by a broadcast bus or a sequential associative memosy.
In ._-o.unz_o.. case, the minimum is found when the values of the feasible solutlons

| Giobai Dats Register 1

A

Selertion 2 Redutribution Network

&9

\l

o subproblem in main memory
BN smhproblem i dary L

Figure 3.4 Architecture of MANIP—a multiprocessor for poralle! best-first

search [WLYBS)

10

are shif ted out bit-sertally and L,E..waaoﬁ_w from all processors,

Two dificuit lssues must be solved In a parallel best-Arst search. Fisst, the k
subproblems with the smallest lower bounds must be selectad from the N sctive
subproblems In the system. Selection by software requires s Uime overhead of
O(N) in cach Merstion. A pracilcal multi-siage scisction network for selecting k
elements from N elements roquires O(log,N+log;k) time complexity and O{Nelog k)
bardware complexity [WaC34] A single-stage selection network may also be used.
One or more subproblems with the mintmum lower bounds In each Processor are
sent to the peighboring processors and Inseried into their local lists. A maximum
of (k—1) shift-and-insert oporations are needed 1o ensure that each processor has
one of the k subproblems with the smallest lower bounds [WaMB4L Assuming
that insertion Is Implemented in software, the Wmo overhead in each iteration is
O(kelog;N). In all these cases, seiection representis & significent overhead of the
sysiem.

In addition to the high overbead of selection, It is known that the selection
rule 15 based on & fallible Jower-bound beuristic, These suggest that It may be
more efficieat not to follow the selection rule strictly. A No-Wai Pulicy ik
proposed bere. lostead of wailing for ane of the k subproblems with the smallest
lower bounds, ench processor should expand the ‘most promising’ subproblem In its
local memory and initiate & feich of the ‘most promising’ subproblem from its
nelghbors. In this case, the ‘most promising’ subproblem s the one with ihe
minimum lower bound.

Whea the k ‘most promising’ subproblems are randomly disiribuled among
the processors, the average fracUon of processors contalning one or more of the
‘most promising’ subproblems is at least 0.63 [WaMB84], resultng In a spesdup
proportional to 0.63k. However, as expansion proceeds, the disiribution may
become non-random, and an interconnection network is needed to randomize the
distributions and balance the workload In the system. Bxperimenial resulis on
verlex-cover and knapsack problems have shown that the number of subprobiems

n

expanded increases by sbout 10% when the above acheme s used in piace of &
complete selection. The performance is almosi as good as ihat of a complels
stlection when the processors expand subproblems synchronously and perform one
shift-and-insert operation for each subproblem expanded. The shift-and-insert
operstion can be overlapped with subproblem expansions and supported by a
uadirectional ring network.

A second lssue In Implementing 8 best-first search lies In the management of
the large memory space required. The multiprocessing model used to study thls
problem comprises of & CPU, & maln memory, & slower secondary memory, and a
socondary-memory controller. The expecied completion Ume of the B&B
algorithm on this model is taken as the performance measure.

A direct Implementation Involving an ordered lst of pelnters o the
subproblems results in 3 poor locatity of access because the subproblems are not
ordered by lower bounds in the virtual spscs. A belier aliernalive Is a speclal
virtual memory that iailors fis control strategies sccording to the locality of access
fYuws3l However, this approach Is infiexible as the parameters of ihe control -
strategies are problem dependent. The inadequacies of these approaches are again
dus 10 the strict adherence 1o the selection rule. The No-Wailt Policy may also be
appiled here. This hac resuited In the design of 3 modified B&B algorithm
{yuwadl

In this modified algoriihm, the range of possible lower bounds is partitioned
into b disjoint regions (Figyre 3.4). The subproblems in each reglon are malntained
in a separaie list. The top portion of each List resldes in the maln memory while
the rest resides In the secondary memory. Dus te the high overhead of secondary-
storage accesses, subproblems fn a list are expanded in & depib-Brst manner. To
implement the No-Walt Policy, the modified selection rule chooses the subproblem
In the maln memory with the smallest lower bound for expansion. Since
subproblems within a Yst are not sorted, the lower-bound elimination rule has 1o be
modlfied. Suppose that the current Incumbent les In the range of List ¢, then ail

1

lists with indices greater than ¢ are eliminated. Subproblems in List @ with lower
bounds greater than the incumbent are eliminated caly when they are moved to
the main memory during the expansion of List ¢ . As a result, it s nocessary 1o
carry out the lower-bound test on each selecied subproblem before it is expanded.

The modified algorithm i& identical to a depth-hirst search when ons kst &
used, and a best-first search when Infinitely many lists are used. In general, as the
number of Usts increases, the number of subproblems expanded decreases while the
overhead of the secondary-memory accesses increases. The number of lists shouid

- be chosen to maximize the overlap between computations and secondary-memory

accesses. This, in turn, depends upon the accuracy of the lower-bound fuaction
and the access times of the main and secondary memories. The accuracy of the
lower-bound function is problem dependent and can be estimated from sample
problems of the same type.

Experimental results oa lateger-programming and vertex-cover problems
verify that the modified B&B algorithm is very useful. For vertex-cover problems,
the lower-bound function is very sccurzate, so a depth-first gearch resulis in the
besi performance. For integer-programming problems, the lower-bound functicn s
fess accurate. As & resull, more stacks (two 1o three) are needed for the best
performance. The Improvement In paging overhead over a direct implemeatation
of the best-first search can exceed one bundred times.

Experiecnce on MANIP and other previous studies has shown that the
functionsl requirements for efficient evaluation of B&B algorithms with lower-
boued tests only are & loosely coupled interconnection of processors with load
balancing capability, and a method of concurrent wpdale and broadcast of the
incumbent.

73

353 Paralicl Dominance Tests

When general dominance fests are used, it is necessary to keep the set of
current dominating nodes (denoted by N,) in memory. These are nodes that have
been generated but have not beea dominated so far. For the special case in which
only lower-bound iests are used, N, contains ooly one undominated solution
node~the Incumbent. In general, Ny could be larger than the sel of active nodes.
A pewly generated node, Py, hes 1o be compared with all nodes In N, to see If P or
any node in N, Is dominated.

N; an be stored i & bank of global data regisiers, if its size Is small.
However, centralized comparisons are inefficient E-ﬁ..E».E&Z- Is large. N,
should then be partitionsd into k subsets, N§, .., NJ%, and distribuied among the
local memosies of the k processors. A subproblem, Py, generated in Processor | s
Birat compared with NJ, eod any subproblems tn N] dominated by P, are remaved.
If Py is not dominated by & subproblem In N}, then It s sent to & neighbaring
processor, and the process repeats. Py will eveatually return to Processor 4 if It
has not been dominated by any node in N, and will be inserted into N},

A dificult problem on balancing the dominance tests In the parallel processors
has 10 be sofved. Since the current dominating nodes are distributed in the k
memory controllers randomly, it i3 poesible that & large number of the current
dominating nodes are stored In a particular memory controller while there are bnly
few current dominating nodes in another memory controller. For & synchronous
system, the memory controliers that have few current dominating nodes must
walt for other processors when dominance tests are execvted. Ons way to balance
the workload 15 to shift the current dominating nodes before the parallel
dominance tests begln. The following theorem shows an effective load balancing
strategy.

M

Theorem 3.5 Let & and a..m. € 1 <k, be the sumber of memory controllers and
current dominating nodes In controller i, respectively, and b be the average of all
0. Let the memory controllers be connected by a unidirectional ring. Suppose
that & shift strategy is defined such thai cach controller shifts (s, — n) current
dominating nodes Into §is neighbor In each Iteration if 8, > o, Then regardless of
bow the curreni dominating nodes are distributed, each memory Controller
containg n curreat dominating nodes after at most k-1 Herations,

Proof: To stmplify the representation, we use the urn model to anafyze the shift
process. The k coatroliers In the system are represented as k urns that conlsin a
total of k*n marbles which stand for the current dominating nodes. An urn Is sald
EEEh.onm..a.as.aR,—BH.EE_BE?ES:-—S.E.ES..EE:
marbles respectively. The number of urns in each clasy Is varied as the marbles
{subproblems) are shifted. Eveatually all urns become urns of type-E. Whea Umn
I'is a type-0 urn, Urn (i+1) 15 & type-L urn, and Urn | shifte (o, ~ n) marbles iato
Urn (1+1), then it 15 possible that both Urns 1 and (1+1) become umns of type-E. In
this case, we say that Urn (i+1) becomes a type-E um later than Urn L

Without foss of generality, we assume that Usn 0 15 the last urn to become »
type-E urn. It is easy to se¢ that Urn O cannotl becoms a type-G urn during the
shift process, that is, the number of marbles ln Urn 0 1s always less than o unil
all ums contala o marbies. Supposs the Ura 0 becomes a type-G urn during the
shift process. I implics that at least one urn becomes & type-E urn later than Urn
0, which contradicts the assumption thal Urn 0I5 the last urn 8 becomes a type-E
ura,

We now show that afler each shift at icasi one type-E urn s generated, and
that the pumber of generated type-E nodes slways Increase as the marbles are
shifted. When all urns are not of type-E, there exists at least one type-0 urn. Let
Urn J be & G-type ura and that all urns between Urn 0 and Urn | are not of type-
G, These urns must be type-E because Urn 0 cannot change Inlo a type-0 urn.
Suppose that an Urn k (0<k<}} Is & type-l. urn, it cannol become & type-E urn.

73

Therefore, after » shift operation, Urn | must become an nrn of type-E, Bn.:B i
remaims type-B hereafier. Figure 3.5 shows spapshets of the load balancing
process. For instance, in the third iteration (row 3), Urn 3 15 an urn of type-G and
all urns between Urn 0 and Ura 3 are urns of type-E. Urn 3 must become an urn
of type-H after this iteration. The sbove argument can be applied {k-1) times. This
means that after at most (k-1) shifts, all urns become urns of type-B, and all
memory controlless contains the same number of doininsting nodes after at most
(k-1} iterations. O

The above theorem is restricted to the case when is an integer. If o Is not an
tateger, then the ahift stralegy has to be modified. If the fractional part of o 15 less

than or equal to 0.5, then _n.lu_ marbles are chifted in each ieration If oy > n;
otherwise _p.l .._ marbles are shilted 1o each iteration. This siralegy ensures that

the diffierence In the numbers of marbles in any 1wo urns are less than k/2 in the
worse case. More accurate load balancing can be achieved by more complicaled
shift control. To find the average number of subproblems in a processor, a giobal
controller s required to collect the informatlon on werkload of cach processor.

Te implement load balancing operations overlapped with branching
optratlons, Step 3 and 7 of the B&B algorithin discussed In Section 3.2.4 should be
adapiod as follows.

(37 (Decompose and load balance): Geverate a child Py of Pg N, o~ N, | P

CTCC_.,.—.. Perform load balancing by shifting the curren! dominating nodes.

The two operations are cartied out In overiap with sach other.

{7) (Terminate): If § < ki, then go to Step 3'; otherwise go to Step 2.

If ihe aumber of cusrrent dominating nodes 15 very Jarge, Le., the dominance
reiation 15 weak and most nodes are incomparable, then the above parallet
dominanco-lest scheme might be impracical due to the large amount of data
communications. However, a lot of the known dominance relalions exists for

nodes in the same lovel of a branch-and-bound iree. For example, In the knapsack

7%

Figure 3.5 An example of load balancing In a ring network
(average ~ 20)

n

problem, the dominance relation is defined over the same subset of objects. In the
n-job two-machine mean-completion time Sow-shop problem [CONG7] and the -

. Job one-maachine scheduling problem with deadlines {SAH76) the dominance

relations exist betwoen subproblems with the same subset of jobs. In the problem
of eight qusens, the dominance retations extst only for subproblems with the same
number of gusens put on the chess board. In these cases the dominence tests can be
implemented by comparing newly generated nodes with the current dominating
nodes in the same level of the search tree. This will reduce the overhead for
dominance iests substantially.

The functional requirements for implementing parallel dominance tests
depend on 1he size of M, and the structure of the domirance relation, When N, Is
small, unstructured dominaace tests, in which a dominance relation can exist
between any palr of nodes, can be implemented by broadcast busses or global
registers. For structured dominance tests such as some dynamic-programming
problema, It may bo possible to partition the search iree and localize the dominaace
tests. System architectuses with regular coanections might be sultable for this
kind of problems and will be investigated In Chapter 6. On the other hand, whea
Z%EFGP-.EEEEEZ.ESEEG-E»S?;QEE«
dominance tests in parallel. This results in tight coupling of the processors because
the transfer of newly generated nodes between processors has to be synchronized
and oveslapped with computations. Load balancing should be considered when
multiple lists of current dominance nodes are used.

3.6 Summary
1u this chapter, we have derived the performance bounds of paratiel best-first,
depth-first, and breadih-first OR-tree searches, respectively. These bounds provide

 the theoreticat foundation o determine the number of processors to assuse a neat-

Anear speedup. It is found that for best-first searches, the speedup is related 1o the

3 ”

probiem complexity, which 15 ‘refiected by Ty(1,0)h. To guarantee a ncar-lLnear
spoedup, the number of processors must be much less than Ty(1,0). For depth-brst
and breadth-first searches, Lhe speedups arc related to the number of incumbents
obtained during the searches in addition to the problem complexity. Siace the
performance bounds on besi-first searches are tighter than that on depih-Arst and
breadih-first searches, the range within which the aear-linear speodup is
maintained is usually larger for best-first searches. -

It has beea found that, for paraile! branch-and-bousnd algorithms withowt
dominance tests, ® Jloosely coupled architecture, such as » system conpecied by a

Without Eooeely coupled; Balancs load;

ring network I8 cost-effective [WaMB4]. This Ik irue because the controllers do not dominance] beoadcast capability |share incumbenis
have to be connected in order 1o evaluale a paralle! branch-and-bound sigorithm in L
the minimum expectad completion Ume. However, If dominance tests are included |Small| Broadeast busves or | Balance load:
In paraliel OR-tren searches, locse coupling may be unsultable. The corvesponding E”HW..R Ny | globalsegisters jahare HMI_E?“
functonal requirements depend on the size of the cwrent dominating nodes, Ny,

wets [Large .zn.r- coupling: Balance loed;
When Nyl is small, domisance lesis can be implemented by broadcast busses or N; |synceonouscontrol | teansfer new

Tabie 31 Functional requirements of paraliel OR-iree searches

Algorithm Func. requirements Tasks

global registers. On the other band, when N is large, It s nocessary to partition generated nodes
Ny into subsets and 10 perform the dominance tests in parallel. This results in

Ught coupling of the processors. The funclional requirements of parallel OR-tree

searches are summaried in Table 3.8, When multiple lists of current dominaniing

nodes are used, load balancing fs an Importent issue. An efficlent load balanclog

strategy for multiprocessors with a riog network has been presented.

CHAPTER IV
OOPING WITH ANOMALIES IN PARALLEL OR-TREE SEARCH

Up to now, efficiency analysis of paraliel OR-tree search have been little
studied. When comparing the eficiency of scarching an OR-tree using k; processors
against that of k; processors {k; > Kk, » 1), 2 kyf¥,-fold specdup (ratio of the
executlon time la the two cascs) 1s expected. However, simulations have shown
ibat the speedup for paralich OR-tree searches with respect 1o k; and k, processors
can be (a) less than one—called & detrimental anomaly [EFY79,L4584,MohB3); (b)
greater than kyfk,— called an acceleration anomaly [IMA79,LAIB4}; or (c) betwees:
one and kylk,— calied a deceleration anomaly —iuc.ig—.-buwp.zgwu_.
Similar snomalous behavior bave been reported by others, For lnstance, the
achlevable speedup for AND/OR-tree searches i3 Hmited by a constant (5 o 6)
independent of the aumber of processors used (parallel-aspiration search) os vk

with k processors {tree-splitiing algorithm) (Fin82]. So far, all knpwiiieesults of o
parallet tree scarches showed that & pear-linear speedup holds ooly for'Small -

pumber of processors.

4.1 Model of Efficiency Analysis

For simplicity, the case of searching a single optimal {or suboptimal) solution
{5 discussed In this chapter. The case In which all solutions are sought can be
analyzed m_B:u.qG. The parallel computational model used here consists of a set of
-processora-cennested-taiabarcds e aRY - 1 igsaasirm o b, Uik AROCASORT QPRI
muue.:.cra:m_v. in executing the steps of the parallel OR-tree search algorithm. In

each Iteration of the algorithm, multiple subproblems are selected and decomposed,
The newly generated subpcoblems are tested for feastbllity (and the incumbent
updated If necessary), eliminated by (exact or approximate) lower-bound tests and
domlnance tests, and inserted Into the active list(s) if not eliminated. In this
model, climinations are performed after branching Instead of after seleclion os In
1baraki'’s algosithm [Iba76al.

The shared memory in the proposed computational model may seem 1o be &
boltlsaeck of the system. However, ihis model can be transformed into a second
model 16 which all processors have a private memory aod are connccted by & ring
network, In Section 3.5.2, we have discussed thai the eficiency of the parallel
OR-iroe search algorithm Io the transformed model s very close to thai of the
original model, except ibat very ltile interprocessor communication and
interference are involved [WaM84,WLYB4L Moreover, communications and
compulations can bo overiapped. Since subproblesas are decompased synchronously
and the bulk of the overhead Is on branching operations, the number of Iterations,
which ts the .EBrn_. of times that subproblems are decomposed ln each processor,
1s an adequate measure In both the serial and paralicl models. ‘The speedup Is thus
measured by the ratio of the nwmber of ierations with respect to the different
number of processors used. Once the optimat solution s found, the time 10 draln
the remaining subproblems from the list{s) s not accounted for. This is reasonable
because the predominant overhead In an OR-tree search is In the branching
operations.

The objeclive of this chapter is to study conditions to cope with the
anomalous behavior of parallel tree search algorithms under approximations and
paratiel processing, Asomalies are studied with respect to the same search
strategy. In general, anomalles should be studied with respect to the best serlak
algorithm and the best paratiel algorithm (with possibly a different search strategy
than that of the serial algorithm). However, conditions to resolve these anomalies
would be problem fependeat and may resuit in -/._mfﬂ.w.\ya_un of cases that cannot

82

be enumerated. Since the 8:&:? 10 resolve anomalies between by and m;
processors, | € ny < n;, are differeat from ibose belween serial and parallel
processing, we discuss the different condltions separaiely. These results on
resolving amomalies are useful for designers o understand the existence of
anomalies and to modify existing algorithms to preveat detrimeatal anomalies and
enhance acceleration anomalies.

42 Anomalies of Paratlel OR-Tree Search

In this section, some anomalica on paralici OR-tree scarches are Blusirated.
Let T(k.o deaote the number of Iterations roquired for expanding an OR-tree,
where k is the total sumber of processors used, and ¢ is the allowance funciion
specifying the allowsble deviation of & suboplimal value from the exact cptimal
value. En this chapter, except Section 4.4.5, a single ltst of subproblems is assumed.

For the OR-tree in Figure 4.1(a), the order of nodes expanded using a depth-
ficst search on a singie processor 18 Py, Py, Py, all the nodes in T, that resuit in 2
feasible solution Py with value 6, Py, and all the nodes in Ty that result In the
optimal solution of f(P,}=3. P, is terminated by the Jower-bound test using Pp In
contrast, when twe processors are used, Py, and P are expanded concurreatly.
After the expanslon, P, & lerminated a8 a result of dominance by P,. Since T, is
terminated, T) u expanded nexs, If subtree T is large, the combined tme of
expanding Ty and T, using one progessor can be smaller than the combined Ume of
expanding T, and T, ustng two processors.

Figure 4.1{b) ilustrates a detrimentsl anomaly under & depth-first or best-
hrst search with approximations. When two processors are used, the optimai
solutlon, f(P,), is found, in the fourth iteration. Assuming that the lower bounds
of Py, Py, and P; are greater than 8.2 and €= 0.1, all nodes in Lhe subtree Ty will be
eliminated, stace 9i(1+0<8.2. However, when using three processors, Py Is
expanded in the third lteration sad Py P,, and P; will be selected o the next

83

fa) with jower-bound and domihent TEITS b} ﬂw-u.c.: » qa.».o.__
_.sz-e- b4 _.ﬁ:.ou qn_v.n.: ¥ T 0.0

number 10 hode ¢ evalualion Woer when wng 4 processoes
Aumber Gulsice node : evaludsion order when wing 3 processun

Tee,00 = ¥ Hi0 = &

Ic) Wiihoul tower Dound 400 JOMINAN & 1934

Figure 4.1 Examples of delrimental anomalles

84

Heration, assuming that the lower bounds of all descendent nodes of Py are loss
thaa g(P,), 9. If the subtree Ty is large, (2,0 < (3, will occur.

An example of an acceleration anomaly with approximation wnder s depth-
first or best-first seacch Ls shown In Figure 4.2(a). Whea nsing three processors,
the solution s obtained In the second lteration, and P, and Py are climinated; whils
{f two processors are used, subtrees T,and Ty have to be expanded. The ratio
T(2,/T(3,&) will be much larger than 3/2 if the subtrees T, and Ty aro very large.

Figure 4.2(b) Hlustrates another example of acceleration anocmaly with
dominance 125l under a best-first seasch, When three processors are used, Py will
be dominated by Py, and ooly four lterations are required to complete the search.
In conlrast, when using lwo prooessors, this dominsnce relation I8 not active
because P, has been expanded before Py is generated and no dominance relation
axisis between Pg and the descendents of P, (which s quite possible). Therefore,
subiree T, needs to be searched and T(20}T(3.0} > 3/2.

Anomalies may occur even when both the lower-bound and dominance tests
are ot active. Figure 4.1(c) shows a detrimental anomaly under both depth-Brst
and best-first searches. The example in Figure 4.2(c) confirms that acceleration
anomaly may occur regardiess of the search strategy. Figure 4.2(d) shows an
acceleration anomaly due to locat dominance tests and wil) be described ia Section
44.5.

Many anomalous exampies can be created for various combinations of search
strategies, allowance and elimination rules. However, the imporiant consideratlon
bere la not In knowing that enomalics exist, but in undesstanding why these
anomalies occur. It Is desirable 1o find the sufficient conditions to ensure that
Tk, @K Tk, &) as well as the necessary conditions for T(k,,d/T(ky, 0} # kylk,.
Ihe necessary conditions to eliminate detrimental anomalies are not evaluated
because they are problem dependent. A conditlon necessary for avoiding
deteimental anomalies depends on the sequence of nodes expanded and the size of
the resulling subirees. There are many posstble comblnations, and it Is difficult to

w Tpaon L
1adu_c an 7 2

T A‘n'o._u

fc) without lowar bound And daminance teats
Ti2,.0 3}

e 3

a0 local doinance tesisk

Figure 4.2 Examples of acceleration anomalles

86

enumerate them for a given' problem. Furthermore, the necessary conditions
developed for one problem cannot be generallzed to other problems. These are also
the reasons for not evalusting the sufficient conditlons to preserve acceieration

anomalies.

4.3 Coping With Serial-to-Parallc] Anomalies

in this sectlon, we study the coaditlons to cope wilh serial-to-psrallel
anomalles first, The conditons 1o cope with general anomalies between using X,
and k; processors will be discussed o next section.

One of the motivations of addressing this problem 15 to improve Lal and
Sahnl’s results on anomalles of parallel B&B algorithms [LaS84) First, Lai and
Sahnl have made an implicit assumption that all nonterminal nodes of the BB
tree have tdentical lower bounds, and hence the nonterminal nodes can be expanded
in any order. Second, Lal and Sahal have only considered best-first searches and
finding optimal solutions. However, gur theoretical analysis and simulations have
shown that anomalles are infrequenl when oplimal solutions are sought using
best-first searches, while they are {requent In approximate B&B aigorithms with
depth-first searches [LiWB4al. We will prove conditions that can avold
detrimental anomalles even when approximatlons are allowed. Since the
anomalous behavior depends on lhe search sirategles, we will Investigale the
anomalies with respect to the varlous search strategles separately. Lastly, Lal and
Sahni have clalmed thal a ncar-Mnear speedup for parsllel B&B algorithins with
best-first search holds onlty for a “small” number of processors. On ihe contrary,
we have shown that a near-linear speedup may hold for a large number of
processors, and that the maximum pumber of processors 1o attaln a near-inear

speedup can be predicied {LiWB4bl.

a7

4.3.1 Suficient Conditlon te Eliminate Detrimental Anomalies
(2} Finding an Exact Optimal solution

In this section, we show thal when the optimal solutlon Is sought,
Tk, JST(}, ¢} holds IT the heuristic function is monotone and unambiguous, and
the dominance relation sallshes some consisiency requirements on the lower-
bounds and heuristic functlons. At Brst, we explain some concepts that arg
important for the following proof. When lower-bound and dominance tesis are
used together, it is important 1o note that dominance tests are pot Lransitive with
the lower-bound tests. That is, P, L Pand P, D P, do not imply F, L P,. Stmilarly,
#/DP and P L P, do not imply P;DP,. In boih cases, only 1{(®) & £(P,) can be
deduced. Recall that P,DP, implies [(P) € 7(P,}). The converse Is not true
because some nodes are Incomparable; olherwise, the pumber of active nodes can
always be reduced to ong.

To combine the dominance and lower-bound tests, conditions are defined for a
speclal class of dominance relalions. A dominance relation DD I3 sald 1o consistens
with the heuristic function b #f P, D Py implics that hiP,) < h(P,} for all P, P, € P.
A dominance relation D Is sald w0 consisteni with the lower-bound .n...._..":o_. If
P,DF, implies that g(P,) € g{P,) for all P,, P, € P. To show that T(k,0)£T(1,0), it
Is necessary to prove: (a) that st least one node that betongs to €' Is expanded In
each iteration of the parallel search; and (b} that once all the nodes In Q! are

expanded or terminated, the parallel heuristic search must terminate.

Theorem 4.1; T(k,0) € T(1,0) holds for heuristic searches that satisfy Eq's (3.7)
and (3.8) and the following conditions: {a) Dominance relation D) Is consistent with
lower-bound function g, and (b} Dominance relation D is consistent with h.
Froof: see Appendix 1. 0O

The detsimentat anomaty illustrated in Figure 4.8{(a) for a depth-frst search
Is caused by the inconsistency of D with h. The requirement on Lhe conslstency of
the dominance relation with respect to g Is satished In many practical problems,

such as the shortest-path problem [Iba?7al, the traveling-salesman problem

88

iMoM76], the n-Job two-rachine mean-finishing-time Sowshop problem (CMM67L
and the n-job onc-machine scheduling problem with deadlines [sha76l However,
the requirement on the consistency of the dominance relation with h may not be
satlsfied. For Instance, the dominance relation for the 0-1 knapsack problem Is
consistent with the upper-bound function (instead of the Sower-bound function
for maximization problem). However, the conventional definition of dominance
relations for the 0-§ knapsack problem may result In detrimental anomalies, since
when the profit and weight of P, is the same a5 the corresponding profit and welght
of Py 1t 15 possible that either P, D P, or P,DP. Suppose that h(P)} < h(P,) and
that P, D P, is allowed, then D s Inconsistent with h. Detrimental anomaties can be
avolded if we redefine the daminance relation as foltows. For P and Py defined on a
given subset of objects, P, D Py if (1) the profit of P, i larger than that of Pjand the
total weight of P, is less than that of P; or (2) the profit and weight of P, are equal
to the corresponding profit and weight of Pjand the path number of Py Is lesa than
that of P;. The above example demonstraies that Theorem 4.1 13 3 useful guide to
defining dominance relations that can eliminale detrimental anomaties.

In the speclal case of D=1, Theorem 4.1 shows that a monotone and
unambiguous heuristic function guarantees that T(k,0) € T(1,0).
(b) Finding an Approximate Solutioa

When approximate OR-trec search algorithms ase considered, Theorems 4.1 are
no longer valid. The reason for the anomaly is that the lower-bound tests under
approximation, L, are not transitive. That s, P;L Pj and P,L Py do not sraply
P,LP, since f(P)(1+d) €g(P) and f(PPI(1+¢) € g(P,) tmply PO+
€ g(P,) rather than f(P)}(1+¢) € g(P,). Somewbat surprisingly, 1t Is possible that
¢! and " are almost disjolnt, and most of the nodes tn @' are not expanded In the
parallel case. - However, for best-hrst and breadth-first searches, detrimentat
anomalies can be avoided under the conditions as stated in following theorem.
Since approxtmation tests do not affect he dominance tests, the conditions with

respect to dominance tests for avolding detrimental anomalies are the same as

89

those in Theorem 4.1. In the proofs of Theorems 4.2 and 4.3, the part refated to
the dominance tests will be omitted.

Theorem 4.2: T(k,&) € T(1,8, €0, bolds for best-first and breadth-first scarches
when: (a) the beuristic function, b, satishes Eq's (3.7) and (3.8); and (b) the
dominance relation, 13, Is consistent with b and g.
Proof : Tha key Idea of this proof is to show that a detrimentat anomaly cannot
occur atthough transitivity of lower-bound tests is not valid here. For a best-first
search, if P, 1 a basic node In the paralle! case and PLL P 15 true in the serlal case
(sce Figure 3.3), thea It {5 true that g(P,) € g(P,) since P, must be setected before
P, and the selection is based on the lower bounds. Suppose that P L Py s true in
the paraliel case, we have ((PI(1+Q) € g(P) <g(P,), and P, must be
eltminated In the paraliel case. This lx a contradictiont

In serial and pavaticl breadih-first searches, the order of occurrence of the
feasible solutions are the same even though €>> 0. Hence, the basic node in each

. ieration of the parailel case must be an essential node because it is not eliminated

by feasible soluttons found before selecling It ia the serizl case.

The above arguments proved that the basic node tn each fleration belong to ot
in spproxtmate best-first and breadth-first searches. In both cases, once ati the
essential nodes are expanded, the suboptimal solution Is necessarlly found and alt
rematning nodes have to be terminated. This completes the proof, D

For a depth-first search, ihe conditions of Theorem 4.2 are not sufficlent.
Theorem 4.3 below presents the corresponding sufficlent conditions for approximate
depth-first searches.

Lemma 4.5 In n parallel depth-first search using the path numbers as heurlstic
values, If node P, at levet | Is expanded, then alt nodes whese heuristlc value Is less
than h(P,) and whose level number is less than or equal to | must be elther
expanded or terminated.

Proof: Suppose that there exists an active node Py tocated in the ['th level, J<i, and

90

that h(P) < h(P}) when P, is n_w?g&. Suppose thatl P, is ao ancestor node of P,
located In Jevel k (k<i), and that P, Is active when P, is selected. Frqm the defined
selectlon rule and Eg. {3.7), P, and P, have lo be expanded simultaneously since
n(P,) Sh(P). Let P, be the hirst comman ancestor node of P, &nd P, From the
definition of path numbers, all ancestor nodes of P, have path numbers smaller
than that of ancestor nodes of P, untll P, 15 encountered. Therefore, the parent of
P, must be expanded simultancously with the pareni node of P, for the same
reason stated above. Carrylng out this process repeatly will yleld a concluston that
node P, will be expanded simultaneously with I descendent node. This,
obviously, Is impossible. 8]

The above lemma shows that in the active subproblem list the level numbers
of 1he actlve nodes are non-increasing &s the heuristic values increase. It also
shows that If P, lies at the bottom level of the OR-tree and & node Py, which Is not
al the bottom level, is eltminated by Py, then h(P) must be greater than niP).

Theorem 4.3 For a depth-first search with approximale lower-bound tests, In
addltlon 10 Condittons {a} and {b) of Theorem 4.2, ali feasible solutions must be
localed at the bottom levet of the OR-tree 1o prevent detrimental anomalies.
Froof: Suppose that & basic node Py Is eliminated by & feasible solulion P; In the
serlal case and not In ihe parallel case. This means that a feasible solution P,
exists In the paraltel case, and the parent node Py of Py must be eliminated by P
Since all feasible solutions Me at the bottom level of the OR-tree, Pl Py tmplies
that h(P,) and h(Py} are less than h(Py) according to Lemma 3.1, where Py Is the
parent of P, For the same reason, another feasible solution Pg must ellminate Py
in the serial case. Applying this argument repeatly wh contradict the fact 1hat the
aumber of leastble solutions are bnile and that the feasible solutlon wilth the
smallest palh number has to accut In both the serlal and parallel cases. O

From another polnt of view, the reasonableness of Theotem 4.3 can be

visualized as follows. For serlal and parallel OR-tree searches, the order of

91

occurrence of the feasible solutions is the same regardiess of ¢ and number ol
processors used. Like breadih-first searches (proof of Theorem 4.2), this
guarantees that Tk, € T,(1,4.

4.31.2 Necessary Conditions to Allow Acceleraiion Anomalies

In this sectlon, the ntcessary conditions for Tik £) < T(1,0k are developed.
One of these conditlons is based on the complement of the speclal class of
dominance relations defined In Section 4.3.1. A dominance relation, 1, is sald 10 be
inconsistent with b If there exist two nodes P, and Py such that PyDP; and
BCP)) > h(P)). Ancther condition is based on the compieie consisiency of heurlstic

+ Tunctions. A heuristic function h 1s sald 10 be consistent fcomplerely consistent)

with the lower-bound function g f b{P) < h(P)) tmplies that g(P) < g(P})
(g(P) < g(P))) for alL P, P, € P. A heurtstic functlon, b, Is said 1o be nor completely
consistenr with g Il there exist iwo nodes P, and P, such that k{P,) > h(P)} and
g(P)) € g(P. Note that #f g(P)=3(P)) Is allowed, then the heuristic function for

best-first search is consistent, bul not completely consistent, with the lower-bound
functlon.

‘FTheorem 4.4: The necessary conditton for T(k,0} < T(1,0)/k is elther (a) that the
heuristic function Is aol completely consistent with g, or {(b) that the dominance
relation is Inconsistent with h.
Proof: (See Appendix 2) O

According 1o Thearems 4.1 and 4.4 we can conclude that If the dominance
tests are active then both detrlmental and acceleration anomalles exist when a
breadih-first or depth-Brst search is used. It Is important Lo note thal the
conditlons In Theorem 4.4 are not necessary when approximate solutions are
sought, ie., acceleration anomalles may occur even though h Is complelely
consistenl with g and the dominance lests are consistent with h. The carresponding

necessary conditlons are studied iIn Sectlon 4.4.3.

92

4.4 Coping With General Ancmalies

We have derived ihree theorems for the performance bounds with respect to
different search sirategles in Chapter 3. According to these theotems we can
Invesligate the relative efictency between using k; and k; processors. In this
sechion, 1 < k; < kg I assumed unless stated otherwise. First, we discuss the
simple case in which €= 0and D=1 Then stralegies with approximate lower-bound
and dominance tests will be studied.

4.4.1 Sufficient Conditions to Eliminate Detrimentat Anomalles

In the following sections, we investigate some conditions to cope with
anomalies with respect 10 ky and k; processors assuming that ¢=0and D=].

First, we deslve a sufficient condition to assure the menolonic Increase in
computational eficlency with respect to the number of processors.
Corollary 4.1: Suppose that a parailel besi-first search satisfes the assumplions of
Theorem 3.2, then Ty(k,0) € Ty(k,0) when

*—ﬂwuﬁl-w.w— - Kwa"—l—v

T1.0) » —

T

Proof: From Theorem 3.2, at leasi — i iterations are needed for k,
1

. k=
processors and at most w_..mmmw. + l.ﬂ.—n h | tterations are needed for k; processors
2]

to find an optimal solullon in & given branch-and-bound tree. The sufficlent
conditian Tor T(ky.0) < T(k,0) Is:
Ty(1.0) k-1 T (501 .
+1
5 + i h - or

K—AWD|~W h- w.nﬂr~|—u

T(1,0) o

a

For the example In Figure 4.1(c), T,(1,0)=15, k=4, k,=3, and h=4. Eq.(4.1)

is not satisfied, and hence an Increase in the number of processors [rom four to five

an’

9

may not ensure an increase In performance.

Corollary 4.1 shows that monotonic increase in performance depends on h and
TJ1.0). b is » function of the problem stze. However, Ty(1,0) reflects the
complexity of the problem Lo be soived and ls unknown before the solution s
found. 1 can be estimated in & similar way as in the analysis of Alpha-Beta
pruning algorithms [Knb75, Bau?8b, Pead2] whick debnes a branching factor a:

]
a= lm| MOOIF e, o = T(10)

The branching factor measures 1he aversge number of branches of an essential node
and can be estimated statistically, For example, a Is close to one for knapsack
problems (€ 1.1) if all the profits and welghts are Independent and are generated
from uniform distcibutions. ‘

Since k3 > k{k;~1) 3 ky(k;—1I(ky—ky), Eq. (4.1) 1s true If T,(0,0) > k.
In other words, there is always a monotonic Increass in performance for all
1 €k <k, & JTITONE. For example, for b=50, T(1,0)=10F, there will not be
any risk of detrimental anomalies for sny combinations of 1%k, <k;<141. This
example shows that If the complexity of the problem is high, Le., the branch factor
1 large, then detrimental ancmailes can be avolded in a wide range of the number
of processor for parallel best-fivst searches.

Eq. (4.1) can be converted into a simpler form by ignoring the term ¥k, =1}

and defiaing v, = .m . thatis,

-n-fA—bu ﬂnnl—
h > -1

The term N can be viewed as the “average width” of the OR-tres that

consists of essential nodes, Intultively, detrimental anomalles can be prevented If

the OR-tree searched is “wide” enough. On the other hand, for a given problem,

- the average width Is fixed. If k; Is not 100 Jarge and kfk, Is sufiiclently large, then

Tk 0) wil be lss than ¥,(k, 0)

Stmtlarly, for a depth-firsi search, the corresponding sufficient conditions can
also be determined. However, tbe suficieat conditions are stronger than Eq. (4.1)
due to the looser bounds of T,(k,0) as derived In Theorem 3.3.

Corollary 42: Let r=T,(LONT(10). Iz a parallel depth-frst scarch thai
salisfies the assumptions of Theorem 3.3, To(k,,0) € T,(k,,0) when:

.Mul > and .ﬂ-rmubw > Kuawn.l—xﬁl—.—glwuﬂknnlmu
¥

T “2)

W—ARul.-xn.?—uwnlquW-l-v

or TLL0) > =T

where ¢ is the number of the distinct incumbeats.
Proof: Similar to the proof of Corollary 4.19. 0O

From Corollary 4.2, we can conclude Ihat the existencs of deirimental
anomalies depends on T,(1,0), r (T,(1,0/T,(1.0)), and ¢ (the oumber of the dis-
tinct incumbents). If #%1, ¢ s small, and T,(1,0} Is very large, then Eq. (4.2) may
be satished. Our simulation results reveal that for some problems, such as the -1
koapsack and verlex-cover problems, T,(1,0) ts close to T,(1,0), thereby F=1,
Moreover, If the feasible-solublon values must be lniegers, ¢ s of lea small. For this
kind of problems, detrimental anomalies can be prevented for parallel depth-first
searches when Ty(1,0) Is very large. It I a certainty that the tange within which
Ao detrimental anomalles occur for depth-first searches is smaller than that for
best-first searches.

The following theorem shows that T,(k,, € & T,{k;.€ 1s true. Note that this is
oot a Corollary of Theorem 3.4.

oe——— .
The proofs of Coroliatics 4.2-4.0 are owaitted dus 1o the almilarity with that of Corollary 4.1,

95

Theorem 4.5 In a parallel breadth-first search, If D=1 and the generalized
heuristic function satishes Eq's (3.7) and (3.8), then T ,{k;,¢) € Tk, €}

Proof: Suppose thal there are m Imperfect Herations when K, processors are used,
We divide the sequence of Heratlons inte (m+1) subsequences, each of which ends
in an Impesfect iteration. Let TXky0) be the number of Jteralions (rom the frst
¢mperfect Meration {cxpanding root node) to the fth one when k; processors are
used. Further, when ky processors are used, let TXk,0) be the number of
iterations from the first Imperfect ileration to one thai includes at least one node
belonging to the J'th Imperfect Iteration of uslng k; processors. We now show by
induction on | that TXk,0) € TXk,,0). The besis, =1, I5 trivial. Assuming that
the induction hypothests 18 true for }-n; consider the (n+l) subsequence of
lterations. Note that il nodes expanded In this subsequence except for the last
Imperfect lteration have to be expanded when k, processors are used, since all these
nodes befong to ©'. Suppose that there are & total of x {x>0) perfect fterations in
the (n+1)'th subsequeace when k; processors are used, then the total number of
kgx

T
which Is equal to or greater than {x+1). Invoking ihe inductive hypothests, we
obtain TA*Y%,0) 4 T4k, 0). According to the induction above and considering
that all Herations in the last subsequence are perfect, we conclude that
T,{k,,0) € T,(k,,0) under the given conditions. [}

Iterations In this subsequence when k; processors are used Is greater than

4.42 Necessary Conditions to Allow Acceleration Anomalies

From Theorem 3.2, we also can derive a necessary condition of acceleratlon
anomelles with respect o k, and k; processors for parallel best-first searches.
Corollary 4.3: In a parallel best-first search that satishes the assumptions of
Theorem 3.2, Ty(k, 00T, (k;,0) > kfk, only If

k-1

h > {4.3)
[7e)

9%

Note that this necessary condition cannot be obtained from ths looser lower
bound T,(k,0) # T,(1,0)k 2s discussed by Lal and Sahni [LaS84). Figure 4.2(b)
illustrate an acceleration anomaly, T(2,00T(3.0)> 32, which obviously
salishies the Eg. (4.3) Usually, if k; and k; are close to each other and h Is iarge,
then acceleration anomalies may occur In praciice, evea if the best-hrst search is
adopted and all lower bounds are distinct. However, for best-fitst searches,
Tu(k, 0 F\(k;,0) cannot be much larger than kylk) due ta the Ught bound of
Ty(k0)

For depth-first searches, the necessary condition for acceleration anomalies is

given In the corollary below.

Corollary 4.4: In a paralicl depth-first search that satishes the assumptions of
Theorem 3.3, T,(k, 0)ITy(k,,00 > kyiky, 1 & ky % ky, 15 irue only if

T,(10) = T(1,0) > k; — (k,=E)c+1 Db — 1 (4.4)

Obviously, the necessary condition tn Eq. (4.4) is readily satished and
To(k,,0)/Tk;,0) may be much greater than ky/k,.

Anatogous to Corollarles 4.3 and 4.4, we can derlvs the the necessary
condition from Theorem 3.4 for acceleration anomalles to exist in a breadih-first

search:

k-1
c+h> = (4.5)

This condition is also valid for breadth-first searches with approximate lower-
bound test.

97

4.4.3 Coplng With Anomalies under Approximation

It should be noted that Theorem 4.2 15 no longer vatid when comparing
T,(k,, € and T,(k,,). Figure 4.1(b) gives a counterexample showing that, evea wa
best-brst search 15 adopted and all lower bounds are distinct,
T,(3,0.1) > Ty(2, 0.1). This happens because a node with a targe lower bound (ot
a basic node) may be expanded before nodes with smaller lower-bownd in the
paraliel case, and nodes with smaller lower bounds may be eliminated by
approximate Jower-bound —ﬂﬁ. A stronger sufficient condition Is required in this
case. To find the new sufficlent condition, we need to update Theorem 3.2 first,
Analogous 1o the proof of Theorem 3.2, the upper bound on Ty(k,) can be derlved.
We now try (o refine the lower bound of Ty{k,s). Let f, be the optimal-solution
value and MINT,(¢) be the minimum number of nodes to be expanded in the
approximate OR-tree search algorithms. MENT,(¢) is equal to the number of nodes
whose lower bounds are —nﬂ than fg/(1+€ because, in the best case, only these
nodes will be expanded. Clearly, MINT(¢) depends on the distribution of the
jower bounds. The point to be made here Is that the assumption on lawer-bound
tests §n Lemma 3.2 is not satished for approximate best-first searches. Essentlal
nodes, consequently, might be eliminated in a paraliel search. In other words,
T,(1,¢) may not achieve the minimum number, MINT{ &), since Tk, o) Is refated
10 the sequence of feasible solutlon found, and it §s possible for a feastble solutlon
whose value is very close o the optimal-solution value to be found carly ia the
paralicl case. However, in the sezial case, this feasible solution Is found quite late
or even not found IT its pareat has a lower bound larger than the optimal solution.

MINT(¢} can be obtalned by estimating the distribution of the lower bounds,
From simulations of the 0-1 knapsack and vertex-cover problems, It was observed
that the distribution of the number of nodes wilh respect to the lower bounds Is
exponential, [n this case, let a%9g,a > 1, be the number of nodes whose lower
bounds are beiween g and (g + ag). It s easy to show that

[/
T(L0) = .\. .“ atgg = a"flog, a

98
f ! .
T¥a
MINT(d= [atgg = (T,(1.0)TH
From the above analysis, we get
MINT (9~ i ._...:. &, k-

——— t1 SIS +=2h {4.6)

Simtlar 1o Corollaries 4.1 and 4.3, we can derive the corresponding suficient as
well &s necessary condiliens when € Q.

Corollary 4.5: In a parailel best-Girst search that sailshes the assumptlions of
Theorem 3.2 with the exception that « > 0, T\(k;, € Tk, whea

kMINT(— K, Ty(1,& 3 k(=1 - k(k,~1) @n

It T3, = MINT{& and €=0, then Eq. (4.7) Is5 equivalent 1o Eg, (4.1).
However, If T,(1,¢) is much larger than MINT,{ &), then Eq. {4.7) is gencrally not
satished In practice.

Corollary 4.6: In a paraliel best-first search that satishes the assumptions of
Theorem 3.2 with the excepiion that ¢ > 0, Ty(x,.0)/T\(k,0) > k,/k, when

T{1,@ = MINT,(d > k3= (K, ~ Db — | 4.8)

Dehinttely, Eg. {48) 15 often satisfied. in the special case when
k,=1 and k,=%, Bq. (4.8) becomes

T1.d~MINT(d >k~ | (4.9

For depth-first search with approximate lower-bound tests, stronger
condltions can be obtalned as long as all feasibie sotutions are jocated at the boitom
level of the search tree. This I8 true for some reallsiic problems such as Integer
programming.

Corotlary 4.7: In a parallel depth-first search, in which &> 0, D), the path
number is used as a generalized heuristic funcilon, and all feasible solutlons are
located at the bottom level of the OR-tree, then Ty(ky, €) € Tylk,,€) when

9

F-A*ﬂl—xn.—.uu—-ll'uﬁwbluw

TL.0> Bt

(4.10)

where ¢ is the numbes of the distinct Incumbents obtained during & serlal search,
The necessary condition to atlow Tylk, Tydk; € > kyjk ts{c+i)h >
{k;—~ ik, - 1)

Corollary 4.7 is based on the following bounds of T,(k,¢)

TLLE
iSRS T+ Jl:

The bounds are valid because Lhe assumptions of Lemma 3.2 are satished, and all
essential nodes must be expanded I the parallei depth-hrst search. The above
analysis reveals that for this kind of problems, detrimental anomalies will nol
occur in approximate depth-first searches provided k, and ¢ are not too large.

If the feasible solutions arc not restricted to the bottom level of the OR-tree,

then the corresponding necessary conditlon can be derived by modifying Eg. (4.4),
That Is,

Ty1,) =~ MINTW{d > x; — (k,~1 Xct+1)a — i (411}

4.4.4 Coping With Anomalies Under Domlnance Tests

When dominance tesis are considered, the above coroliaries are no longer
valid. Figure 4.2(b) shows an example 1n which none of he necessary condliions
discussed previously Is met, but the acceleration anomaly T{2,0)] T (3,0} > 32
still occurs The reason for the anomaly Is that P,DP, does not imply the dominance
of Py over the descendents of m.“. For instance, in & 0/t knapsack problem, PP,
only If the weight of F, Is less than or equal to thal of Py, and Py and P, are defined
on the same subsct of abjects. However, for descendents of Py, thelr weights may be
greater than that of Py, and hence the domlinance relatlon may nol exist. One way
1o alleviate the detrimental anomalles tn this case is 1o update the dominance test

as follows. If a newly generated node Is not dominated, we need o tesi whether

100

any of s ancestors is dominated by an active node (it Is not necessary to check ail
expanded nodes), If so, the newly generated node can be eliminated. Although
additicnal overhead may be incurred ln the propased demination test, the
dominance relation may be applied more often, and more nodes may be pruned.
When the number of active nodes Is not very large, the new dominance-test
procedure Is acceptable, and detrimental anomalles can be reduced.

When dominance iesis are applied with the approximate lower-bound tests,
the sufficient conditions would be the conjunction of the corresponding ones In both
cases. In general, there is no realistic sufficient condiion to avoid detrimeatal

_anomalies. kn conirast, the necessary conditions are the disjunction of the
corresponding necessary conditions in both cases. Simutations have revealed that
acceleration anomalies appear quite often.

Before leaving from this section, we must polnt oul that the reasons for the
anomalies discussed In Sections 4.3 and 4.4 are nol exacliy the same. Therefore,
some conditiong obtalned In Section 4.3 cannot be derived directly from the
corresponding condition In Section 4.4 by setting k,=1. The sulliclent conditions for

the latter case are usually stronger, while the necessary condition are weaker.

4.4.5 Multiple Subproblem Lists

When there are multiple subproblem lists, one for each processor, & node 15
selected from each local Hst with the minimum heurlstic value for decomposition.
This node may not belong 1o the global set of actlve nodes with the minimum
heuristic values. It is not difficult 1o malntain a global incumbent in a globat data
register and broadcast it o each processor. Hence when dominance lests are
Inactive (D =1), all the theorems and coroliarles derived In Chapters 3 ad 4 are
applicable, and the behavior of using multiple lists Is analogous to that of a
centrallzed Hsi.

When domlnance tests are active, these lesis-can be restricted to the local

subproblem lists or can be performed globatly. If globai dominance tesls are

101

applied, the behavior Is similar io that of & centralized Hst. On the other hand, If
the dominance tests are performed for subproblems within each local lists, it Is
possible that P, D P; exisis In the serial case and P 15 not terminated in the parailel
case because Py and Py are stored In different processors. As 8 result, both
detrimental and acceleration anomalies may occur. For Instance, in Figure 4,2(4),
acceleration anomaly may happen because Py i3 ellminaied in the serial case and Is
nol terminated In the parallel case. This means that T is expanded In the serial
case and pruged In the parallel case. Notice that this acceleration anomaly will ot
appear In case of a single subproblem list.

45 Comparison of Best-First, Depth-First, and Breadth-First Searches

In this secilon we answer the quesilon on whether a paralle! best-first search
15 the best search siralegy as compared (o & depth-first or breadth-first search when
a constant number of processors are used. This fact has been eslablished for serlal
searches. However, anomaties have been found fa parallel searches. This s
Miustcated in Figuse 4.3 with iwo processors. Six Iterations are needed to complete
the depth-first and breadth-first searches; whereas seven Iterations are required
for a best-first search. Anomalies usually occur when the total number of
Merations Is small. A sufficient condition 1o assure thai Ty(k,0)<7(%,0) is shown
here.

Corollary 4.8: In the parallel best-first and breadth-first searches that satisfy the
assumptions of Theorems 3.2 and 34, TF(k0) <T(k0) when
T {10} - T(1L0) > (x—1Xb~1).

Coroltary 4.8 says that if T,£1,0) is much larger than Ty(1,0) and k and h are
small enough, then a parallel besl-first seafch often runs faster than a parallel
breadth-first search.

Owing 1o the loose Jower bound on T,(k,0), the suilicient condition 10 assure

that T,{k,0) < T4{k,0) cannot be derlved from Eq's 3.18 and 3.19. We now show

(a} Parallel depth-Tirsc search #ilh iwo processors [nuaber inzide eacn
node i3 1he salaction order).

CPTIMAL
N.D SOLUTION
|

sp) Parasllei 0esteTirst 3earch 41ID =0 Processers inupber tn31de 2ach 1Tae
is Lhe Selecrion Hrder, HLAIEr ULSLde QiCk node L5 the lower bound:.

Figure 4.3 Anomaly In performance between depth-first and best-first

searches

1M

the corresponding condition ia 1erms of the aumber of Imperfect llerations.
Covollary 4.9; Let y, be the number of imperfect iterations in 2 parallet depth-first
search. Il the assumptions in Theorems 3.2 and 3.3 are salisBed, then
Tk 0)<T,(k.0) when y,>{(k-1)h.

Froofi Let m, be the number of essentlal nodes selected In the I'th imperfect
iteration of a parallel depih-first search. Similat o the proof of Theorem 3.2, we

get
M- §
- (1,0}~ (k1)
= / Ya T(1,0) |, Ye
TLk0)= 5 +ty,? i tya=m

According to Eq, (3,18) we know that, In the worst case, Ty(k,0) < T,(k,0) if

T(1,0) , Y

$Jo5 T00 | G-

St ke > (- 0

in practice, the average number of essenuial nodes in an Imperfect fteralion is
almost the same. Under this assumption, T,(k,0) <T(k,0) when y,>b.

If all feasible solutions are located In the bottom level of the OR-tree, the
tower bound on T (k.0) has been derlved as {T,{1,0)— 1)/k + I. In this case,
Ty{k0} < T,(k,0) will be assured If

TLL0) ~ Ty 1.0} > (k=1)&~1).

Actually, a constderable number of lterations are imperfect in & parallel depth-first
search., Moreaver, the number of hmperfect lerations Increases when the aumber
of processors is Increased. Hence a parallel best-Brst search usually requires less
iterations than a paralfel depth-first search for the same problem.

From the viewpoint of coping with snomalles, Lhe bredath-first search Is a
conservative search strategy. There are nelther detrimental anomalles nor seriai-
to-parallel acceleration anomalles when dominance lests are inactive. In contrast, a
depth-first search Is an adventurous scarch strategy. 1L may galn superlinear

specdup but sulffers from the risk of detrimental anomalies. The anomalous

104

behavior of best-first searches depends in some degree on the policy of dealing with
nodes having identical lower bounds. If & breadth-first strategy 15 adopled, then
serlal-to-paraliel detrimental anomaly can be avolded even Hf an approximate
solution Is sought. In general, Hnear speedups can be achleved ia a larger range of
the number of processors for parallel best-first searches than for depth-first and
breadth-frst searches. In this sense, the best-first search is more robust for
parallel processing.

On the other hand, since the best-first search requires the secondary memory

- to maintatn & large aumber of active nodes, the total time, Including Ume spent for
dala transfers between the main and secondary memories, to solve a problem
should be 1aken as a measurs of efficiency. From this poiat of view, the best-first
search may nol always be a good search strategy. Simulations have shown that the
best OR-tree search siralegy depends on ihe accuracy of the problem-dependent
lower-bound Function {WaY85L Very Inaccurale jower bounds are not useful in
gulding the search, while very accurate lower bounds will pruns most unnecessary
expansions. In both cases, the number of subproblems expanded by depth-first and
best-first searches will not differ greatly, and a depth-first search & better as it
requires less memory space {proportional to the height of the search tree). When
the accuracy of the lower-bound function is moderate, & best-first search gives a
better performance. In this case, a good memory management sysiem is necessacy
to support the memory space required.

In Figure 4.4, the average speedups of parallel best-first and depth-first
searches for ten knapsack problems with thirty-five ebjects are compared. Note
that for knapsack problems, the lower-bound funclion iIs accurate. The
performance with respect to uslng the depth-first search, as a resull, Is close to that
of using the best-first scarch. In ihe serial case, the average number of iteratlons
for depth-ficst search, T1,0), s 15197, and the average of Ty(1,0) is 15180, which
are almosi the same. The speedups in best-first searches are a lttle larger than that

of the depth-first searches, When the number of processors are very large such

103

that, nodes in each level can be expanded simultancously, then
Tk 0)=TAk0)=h, whers h Is the hight of the OR-tree. Therefore, the two
curves on speadup will coinclde eventuaiely.

Finally, we compare the space requirements between depth-first and best-first
searches. In a serinl search the space required by the best-first strategy is usvally
more than that required by the depih-first sirategy. Somewhat surprisingly. the
stmulation results on 0-1 knapsack problems show that the space required by a
pacallel best-first sirategy Is not increased significantly (but may be reduced) until
the number of processors is so Jarge that the near-linear speedup cannot be kept. In
contrast, the spece requized by the parailel depth-first search 15 aimost
proportional to the pumber of processors (Figure 4.4). Note that the space
efficiency Is problem-dependent. For veriex-cover problems, the space requlred by a
paraltel best-fiest search Is nol increased n_wn_pﬁap_w no malter how many

processors are used.

4.6 Suramary

In this chapier, we bave studied the anomalous behavior of parailel OR-tree
searches. Anomaties are caused by a combination of the following reasons: {a) there
are muliple solution nodes; (b) 1he heuristic function is ambiguous; and (c) the
elimination rule Is not consistent with the heuristic function; {d) the tree structurs
causes tmperfect Herations when multiple processors are used, and (¢) variabllity
In the sequence of feasible solutlons. The existence of a combination of :E..m
conditions causes the tree to be searched in a different order when different number
of processors are used.

For OR-tree search algorithms with dominance tests, only a besi-first search
with the following conditions will guaraniee that detrimental anomalies will not
occur: (a) the heuristic funclion is unambiguous; (b) approximations are not

allowed; {c) the dominance relation Is consistent with the heuristic function; and

106

-
F

-
\

[
H1

- e @ o i e o e O

-
-

.
-
»
Al

- & bast=Hirny peareh
- 3 tapthfirsr search
—— T Wpevhe
=t AT Mg WIS

a
*
L)
-

~
-

mllml
-
)
)
Y
o
"
"
"
\
-
lqz(u.u &m0t o1 sumprehldin)

e T 0§ § & § & ¥ & v
Logytmmber of pracannent

Figure 4.4 Average specdup and space requirements of paraliel branch-and-
bound algorithms for 10 knapesck problems with 33 objecis

107

(d) the complexity of the problem o be solved is relatively kigh, Ambiguity fo
the beurlstic funclion can be resolved by augmenUng lhe original heuristic
function with a tie-breaking rule (say, by leve! and left-right orlentation). For
most problems, dominance relations that are consisteni with the heuristic function
can be designed. Acceleration anomailes may occur in one of followlng cases: (a) a
breadth-Brst or depth-first search Is used; (b} & best-first search is used and some
non-solution nodes have lawer bounds equal to ihe oplimal solullon; {¢) the
dominznce relation Is inconsistent with the heurlstic function; (d) multtple lists of
subpreblems are used; (e) a suboptimal solulion s sought; or (f) when the problem
size is lasge. We bave precisely Investigated various sufficlent condltions to
climinate detrimental anomalies and necessary condtilons io preserve acceleration
anomalies with respect to the different search strategies. A summary of the resulis
proved in Chaplers 3 and 4 are shown In Table 4.5.

A best-first search Is found 0 be a robust search strategy in the sense of the
iarge range of aumber of processors within which the ifnear speedup Is achived.
The best OR-tree search sirategy depends on the accuracy of the problem-
dependent fower-bound function. Best-first search Is more suitable for parallel
processing when the accusacy of the lower-bound funciion Is moderate; otherwise
depth-first search Is more cost-eTective.

108

Tabls 4.1 Conditbons to copy with anomalies of paratiel
OR-iree scarches

>=2.T§.. _waz..j_u:-. cond. [Nece. cond. | Suf. cond. [Nace. cond.
func. | rets. | srat. B (2 va.) | (1 va 1) | Gpvaig) | (k)
b Todd | Cordl | Cordd
pai | o WEq3738| Eqed | Cordd | Cords
=0 br nosnom. | Th4$ Eq.4.3
D=l] il Tadl Th.44 wmom. ssiat
b ||Fq.3.72.38] Eq49 | Cord3 § Cordé
p=t| o || a3 | Bq. 413 | Cor.47 | Eg. a1
b [Eg.3738| nownom. | ToAS | EqdS
>0 b ﬂ Thd2
pat| o [s | am | wom | win
o [| Thd2

b: best-first search

d: depth-first search
br: breadih-frst pearch
anom.: when smultiple subproblem Jists and local dominsnce
Lests are used, sulicient conditions are impractical
exist: necessary conditions are too loose

109

CHAFPTER V
PARALLEL PROCESSING OF AND/OR-GRAPH SEARCH

In this chapter, we address the parallel AND/OR-graph search, in particular,
the heuristic >zv\m..n-=8 search. To avold unnecessary searching, an Intelligent
scarch sirategy that guides the search by heuristic information is desirable. For
decislon probiems, & houristic fuaction using the ratlo of the success probabiiity of
a subgoal to the estimated overhead of evaluating the subgoal Is found to be useful
in guiding the AND/OR-tree search. We propose and snatyze an oplimal scarch
strategy that minimizes the expecied overhead. The optimal stralegy is then
applied to parallel processing of loglc programs that are modeled a3 AND/OR-tree
searches. An efficient heuristic search giralegy for solving logic programs, which
can be implemented on & multiprocessar architectures, & presented.

5.1 AND/OR-Trec and AND/OR-Graph Search

Searching an AND/OR-trce is more complex than that of an AND-1ree or an
OR-tree with lower-bound tests only. An AND/OR-tree Is searched ia two phases.
The first phase is a topdown expansion 23 In searching an OR-tree, while the
second phase iz 8 bottom-up evaluation &5 in searching an AND-tree. Dhue 10 the
existence of both AND- and OR-nodes, a good paraliel search algorithm should
combine the features of AND- and OR-tree searches. A good selection strategy
maust be developed owing o the o_nuuoaﬂ..._.r,o granularity of parailelism, simtlar
1o that of parallel divide-snd-conquer algoriihms, is an important Issue. Specific
restrictlons on a given problem, such as pruaing rules, must be considered. These

112

disteibution of values of the terminal nodes. The tree i sald to have & best-case
ordering i the first {or leftmost) branch from each node leads 1o the best value,
and a worst-case ordering if the rightmost branch from each node leads to the best
value.

A number of paralicl game-tree-search techaiques have been developed
{MaC82). In the parailel aspiration search, the a-f window is divided lnto non-
averlapped sub-intervais, which are independently searched by multipls processors
[Bau?8a). Baudet reported that the maximum expected speedup is around 5 or 6
é&—ﬁigngin&? The speedup Is limited because at least
w2l w2l — | podes must be evaluated for an untform tree of depth D and
constant width W, evea when o and f are chosen to have the opiimal minimax
vatues [KoM75), Puriher, acceleration anomalies may oocur when the number of
processors ls small, say 2 or 3.

Finkel and Fishburn bave proposed a tree-spiitting algorithm that mape a
look-ahead tree onto a processor ree with the same interconnection structure
[FIFB2). The Information-transfer overhead is small due 1o the close match
between the communication requiremenis and the interconneciion struclure.
However, this is a brute-force search algorithm, and pruning is not considerad in
process assignments. The speedup drops to vk under the best-case ordering, where
k is the number of processors.

In the mandatory-work-first scheme [ABDS2], the mialmusn tree searched 1o o
serial algorithm s searched in paratlel during the first phase. The resulting o-B
window Is used to speed up the second phase, during which the rest of the tree ls
searched. Comparing this scheme with the tree-splitllng scheme, it has better
performance under the best-case ordering, but may be worse In the worsi-case
ordering. In the latter case, many nodes that are pruned In ibe tree-splitling
scheme may be visiled in the second phase.

Another approach 1o speed up a game-tree search Is to nse a best-first scarch,
such as the S5 algorithm [Sto79] 555' Is effective in searching a random or

mni

poorly ordered tree, but requires more space and Is not significantly better than an
a-f search on strongly orderad trees. Kumar and Kanal have shown that the 555°
algorithm can be Interpreted s a B&B procedure and have presented two parallel
implementations of 555 [KuK 841

These approachics to parallel gume-iree search bave emphasizod on the
reduction of the information-transfer overhead, but have pald e atteation to
the Information-defcdency overhead. In the remainder of this chapter, we will
conskder the information-deficlency overhead as illustrated by the paraliel
evaluation of logic programs.

52.2 Paraltel Logic Programming

Logic _-Bnﬂ.SB-..n s a programming methodology based on Horn-clause
resotution [Kow79). The efficiency of solving & logic programming problem
depends strongly on the many ways of representing the loglc program. One of the
ways Is to consider the evaluation The root is labeled by the initial problem to be
queried; the OR nodes represent {sub)goals; and the AND-nodes represent clauses.
ANl subgoals In the same body of a clause are children of an AND-node. A
{sub)gos) (OR-node) and its chiidren display the nondeterministic cholces of
clauses with the same head. The terminal nodes denote clauses or subgoals that
cannat be decomposed. Figure 5.1(a) shows an example of the AND/OR-tree
representation of a logic program In which the OR-nodes are represented as ciscular
podes and the AND-nodes are represenied as 3.53.& nodes. In Figure 3.1, the
numbers outside each node are the ratio of success probability to expecied scarch
cost. In general, » logic program without any Inference loop can be viewed as an
acyclic AND/OR-groph. A finite AND/OR-tree is obtained from the AND/OR
graph by duplicating common descendent nodes.

The AND/OR-tree 1o Figure 3.1(a) can be represented more clearly In Figure
5.1{b) as a high-level OR-trec lnvolving the selection of all combinations of
clauses, and multiple low-level AND trees representing the sojulion iree resulled

114

P Kaankas Daw

Plaj ~ Liy.5), Biv)
Liyap > Lisyh Kiap
by sk~ Bla). Ha), ¥ir)
By~ Gia)
LAB -
L)~
Kia) v~
n - Ky -
L TS
~ Gl g
) M-
; 5, ML L it~
2O POV W M
Usy) Kz} W) Yip is) G-
QT -
Gy~
2 ZALTE
rEHB

Pin) — Lir.al Winl
Lipal ~ Liny) Kz}
Ru} ~ Gia}
- o Liz.s) — Wia), $is), Yigh
Nt — Gin}

Bis}

Meyi Kixj Qs Sm o Yzl Gin)

P: happy: L: tike: R: rich: K: kind;
H: bandsome; 8 sirong: ¥: young:
G: good jobi A: Ares; B: Bealy:

¥ Jobn: M: Mary: T: Tom; Z: Zeus.

Figure 5.1 An example of a logic program represented as an AND/OR tree.

s

from ciauses sciocted in the OR-tree. Parollel processing can be appiled to evaluate
ihe mulilpie solution trees in parallel (OR-paralleilsm], er can be appiled to search
& solution tree In parallel (AND-parallelism). Noie that the number of edges in
this representation could be much large than that of an AND/OR-iree
representation.

A lot of research strivesfor the paraliel execution of logic programs. Conery
and Kibier have ciassified four kinds of paraliellsm of logic programs: AND-
paralielism, OR-parallelism, stream-parallelism, and search parallelism, and have
tnvestigated AND-parallelism (CoK83L Furukawa, ct al. and Clepielewskl, et al.
have discussed OR-parallelism {FuN82,CiHB4), while Lindstrom, et sl have
addressed stream-paralielism and plpelined PROLOG processors {LiP84],

AND-parallelism lnvolves the simultaneous execution of subgoals in a clause.
Sioce subgoals within a clause can share variabies, the binding of varlables of
concurrently executlng subgoals must be coordinaied to avold conflicts of a shared
variabie belng bound Lo more than one vaiue. AND-pamallellsm s Umited by the
measures 10 avold conflicts. One approach to avold confiicts is 1o annotate variables
to indicate which subgoals can bind values to specific variables and which cannot
[C1G83). In particular, only one subgoal, called producer, 15 allowed to blad 2
value 10 a varlable. Conery proposed a complex, non-annotated, process-structured
system that dynamically monilors variables and continually develops daia
dependency networks to control the order of executlon of subgoals, never allowing
two potential producers for the same variable to execute in paratlel [CoK83l
DeGroot described 8 method to obtain restricted AND-paralielism by 95!-«.:5«
creation of a parallet executlon-graph expression for each program clause [DeG84].

In OR-parallelism, all subgoals are Independent of each other, and conslstency
checks for shared variables needed In AND-paralleilsm are avoided
[Kow79Mo184). However, an OR-iree representailon is ineficient due to the Jarge
number of branches needed as compared to that of an AND/OR-tree. Given an
Inltiz] query, « A, B, with n ways of solving A and m ways of solving B, the OR-

16

tree containg nXm branches, whereas an AND/OR-tree contalns n+m. To improve
the efficiency of an OR-tree search of logic programs, sevesal modeis that modify
pure OR-paralielism, such as Introducing process bundles [YaN84] and bagof
[CiH84], are proposed.

The search of logic programs IS generally considered different from an
AND/OR game-iree search for the following ressons. First, in contrast to
combinatorial-extremum searches that find the best solution, solving a logic
program corresponds 1o boding any (or all) solution(s) satiafying the given
conditions, the implicative Hora clauses, and the consistent binding of varlables for
ihe subgoals. Second, the value of a node in the AND/OR-tree for a logic program
i either TRUE (success) or FALSE (fallure). The selection of a node for
evaluation is usually based on a fxed order, and heurisiic information to guide the
search is not avatlable. Third, a variable in a logic program can be bound to several
values, and some subgoals may share & common variable. For example, in Figure
5.1, some subgoals share variable x, and x can be bound to any of Ares, John, Tom,
and Zeus. For a particular variable In a subgoal, a subset of s possible values may
be allowed. In contrast, the nodes in a game tree are independent. Lastly, pruning
rules for evaluating the AND/OR-tree of a logic program are different from -8
pruning due to the binary values eeturned by the terminal nodes.

Several parallel models of loglc programs and the corresponding
multiprocessing srchitectures have been studied [FuN82 KKMB3,MotB4,
DeG84,CiHe4 HaAB4,SIMBAL Nearly all these architectuzes were based on ad hoc
search strategies and scheduling methods. In this chapter, we propose MANIP-2, a
multicomputer architecture to evaluate logic programs. However, the goal here is
not in describing the detalls of an architecture, ki in giving the theoretical
foundation of the pecessary search algorithm upon which the architecture is based.
The emphasis of this chapter Is in showing the reasonableness of heuristic searching
and the feasibility of an effectlve scheduling method.

1z

53 Best-First Search of AND/OR-Trees

In most existing compuier systems, decision problems such as logk: programs
are solvad by brute Torce search of AND/OR-trees. Nevertheless, heurlstic
information Is necessary o speed up AND/OR-tree search. In this section, we
examine the heuristic information and prove a optimal search strategy of
AND/OR-tree search.

531 Heuristle Information for Searching AND/OR-Tree

In a decislon problem, the useful heuristic information to guide the search
include the predicted success probability of a solution tree belng found from a
subgoal or clause, and the associated average cost of finding the solution tree.

The success probability of a node (o7 alternatively 2 branch) in an AND/OR-
tree is an & priori probability that reflects the posstbility of finding a solution irec
over all unifications from this node. These probabililies are used 1o gulde the
scarch Initially, and will be Improved n:.n_. more dynamic pruning information Is
obtained.

Assuming that a nonterminal node K has two immediate descendents, K, snd
K, let P{+) be the a prior success probability of a node. Then

KK 1K) (K is AND)
P = 1 (K, }+P(K,) — PK, PR 1K, (K 15 OR) 5.1
Eq. (5.1) can be generalized to nodes with more than two descendents. The
computation of the a prior! conditional probabilities can be complex due to the
shared variables.
The success probabilitles con also be either assigned indtlally by the destgner,

" or determinated by statistic collected during execution. In the lalter case, nea

prior probability is available before the program Is executed, and atl branches are
assumed 10 have equal possibility of success. A deterministic search stralegy, such
os a depth-first search, has to be used Initially.

1

The cosi for searching a n:-.ET depends on the structure and dependence of
the subtrees, ihe query used, and the partiai search resulls atready obtalned. One
way Is to define an average search cost based on ihe estimated probabilities of
success. For node K with descendents K, and K, and assuming that K, is scarched
first, the average search cost s

=)+ s <P (ko 2

Slmulations have shown that the average scarch cost depends on ths struciure
of the tree, but is quite inseasitive to changes In the sucress probability. A
complete binary AND/OR-tree with unitary search cost at the terminal nodes was
assumed. The simulation results depicted In Flgure 5.2 indicate the relationship
between ihe success probabililies of the rcot of trees with height 12 and 16,
respectively, and the assoclated average search cosl. The average cosi is ihe
smallest when p is either zero or one, and s maxlmum when p 5 around 0.5,
Moreover, the difference between the maximum and the minimum oosts is
relatively small, which reflects ibe InsensiUvily of the expected search cost with
respect 1o the success probabiiity.

532 Optimal Strategy of Searching AND/OR-Trees
Let P{(x) and C{x) be the probabliity of success and the assoclated average
search cost for node x. Define the criterla &, and &, for any node x as

3, (x) = %&w (x 1s descendent of an OR-node} (5.3)
P)= .mwlmmﬁqmw {x Is descendent of an AND-node) (5.4)

Simon and Kadane have studied the aptimal OR-tree search and have proved that
the search sequence b= by, ..., b, is eptimal I ®,{b} 3 ®,(b;,,), where the by are
descendents of an OR-node b with precedence relationships [SIK75]. Barnett has
extended their results to opilmal search fram AND-nodes with the assumption :.w-

~
’

™ 5.0
o

-— 4.5
x

~ 4.0
m 3.5
0

¥ 30
e

o 2.5
H 2.0
™

0 1.5
W

o i.0
N .50
&

> 00
o

119

1

-

4

D.0 .20 40 68 80 i.0

probability of success

Figure 5.2 A plot of the search cosi versus the success probablilty of the

root.

120

all immediate descendents are Independent {Bar83]. Garey has proved that the
optimal sequence of performing a set of tasks untit one of them fails or all tasks
are fulbllod 15 in descending order of @, [Gar73].

For a pure OR-tree or AND-tree search, the search order Is well defined by &
single heuristic function. Howeves, when an AND/OR-1rec Is searched, there are
iwo criteria, &, and &, to onder the AND and OR-nodes, respectively. Henco a
complete order cannot be defined for all active nodes. Te resolve this problem, we
can decompose an AND/OR trec lnto & hierarchy of a single OR-tree, ¢ach terminal
of which Is an AND tree {Figure 5.1(b)). The following theorem relates the criterla
©, and @, and defines an optimal search order for an AND/OR-1ree with (possibly)

dependent nodes.
Theorem 5.1: Suppose 1hat an OR- -pode K has n immediate descendent AND nodes,
... K,, and that the AND-node K, 1€i€n, gn.n_.u...&h-:nnﬂ..&n—on
nodes, Ky, .oy U @ J(K) # $(K;yy). then the expected search cost C(K) Is
mintmum when ali descendents of K, are searched before Ky,
Proof: Suppese that K, 1s fouad to be TRUE, then the conjuncuion of the remaining
subgoals of K;, namely, K, Ky forms a new AND-node, K,'. The conditional
probability of K, ..., Ky_ being TRUE, given that K, 1s TRUE is
—A.n.u

PK,)= PUK x_.._ K= REy (5.5

To get the optimal strategy, we peed to compare the probabllity-to-cost ratlos in
EE 10 pode ’_-. and %—#-. :m—-uﬂ Nn_.& AU.MV and Huhw.

pK,) PP (56)

¢ (K,)= x =
W' OK,)

Eq. (5.6) implies that the remaining subgoals K., ... _r.- should be unified first

121

before K;,y. If subgoal K, 15 found to be TRUE, then the above proof can be

applied again to show that the remalning subgosls of K, should be unified before
Ky O

Theorem 5.1 shows that for decision problems the oplimal strategy of
searching an AND/OR trec i5 1o select the mest promising solutlon tree with the
largest @, valus among all passtbie solutions irees, snd to examine AND nodes in
this solution tree in descending order of @, values. The search is swiiched to the
next best solution tree {wilh the next largest @, value) if the first solution tree
fails.

The key Issue in performlog the above opttmal sirategy 15 to find the most
promising solutlon tree with the largest @, value, and for the solution tree
selocted, the node with the largest &, value. If h, the height of a complete
AND/OR-tree, is taken as & measure of the problem size, thea It is unlikely thata
potynomial-time algorithm exists for findlng the most promising solution tree. Let
B, and B, be the numbers of branches of each OR- and AND-node, respectively. If
B, =1, then there are B2 possible solution trees, each of which consists of one
node. To get the maximum @, over a1l solution trees, at least ByY? — | compartsons
are neccdad, This is the lower-bound complexity for computing the largest &, whea
B,=1 In general, ff B, > 1, thea before Theorem 5.1 can be applied, the
AND/OR-tree has to be transformed iato a hierarchy of an OR-ree, each terminal
of which I5 an AND tree. The number of terminal podes in the transformed tree

N3-¥

bas a lower bound of ((B™}™"). Hence 10 select the fargest &, and @, values
would require an excesdingly large amount of compuiational tme. >=o=§.,
approach is 1o store these values assoclated with each node in the AND/OR-1ree
and 10 retrieve the decisions in real time. Unfortunately, this would require a
large amount of storage space With a lower bonnd of the same complexity as stated

above. Therefore, 1t Is unrealistic to apply the oplimal search strategy in respect lo
an AND/OR-tree search.

s

S4 An Eficlent Schedullag Algorithm for AND/OR-Tree Search

In most previous studles, w-a_ocma i resiricted to certaln aspects in the
search tree, such as searching n,so AND or OR-nodes in paraliel. However, ihe
nodes selected for parallel processing should be more flexible, and very few studles
have addressed the problem of processor assigament 10 reduce the information-
dehclency overhead. In this section, we present a scheduling algorithm Lhat does
pot distinguish between AND and OR paralielism, but achedules the oodes 10 be
scarched according to thelr estimated probabilitles of leading to & sofution tree.

An efficient seasch method must lnvolve pruaing. Pruning s used 10 eliminate
unnecessary expanslons when i is determined that a solutlon tree cannot be found
from a subgoal or clause. Two kinds of pruning exist in an AND/OR-tree seasch.
In AND-pruning, If one successor of an AND-node Is known to be FALSE, then atl
its remaining successors can be pruned. Likewise, i one solution Is sought, then
OR-pruning can be applied to prune other successors of an OR-node once one of its
successors Is known to be TRUE. In this chapter, 1t s assuined that one solution
tree i5 sought, and hence both AND-pruning and OR-pruning can be spplied.

Pruning end parallelism are conceptually fllustrated 1n Figure 5.3(a). o2
sequential depth-first search, if Node falls, then Node 2 will be examined next;
otherwise, Node 3 will be exemined, Simflarly, the traversal of Node 5 depends on
the resuls of travessing Nodes 1, 2, 3, end 4. This dependence Informatioa can be
represented In a fail-token-flow graph, Gq, s depicted in Figure 5.3(b) for the tree
in Figure 5.3(a). A node (circle} In the graph will be active only if 1 recelves a
fail-token from an incident edge. When a terminal node is found 1o be FALSE, a
fail-loken Is sent along the direction of the corresponding edge. The coordlnator
(shaded box) in the graph coordinates the ectivitles of the connected blocks. When
a fail-token is recelved from any Incident edge of a coordinator, fall-tokens are
sent 1o all directly connected nodes. At the same time, eny node searched in the
block direcy S.Eonr& to this coordinator can be lerminsled because il doés not

123

Xy

lllll I g S e 2_a
! |
i Py (11) _
| D ¥ _
| 10) @ i
" A
' (/4 Xo x-ﬁ " P7] coordinator
1 o _
Pl ® @ @ @]
: E G N
b @ @ (9 @1

Figuze 5.3 A binary AND/OR search tres with high suocess probability and
the corresponding (all-token-fiow graph, Gy

R e

124

belong 10 the solutlon tree. For example, when Node 3 15 found to be FALSE, then
a fail-token Is sent 10 Node 2. If Node 2 15 found 1o be FALSE, thea a fall-token 1s
seat 1o Coordioator Xp. At this Ume, any node concurvently searched in Block D
can be terminated. When a solution tree i3 found, there is one node in each column
of Gy that returns TRUE. G, can be used to represent pruniag ia AND-parallelism
when the success probability 15 high and most of the terminal nodes are TRUE.

On the other hand, when the success probability of the goal Is low, most of
the terminal nodes are FALSE. ‘The seacch for the Inexistence of a solution tres In
OR-paralielism can now be represented by the success-token-flow graph, G, (Figure
5.4). G, is the dual of Gy In the sense that a fail-token is replaced by a success-
token, and the columns in G, are transposed to become the rows in G, Refersing to
Figure 5.4(a), Nodes 1, 2, 5, and 6 are assigned to four processors. If any of Nodes
1, 2, 5, and & succeeds, then a success-token I8 generated, and ihe next connecied
node is assigned to an Idle processor. Since most of the terminal nodes are FALSE,
the search will be completed when a small aumber of nodes have been searched in
each column of G,.

The token-fow graph obtalned for the root of an AND/OR-tree Is modular
and can be decomposed into modular token-fiow subgraphs corvesponding to all
noa-tesminal nodes in the tree. If the probabllity of leading to a salutlon tree for &
nop-terminal node can be refined as the search progresses, the corresponding
token-flow subgraph can be re-derived. An idle processor can be scheduled
according to the token-fow subgraph derived for the rool of the given subiree. In
Section 5.6 we witl discuss a mulitprocessor architecture, MANIP-2, which s based
on an Intelligent search strategy and e@ective scheduting algorithm.

125

2
E

VA <

inh

Figure 5.4 A binary AND/OR search tree with high fatlure probability and
the corresponding fail-token-fow graph, G,

126

55 Evaiusting Logic Programs ds AND/OR-Tree Searches

In this section, we fliustraie a heurlsiic AND/OR-iree search on ths parallel
processing of logic programs, Special requirements with respect to evaiuating fogic
programming, such as shared variables and ualfication, will also be considered.

5351 Heurlstic Information of Logic Programs

Since the search space of a loglc program & usually very large, an intelilgent
search strategy that guides the search {5 very important, Heuristic information to
gulda the search, such a5 the success probabillty of each subgoal or clause and the
estimated oveshead (or cost) of searching a subgoal or clause, remain an open
problem. o this section, a heuristic search based on the Information of the ratlo of
success probability o estimated cost iy studied. This search strategy Is aimed to
minimize the expected search cost and the dypamic run-Ume overbhead of
evaluating loglc programs.

First, we describe the evaivation of the success probability of each clause, For
a terminal node with variable x, its success probabiltty is m(x)/a(x), whers o{x) 1
the total number of values that variable x can acquire, and m{x) fe the oumber of
values acquired by x In this terminal node. It is assumed that all values In the
domain of a variable are equally likely io be assigned to a subgoai, When a
subgoal shares more than one varlable with other subgoals, and all varlables are
independeat, {ts success probabllity can be computed as the product of Lhe success
probabilities of the varlables. In general, the success probability of & node cannot
be directly determinated by the success probabllities of is Immediate descendents,
since they may be correlated (the descendent nodes may contaln shared ctauses or
subgoals that renders them dependent). It may have lo be evaluated from actual
information in the knowledge base. For example, in Figure 5.1(a), four values can
be bound 1o X, and twa can be bound to y. For the eight combinaUons of values of
x and y, only two of them exist tn the knowledge base. Hence, the success

probability of L{x,y) is 0.25. The success probabilitles can also be deierminated by

127

siatlstics collected during execution. For Instance, in Figure 5.1, the success
probability of the clause L(y,x} « L{x,y}K(x) Is the probability that both L{x.y)
and K(x) succeed. However, L(x,y) and K(x) are dependent, snd the success
probubility of L{y,x} would be dificult Lo compute. Stalistics collected show thal
the success probability Is 0.25, Other success probabllities In Figure 5.1 were
computed by enumerations of atl combinations of binding of variables.

To compute the heuristic value, the cost of evaluating & subgoal must be
cstimated. Since unification bas a linear complextty [PaW?8, MaMB2), the search
cost can be defined by the number of nodes traversed before a solutlon tree Is
found 1o exist or not exist. The cost for searching a subtree depends on the
structure and dependence of the subtreea, the query used, and the partial search
resuits already cbialned. The average search cosi of & swbgaal Is dificuit to be
formuiated mathematically because 1t Is related to the dependence of descendent
subgoals (due to the shared clauses and subgoals). Moreover, the sverage search
cust depends on the search stralegy and the order ibal valus ars bound to
variables, which In tura are driven by the average scarch costs. Hence the search
costs wouid have to be initialiy estimated from statistic collected by a given search
sirategy. As better search costs are oblained, the search will become more efficient,
and betler ¢slimates on the search costs can be obiained. For example, in Figure
5.1, the average search cost for L(y,x) was compuied by averaging the search cost
10 verify the result of 1{y.x) for ail combinatlons of values of x and y. The search
stralegy used In compuitng the costs ia Figure 3.1 sssumed a left-to-right traversal
of the descendents.

The expected search cost of a subgoal represents an average over all possible

_ querles, all passible paths Jeading to this subgoal, and all possible combinations of

valiues of vartablies for a given search sivategy. However, when the path jeading 10
& given subgoal is known, the mintmum cost and the assoctated success prebability
of obtalning a sojution tree are better measures to gulde the search. Of course, thls
will result in an enormously large amount of stored informaition for cach subgoal

that renders the scheme lmpractical.

-

128

552 BAO — a Best-First AND/OR-Tree Search Algorithm for Solving Logic
Programs

Owing to the Intractable complexity of propagating the &, and &, values of atl
terminal nodes to the voot In implemeating the cptimal AND/OR-tree search, an
efficlent top-down heuristic search Is proposed here. As stated in Section 3.3.1, each
node in the AND/OR tree can be assigned an estimated success probability and the
assoclated expected search cost. Thess values, together with the information on the
path leading from the root to this node, can be used 1o compute a heuristic value
for the node. The search will be guided by the heuristic values.

A solution tree i5 a tree such that ali nonterminals are AND-nodes and all
terminals are OR-nodes. To minimize the search effort for & solution free, it Is
necessary to first ind one of the FALSE terminals i this tree, since the search can
be terminated once this node is found, This method wiil be usad 1o compute the
heuristic values for AND-nodes. From the duality beiwees AND and OR-nodez, &
fadure tree Is a tree such that all nonterminals are OR-nodes and all terminals are
AND-nodes. A fallure tree is the dual of a solution tree, such that the entire
AND/OR-tree 15 FALSE If all nodes in the failure tree are FALSE. To stop the
search of a failure iree as carly as possible, It Is necessary 1o verify that ong of the
tesminals is TRUB. This method will be used 1o compute the heusistic values for
OR-nodes.

Referring to the partial binary AND/OR-trec in Figure 3.5, Evvﬁwn that
AND-gode F is 10 be searched. For ihe goal 1o be TRUE, Nodes E and F must be
TRUE. This is the Information thal can be extracted directly from the path leading
from the root 10 B. The heuristic vaiue of Node F will be the ralio of the
probability of verifying Node A 1o be TRUE 10 tke associated search cost. This can
be computed as the ratio of the probability of success of Nodes E and F 1o the total
average search cost of verlfying that Nodes E and F are TRUE or any of them is

129

Figure 5.5 Computzation of the heuristic valucs

130

" PALSE. Note that Nodes B and mwa& be dependent, Other Information, such 4%
nodes searched from B, would be also crucial 1o compuling the heuristic value for
F. However, this loformation cannot be extracied dizectly from the path, and
would require & high run-Ume overhead to maintaln, hence will not be consldered’
here. Similarly, the heuristic value of AND-node 1 18 based on information about
Nodes E, 1, and J. in general, the heuristic value @,(x) of an AND-node x is based
on Information extractable from the path leading from the root to x such that ihe
goal can be verified to be TRUE. The information on the complele path from the
root 1o any AND-node must be malntained with each AND-node.

To compute ®(x) for an OR-node X, the Information extractable from the
path leading from the root 1o X such that the goal can be proved to be FALSE will
be used. Complete information ¢ the path from 1he root must aiso be malntalaed
for each OR-node. Referring to Figure 3.5, ln computing the heuristk valug for
OR-node H, the goal will be FALSE If Nodes C, G, and H are FALSE. Note that
these nodes may be dependent.

The following heuristic-search algorithm, BAO, is & top-down besi-fest search
algorithm that uses heurisile Information about a particular set of solution irees
for a glven AND-node and & pariiculer sct of fatlure trees for a given OR-oude, It
1s assumed that the values of &, are avallable for each set of clauses with the same
bead (an OR-node) in the logic program. Similarly, the values of @, for each
subgoal in & clavse {an AND-node) are also avallable. Tt 15 further assumed that
the valuss bound 1o a variable 2re independent and I & fixed order, and thai the
values of @, and &, are appilcable 1o all instantlations. The following procedure Is
applied teratively by binding each variable to a constant valuz {or to a set of
constant values that could be the domain of the variable) until the goal Is proved
10 be TRUE or FALSE. There Is an Active List containing asks in decreasing order
of heurisilc values. Without loss of geaerality, assume that the goal node, 5, is an
OR-node.

13i

BAO-Heuristic Search Algorithm for one solition tree;

(1) Unitiatization): lnitiate search from 8. if § is known to be TRUE or FALSE,
then stop. Otherwise, create & task for S with the tnformation that S is an
OR-node, and compuie its heuristic value. The fask is Inseried into the Active
List.

(2) (Decompasition): Select a task T from the Active List with the maximum
weuristic value. H T is a ground node, tben go i6 Step 3. If T contalns &
variable that Is not bound, a constant value {or a set of constant values that
couid be the domain of the varlable) is bound 5o the variable, Decompose the
task (an AND or OR node) Into its lmmedlate descendent tasks. The new
1asks, with thelr heuristic values, the Information about the path from 5, and
the values bound 1o varlables are Inserted Into Lhe Active List in the proper
arder. To 1o Siep 2. .

(3) (Pruning); For Task T under conslderation, the following steps will be carrled
out based on values returned by he ground node.

(s) The subgoal or clause (T,) oo the patk from the root to T that is nearest to
1he root and becomes TRUE or FALSE Is found,

(b) The Informatica on T, 15 Incorporated fote all tasks ia the Active List.
Subtasks In some tasks can be removed based oa T, all subtasks within
a task W are removed, then pruning will be carried out recursively on W.

(c) The vatues successfully or unsuccessfuily bound to variables are
broadcast to al} aclive tasks,

(4) The heuststic values for all active tasks are updated. The active tasks are
reordered If necessary.

(4) {Termination: If S is terminated, then return Success wlih the bound values.
If § cannot be bound lo any acw value, then return fallure. Otherwlise, go to

Step 2.

There are severel considerations when Algorithm BAO s implemended. First,

a siogle lst of active tasks s kept, and the AND and OR-nodes are not

132

distinguished. Depending on the heuristic values and whether the node concerned
is an AND or OR-node, the objective is to elther prove thal the goal is TRUE or
prove that it is FALSE. Second, pruning performed in Step (3) requires & large

. overbead because the entire Active List has to be updated and reordered. Howsver,

the merits on the number of tasks eliminated and the better heuristic values
genersted are doubtful. To avold this run-time overheal, pruning can be
performed afier a task is selected from the Active List {Step 2). In thiz case, all
pruning information will be recorded in a common list. Of course, this may result
in some unnecessary iasks in the Active List. Third, the computation of the
ficuristic values could be complex when sll dependency of subgoals and variables
are considered. In practice, some simplifying assumptions may be made In
combining the heuristic values together. For example, 8 heuristic function to
compuie the success probability and cost of a conjunction of subgoals could be the
product of the success probabilitics and the sum of the assoclated costs of the
subgoals. Lastly, the algorithm invesilgaies many possible solution trees In
parallel by switching from one 1o another based on ithe heuristic information
obtalned. This results in a Jarge number of tasks in the Active List, which s a
fundamental problem In many heuristic scarches. To reduce the storage uv.sS
required, stallc analysis can be performed to arrange the clauses with the same
head and the subgoals in each clause in a proper order and use a depth-first
strategy to scarch the AND/OR-tree. OF course, the order defined wili be based on
1he average over ail possible guertes and all possible ways of reaching a particular
subgoal.

The BAO algorithm is Mlusisated in Figure 5.6 by explaining snapshots of
solving the logic program In Figure 5.1. The cost of each unification is assumed 1o
e unity. The query is “Who is bappy7 Node 1 Is unified first, For simplicity,
suppose that all successful bindings are equatly lkely, and that x Is first bound to
John. Let the updated heuristic values be @, and @, respectively. After
decomposition, subgoals 1.(y,x) (Node 2) and R(x) (Node 3) with the corresponding

133

Figure 5.6 llustration of the BAG procedure using the same example shown
in Figure 3.1.

134

heusistic values are inserted into w_z.n Active List. Siace ,(3) > @,12), Node 3 18
selocted, and Node 6 is created. In computlng ©,(6), the goal Is expected to be
TRUE, implylng that Node 2 and 6 are TRUE. Heace the heurlslic aformation of
Node 2 must be inciuded. ‘The correlation between Nodes 2 aad 6 may be complex.
For simplicity, Nodes 2 and 6 are sssumed 1o be Independeat. P(6) (resp. C(6)),
the new success probability (resp. new average cost) of Node 6, Is the product
(resp. summation) of the original success probabllitics {resp. original average cosls)
of Nodes 2 and 6. ,6) becomes 0.2813/10.125. As &,X2) > ®,16), Node 2 1s
selected in Lhe next leration, and Nodes 4 and 5 are created. Intuitively, Node 6 13
likely to be TRUE, but 1o terminate the search for the goal as soon as possible, the
active node that may fail first should be investlgated, In computing @,{4) and
@,(5), the heuristic information on Node 3 must be Included. For example, ©,(4)
16 computed as (0.73%0.25)/{2.5+43). Suppose that varlable ¥ I8 first bound to
Mary. Node 4 Is next sclected, as 2,4} Is the largest among all active nodes. This
means that the possible solution Lrees involving Node 4 is the most promisiog.
Nodes 7 and B are inserted inio the Active List in Heration 4. Note that in
computing &,(7) and &,(8), ¢,(5} rather than ¢,(5) 1s used. The reason for this
is that the goal s expected to be FALSE f Node 7 or 8§ is selected, and the fallure
probability and cost of Node § are needed in this case, but the information on Node
3 (which s inctuded in ®,(5)) does not affect the decislon on Node 7 o 8 9.(Nis
computed as (0.73x0.75)/(1+3). Once Nodes 7 and 8 are instantiated In Terations
5 and 6, respecUvely, Node 2 is known to be TRUE by values returned from Lhe
ground terms. Node 5 can thus be pruned by OR-pruning if & single solulloa tree is
sought, In the Jast iwo iterations, Nodes 6 and 12 are unthed, and the solution is
* Joha is happy.”

133

5.6 Parallel Computer Systems for AND/OR-Tree Search

In this section, we study the problems assoclated wiih the parallel processing
of the AND/OR-{ree representations of logic programs. By minor modifications of
MANIP [WL.Y84), parailel heurlstic search of logic programs can be carrled out
efficiently. The architecture of MANIP-2 is shown in Figure 3.7

The first problem in parallel processing s the unificalion of shared varlables.
When AND-parallelism is Involved, variable binding confiicis must be preventad.
A lot of eforts have been devoled to solving this problem [CIGB3,CoK83,
Dec384,500831 We do not attempt 10 propose & new method to overcome this
problem. Insicad, we assume one or more of the following conditions: (a) that the
subgoals do not share variables; {b) that the shared vartables are uninstantiated;
(c) that a producer subgoal has bound cne or more values to a shared varlable and
forwards them 1o many consumer subgoals. In any of these cases, processors can
carry out tasks Independently.

The socond problem s the granularily of parallelism. If the granularity Is
small, then the tnformation-transfer overhead will be high. In contrast, If the
graoularity s large, then the Information-deficlency overhicad will be high, and the
degree of parallel processing may be small. The proper granularity depends on the
capacity of the communication network, the number of processors, and the relative
overhead belween the top-dowa unification of variables and the bottom-up return
of solution values. In searching a logic program, If the cost of a subgoal selected is
smaller than (he defined granularily, then the subgoal is considered &5 an
tndivisible operation and processed by a stngle processor.

Once the granularity Is determined, the nex) problem &s to determipe the
schedullng of the k parallel processors. Glves a list of active lasks ordered by
decreasing probability-tocost rallos, the problem is 1o deiermine the number of
processors to evaluate each task In parallel. To mioimize the expected completion
Ume, the problem can be formulated Into & complex Integer-programming

optimization problem. Moreover, the processors have 1o be rescheduled again once

136

i T T Bas
DARN subpicblem in secundsry mennsy

Schecrion & Hedsyibuica Newad —

!
1
T
1
-
=
=

e —— - ——————
I

O e o

Figure 5.7 The architecture of MANIP-2, a multiprocessor for parallel
heuristic search of logic programs and AND/OR graphs.

kY

a given solution tree is found to be TRUE or FALSE. Considering ths facts that the
scheduling algorithm is complex and that static scheduling is not feasible, we
decide to assign & free processor 1o each 1ask In the Active List. When a task has
reached Its minimum granutarity, it wili be processed by a single processor until
compleiion.

Another problem Is on resource sharing. For a set of processors evaluating 2
solution troe, It Is necessary 1o search those gublrees with the Iargest fallure-
probability-to-cost ratios. Likewise, for sets of processors examining different
solution trees, the possible solution trees with the largest success-probability -to-
cost ratios must be evaluated. Further, load balaacing must be carried out to keep
sl processors busy. The ring network In MANIP is adequate for load balancing the
processors.

The paraltel selection problem has been siudled thoroughly ln MANIP
[WaMB4] and discussed in Chapter 3. The no-wait poticy can be applied bere to
schedule processors for evaluating subgoals in iis local memory. Subgoals with
large faflure-probability-1o-cost satios (resp. large success-probability-to-cost
ratlos) and & suitable granularity can be sent to nelghboring processors connected
by the ring network when AND-parallelism (resp. OR-parailelism) I3 considered.
Load balancing is, therefore, carried out -automatically with the shufe and
selection of subgoals. .

Yet another problem Is on the communication of pruning information from
one processor 10 anolher processor. When the result on a common subgoal Is
found, it must be communicated to other precessors to stop the processing of a
subset of the ctiminated sotutlon irees and aliow the heuristic values of related

" " tasks to be updated. Stmtlarly, whea etther a sclutlon tree is found or the goat Is

proved 1o be FALSE, all processors should stop further processing. These pruning
Informatlon are more complicated than the Incumbent In the parallel branch-and-
bound algorithm implemented In MANIP, In this case, a bus Is necessary 1o
broadcast to all processars a subgoal or clause found to be TRUE or FALSE. To

| 138

mioimize the information e:xﬂ_mﬂr the subgoal or clause should 8§E 1o the
nonlerminal nods closest to the root in the AND/OR-tree. Other processors
receiving this toformation must update all tasks in lts Active List by reordering
the tasks according to the new heuristic values computed and by eliminating tasks
that cannot lead to a solution tree. The complete path from the root to each active
task must be maintained to allow the pruning Information 1o be incorporated. The
overhead for the propagatioa of pruning information is extensive and may not be
beneficlal because the probability-to-cosi ratios may be fallible. Ths no-walt
policy 18 again mpplied here to continue the evaluation of tasks acoording to
previously computed heuristic values. Information received oa subgoals will be
used to eliminate unnecessary waork when the task is selected.

The last problem on the lmplementation of a heuristic szarch lies tn the
mansgement of the large memory space required. In our study of MANIP, it was
found that a direct implementallon involving an ordered list of pointers to the
subproblems results in a poor locallty of access because the subproblems are pol
ordered by lower bounds in the secondary memory, A specially designed virtual
memory that tailors its control strategles to the access behavior of the algorithm
was found to be inflexible. The inadequacies of these approaches are dus, sgain, 1o
the strict adherence to the selection rule. A better solution Is 10 use ihe no-wait
policy to tmplement s modified heurlstic search in each processor. Ia the modified
heuristic search, the range of possible lower bounds {in this case, the range of
probability-to-cost satios) Is partitloned Into b disjolnt reglons (Figure 5.7). The
subproblems in each reglon are malotained as a separate Mst. The lop portion of
each lst resides In the mals memory, and the resl resides in the secondary
memory. Due to the high overhead of secondary-storage accesses, subproblems in a
List are expanded in a depth-first manner. Oaly subproblems in the main memory
are candidates for sefectlon. The modified algorithm is identical to a depth-first
search when one list Is used, and is Mentical 1o 8 pure heurlstic search when

inbnite lists are used. In general, as the number of JIsts increases, the aumber of

139

+ subproblems expanded decreases and the overhead of lhe secondary-memory

accesses Increascs. The number of Usts should be chosen to maximize the overlap
belween computations and secondary-memory nccesses. Experlence on branch-
and-bound algorithms showad that two 1o three lists are adeguate.

57 Summary
In this chapter, we have investigated the paraliel processing of AND/OR-tree

searches for declsion problems. A logic program is assumed to be represented in the

form of an AND/OR-tree. The results that we have obialned can be summarized as
fotlows.

(1) OR-parsllelism and AND-parallelism have been unihed into OR-paralielism.
The objective of an OR-Aree search 18 to select & sointion tree and Lo prove that
the goal is TRUE; whereas in an AND-tree search, the objective is 1o find a set
of subgoaia to prove that the goal is FALSE. Both types of searches require
only one of the corret descendents to be selected and can be considered as
OR-tree scarches. When the goal is likely 1o be TRUE, OR-parallelism should
be used. In contrast, when iho goal Is tikely to be FALSE, AND-paraliclism
should be used,

(2) Heuristic informatlon using success probabilitles and average overheads of
evaluation have been defined to gulde the search of Jogic programs. This
information ¢an be generaied statically. However, it represenis a prior
information that does mot fake Into sccounl the query used, the dynamic
pruaing information obtained, and the values of varlables belng bound. It is
usefui to roughly differentiate between tasks that are Hkely to lead lo solutlon
trees and those that might not. Moreover, ihey define whether the goal Is
likely 10 be TRUE or FALSE.

(3} An optima$ heurislic search strategy that minimizes the expected overhead of
obialning one solution tree is derived. The search s gulded by the
probabitity-to-cost ratios of subgeals.

140

(4) The architecture of MANIP, proposed earller for the parallel evaluation of
branch-and-bound algorithms, has been extended to implement & heuristic
search of logic programs. Problems on selection and virlual-memory sappori
bave been considered. The strict adherence 1o the heurlstic search i found to
be unrewarding because the probabllity-to-cost ratios may be fallibls, and the
overheads of scleciing tasks according 1o these ratios are high. These overheads
include the update of the ratios when new pruning information is veceived,
and the selection of tasks from other processors or the secondary memory
sccording to these ratios.

144

CHAPTER V1
DYNAMIC PROGRAMMING: AN EXAMPLE OF VARIANT
ARCHITECTURES REQUIRED BY MULTIPLE FORMULATIONS

Dynamic Programming (DF) i3 a powerful optimization methodology that Is
widely appiicable to 8 large number of areas including optimal control, iadustrial
engineering, economics and ariificial intelligence [BeD62,8eB72,CID83,
Ney82,Whi69], Many practical problems involving a sequence of Interrelated decl-
sions can be solved by DP efficiently. Bellman bas characterized DP through the
Principle of Optimatity, which states that an optimal sequence of decision has the
property that whatever the initial state and decision are, the remaining declsions
must constliute an optimal decision sequence with regard to the stxle resulting
from the first decision {BeD62) Subsequently, numerous efforts have been devoted
to the rigorcus mathematical framework and effective evaiuation of DP problems
{KaH67,1ba73, Whi69]

In geaeral, DP 15 an approach that yields transformation of the preblem Into
2 more sultable form for oplimization, but is not an algorithm for ppiimizing the
objective funcilon. Moreover, DI can be interpreted differently depending on the
computational approach, and efficient implementations are based on the correspond-
ing represeniations. In z..u.mnumn. DP 15 a good example 10 show the variant archi-
fectures required by multiple formulations. The AND-tree, OR-graph, and
AND/OR-graph search techniques discussed previously can be applied 1o solving
DP problems.

142

Bellmaan, Dreyfus, White, ,!.a many others viewed DP ax a multistage optimi-
zatlon technlque, that is, redvcing a single N-dimeasiopal probiem to a sequence of
N ane-dimensional problems [BeD62, Whi69], The declsions that transform an Inl-
tial state into a hnal siate must be ordered In terms of stages, and functional equa-
Uons relate state values in successlve stages. The use of monotone sequential
processes has been proved by Karp and Held 0 correspond aaturally to DP [KaH7]
&and has been further developed by lbaraki [Iba73) and Kumar [Kum84l On the
other hand, (enst and Montanarl have showa that formulating a DP problem in
ierms of polyadic funclional equations Is equivalent to searching for a minimum-
cost solution tree in an AND/OR-graph with monolone cost function [GMME])
DP can also be formulated as a speclal case of the branch-and-bound atgorithm,
which I8 & general top-down OR-tree search procedure with dominance tests
[MoM76,1ba77,L1W84). Lasily, nonserial DP hag been shown 1o be optimal among
all nonoverlapping comparison aigorithims {BeB72,Ros82).

Although DP has long been recognized as a powerlul approach 1o solving &
wide spectrum of oplimization problems, its applicabllity has been somewhat lim-
ited due to the large compulational requirements. Kecent advances In Very-Large-
Scale lategration (VILSI} and mulllprocessor technologles have provided feasible
means of implementation, Casu, et al., have studled paraltelism in DP [CRL73).
Gulbas, Kung and Thompson have proposed a VLS] a_uo_.__b.:— for solving the
optimal parenthesization problem [GKT?9L Linear plpelines for DP have been
described recently [VaR84). Clarke and Dyer have designed a systolic array for
curve and llne delectlon Ia terms of nonserlal DP {CID83]. Wah, e al., have pro-
posed parallel processing for branch-and-bound algerithms with dominance lests
{WLY83). However, these studies were directed towands the implementatlon of &
few special cases of DP formulations.

In this chapter, we classify DP problems iato monadic-serial, polyadic-serlal,

monadic-nonserlal, and polyadic-nonserial. Potential parallellsm and the

correspondiag systolic architeclures are lnvestigated for each class. Qenerally, a

143

problem can be expressed In diferent DP formulations, and the efficiency and costs
of implementation must be compared.

DP problems can be solved as the search of sn optimat path in s mullistage
graph or as the search for an optima! solution In an AND/OR-graph. We will
adopt the graph search as u paradigm to lllustrate the various approaches of DP, To
take advantage of the regular EE limlted tnlerconnections of systolic arrays, the
graph should have a regutar structure. For DP problems in serial formulations, the
corresponding graph representations are seral; however, for nonserfal problems,
they must be converted Into serial formulations before efficlent Implementations
can be found. A type of regular graphs of spectal interest is Lhe multistage graph
In which nodes are decomposed Into stages, and nodes In one stage are connected to
nodes in adjacent siages only. From another point of view a mulllstage graph can
be segarded as a folded OR-tree. Figure 6.1 depicts two examplies of multistage
graphs.

6.1 Claxsification of Dynamic-Programming Formulations

A DP formulation I& represenied In & vecursive Funcilonal equation whose
left-hand side Kdentifics & function name and whose righi-hand side is an expres-
sion Involving the maximization {or minimization) of values of some cost Func-
tions. Note that the cost functions are nelther resiricted to be monsdic nor addl-
tive; however, they must be monotone in order for the Principle of OpUmalily lo
hoid. DP formulations are classified according to the form of the functional equa-

tions and the nature of recursion.

144

Figure 6.1 Examples of multistage graphs

143

6.1.1. Monadic versus Polyadic Formutations

A DP formulation s called maradic if Its cost function involves only one
rocursive term, otherwise i is called polyadic. The distinction is tilustrated by an
example in fading the mintraum-cost path in 3 multistage graph. For a multistage
graph, _a.a:enﬁaganun&nu. The cost of a path [som source, 5, W sink, L, Is
the sum of costs on the cdges of the patk. Define f,(1) as the minimum cost of
path from i to L Thus the cost of & path fsom 1 to t via & neighbor jis i, To
find £,(1), paths through all possible neighbors must be compared. Hence

L= s.s ey, + 1, (0 (6.1)

This equation is lermed a forward functional equation. Stmilarly, 1f 1,(1) 18 defined
BEEE—E.E.BQ.&-?En-oaus.,gvgn%—ﬁﬁggaa

()= s.s P+l (6.2)

This equation s termed & backward finctional equation. The formulations In Eq's
€6.1) and (6.2) are monadic since each cost function Invelves onc recursive term
only.

Eq’s (6.1) and (6.2) can be generalized tn find the optimal path from any ver-
tex | to any other vertex } The functional equation Is

£(L) = min [£,(K) + (kD] (63

kEV,,

where 3(1,)) is the minimum cost of a path traversing from | to and passing
ihrough & node In Stage V. This cost function is polyadic because It invotves more
than one Tecursive term. Exampies of this kind of problems include finding the
optimal bisary search tree and computing the minimum-cosi order of multiplylng
a string of matrices.

For polyadic DP formulations, Beliman's Principle of Optimalily must be gen-
eralized to include the statement that “all subsequences of an oplimal potlicy are
alsc optimal.” For Instance, according 1o Eq. (6.3), if it Is found thal the

: 146

i

minimum-cost path from ¢ to | passes ihrough k, then the subpath from i to k of
“this optimal path must be optimal over al! subpsths from | to k; 5o is 1he subpath

fromkto) '

6.1.2. Serial versus Noasecial Formulations

The distinction between serlal and nonserial optimization problems is based on
both the form of thelr gsbjective functons and the nature of recursion. From the
objective fuaction, an opiimization problem is sald 10 be serisl if all terms of fis
objective function share one varlable with its predecessor term (except for the first
term) and another one with Ms successor term (except for the last term); other-
wise, It Is sald 10 be nonserlal. The name “serfal” vefers 10 the interacilon graph to
represent the problem, in which vertices stand for variables, and an edge exist
between two vertices if and only if two variables beloog to & term of ihe objective
function {BeB72). It 1s obvious that a serlal optimization problem has a correspond-
ing Lnteraclion graph with a serlal structure.

An example of a serlal optimization problem is depicted In Figure 1{b). In this
multistage graph, each stage, X, 1 <ISN=4, stands for a discrets varlable, and
Nods x;, stands for tbe J'th valug laken by Varlable X,. Bold characters are used
10 denots vectors and matrices, and variables here can be consldered as veciors of
defined values. If the cost of edge (3 %41,) B &y X¥iny,). then the
minimum-cost path from any node ln Stage | 1o any node in Stage N is

H-l
min f{X)=min ¥ g{X, X34y) (6.4)
i I mi

where X 1s the set of discrete variables Xy, ... Xu). In Eq. (6.4), every term of the
abjective function bas two varlables that only interact with vartables in the neigh-
boring terms. Therefore, Eq. (6.4) 1s a serlal optimization problem.

Many practical DP problems can be represented In a serlal formulation. For a

trafic-control problem, X, can be the possible tmes for the trafic light to be in

State |, and the cost on an edge of lhe graph representation IS the difference tn

147

timiag. For s circuit-design problem, X, can be the possible voltages at Point I, and
the cost of an edge of the graph representation may be Lhe corresponding power
dissipation. For a fiud-flow prabiem, X, can be the possible pressure values In the
I'th pump, and Function { may be the Bow rate for a glven pressure. For a
scheduting problem, X, can be the possible task service times for the 'tk task, and
the edge cost reflects the delay. Note thai the opuimal-path problem in multlstage
graphs is a special case of seriad optimization problems.

In cantrast, the cbjective function of a general nonserial opiimization problem
has ihe foilowlog form.

(X = & g(X) ©5)
]

where X = [Xj, ... X)) I8 8 528 of discrelp varlables, X'CX, and © is & monotone
function relating the g iogether. For example, {he following equation is 8 noa-
serlal oplimization problem.

s.”_, 10K X XD+ 82X, %) + g3(X;. X))

where X = {X,, .. X3}

From the viewpolat of recursion, a DP problem can be represented as a folded
AND/OR-tree (or AND/OR-graph) in which the podes are classified lato levels or
stages [MaM73). If this AND/OR-graph has & serial structure such that arcs only
exist between adiacent tevels, then the corresponding DP problem has 2 serlal for-
mulation. For nonserial DP problems, the dependency belween states is not res-
tricted 19 successive stages, bul may exist belween atates in arbitrary stages. lo the

. corresponding AND/OR-graphs, the arcs are not restricted to successive levels, but

may run between any two arbitrary levels.

As an examgple, couslder the problem of finding the optimal order of mulliply-
ing a string of matrices. ¥or slinplicity, consider the evaluation of the product of
four matrices.

M = M XM XM xM,

148

where M, 1€1€4, is & matrix with 1, fOWE and 7, columns. Let my; be the
minimum cost of computing M. XMy, Clearly,

myy = ; R-Mp HH—_.D + Mgy + —.—I—.—.w.—.—u (6.6)

The solution to be found 15 m, 4 This formulation I8 polyadic-nonserial and can be
represented as the scarch of an AND/OR-gragh os shown o Figure 6.6, where the
AND-nodes denote multiptications and the OR-nodes denote comparisons. In Fig-
ure 6.6, the topmost node represents the origlnal problem of BE:E«E-._.Q:.
matcices. This can be achieved In three ways: (1) (MM XM XM (2)
{M XM)X(MyXM,); or (3) Mp<(M;xMxM,). These three alternatives are
represented by the three AND-nodes in the second level. Nots that the st AND-
sode in the second level, which denoles My yMyq is connccted 1o the node
representing my ¢ in the bottommost level. Similarly, the third node is connected
to the node representing my, in the bottoramost level. These arcs do not connect
nodes in adjacent levels, hence the formulation In Eq. (6.6 is polyadic-nonserial.
We bave classified DP problems in terms of thelr recursive Tunctions! equa-
tions and objective functions. Monadic and polyadic DP formulstlons are distinct
approaches 10 Teprescting varlous optimization problems, while serial and non-
serlal optimization problems are problems solvabie by the corresponding DP for-

mulatlons.

62 Solving Monadic-Serial DP Problem By Searching Folded OR-Tree

Monadic-serlat DP problems can be convenlently solved a5 the multiplication
of a string of matrices. In this section, three efficlent systolic designs are presented.
The proposed designs do not exploit all potential parailelism of solving 2 given
problem, especially when the pumber of stages is large. Other parailel designs
using different formulatlons may allow a higher degree of parailellsm and will be
discussed later.

149

6.2.1 Searching a Folded OR-Tree as Multiplying » String of Matrices

We have shown that the search for a sotution of a problem In a monadic-serlal
DP [ormulation can be viewed as finding a’'path In a muttistage graph. For the
multistage graph in Figure 6.1{a) and from Eq. (6:2), 1(C,), the minimum cosl
from C; o, is:

—.HO—U = min —n-.—zu.—. 1= h.*b».-. 1= .u.*bu.__— 67)

£{C,) andt £(Cy) are obtstned similarly.

Bq. (6.7) 16 similar 10 an tuner-product operation. If we define matrix multi-
plication 1o terms of a closed semi-ring (R, MIN, +, +oo, 0), Ia which ‘MIN’
corresponds o addition and 4+ corresponds o muitiplication in conventional
matsix multiplications [AHL74), Eq. (6.7) becomes:

c) 11 G2 S| P
anw = D= —..nnw = 1 Ou.ﬁ ﬂﬂmu 2.4 m@.wu
Cy}f [ean €32 G| Paa
Likewiss, we have:
f(B)=B-(C'D)

A =A-(B-{C-D)

Thus sclving the multistage-graph problem with a forward monadic DP formula-
tion Is equivalent to muitiptying & string of matrices. The order of multiplications
is reversed In backward monadic DP formulations.

For a mulllstage graph with N stages and m vertices in each stage, the compu-
tational complexity Is (m3N). For single-source, single-sink problems, the st

and Iast matrices degenerste into row and column vectors, respectively.

150

622 Systolic-Array Implementation
Three lincar systolic arrays for evaluatlng problems In mooadic-serial DP for-
mulatlons with paralle! Inputs are described In this section. The following scheme
is based on a combination of two methods of multiplylog » matrix with a vector,
one of which was discussed by Kung [Kun?9). Figure 6.2(a) depicis a scheme for
computing (A<(BLCD) for the muitistage graph in Figure 6.1(a), An iteration Is
defined a5 a shift-multiply-accumulate operatlon with respect 1o the Ume at which
a row or column of the lnput matrix enters a glven processor. Nole that the same
- Jteration number are carried out at different Umes in different processors. The
Lterstion numbers are indicated in Figure 6.2(2). In the Grst thres llerations, C1) is
evaluated. The control signal FIRST 1z one; D, the inpul veclor, is scrially shifted
into the systollc array; and the resull veclor, {r(C)), 1=1,2,3}, remalns siationary.
At the end of the 1hird lteration, FIRST Is set to zero. In the following three iters-
tions, B{(CD) 15 computed. Note that Matrix B 1s transposed, and the I'th column
of Matrix B is fed into P, The Input vector, {f(Cy), 1=1, 2, 3}, remains stationary,
while the result vector, {f(B)), =1, 2, 3], is shifted. At the end of the sixth liera-
tion, the output vector {f(B), 1=1,2,3} is formed. In the lnst three llerations,
input vectors A and {{(B)), =1, 2, 3} are shifted lnto P, 1o form the final result,
For the systolic array in Figure 6.2(a), the data shifted alternale between the
input vector and the result vector every three fterations. This alternation can be
controlled by the processor structure of P depicted in Figure 6.2(b). R, Is a register
{hat stores an element of the Input vector, and A, is the accumulator that stores the
temporary resuit of an element of the result vector. The data paths are controlled
by control signals ODD, and MOVE,. When the aumber of matrix multiplications
is odd, ODD; Is one, bence R; 1s connected o the output, and the input vector is
shifted along the pipeline. When the number of matrix muitiplications is even,
0DD, is zero, A, is connected 10 the output, and the resull vector Is shifted. At the
end of a matrix multiplication, the resuit vector generated becomes the lnput vec-

tor in the next leration and is moved by the control signal MOVE, from A, to R;.

eraton

[3]

b2

®3.2

meralion

)

Figure 6.2 A pipelined verzion of systolic erray for computing a string of

la}

matrix multiplications

152 153

Note that thete Is & one-cycle delay between switching the control signals for Py
and Py

To search a multistage graph with (N+t) stages and m nodes in each Inter-
mediate stage (the first and last stages have one node each), it takes N'm Herations
with m processors. There is no delay between feeding successive Input matrices
into the systolic array, and the processors are kept busy most of the time. In con-
trast, it takes (N—2)m*+m Iterations to sclve the problem with a single processor. . g
Define PU, the processor utilization, as the ratto of the number of serial Heratlons to
the product of the number of paratiel iterations and the number of processors- PU

1
“
1
1

-

for the above sysiolic asray Is: _m

N-2mi+m _ N-2 , 1
‘m'm - tum (6.9} a3AR3 A

When N and m are large, PU is very close to L.
Although the proposed systolic array is designed for matrioes In which each

pu=_{

*y

v SEEEEB TP
clement s a single constant, it can be extended to many practical sequentially- , i -
controlled systems, such as Katman Eltering, inveatory sysiems, and multisiage

production processes, in which each matrix element is a vector with many quan- A e B s I i A <,

tized values, [n this case, the poleatlal paratielism coukd be very large.

| broadcast is atlowed, the above scheme can be simptified, In what follows,
a linear mystolic array with parailel inputs and broadcasting 1s described. Figure
6.3(a) depicts a scheme for computing (A-(B{CD)) for the multistage graph dep-
kted in Figure 6.1(a). In this scheme, all input matsices are fed loto the systolic
array in the same format. In the fisst three iterations, CD is evaluaied. The con-
trol signa) FIRST i5 one; D, the input vector, is broadcast 1o all PEs; and the inter-
mediate resuits of £(C,), 11,23, remaln stationary. At ihe end of the hird ltera-

LW AL

tion, the result vector Is gated into registers 5;, 55, 5y, by the control signal MOVE
(see Figure 6.3(b)), and FIRST is set 1o zero. Since FIRST is zero, f(c) =123,
are fed back and broadcast as new Inputs. In the following ihree Mevations,
B-(C} = B(CD) 1s computed. At the end of the slxth iteration, the output vector

L]

matrix muitiplicaticns.

FRST

Figure 6.3 A systolic array with brosdeasts for computing a string of

154

{1{B)), 1=1,2, 3} 15 formed, in the last three iterations, Inpu§ vectors A and {F(B,),
1=l, 2, 3} enter PE P, to form the fiaal resull. PU for the simplified systolic array
is the same as Eq.(6.9).)

The degree of parallellsm of the proposed scheme la restricled by the limited
oumber of input/output ports in a VLSI chip and the fact that the ratio of the
computational overhead i the laput/oulput gverhead is relatively low In matrix-
vector mulUplications. The input/output bottleneck is due to the targe pumber of
edge costs that must be fed Into the systolic array. For the serisl optimaiization
problems formulated by Eq. (6.4} and illustrated In Figure 6.1(b), the edge costs
are expressed as functions of the nodes connecled, and hence caly the values of the
nodes have to be Input. This resulls In an order-of-magnitude reduction In the
input overhead.

The search for an optimal assignment of X,s lo Eq. (6.4) corresponds 1o the
search for the shortest path (o a mulustage graph, where nodes la each stage
represent values Lhat can be assigned to a varlable. An example graph with four
variables, each of which can take on three quaatized values, 13 shown in Figure
6.1(b). There are multiple sources and sinks, and ail possible paths from any ver-
1ex o Stage) fo any vertex in Stage N must be compared, Syslolic processing is
suitabie when the number of quantized values lo each stage Is constant, and the {3,
the functions 10 compulte edges ¢osts, are independent of L

To solve Eg. {6.4), the variables can be eliminated one by one. First, X, ks
considered. Since oaly one term, F(X,, X;), Is affected by X, It Is sufficient to

computa

ﬂ-ﬂxuw = HW—H— Hﬁx—- xﬂu ﬂo.—cu
L

In other words,

Wﬁxu.fv = u.—..”wnwn —.Hﬁu.__. x..w.__-u Mu.mum Vﬁu

The optmizallon problem then becomes

133
N-t
- 871
H_ﬂ__.-u nxu ﬁ-M-——Hﬂ-— -AKNU + —,m Hﬁx? x—ﬁ-w ﬁ@ i u
5 8 -anwu Is defined as
H—kau - ﬁ—b—’ﬂxﬂiuv + nxﬂln. %ruv NMRAZ MG. —ww
-+

or

hlx,)= . hﬂ".n..-. (Bl 3+ 006y ooy,

., €%, 2Kk €N

then hxy) represents the shortest path from any veriex In Staga |k lo xy o, After

eliminaung k—1 variables, X,, ... Xy, the remainiog optimization problem
becomes

!...-
aﬂnﬂ ﬁﬂxu - ﬂl—ﬂ-.-q-—._l—w_ﬂrl-— FAXFV + mfhﬁx—. xutuw AO.—NV

Floally, we get h{X),), each element of which represents ihe shortest path from
any veriex in Stage | 10 a node In slage N. The problem is solved by comparing the
m elements of h{Xy).

Figure 6.4 shows a systolic array with three PEs that performs the search of
the graph in Figure 6.1(b). PE P; consists of hree regisiers, R, Ky, H, and three
operalion componeats, By, A, C. Input data pass through R; in a pipelined fashion.
Feedback data are maintained In K; and H, until new data replace them. The opera-
tion componests, By, A;, C;, are used to compuie function f, and perform additlons
and comparisons, respectively. For simplicily, function f 15 assumed 1o be indepen-
dent of i, and heace the subseripts in Fy, A, and C, wili be dropped. The coanec-
tions of the registers and aperation components are shows in Flgure 6.4(b).

‘The systolic array Is Initlalized by zerolng all registers, Hs acd K;s, and by
sequentiafly loading tnpwt data in Xy, X) g, e Xy . 10 PES Py, o By As the Inter-
mediate results are shifted oul from Py, the feedback controller feeds them back in

a

LT

156

(b}

£

=5

i

4

TNy

£ -

"c ll.
B
E ~
% a
i7:
m lhl
sS:
£
L3k
:
H
3
*
s

R
.Zlho'l'.'f_'-—'

1}

L
3 el

.
KeZ,l kel

PméAAmmmywmmmqumsmnlna

monadic-serial DP problem.

157

a round-robin fashion. Refecring to Figure 6.4(a), when x;; enters Py, X3, and
B(x, ;) (equais 0) leave P, and are fed back 1o P, through the feedback controller.
£(x, 1, X3,) and By} = min (0, hlxy,))+(x, 1, ¥3)) are thea computed in Py, In
the next Meration, X, enters Py, X, and h'(xy,) are shifted to Py, and x, 5 and
h(x; 2) (oquals 0) ase fed back by the feedback controller to Py. In Py, 1x; 5, %34)

- and -uﬁﬂuz—u »= min H—-ﬁlu-—u. Fﬁﬂ—hu.—.—.ﬂﬂ-.u- L5 = are 8—.—.——!:.&. In m-—. —.Hnw.- Kn.wu

and £'(xy) = min (0, hx; , HE(xy g, %;2)} are computed. When X3, and h¥(x,,)
arrive at Py, blx,) =h¥{xy,) Is evaluated, and x;; and hlxy,) are fed back to P,
at the end of this lteration. Input data are continuously shifted into the pipeline,
and the process Is repeated. For the graph in Figure 6.1(b), the process is completed
in fifteen lterations.

In geoeral, 1o evaluaie the optimal path for an N-stage graph, cach with m
quantized values, a pipeline with m PEs is needed. Between the {((k—1)m+1)st
and (km)'th iterations, 2SKEN, X, y, Ny g toter the R-plpeling Xy g and
bxy_y), 1€1€m, ave fed back to reglsters K, and H, In the ((k—1)m+)'th itera-
tion; and 1™(x,), B}y), ..., By ;) are obtained at the end of the (x*m)tk
Iteration in P, ... P, After N°m Iterations, 1344}, e KXy) 27€ ObtaINEd 10
P, o Py, and the Gnal solution Is obtained In Py, by comparing blxy) o By}
Thia is done by setting F=0 In the Jast m iterations and circulating the values of
b{xy,), 1€1€m, through the pipeline. Therefore, the total computational time is
(N+1)m Herations, each of which Includes the time for the computation of func-
ton ., one addition, and oce comparison, PU for this scheme Is
N-D?+m)((N+))mem)L

Although distinct feedback lines are shown in Figure 6.4(a), only one of the

" feedback lines s used In any jteration. Hence a single broadcast bus suffices, snd

1he station to pick up the data from the bus is conirofled by & n_..a:_y-_..n. token.

If the optimal path In addition to the optimal cost value is destred, N path
regisiers, each of which can store m indices, are needed in P,,. In the computation
of h™{xy,,) = n.____ Iy PHlx g Xy gy e VSKEN-L, dndex f, 1€ <€m, of the

, 158

H
edge (x, 1, Xgy ;) belonging to the optimal path from any vertex In Stage 1 to Ver-
16X X, Must be propagated In the pipeline and is known to P,. Index | Is stored
in the I'th word of the k’th path register. The potaters stored in the path registers

are used Lo trace the optimal path at the end of the computation.

6.3 Solving Polyadic-Serial DP Problems by Searching AND Trees

Recail that a serlal optimization problem can be sotved as the muttiplication of
a string of matrices. However, & problem expressed in » monadic-serial formula-
tlon does not explolt ali the potentiai parellelsm because the order of mairix mul-
tplications 1s fixed. On the other hand, there s more flexibility for parallelism
when the problem is formulated In & polyadic equation because the matrices can be
multiplied recursively by a divide-and-conguer algorithm.

As mentloned in Chapter 2, one important issue in parallel divide-and-
conquer algorithms is the granuarity of parallelism fWLYBSL. This 1s the
minimum size of a subproblem that is evaiuated by a v..onmﬂo... in order to achleve
the optimal performance, as measured by either the PU or the AT? (or (area) x
{computational time)) criterfa, In Chapler 2 we have Investigated the oplimal
granularity of the paratiel AND-tree search. Note that when mulilplying a string
of matrices, the amount of computatlons 1o comblne iwo podes in any level of the
correspondiag AND-tree (s Independent af the problem slze, ie. C(N) = 6{1). Coa-
sequently, the results obiained in Chapter 2 on the oplimal granularity of paralle!
AND-tree searches can be applied here.

Counslder the polyadic-serlal DP formulatioa in Eq. (6.3) for the multistage-
path problem in Figure 6.1(b}.

0= min {00+ 60001 £6.14)

k€vgTaa%t

——
Processors and ayatalic srrays are aynonymous here,

159

where £,(1,]} Is the cost of the optimal path from | io), and & is a node in Stage 2 of
the graph. In matsix aotatlons, let £,(V,,Vy) be & cost matrix, each element of
which denotes the cost of the optimal path from a vertex in Stage § 1o a vertex In
Stage J. It is easy to see, for an Intermediate stage k beiween) and |, that:

u.uﬂ<-.<—u - —.uﬁ<a.<wu . -.um<w.<hv Aa.wuv

This formulation allows a string of matrix mulliplications 1o be reduced to two
smaller strings of matrix multiplications.

The fastest way to mulilply N m-by-m matrices is o locale the mairices In
the leaves of a complete binary tree of helght __oauz m The N-stage graph problem

can be solved in _B —_onuz__ time unils with {N/2 | matrix-muliiplication systolic

arsays [LiW85], The PU and AT? measures, however, are relatively low when (N)
processor are used. Suppose that each processor {or systolic array) deals with the
muitiplication of & patr of matrices and the Ume o Implement a matrix multiplica-
tion is taken as unity (assuming that all matrices have identlcal dimensions). To
multiply & string of N matrices, KT and KT# are imintaum when 6(N/logN) pro-
cessors are used and N is sufficiently large.

So far, the matrices are assumed to have identical dimensions. When this 1=
ool true, the order In which the matrices are mulitipiled together has a significani
¢ffect on the total number of operations. Finding the optimal order of mulliplylng
a string of matrices with different dimenslons Is #iseif a polyadic-nonserlal DP
uqo._n,_u. the so-called secondary oplimizatlon problem [BrE0,BeB69). Guibas,
Kung, and Thompson have proposed a systolic array to solve the optlmal
parenthesization problem, which can be used 10 sompute the minimum-cost order
of multipiytag a string of matrices [GKT79). Oace the optimal order is found, the
processors can be assigned 1o eveluate the matrix muitiplications in the defined
order and In an asynchronous fashlon. In this sense, the tree of matrix multiplica-

tlons can be treated as a dataflow graph,

160

64 Solving Polyadic-Serial DP Problems by Searching Folded AND/OR-

Treea

In this section, we discuss the evaluation of polyadic-serial DP problems as
AND/OR-graph scarches. AND/OR-graphs are naturally obtaiaed by represeating
the DP problem using a problem-seduction method. The mapping of a regular
AND/OR-graph onto a systolic array Is straightforward and will be illustrated in
the next section.

Polyadic-serial problems are discussed with respect to the search of & multis-
tage graph as formulated by Eq. (6.4). Suppose an (N+1)-siage graph, with stages
from O to N and m nodes in each slage, is divided Into p subgraphs, each of which
contains Njp+} consecutive stages. For simplity, assume that N=p*, where ¢ 1u a
non-negative integer. The minimum-cost path has to pass through one and only
one vertex in Stage 0, N/p, ..., p Nip in the segmentied graph. The cost of a path
equals the sum of costs of the p subpaths. I all the m? subpaths Crom the m ver-
tices in Stage I N/p to the m verlices in Stage (1+1)Nip, 0£i€p~1, have been
oplimized, there are m**! possible combinations of subpaths from Stage 0 to Stage
N that must be considered for the optimal path. Using » divide-and-conquer algo-
dthm, each subgraph with N/p+1 stages is further divided into p smaller sub-
graphs. This pariitioning process continues unili each subgraph has one stage.

The partitioning process can be conveniently represenicd as an AND/OR

graph, In which an AND-node corresponds 1o a subproblem sum, and an OR-node
corresponds to aliernative selecttons or comparisons. In this case, we have a regu-
lar AND/O%-graph of helght 2-log,N, whose AND-nodes have p branches (p-arc
nodes) and whose OR-nodes have mP? branches (m¥!-arc nodes). Figure 6.5
shows an AND/OR-graph that represents the reduction of the multisiage-graph
problern with m-2 and p-2 from three stages 10 one stage. The four nodes at the
top of the AND/OR-graph represenis the four possible alternate paths In the
reduced single-stage graph. The shortest pzih s obtained by a single comparison of
these paths.

of Neovies
1

161

Figure 6.5 An AND/OR graph :ep:muﬂondthetﬂncﬂmin!mdﬁgan
opumaipnthinas-nuemphtoal-megnph.

i 164

6.5 Parallel Processing of Zo_“uuu..n_ DP Problems

It has been shown thai unrestricted nonserlal oplimizatioa problems are NP-
hard, but problems with a favorable pattern of term Interactions may be solved
efficiently [BeB72). The key of DP is to break a complex oplimization problem Inio
a sequence of easler subproblems. In serial optimization problems, varlables are
shared by successive terms in the objective function and hence can be dealt with
one by one. This sertal structure allows efficlent parallel processing, especially sys-
tolic processing. On the other hand, to implement nonserial DP problems by sys-
tolic processing, they may have 1o be transformed into the corresponding serial for-
mulations before they are implemented. This transformation is possible If the non-
serjal problems have some special structures.

Generally speaking, there are two ways to convert & nonserial formulation
{nto a eerial one. One way is to combine several primary varlables Into & new vari-
able. Another way s to transform an irregular AND/OR-graph into regular one by
adding dummy nodes. The former one Is sulted for solving monadic-nonserial
problems, and the latler ons is usually applled to solving potyadic-nonserial prob-

lems, These methods are fliusirated by some exampiles in the following seclions.

631 Solving Monadic-Nonserial Froblems

An approach to solve a monadic-nonserial problem with some structural pro-
perties {3 to frst convert it Into & monadic-serlal problem, such as a mulusiage
graph-search problem, and to map the serial formulation Into systolic arrays.

For the nonseriai formulation in Eq. (6.5), a multistage optimization pro-
cedure can be carried oul separately for each variable V. Of course, this optimiza-
tion must be performed on all values of the independent varlables that “Interact”
with V. Let Vy, ...V, be the varlables that are related 1o Vy In on¢ or more func-
tional terms. The cost function can be writien as:

v, en vd= min hylvy, v, VO 0000 i Vg Vg e V) (6.18}
L EV, ' '

163

where b; i a funclion independeni of V. By denotlng Biop A8
mia by(v, Vi o <ru. 1he cost funcllon can be rewritien as:
v,

ﬂﬁe_—. ey GIw - f..q-W—ﬁ-— —,-—§h-ﬁ<.......<-.u+=uﬁ<—.:..¢__l-.ﬁ: —?...daw ﬁ&. u@y

A muilistage oplimizatlon process is, therefore, a step-by-step elimination of al
variables, The computational time and storage depend on the aumber of elements
in the domaln of function hy. Eq. {6.19) can be treated as a monadic-serial form If
the evaluation of by ,,, Is done separately.

The melhod & Illustrated by the following example. For instance, If
V=V, }...|J Vg and the objective function 1s:

—_A<uﬂ ﬁ-aw“ —u-aﬁ-ndﬂ.chu +wwm<u.4u.<au+.:+ nzluadw._lnﬁﬂza_.a-zu— AGNOH
bl

Let by{vy,vy) = min g,(v,,¥;.v;), we have:
v kY,

.Tu
B_nRSIa_z —_:?.u.cb +H w,?_.c_;.e:uw— a.n:
v v=v, =]

Ir andw,vu.d«-,qvu I5 debined as:

R{VieiViea) = Tin Iy (Vv + BV Vi Vaeatt {6.22)
{ S

Eq. (6.22) represents the minium of the summation of the first k terms of F(V).
After eliminating k varlables, V,,.., V,, the remaluing optiimization problem
becomes:

N-2
by Vi Vasad + L BV VienVied) (6.23)

n 6l(V i
=._<= ¢ ul.c.#(—@.ﬂcch fui kb

The monadic DP procedure, thus, eliminatcs the varlables in the order
Vi o Ve If the varlables V, and V; are treated as a single variable in a stage,
and my, } €k <n, quantized values are allowed for Vy, then there would be mymy

slates In this stage, and m,"m;-m; steps are required to ellminate Vy, in which &

166

step consists of a computation of function f, an addition, and & comparison opera-
tion. The process of eliminating the remaining variables is repeated uatil Vi, and
Vy remain. The optimal solutlon is obtained by comparing all values of
by—2{ vy V) The total number of steps required to compute Eq. (6.20) is:
-“vm”aﬁu.swt.n.-tu + my_y'my (6.24)
In short, the monadic-gonserial problem 1n B (6.20) 1s solved from the fol-
lowing serial problem.

min (V) =min T?rfq +gvivy (6.25)

4 ot Bl Vica Ve, u—

where the new variable V, Is combined from V, and V;,,. From this example, it Is
observed that more operations are needed for evaluating monadic-nonserial DF
problems than that of monadic-serlal DP problems. However, the potential paral-
lelism 15 higher, and there Is no Increase In delay in processing the transformed
problem. With additional control, the linear systolic array presented earlier can be
applied 10 evaluate monadic-nonserial DP problems.

652 Solving Polyadic-Nonserial DP Problems by Searching AND/OR-
Graphs

AND/OR-graphs can be sequentially searched In a breadth-first bottom-ugp
fashion, which expands nodes by levels from the bottom up {N1180). Since an acy-
clic AND/OR-graph can be viewed a5 a folded tree, searching the AND/OR-graph
can be accomplished by searching the corresponding AND/OR-tree. In a parailel
AND/OR-tree search, {he nodes In the tree are evaltuated In paraliel in & bottom-up
fashion. The parallel architecture can be designed with a flexible Interconnection,

50 & processor can be dynamlcally assigned when it Is £ree, or can be designed with

167

a limited Interconoection, 5o & static evaluption order is maintalned for a given
probiem. A dataflow processor is an example of the first allernative. We will
Investigate the second alternative here.

Parallel AND/OR search of polyadic-serfal DP problems is a special case of
that of polyadic-nonserial DP problems. For nonserial DP problems, the depen-
dency between states 1s not restricled to successive stages, butl may exist between
states n arbitrary stages. In the corresponding AND/OR-graphs, the arcs are not
restricted 1o successive levels, but may run between any two arbitrary levels. {1
may be dificult to map an irregular AND/OR-graph to 2 systolic array with a reg-
ular interconnection siructure. The nonserial AND/OR-graph may have 1o be
transformed into & serial one before the mapping is done.

The strategy is Hlusirated by the problem of fnding the optimat order of
multiplying a string of matrices. For simplicity, consider ihe evaluation of the
product of four matrices,

M = M, XM, xM;xM,

where M, 1£1€4, I1s a matrix with 1., rows and r) columns. Let my, be the
minimusm cost of computing M;x... XM, Clearly,

my= mm_ (g + By g+ Ty TP . 8.»3

The solution to be found 15 m, 4 This problem can be represented 65 a search of an
AND/OR-graph, where the AND-nodes deaote additlons and the OR-nodes denote
comparisons (Figure 6.6)

The AND/OR-graph in Figure 6.6 can be mapped directly into six processors
coanected by multipie broadcast busses. Bach processor evaiuates an OR-node and
its Immediate descendent AND-node(s). The broadcast struclure Is necessary
because a processor has lo communicate with multiple processors and not its nelgh-
bors alone. Let T,(K), 1Sk <N, be the time to find the aptimal order of multiply-
ing k matrices. Then,

-
‘
]
L)
t
'
v
[
i
]
.
.

168

Figure 6.6 MANﬁ/ORmphmﬁmdmmmmdmd
muluplyinzammgof four matrices

169
L k2] + k2] K>
T = ﬂ. if k=l (6.26)

This Is true because, once the subproblems of size [k/2] are completed, the results
can be used as Inputs 1o subproblems of size larger than fkiz] In the following
sicp, caly subproblems of size [k/2}+1 can ‘_.n completed, and the results will be
avallable a8 inpuis lo subproblems of size larger then [kf2]+3. Thus it lakes
|72} steps 10 solve a subprablem of size k. In each siep, Iwo additions and two
comparisons are performed.

Proposition 6.1: The solution 1o Eq. (6.26) s TN} =N,
Proof: The propasition can be proved by induction. O

Alibough the above scheme is fast, it requires a large number of broadcast
busses and may be dificult to impicment when the groblem size I8 large. To over-
come this, we can transform the nonserial problem lnto & serial one, that ls, con-
vert the general AND/OR-graph Into a stmpler graph In which all arcs connect
nodes In successive levels, Suppose that an OR-node and Its jmmediate parent are
uot located in adjacent _nqn._u. then the OR-node is connected 16 1ts parent via other
intermediate nodes In adjacent levels. The additional connections &re represenied
2s dotted lines ln Figure 6.7. This pipelined design is sultable for VLSI Impiemen-
tation becauss the Interconnections can be mapped Into a planar structure.

The computaticnal time for ihe scheme in Figure 6.7 1s snalyzed here. Let
T{k), 1€k <EN, be the time 1o find the optimal order of multiplylng k matrices.
Once a subproblem of size [k/2} 1s solved, it takes |k/2 | Ume units to transfer the
result Into Lhe processor that evaluates the subproblem of size k. Analogous o the
explanation for Eq. (6.26), It 1akes jk/2| steps to satve the subprobtem of size k
after the resulls of subproblems of size _En | are avallable. Consequentiy,

Tk =T, [i2] + 2 }Ki2} (6.27)

o - ————— - =

170

Figure 6.7 A structural AND/OR graph representation of finding the
opﬁmalorduofmnlﬂplymaamnﬂourmm

171

Proposition 6.2: Suppose T,(1)=2, then the sotution to Eq. (627 s T{N}=2N.
Proof: 'The proposition can be proved by induction. O

A systolic arvay usually demands that ail operands for an operation arrive at
a processor simultaneously and that the computations are carried out in & pipelined
fashion. Recatl from Theorem 6.1 that the optimal branching factors for AND-
and OR-nodes ave two god m (32), respectively. Hence, It 18 necessary for two
data Jlems 10 arcive at an AND-node simultaneously, and that the OR-nodes are
evaluated sequentially. Keeping the timing and Proposition 6.2 in mind, It is not
dificult 1o design a systotic algosithm for this problem. In fact, the derived struc-
ture i the same as that proposed by Guibas, Kung and Thompson {GKT79L

The sbove exampte demanstrates the reiationship between an AND/OR-graph
representation of polyadic DP problems and the corresponding systolic design. In
general, starting from an AND/OR-graph, a systolic array with planar interconnec-
tlons can be designed by first sertalizing Links that connect nodes not in adjacent
levels In the AND/OR-graph, and by designing the appropriate control signals. As
shown In the examples, the transformation may Introduce additlonal delay and
redundant hardware in the lmplementation.

6.6 Summary

Dynamic programming Is a good example to show the varlant architectures
required by multiple formulations. In this chapler, DP formulations have been
classified according to the objective functions and the structure of the correspond-
ing AND/OR graphs. A given DP problem can usually be formulated 1o multiple
ways, e.g., folded OR-tree (multistage graph), AND-tree, folded AND/OR-tree, and
AND/OR-graph. Hence I is Important to compare the alternative implementations.
The applicability of systolic processing Is most sultable when the fermulation is
serial.

Many sequential decision problems have serlal formulations that can be con-

sidered as searching a mullistage graph. Kf there are a _w_..uo number of states

172

and/or gquantized values In each stage, then a monadic formulation Is more
approptiaie, and the problem is eficiently solved as a serlal string of matrix mult-
plications, On the other hand, If the number of stages is large, then the problem
should be put into a polyadlc fofmulation. The matrices are grouped into a blnary
tree and muluplied by a divide-and-conguer algorithm. We have found the AT}
lower bound for muluplying a siring of N m-by-m matsices, and have proved that
dividiog the string Into (Nflog;N) groups and mulitiplying each by a systolic array
is optimal Lo the sense of schieving this lower bound.

When the formulatlon is noanserlal, It may be aoog 1o transform the
problem into a serial formulation before zn efficient lmplementation can be found.
A monadic-nonserial formulation can be transformed into a monadic-serial ons by
grouping state variables. A problem In @ polyadic-nonserial formulation can be
represented 83 the scarch of an optimal solution in an AND/OR graph, which czo be
transformed Into an AND/OR graph for 2 serial problem by adding dummy nodes.
The transformed AND/OR graph can be mapped directly into a planar systolic
array by using sppropriate control signats. The additional hardware and delay
introduced Is problem dependent. A summary of variant architeciures required by

multiple formulations of dynamic programming are shown In Table 6.1.

13

Table &1 Functional requirements of dynamic programming

Formulstion Problem Suitable ... Functional
characteritic method Fequirements
Many states or | Search folded OR-, § Systolis proc.;
Monadic |quantized values| trees as stringof |f pedback control
in each stage [malriz multiplication)
Serial Many Scarch AND-trees | Eoose coupling
Folyadic slges or folded for fins grain
AND/QR-trees Tigut coupling
for coarse grain
Variables can Teoansform into Systolic pros.
Monadic| e eliminated monoadig-serial | with additionsl
one by ¢na (representation by control
grouping varisbles)
Nonserial Unstructured | Search AND/OR- | Datafiow proc.:
Polyadic] probiems graphs: transform Sysiolic proc.
into serial with additionsl
AND/OR grapbs cantrol

oy e . e S TR T T T

174

CHAPTER VI
OONCLUSIONS AND FUTURE WORK

Combinatorlal search Is an esseniial lechnique in artificial intelligence and
operations research. Due to the ublguily of search and iis dificulty in
implementations, parallel processing of combinatorial search has become a key

issue in deslgning new generation oﬁpa—vﬁb_. systems. Since search algorithms ace

usually nondeterministic and some subproblems might be pruned, conventional,

parallel architectures might not be sultable. In this thesls we have studied the
computational efficlencies 2:—. architectural requirements of parallel combinatorial
searches. These results are helpful 1o researchers and designers of new generation
computer systems.

Combinatoriai scarches can be classtied Into AND-trees/graphs, OR-
trees/geaphs, and AND/OR-trees/graphs according to the function of the nodes
included. AND-graphs and OR-graphs are speclal cases of AND/OR graphs. Siace
dilferent kinds of combinatorial searches have different compuiational behavlor,
we have studled the three kinds of combinatorial searches separately.

" Qwing to the nondetermintsm, it Is difficull to accurately estimate the
perfarmance of parallel searches. but the bounds on performance can be evaluated.
In Chapter 3 of this thesis, we have found the performance bounds of paraliel OR-
tree searches without dominance tests. For a best-first search, the scarch time
depends on the height of the search isee, the problem complexity, and the number
of processors used. For depth-first and breadih-first searches, the search Ume is
atso related to the number of distinct incumbents obtalned during the search. ln

contrasl 10 previous results, our theoretical analysls and simulatlons have shown

175

that s near-linear speedup can be achieved with respect to a large aumber of
PrOCESSOrs.

For a parallel OR-tree search, anomalles may occur frequently when
approximation and dominance tesis ase applied. We have discovered that these
anomalles are due to ambiguitles of the heuristic function, Inconsistencles between
the selection and ellmination rules, and variatlons In the sequence of feasible
soluitons obtained. Ambiguity in the heuristic function can be resolved by
augmenting =.m original heurlstic function with a tie-breaking rule (say by using
path numbers). Consistency of dominance tests wiih the heuristic function can be
salished by redefining dominance relations. Varlous conditlons 1o cope with
anomalies with respect 1o different search sicategies have been investigated in this
thesls.

Efficiencies (both tn time and space) of best-first, depth-first, and breadth-first
searches have been compared, A best-first scarch has been found to be a robust
search strategy in the sense of avolding detrimental anomalies and achleving a
neac-linear speedup within a Jarge range of the number of processars. However, it
depends on the 9.8.:2& of the problem-dependent Jower-bound function, and s
best applied In parallet processing when the accuracy of the lower-bound function
is moderate. If the lower-bound funciion is very accurate or Inaccurate, 2 depth-
first search is more cost-cffective.

For an AND-tree search using divide-and-conguer algorithms, the optimai
granularity depends on the complexity of the problem to be solved. We have
analyzed the relationship belween the pm..\._uv.o:n processor ulllization and the
number of the processor used. The optimal granularity with respect to the KT?
criterion has also been proved and simulaied, where K and T are the number of
processors and computational Ume, respectively. For problems with 8(N) and
8(N logN) complexity, we have proved that using, respectively, 8(Nflog N) and
8(log N) processors are optimal n the sense of achieving the tower bound of KT2

176

For decislon problems solved by AND/OR tyee searches, we have shown thaz
OR-parallelism ang AND-paralletism ¢an be ualfed Into OR-paralieltsm, When
the goai Is likely 10 be TRUE, OR-parallelism should be used, Jp contrast, whea
the goat is likely to be FALSE, AND-parallelism should be used, Heuristic
Informatign using success probabilities and average overheads of evaluation have
been defined to Bulde the search of logic programs that are fepresented as AND/OR
irees. These loformation can be Eeaerated statically and are useful tn roughly

lo—cost ratlos of subgoais, The architecture of MANIP Proposed for the parplfe]
evaluation of branch-and-bound algorithins has been extended 1o Implement a

heuristic search of logle pragrams,

equatlons, the nature of recursions, and objectjve 1 unctions, A glven problem can
usvally be formulated In muitiple ways, heace it (5 important tg compare the
alternative implementatlons, The applicabiiity of syslolic Processing s most
sultable when the formulatlon t5 serfai, If there are a large number of stales
and/or quantized values In each stage, then a monadic formulation s more
appropriate, and the problem s eliclently solved a5 a serlal string of matrix
multiplications, Three effictent systoilc arrays for solving monadic-sertal dynamic
programmtng problems have been studled In Chapter 6. On the other hand, If ihe
number of stages (s large, then the problem should be put Into a polyadic
formulalion, The Inputs are grouped Into as AND tree and solved by a divide-
and-conquer algorithm, Whep the formulation is nonserlal, it may be necessary {o
transform the problem into a serfal formulation beforg an efficient implementation

can be found. A moanadie mamea 1 s o

177

monadic-serta) one by Brouping staie varlables, A problem 1n 3 E.E&nr:oa&nz
formutation can be represented a5 the search of an optimal solutfon 1 pp AND/OR
graph, which can be transformed ynig an >,_ZE\Dz graph for a seria} prablem by
adding dummy nodes, The transformed AND/OR graph can pe mapped directly

into & plapar systolic array by using Sppropriate contrgl signals. The additional

loosely coupled Interconnectiog of processors with Joad balancing capability, and »
method of concurrent update and broadcasy of the incumbeny, Jf dominance tesig
are applied, the Corresponding f unctionak requirements depend on the size of the
current dominating nodes, Ny, and 1he struciure of the dominance relation. Whep

Paciition the search tree and tocalize the dominance lests. On the other hand, when
N 15 large, it 15 Recessary to Partition N, in(o subsets and 1q perform the
dominance lests in parajlep, This resulls jn tight coupling of the processors,

relations have Some structural features, The funcitonal requirements for pogy,
Paraliel AND-17ee and OR-trep searches hold for Parallel AND/OR-trps searches,
€.g. the Eranularity of parallelism, the Paralied selection of nodes for evaluation,
and the Intelligens Pruning of unnecessary noes, Processors should know the

globat state of search o select the nodes for eXpansion, and be able 4, Inform ather

B RIEY 2evns

178

become an AND/OR tree and evaluated level by level. To search general
unstructured AND/OR graphs, a data fiow compuler may be more sujtable. Many
researchers have addressed deslgn of graph-reduction and data-flow computers
{DaRr81, Den80, KI.T84, TBHSE2). However, Most of these efforts were devoted to
AND-graph reduction and numerical computations. Applying data-flow
mechanisms to nondeterministic computatlons, such as searching general AND/OR
graphs, Is still an open problem [AmH84,Wal.85, WaL86).

_ Parallel processing of combinatorial search is an aclive research area in which
a lot of problems are still unanswered. The following are some key issues that can
be studied in the future. First, the performance bounds with respect to time and
space for AND/OR-tree {graph) searches, rather than the time only, should be
Investigated. That Is, we need to determine the condition under which an Increase
In space, t.e., the number of processors and/or memory space, will be worthwhile.
An optimal stralegy for searching AND/OR-trees (graphs) that minimizes kT? is
expected as a guideline, To Implement AND/OR-tree {graph) searches efficiently,
heuristic strategles should be studied. will be deslgned. Second, some conditions
under which local semantic Information Is useful to guide gencral AND/OR-tree
{graph) searches should be Investigated, We have found that for OR-iree searches
glabal information does not have to be collected to determinate the selection order
of subproblems In order to minimize the expected completion time. This result
should be extended ic AND/OR-tree (graph) searches. Third, in many applications,
the problems 10 be solved might nol be formulaied in regular AND/OR-graphs
directly. To take the advantage of VLSl technology, these irregular AND/OR-
graphs should be transformed into regular ones before implementation. Lastly,
dataflow archilectures are sultable to implement nonserlai AND/OR-graph
searches. An efficlent dynamic scheduting method is necessary to achieve a high

performance.

e)

LIST OF REFERENCES

faHU74)

[ABDB2}

[AmH84]

[BaB82)
[BaF81)

[Bar83]

[BaS78]

{Bau78a)

[Bau78b]

[BeB69)

[BeB72)
[BeD62]
(BeK 79]

[Bragd]

[BrE70}

{BroB0l

179

LIST OF REFERENCES

A. V., Aho, J. E. Hopcroft, and J. D. Ultman, The Design and Analysis of
Computer Algorithms, Addison-Wesley, 1974.

3, Akl, D. Barnard and R. Doran, ..Uﬁ.._mw . Analysls, and Implementation
of a Parallel Tree Search Algorithm,” JEEE Yrans. on Pattern Analysis
and Machine Intelligence, Vol. PAMI-4, pp. 192-203, March 1982,

Z.>=.m_=_<nu=nw.Iwmmwin...cw;aoénosE_..u._.nmmmnnn:m
Lazy Evaluatlions, New Generation Compizing, Vel, m. Ohmsha, Lid,
and Springer-Verlag, pp. 105-129, 1584.

D. H, Baliard and C. Brown, Computer Vision, Prentice-Hall, 1982

A. Barr and E. A. Felgenbaum, The Handbook of Artificlal Inrelligence,
Vol's 1, 2, and 3, Kaufmann, 1981,

), Barnett, “Opitmal Searching from AND Nodes,” Proc. JJCAI,
786788, 1983." . P

G. Baudet and D, Stevenson, “Optimal Sorting Algorithms for Parallel
m%.“s%ﬁua... IEEE Trans. on Computers, Vol. h«.ﬁ. o, 1, pp 84-87, Jan.

G. Baudet, The Design and Analysis of Algorithms for Asynchronous

Mudtiprocessors, Tech. Rep., Dept. of Compuier Sclence, Carnegle-Mellon
Unlv. 1978,

4. Baudet, “On the Branching Faclor of the Alpha-Beta Pruning Algo-
rithm,” Artificial Intelligence Vol, 10, pp. 173-199, 1978.

U. Bertele and P. Brioschi, A New Algorilhm for the Solution of the
Secondary Optlmization in Non-serial Dynamlc _u..cn__.maa_zu.: J. of
Muath. Analysis and Applications, Vol. 27, pp, 565-574, 1969,

L. Bertele and F, Brioschi, Nonserial Dynamic Programming, Academlc
Press, New York, 1972,

R. Bellman and 5. Dreyfus, Applied Dynamic Programming, Princelon
Untversity Press, 1962,

1. Beatly and H, T. Kung, "A Tree Machine for Search Problems,” Proc.
Int'l Conf. en Parallel Processing, IEEE, pp. 257-266, §979.

M. Brady, “Artlficial Intelltgence and Robotics,” In Roboiics and
Artificia ~Ean_.m\m=nn. M. Brady, L. A. Gerhardt, and H. F. Davidson
(eds.), Springer-Verlag, 1984

P, Brioschi and 5. Even, "Minimizing the Number of Operations in Cer-
taln Discrele-Variable Opllmization Problems,” Operations Reseuarch,
Vol. 18, pp 67-81, 1970.

8. Browning, “A Tree Machlne,” Lambda, Vol. 1, pp. 31-36, 1980,

[BuliB4)

{Carsa)

[CFR8s]

[cips3)

[Cing4a)

[Citigan]

ici1G83)

[CoX83)

180

u.?....g!i:::‘wg_-..<=.=_n_...aonznnv_aﬂ.:__mﬁmu...gu.gnss-
puters, Vol. C-33, pp. 275-280, 1984.

U.?ns_.g?.._.!.n__n_?.ﬁnﬁ_:aqﬁnﬁ-w.wnoeav_ﬁ:a:m...oﬁ?..o\
nm:fuﬁ.h Conf. on Distributed %2%55“ Systems, pp. 192-198, May

M. D. O«.v_ﬂ‘ A, L. Fields, and M. 1. Reeve, “The Deslgn and Emplemen-
tation of ALICE: A Parallel Graph Reducton Machine,” BYTE, Vol. 10,
No. 8, Aug. 1985.

M. Clarke, C. Dyer, “Systolic Array for a Dynamic Programming Appli-
._“me?.. FProc. 12th Workshop on Applied Imagery Partern Recognition,

A, Cleplelewskl and 8. Haridl, “Control of Activities in OR-Parallel
Token Machine,” IEEE Int'l Symp. on Logic Programming, 1984.

A. Cigplelowski and S, Harldl, “Execution of Bagof on the OR-parallei
Token Machine,” Proc, Int't Conf. on Fifth Generation Computer Systems,
pp- 551-360, 1984.

K. Clerk and 3. Oregory, “PARLOG: A Parallel Logic Programming
Language,"” Research Report DOC B3/3, Imperial College, March 1583,

J. Conery and D. Kibler, “AND Parallelisin In Logic Programming,’”
LICAL, pp. 539-343, 1983.

[CMM67] R. W, Conway, W. L. Maxwell, and L. W, Miller, Theory of Scheduling,

{CRL73}

[DaR81}

[DeGB4)

{Dens0)

[Des78]

{EHL80}

[Eisol

Addlson-Wesley, 1967.

L Castl, M. Richardson, and R. Larson, “Dynamic Programming and
Paratiel Computers,” J. of Optimizarion Theory and Appl., Vol. 12, No. 4,
pp. 423-438, 1973,

J. Darlington and M. Reeve, "ALICE—A Multl-Processor Reductlon
Maching for The Parallel Evaluation of Applicative Languages,” Proc. of
n.em&m on Functional Frogramming Languages and Compider Architecture,
ACM. pp 63-74, 1981,

D. DeOroot, “Resiricted AND-Parallelism,” Proc. Int'l Conf. on Fifth
Generation Computer Systems, pp. 471-478, 1984,

1. B. Dennis, “Data Flow Supercompuiers,® JEEE Compiger, pp. 48-36,
Nov. 1980.

Fo._vau_.sﬁam_uctp mﬁ.«mwn ?E:a..?onﬁm_._nmm_napomo_...u:a
Zero-One Problem,” Proc, IC578, pp. 802-817, Dec. 1978,

L. D. Erman, F. §ayes-Reth, V. R, Lesser, and D. R. Reddy, "The
learsay-1l Speech-Understanding System: Integrallng Knowledge to
Resolve Uncertalnty,” ACM Compuzing Surveys, Vol 12, No. 2, pp. 213-
253, June 1980,

0. | El-Dessouki and W. H. Huen, “Iistributed Enumeration on Net-
work m.w-m._aw:—nﬁ_.. IEEE Trans. on Computers, Vol. C-29, pp. 818-825,
Sept. 1980.

[FiF82)
[Fin82)
{Ful78}

[FuN82}

{Gai7el

[Gar?3)

181

R. Fiokel and J. Fishburn, “Paralielism in Alpha-Beta Search,” Artificial
Intelligence, pp. 89-106, 1982.

R. Finkel, “Parallelism In Alpha-Beta Search,” Artificial Intelligence,
pp- 89-106, 1982.

H. Fuller, et al, “Mulu-Microprocessors: A Overview and Working
wﬂav._.n.mq?wn. of JEEE, Vol. 66, No. 2, pp- 216-228, Feb. 1978,

K. Furukawa, K. Nitta, and Y. Matsumeto, “Prol Interpreter Based on
no__n.““:nan Programming,” Proc. of First Int't Conf. Logic Programming,
1982,

LR, , and D. S. Johnson, Computers and Intraciability, A Guide to
Kn w.»mw%ws nZ:?nE:uEmann. 'W. H. Freeman and Company, 1979.

M. Garey, "Optimal Task Sequencin with Precedence Constraints,”
b.wQMn &:%..RE«. Vol. 4, pp. 37-36, 1973.

[GMMB1] 5.Gensi, U. Montanarl, and A. Martelll, “Dynamic _vn.mﬂisms:_w as

{Grab6)

[Gr376)

{GKT79]

{GTMB4]

[HaA84]

[HaB84]

[Has79]

[HoS78]

[HoZ83)

Graph Searching: An Algebralc Approach,” JACM, Vol No. 4, pp-

737-751, 1981.

R. L. Graham, "“Bounds for Cerlaln Multiprocessing Anomalies”, Bell
Syst. Tech. J. Vol. 45 pp. 1653-1581. 1966

_R. Garey and D). 5. Johnson. “Performance Guaraniees for Heurlstic
gwﬂ.?mim« An Annotated w__u__oup.ﬁu_.w. , Proc. Symp. on New b_ﬂnn..ma
and Recent Resulls in Algorithms an Complexiry, Academic Press, 1976.

. Guibas, H. Kung, and C. Thompson, “Direct VLSI Implementation of
MoEﬂ.EE-.E- >"mo:===u.= Proc. Conf. VLSI: Architecture, Deslign,
Fabrication, Cattech, pp. 509-523, 1979.

X ka, and T. Moto-oka, “Highly Parallel Inference Engline
W—.mmwm.wm_ﬂxwﬂﬂzn nz_on_a and Machine Architecture,” New Generafion
Computing, Vol. 2, GHMSHA Ltd, and Springer-Verlag, pp. 37-38, 1984.

X iya, “Parallel Execution of Logic Programs Based
w_w__._unﬁ w%_ﬂ .m“:h.ﬂw.mzw«un ﬁﬁu ME " Conf. on Fifth Generation Compiier
Systems, pp. 507-3 6, 1984.

K. Hwang and F. A. Briggs, Computer Architecture and Parallel Process-
ing, McGraw-Hii, 1984.

. d D. Smith, “Simulation Experiments of a Tree Organized
”ahw_nnncﬂ_ snﬁu... Proc. 61k Annual Symp. Compit. Arch., ~mmm>”m,3. PP
83-89, 1979.

E. Horowliz and S. Sahnl, Fundamentals of Computer Algorithms, Com-
puter Science Press, 1978.

d A. Zorat, “Divide-and-Conquer for Parallel Process-
m.%m.momnmmﬁﬂwuﬁ.\w on n_..ua.s.«mﬁn_ Vol. ﬁlwn.fo. 6, pp. 582-585, June
1

[HW1.83] F. Hayes-Roth, D. A. Waterman, and D. B, Lenat, Building Expert Sys-

tems, Addison-Wesley, 1983.

[1ba73}

{Tba76al

[Iba76b)
Mba77al

(1ba77b]

{1IFY79]

[KaH67)
{Kar76]

{KL784]

182

‘. Ibarakl, “Soivable Classes of Discrete Dynamic Programming,” J. of
Mathematical Analysis and Applications, Vol. 43, pp. 642-693, 1973,

T. Ibaraki, “"Computational Efficiency of Approximale Branch-and-
wmw:uncua om.._.u::au... Math. of Operations Research, Vol. 1, No. 3, pp.

T. Ibarakl, "Theoretical Comparisons of Search Strategies In Branch-
and-Bound Algorithms,” fnt’L. J. of Comp. and info. Sci.,

T. tbaraki, “The Pawer of Dominance Relations In Branch-and-Bound
Algorithms,” JACM, Vol. 24, No. 2, pp. 264-279, 1977.

Ibaraki, T.. “On the Computational Eficlency of Branch-and-Bound
Algorithms,” Journal of the o%uwﬁs:n Research Seciety of Japan, Vol.
20, No. 1, pp. 16-35, March 1977.

M. Imat, T. Fukumara, and Y. Yoshida, “A Parallelized Branch-and-
Bound Algorlthm; Implementation and Efficlency,” Syst. Comput. Con-
trols, Vol. 10, No. 3, pp. 62-70, 1979,

R. Karp and M. Held, “Finlte State Processes and Dynamic Program-
ming,” SIAM J.on Appl. Mazh., Vol. 15, pp. 693-718, 1967.

R. M. Karp, hﬁm.E&asn and Complexity: New Direction and Resent
Result, 1. B, Traub (ed.), Acadeniic Press, pp 1-§9, 1976.

R. M. Keller, F. C. H. Lin, and). Tenaka, “Rediflow Multiprocessing,”
Proc. COMPCON Spring, IEEE, pp. 410-417, 1984,

[KKMB83} S. Kasif, M. Kohll, and J. Minker, “PRISM: A ._.n:n, Inference System

(KnM75]
{Knu73)
fKun79]
[KoS74]
[Kow79]
Kuc?7)

[KuK83])

[KuK84]

for Problem Solving,” Proc. IJCAI, pp. 544-546, 1983,

D. E. Knuth and R. W. Moore, “An Analysis of Alpha-Beta Pruning,”
Artificial Intelligence, VoV, b, pp. 233-326, 1975.

D. E. Knuth, The Art of Computer Programming, Vol. 3. Addlson-
Wesley, 1973

H. T. Kung, “Let's Design Algorithms for VLSI Systems,” Proc. Caliech
Conf.on &.ﬁ. PP mu.cm. Jan. 1979,

W. Kohler and K. Steigiitz, “Characterization and Theoretical Com-
risen of Branch-and-Bound wu%o:nwam for Permutation Problems,”
ACM, Vol. 21, No. 1, pp. 140-156, 1974.

R. Kowalski, Logic for Problem Solving, North Holland, 1979.

D. J. Kuck, “A Survey of Parallel Machine Organization and Program-
ming.” ACM Computing Surveys, Vol. 9, No. I, pp. 29-59, March 1977,

V. Kumar and L. Kanal, A General Branch-and-Bound Formulation for
Understanding and Synthesizing AND/QR Tree Search Procedures,”
Antificial Intelligence, Vol. 21, pp. 179-198, 1983.

V. Kumar and L. Kanal, “Parallel Branch-and-Bound Formulations for
AND/OR Tree Search,” IEFE Trans. on Pattern Analysis and Machine
Intelligence, Vol. PAMI-6, pp. 768-778, Nov, 1984.

. hng
Fithmg » Omm. ACM, Vol 27, No. 6, June 1gg,,

{Lasgs,) T. K 13 and A m.u_.m«&.hm..

..-.u..no..:.!.no of Parajje) aaan__.-:n.wozza
%m_mwa:.su.: Froc, tnt 74

/. on Pargires 38&..5&. IEER, Pp. 194-20),

:.bumuz T. H. Ly and 4, g, ue, ..12.«2528 of Paral)e) m.....:%.uan..wo:an
iy PP 962564 oy o :

~r€&~ B, Lawler o4 Dow oy , ..m..uaa—.-.zn.?:._a Methods. A Sur.
vey,” Operarion aanﬂg. <ww.a_ 4, pp, 699.71 9, 1966, o i

F:SK& G- 1; and B, y, Wah, “Com nal msaa..ow of Paraljey A

Ulatig, roxj.
sm_o wa_an?aan-mozi b_moq thing,* Froc, Inr'y Conf. on Fur, .abxo,
Cessing. IEEE, PP, 47345,

F_:\ma?_ G.-J, 1 and By Wah, “p1.0, la Copa with Adomalie In Paraste;

> T0Ximatg mnabn_..uanfwc._:n Al arithmg, FProc, of Netiongy Conf, on
;m__whnﬁ Nﬁms.hg f. E\.ﬁ&. P mumurua. 1984,

{Liwgs ! g,y Liang g W. Wap, ® Design of tima)] g stolic 4] Orithmg,
: NEE,Q“,«. on n.ns__asmﬁ..m\.wr WMM No, _.—u pp. mm.\w. Jan. j935

F_Gmu_._ G5, 1y and B, w, Wah, stolle Procesqy, for Dynapm;, B ramming
.mmzasu... oc. Inr't n.SN. o Paratle Qawﬁ..sn. {EER, vw.ou&a&t.

:.__.cwup_ G-J 1 and B, vy, Wah,a»Z:PM" A Multicop, uter .»RE"SER for
Evaiuayn Fma Progran,s Froc, of Inty Cony, .w. Paragrey ?R.m.as.n.
TEEE, pp. § 234 5 P :

F:rmu& G-JLiapg Bw, Wah, “Paralle) p
Mming -.32%5. " Prac, of Ing't conf, on Compze, Software and Applicy.
tions, IEEE, 1983,

ffwm O-J 1y ang B w, wa "Coping sﬂm
a

F.vm& Q. Eaaa_as and p, Panap aden,:.BSEER Muun::c: of Lopje Pro-
mmm.h_n... Froc, 1054 i s.w._.w%. on Logic b.aulss.maw. Pp. 1681 %5 Feb,

E_mo%_ T. A, Maislang and M, Cam bel}, aralle} Search of Strop, Iy Ordereq
Game Trees,” ACM ¢, S.Sw Survey,

P;
s omp, s, Vol. 14, No, 4, pp. 5 3-351, Dec,
1982,

:Sm mu_-m. Mago, "Makin Paraje) Com ulation Slmpie; The Fpp Machige
& Proc, %hm@&&o&@%w %‘_uuimm. 1985, ,

-..Smgqm_ b.‘m Martell) gpg u. ?E:Ssma. "Addiyye AND/OR Orapjg» cay,
1973,

;a:wa L Mitien ..m.u..&..-un-wo:an Methogs, Gengpa) wo..sEa:E. anc

Mong3) 3 Mohag, "Experienc, With Ty, Paralle] p, SIS Sojying
a...za::u _as_ﬂ. v.dsns.: Proc. of the 19g3 \ch Conf on p
Processyy s IEER, Pp. 191195, 1983,

?Aazwa_ T. Morig and g, Marsten, ..awnanv.maa-wa_.:a Strategeq for Dyna
-...en..ua.s.su... Operagjons hﬁ&w&. Voi. 24, No, 4, wvwnm_ 1-627, 193,

—chf_ T, 22?0_3. A My >8==8_=a of a Parajpe Inference Engin
.ﬂﬂ %ﬂcﬁnc Conf, o Fifin Generayygy, Compuzer Systems, Icof, i

azxxm& D. Nay, v, Umar apg § Kana . and 4
Relatioq ¢ % and >n._~_ o Artificia Intetligence VoL 13, pp 29-58, jogg,

?.as_uo_ M, M, znsvo_.a. “Recent PSS In gy Uker Chegg w Advance; ,
._n.%m: €rs, Val, 18, M, ﬁ.vm.m_ac:u a_on.mﬁ?ﬂ%:.ﬁ Press, p. 59-117

5&.&2 H. Ne A ..U.__sua_n Pr FAMMming ag 8 Technig, for Pattery Recogny.
“_%m_m.. .1?8. 6k Ingy Mue.\. wam»sa anew:k_ms X

INusg) N, J, Nilssqp, Frinciptes of Artipciy Eﬁ.wse. Tioga, j98q

:552 I.vma_uea and M, w, man, “Linear c...an..:_g... /. Compizer and Spy.
fem Sclencert Aczdeme ress, Vol, 15, PR 158- 167, 1973, *

[Pawyg) .W Page ang | Wiison, Ineroducy, io Computatjog oy n.ps&sn..oﬁkq.

{Peasy) J- Peag, “The Solutiog o the Brancps, Factor of the Alpha-Bay, Prup.
ing Algorith and iz OE_.E:Q. " CA M, pp, 359-564, 1982,

[Peagy) d. Peary, Heurisicy, >an§?€&_@. 1984,

:..n.m: B, Polors, “Tree Machine and U:;an-maa,ocna:s. Ewc:_:sm.: Con-
PAR &5, Lectyg, Noleg n.ﬁ:. Pp25-35, 198y,

{Rosg) A, xﬁmﬁsar “ Woamjc vEn_s:.ESu i5 Dﬂ:ﬁ. for Nonseria oplimj..

F._za 5. Sahyy, “Algorith s for scheduyy, Independen, Taskg» ACM, vq;,
23, No. §j, PP-116-127 3, 1976,

Emrqu_ 5. Sahn, “Genera) ,-,angs:& for Ocsr_zﬁﬁam_ >Eu3x§m:c= "

{Sav78)

{Sav8ll

IShad3)
fSha74}

[Sek81]

[siK751
{SmiB4)
[smissl
[stmB4]
{50791

(TaLB3]
[ThoB1]

[vans4l

[waC84l

[wat.8s]

[wals6l

185

C. Savage, Poraliel Algorithms for Graph Theoretic Problems, Ph.D.
U.ﬁn—.»»o?caen_.a:«:::a_u. rbana, fL, August, 1978.

J. E Savage, “Area-Time Tradeoffs for Matrix Mulliplication and
Related Problems in VLS Models,” J. Computer and System Sciences,
Vol. 20, No. 3, pp. 230-242, 1981,

E. Shaplra, A Subsef of Concurrent Prolog and its Interpreter, 1COT Tech.
Report TR-003, .1983, Tokyo, Japan, Feb. 1983.

wﬁm Shaw, The lLogical Design of Operating System, Prentice-Hall,

Y. Sekiguchi, “A Unifying Framework of Combinatorial Optimization
Algorithms; Tree Programming and tis Validity,” J. Oper. Res. of Japan,
Vol. 24, No. 1, March 1984,

H. A. Stmon and J. Kadane, “Optimal Problem-solving Search: All-or-
None Sofutions,” Artificial Intelligence, Vol. 6, pp. 235-246, 1973.

D. R. Smith, “Random Trees and the Analysls of Branch-and-Bound
Procedures” Journal of ACM, Vol. 31, No. 1, pp. 163-188, Jan. 1984.

D. R. Smith, "Top-Down Synthesis of Divide-and-Conquer Algorithms”
Artificial Intelligence, Vol. 7, No. 1, pp- 43-96, 1985.

S. 1 Stolfo and D. P. Miranker, “DADO: A Parallel Processar for Expert
Systems,” Proc. Intl Conf. on Farallel Processing, 1EEE, pp. 74-82, 1984.

G. Stockman, "A Minlmax >_m~on=_== Better ihan Alpha-Beta?”’
Artificial Intelligence, Vol. 12, pp 179-196, 1979.

. Tang and R. C. T, Lee, "0 Limal Speedup of Parallel Algorithm Based
on ihe Divide-and-Conquer Strategy. * personal communication,

C. D. Thompson, A Com, xity Theory moq <E.?.U.._._§E. 93&?
Mellon University, Pitts! urgh, Pa. 1981.

P. Varman and V. Ramakrishaan, “Dynamlc Programming and Transl-
tive Closure on Linear Pi lines,” Proc. 1984 Conf. on Parallel Process-
ing, IEEE, pp- 359-364, 1984.

B. W. Wah and K. L. Chen, »a Partitioning Approach to the Deslgn of
Seleciion Networks,” JEEE Trans. on Computers, Vol. C-33, No. 3, pp.
261-268, March 1984,

B. W. Wah and G.-J. 1L, ﬁcamman_ﬁ for Artificial ~=.§£§RE§§.
tions, Tutorlal Notes No. 10, \EEE, Nov. 1983.

B. W. Wah and G.-1. LI, Tutorial on Computers for Artificial Intelligence
Applications, IEEE, 1986,

{waM84l B. W. Wah and E Y. W. Ma, “MANIP—A Multicomputetr Architeciure

[WaY85]

for Solvin Combinatorial Extremum Search Problems,” 1EEE Trans. on
Comput., Vol. C-33, No. 5. pp- 377-390, May 1984

B. W. Wah and C. F. Yu, "Probabllistic Z&nmmo_. .mqm_.nr-n_.n-_uoga
Algorithms under a Rest-Flrst Search,” Trans. on Software

186

Engineering, Vol. 58-11, No 10, Oct. 1985.

[weitzl B. W. Welde, “Modeling Unus
L X usual Behavior of Parallel A -
JEEE Trans. on Comp. Vo). C-31, No. 11, pp. __n_._.._-_qwa.,zs_muﬁ%sp

[Whi69) D. White, Dynamic Programming, Oliver & Boyd, Edinburgh, 1969.

[WLYB4) B. W. Wah, G.-1. L, and C. F. Yu, *
. W, ,G.-1 L1, . B. Yu, “The Status of MANIP--A {1 -
n:_“.n....ﬂ..%w:ﬂ—m.a for ma_ian Combinatorial E.:.na_ss'wmu_m%_._ _—mw%_.-.
\ ewm.. oc. 11'th Annual Ing't Symp. Comput. Archilecture, pp- 56-63,

[wLY85] B. W. Wah, G.-). L1, and C. F. Yu, * Tocesst
Search Problems,” IEEE hﬂs!n.e.,.w_u. ,cau.w__: R ._.Enn_. w.w.. Combinatorial

[¥aN84] H. Yasuhara and K. Nitadorl, *
3 " . rl, “ORBIT: A Paraliet Co 1l
Prolog,” New Generation Computing, 1C0T Vol. 2, pp. mﬂ.w ...um. N Kﬂw. of

[Yuws3] C. B. Yu and B. W. Wah, “Virtu
. f y al-Memory S -and-
Bound Algorithms,” Proc, COMPSAC, _mmm.qw.ﬁ. M :»No.a.ﬂmsm_www.ua

{yuwsdl C. F. Yu ond B. W. Wah, “Efficient Branch-and-Bound Algorithms an a

uﬂ- L1}
zﬁ.w.—-.mmm_ Memory Hierarchy,” Proc. COMPSAC, 1EEE, pp- 504-514,

APPENDICES

TTTTORTTTTTY

187
, Appendix §: Proof of Theorem 4.4

Proof of Theorem 4.J: The prool can be discussed with respect to Figure 3.3.
Suppose that there is 8 nods P, € ®" and P, § !, and that there Is a node P; € &'

and P, f ®*. Suppose further that P, has been terminated by a lower-bound test
(due 1o Py) or a dominance test (duc 10 P,) In the serial case, then hP,) < n(P,)
since P, Is sclected before Py P, € @' implies that nodes P, and P, exist such that
P, LP, or P, DP,, and P, has not been generaied when Py is expanded in the
serlal case (otherwise 1.. would have been terminated). Without loss of generalily,
let P, be the praper ancestor of P, There are two possibiiities.

First, h(P)> b(P). It P, DP,, then h(P,) <h(P,} according to ihe
assumption that D Is consistent with b, a contradiciiont If P LBy, and Py nr,
then [(P,) % ¢(P,). From condition (a), D is consistent with g, we have
g(P,) < g(P,) which Impltes that f{P) € g(P,), This means that P, must be
eliminated i the parallot case, and that it contradicts that Py € ot

Second, _.nvrquQ...u. and Py, as well a3 its descendant Py, have been

terminated in the serial case and not in the parallel case. We can then apply the

above argument again to P, and eventually obtain a sequence of nodes

Py Py s p_as depicted in Figure 3.3. There are three possibilitles:

(a) The first node P,_ oocurs in the serial case (Figure 3.3a). Since (P, J<h(P)
(otherwise P, cannol be terminated by P, In he serlal case) and
wp, J<n(P) (by the same argument as h(PI<N(P,)), we have
n(P, J<h(P,). Repeating this, we get n(P,)<h(P,). By Lemma 3.1, P,_must
be expanded in the parallel case and terminates P, which contradicis that

P, €O",

188

(b) P,_ occurs In the parallel case (Figure 3.3b). As argued In the case of
h(P,) > b(P,), this contradicts with the assumption that D is consistent with
h and g.

(c) There is a cycle of cutoffs such that P L P, (or P DP_).. P LP (or
P,,DP) and P _LP, {or P, DP,) (Figure 3.3¢c). This implics that
b(P,)} > n(P,) and that P\ D P, which contzadict the assumptions that D is
consistent with h or —Awrun_.n_ur..wn:mr-.u. In the latter case, the heurlstic
values of all the nodes of the cycle are less than h(P,) and a feasible solution
has becn obtained before Py Is selected, thus P, must be terminated in the
parallel case,

So far we have proved that at least one node of @' is expanded In each
iteration of a parallel heurlstic search. Furthermore, It Is easy to show that once
alt the nodes of @' are expanded or terminated In the parallel heuslstic search, no
aclive node remains, that Is, the OR-trec search procedure is completed. Since
approximate lower-bound tesls are not spplied, the optimat solutlon cannot be
terminated by lower-bound or dominance tests (according 1o Eq. {3.9) and
Assumption (b) of this theorem). Hence, during a paralle! heuristic search, ance ali
the nodes in &' have been expanded or terminated, the oplimal solution node must
be generated. All remaining unexpanded nodes must belong 1o one of the following
three classes: (a) infeasible solution nodes; {b} nodes whose lower bounds are
grealer than the optimal solutlen; {c) nodes that are dominaled by nodes in '
Nodes In Class {b} will be eliminated by lower-bouad tests. Those in Class (¢)
will be elimlnated by domlnance or lower-bound tests according to the Lransitivity
of D and Assumption (a) of this theorem. All these nodes will be evenlually
dralned from the subproblem Hsts. Q

——h

189

Appendix 2; Proof of Theorem 4.4

Proof: If &' C " because at least __e_ :_»__ leratlons are needed to expand the
nodes In @, Hence the proof is based on the assumption that a node P, €0" exists
and —...no-. This means that Py, Is terminated by either a lower-bound or a
domInance test in the parallel case. That is, there is a feasible-solution node P, et
such that f(P,) € g(P,), or these is a dominating node P, EQ* such that P D P
P, or Py, do pot exist in the serial case when P, is expanded. Referring to Figure
A.1, twe cases are possible:

First, h(P,) > h(P,). This means that P, has not been generaled when Py 15
selected in the serfal case, If P, PPy, then D ks inconsistent with h. On the other
hand, i P, L P, thea g(P,) € g(P,) € () < g(P,) which tmplies that h Is not
completely consistent whh g.

Second, h(P,} < h(P,). In order for Py o exist In the serlal case, Py, P;, € ¢
must exist so that P, L P, or P, DFy, and (P,) < hiP,) er n{P,) < h(P,). There
are four combinations of cases: (2) P, LP, and P, LPy; (b) P, DP, and P, DP;
(c) P, D P, and P LPy; (d) P, L P, and P, D P, The first 1wo cases contradict
with the assumption that _v.. € @' owing to the transitivity of lower-bound and
dominance tests. In Case (c), —:u..u £ g(P,). However, P, Is not terminated by the
Jower-bonnd test of Py, Le., f(P)> g(P). As a result, g(P,) < g(P,). Since
wp,) < h(P,), this implies that h is not completely consistent with g. In Case (d),
P, L P, implies that i(p) € fP) < g(P,). On the other hand, P\ P, Implies
that g(P,) € €(P,} € f(P,). Without loss of generallity, let P, be the best feasibie
solution In the subiree rooted at P, and hence f(p,)=((P,). From these
Inequalities, we get g(P,) = f(P,) = f(P) £ i(p,) £ g(P,). Since P, € @', and Py is

nol terminated by Py, there must exist an ancestor P of P, such that elther

190

@ feasible solution

— =~ lower-bound test

——pe dominance test

Figure A.1 Proof of Thearem 4.4

——-

-~

191

WP > (P or WP <hp,). I b(P,) > h(P,), then h i not completely
consistent with g because g(P,) € g(P) < g(P,). On the other hand, If
8(P,) < h(P,), thea the above argument can be repeated such that P, is terminated

by 8 lower-bound or dominance test. Since the number of feasible solutlons is
finite, the same necessary conditions are also true. We conclude that
Tk, 0) € T,(k,0). O

2

Guo-Jie 11 was born on May 29, 1943 in Hunan, the People’s Republic of
China, He graduated from the Depariment of Physics, Peking University In 1968,
and recelved the M.S. degree in computer science and engineering from the
University of Sclence and Technology of China and the Institute of Compuling
Technology, Chinese Academy of Sclence, in 198). From 1968 to 1978, he jolned
two manufaclurers as an ¢ngineer working on designing semiconductor devices and
minicompuiers. ..

Guo-Jic LI came to Purdue University as & graduale student In Seplember,
1981, During his stay at Purdue, he was a research assistant.

