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ABSTRACT

Mokhtar Aboelaze. Ph.D., Purdue University, August 1982. Systematic Design
of Systolic Arrays Major Professor: B. W. Wah.

In this thesis we present a comprehensive overview for the design of a
sysiem of systolic armays, from the VLST layout levet to the system level.

First, we discuss 3-D VLST layout, where tighter lower and upper bounds
for the volume and maximum wire length for the layout of the different farnilies
of graphs in a 3-D environment were developed. Except in two cases, all the
bounds for the volume are optimal. The first case is the one-active-layer layout
of the planar graphs, the other is the unrestricted layout for graphs with separa-
tors N9 ,q = 2/3, A cost model for reflecting the real cost of the layout, instead
of taking the volume as a measure of cost, was also developed.

In Chapter 3, we develop a methodology for designing a systolic array
starting from recurrence equations. The idea of Controf Flow Systolic Arrays to
handle uniform, as well as nonuniform recurrence equations, will be developed.
This methodology is basically a search for a heuristic solution in the space of
all the possible solutions, Because of the unlimited search space, the search

process must be guided for the search to be completed in a reasonable amount

of time

xvi

Chapter 4 introduces the idea of converting the data between two systolic
arrays that were directly interfaced, instead of wsing 4 common memory which
would be a bottteneck for the whole systern. The minimum number of buffers
required to convert the data between two given distributions was alse calcu-

lated, a general purpose converter was also proposed,



CHAPTER 1
INTRODUCTION

1.1. Introduction

Recent years have seen parallel processing become a reality as numerous com-
mercial and experimental machines with a variety of architectures have been intro-
duced. In 1erms of functionality these machines span the whole spectrum of paralle]
processing from supercomputers, such as the Cray X-MP, to special-purpose
application-dependent VLSI arrays. The major driving force behind this achievement
lics in the great advances in VLS technology. In the 1960's the average integrated
circuits chip contained tens of transistors. Using today’s technology, hundreds of
thousands of transistors can be implanted on the same chip, thereby feading not only
to more complicated but also less expensive chips.

In order to design a powerful and cost-effective computer system capable of solv-
ing complex problems, one must consider the underlying hardware and software sys-
tem structure and the computing algorithms to be implemented on these computers.
Computers were originally developed, and are still largely used, for data processing.
Recently, the tendency has been to use computers for knowledge processing instead of
for data processing. For example, a variety of expert systems has been developed for
areas such as medicine, agriculture, ofl exploration and manufacturing. This kind of
application is computationally intensive, making the use of sequential computers
incfficient.

Since the International Conference in Tokye in October 1981, when Japan
launched its National Fifth Generation Project [Tr(i82], there has been a growing

belief in the computer architecture commmunity that the maditional sequential control

flow compaters will be superseded in the 1990°s by a new generation of computers.
One of the leading candidates for superseding traditional sequential machines is the
VLSI processor arrays. This is tue since for the past 15-20 years the number of
transistors on a single chip is being doubled each one and half to two years. years.
There is no indication that this trend will stop in the near future. In the rest of this
Chapter, we will briefly review the concept of VLSI processor Arrays.

L2. VLSI Processor Arrays.

Until recently, computation-intensive tasks in signal and image processing and in
knowledge processing systems have been handled using high-performance general-
purpose computers. These general-purpose computers, use extensive pipelining and
parallel processing to enhance the performance of the system. Although somewhat
effective, these general-purpose computers are very expensive and difficalt to design.
The operating system overhead also impedes the application of these computers in real
time systems, where the speed and the throughput of the system is a crucial factor.
To achieve the speed and thronghput required for real time application, new architec-
re ate needed. -

An important architectural approach made possible by the availability of inex-
pensive special-purpose VLSI circuits is the systolic arrays. Systolic arrays make use
of multiple regulariy-connected processing elements to exploit the potential of pipelin-
ing and multiprocessing [Kun82] [KunBCa]. In a systolic amay, several date items
flowing along different pipes with the same or different rates may meet and interact.
The major advantage of systolic processing is that each datz item once accessed is
used a number of times. Thus & high computational throughput can be achieved with &
modest 1O bandwidth.

There are some constraints on the design of a VLSI chip [MeC80]. The quality
of the chip depends upon the following criteria.

(1) Modularity: Simplicity and regularity have always been major concems in
designing special-purpose VLSI systems. Simple and regular interconnections lead to
cheap implementations and high densities {MeC80}, and high densities imply both



high performance and low overhead for support components [SuM77]. Another impor-
tant concern is the cost-effectivencss. The cost of these special-purpose chips should
be kept low enough to justify their limited applications. The cost of designing
special-purpose Integrated Circyit chips can be reduced if the architecture of thee chip
can be decomposed into regular and simple modules that will be repeated hundreds or
thousands of times, This is especially efficient with chips that contain hundreds of
thousands of transistors. To cope with complexity simple and regular designs are
essential. VLS systems based on simple regular layouts are likely to be modular and
adjustable to various performance levels. For this reason we are interested in making
the array ns modular 83 possible. Figure 1.1 shows two different kinds of systolic
arrays.

(2} Pipelineability: The three levels of pipelineability are the macro level, the
intermediate level, and the micro level [RaK85).

An array is said to be pipelineable at the macro level, if it can begin processing a
new instance of a problem before it completely finishes processing the previous
instance (when more than one problem instances are being solved at the same time in
a pipelined fashion).

An array is said to be pipelineable at the intermediate level if for a single prob-
lem instance the maximum throughput achievable is independent of the number of
processing clements, n, in the array for n 2 K, where K is some finite chosen integer.

The array is said to be pipelineable at the micro level if the processing elements
(PE’s) have pipelined adders, multipliers, or any functional devices.

(3} Communication: Communication between the processing elements should be
restricted to immediate neighbors. A modular array of processing elements that res-
tricts communication in this manner will be termed a VLS] array.

(4) Flexibility: There are two types of VLSI arrays. One type is characterized by
inflexible hard-wired dedicated processors, the other allows some flexibility, such as
programmability and reconfigurability. The first type is usually dedicated to solving
one kind of problem, while the second can be reprogrammed to soive many problems,
A PE in the programmable or reconfigurable array is usnally more complicated than a

(a)

(b

Figure 1.1
Two examples of systolic armys. (a) a lincar systolic array (b) a hexagonal sys-
tolic array I hope this is 100 long for one line



PE in the dedicated array. Therefore, the array architect must compromise between the
complexity of the PE and the degree of flexibility he wanis 1o inroduce into the array.

Not every algorithm is suitable for implementation on a systolic array. A a
compute-bound algorithm, in which the number of computing operations is larger than
the total number of input and output elements is suitable for VLSI implementatien For
example, the matrix-matrix multiplication algorithm represents a compute-bound task,
which has OSJ multiply-add steps, but only O(n} YO elements. On the other hand,
I/O bound problems, in which the number of /O aperations is larger than the number
of computations, is not suitable for VLSI implementation. For example, adding two
matrices is an 1/Q bound problem since there are n® computations and 3n? L0 opera-
tions.

The first atternpt to formally describe the systolic system was Charles Leiserson
in [Lei83a]. He represcnted the systolic system with a graph, G=(V.E), where n
Moore machines, represented by the vertices V, are interconnected together by an
interconnection specified by E and operating under a common clock, The Moore
machine model is used to eliminate the possibility of a combinatorial rippling of the
output of one machine through a sequence of successor machines. Each cdge is

labeled by a tiplet (u,v,w). The meaning of this triplet is as follows: the given edge

originates at vertex u, ends at vertex v, and is labeled with w N+. w identifies the
number of registers (delay) a datum originating at u has to pass through before reach-
ing v. Leiserson also proved that this system is systolic if " and only if for each edge
(n,v,w) the weight w is greater than O [Lei83a]. In essence this condition ensnres that
in a systolic system, no signal "data"” from a node can reach another node without
passing through an intermediate buffer. This eliminates the possibility of combina-
torial ripples through the nodes of the graph. Two major results which follow from
this systolic criterion are listed below.

Sufficient condition: A gystolic system represented as a graph G, has a systolic
equivalent if the consiraint graph G - 1 has ne negative cycles (G - 1 is obtained from
G by decreasing all the labels w of G by 1)

Necessary Condition: A systolic system represented as a graph G, does not have
any systolic equivalent if the graph G - 1 has a negative cycle and a path from some
vertex on this cycle to an input port.

Leiserson and Saxe proved the sufficient and necessary condition, and introduced
2 procedure to convert a non-systolic graph to a systolic one [LeS81]. Although the
conditions of uniformity and locality of communications were not formally inroduced
in Leiserson work, they are very important from the manufacturing point of view as
we explained earlier,

Theree are a large number of university and industrial projects on systolic arrays.
One of the early attempts to build a systolic system is the Warp project at Camegie
Mellon University [KuM84). The Warp consists of an array of ten linearly connected
cetls. Each cell in the array is capable of performing 10 million 32-bit floating point
operations per second (10 MFLOFPS)

At Motorola, an effort was made to design an advanced digital signal processing
systolic array (DSP) [Lee87]. The goals of this advanced architecture were

* 10 increase the processing performance by a factor of 16 over that of an existing
Motorola DSP;

* 10 perform 32-bit floating-point arithmetic for application that require this kind of
precision; and

* 1 reduce the amount of effort of software development of this kind of systems,

Motorola based this architecture on processing elements with 32-bit floating point
operations. The processing clement structure is shown in Figure 1.2. Every processing
element is composed of a serial floating-point processor, two input registers ,A and B,
and four communication registers. The four communication registers are used to
exchange data with the four neighboring processors directly to the east, west, north, or
south of this processing element. Each cell has a unique identifying address.

The serial floating-point processor takes 50 clock cycles to perform each opera-
tion and can run with a speed of 20 MHz. Since the operation takes 50 clock Cycles,

non-neighboring communications are possible. During the normally unusable times
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The architecture of a2 Motorola DSP [Lee87)

{the clock cycics), daa is allowed to wavel through cells transparently using the net-
work of communication registers in each PE, thus allowing a communication between
two PE’s that are up to 50 cells away. Algorithms are implemented directly in this
architecture. Every cell is initialized at least once after each power-up. From this
moment on, ¢ach PE performs the same operation in every processing cycle. It also
gets its input data from a pre-assigned input ccll and deposits its results in a pre-
assigned output cell. This pre-set operation makes it possible to assign the function of

. each cell directly from the signal flow graph.

Another example of recent VLSI architecture is the Systolic/Cellular system
being designed at Hughes research laboratories {NaP87). This system consists of a
host and a programmable coprocessor. The coprocessor includes an array of 16x16
mesh-connected processors, dual port memory, and a controller with a separate pro-
gram memory as shown in Figure 1.3. The program and the data are loaded from the
host to the program memory and the dual port memery, respectively. There are two
modes of operation for this processor, the systolic mode and the cellular mode. In the
cellular mode of operation the data are loaded to the processors from the dusl-port
memory. This mode is useful in convolution, thresholding, FFT, and other transforms-
tions. In the systolic mode of operation, the data will flow from the array memory in &
row-by-row fashion through the processors, and then back to the array memory using
the other port. It was found that this kind of operation is useful in matrix operations
like inversion, QR factorization, solution of linear systems of equations, and many
other matrix computations.

The processors in Hughes systolic/cellular system are controlled by & single con-
troller, which operates in an SIMD mode. One instruction is broadcast by the con-
troller to be exccuted by all processors. However, the leftmost processors can be pro-
grammed to perform different operations, and some processors may be disabled by
using a mask. The instructions set of this amray is composed of 30 powerful instruc-
tions, cach 112 bits wide. Each instruction has two separate ficlds of operations, one
for the leftmost processors, and the other for the internal processors. The performance
of this machine is in the neighborhood of 450 MOPS.
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Another system is currently being built at ESL Inc. is for beamforming for
acoustic signal [Kan87]. The system consists of a special-purpose systolic processor
which is attached to a general purpose computer (DEC 11/750)

In the United Kingdom, an effort was made to define "application specific” sys-
tolic armays for high performance signal processing computations. As a resuit, a sys-
tolic array was built that is capable of computing the vector of complex weights
required to form the receiving bearn for an adaptive antenna array [McMS87], Another
major project in the United Kingdom is the building a state-of-the ant digita] signal
processing system, which exploits the systolic amay concept at the bit level and is
capable of deing convolution, correlation, discrete Fourier transfonn and rank order
filtering in real time.

1.3. Problem Definition and Thesis Objectives

With the new advances in VLSI technology, systolic computations are becoming
more and more attractive, If the tend in VLSI technology is 1o continue, and there are
RO reasons to believe it will not, systolic arrays will become a major component in
any real time application that requires both high speed and high throughput.

In this thesis we are interested in synthesizing systolic arrays. Any synthesis
process beging with a high level specification of the problem to be solved. A final
implementation is then systernatically derived from this specifications. u Eariier work
on synthesizing systolic amays was based on the analysis of the data dependency of
such initial specifications. These initial specifications are assumed to be a system of
recurrence equations. We will continue to use the system of recurrence equations as an
initial specification throughout this thesis. Thres problems which have & great impact
on the design of systolic arrays are presented in this thesis: 3-D VLSI layout, mapping
A recurrence onto a systolic array, and pipelining of systolic arrays. The nex: three

subsections will briefly review the importance of these three topics.

10



1L.3.1. 3-D VLSI Layout.

One of the major objectives in VLSI circuit design is 10 increase the speed of the
circuit, This objective can be reached in two different ways, The first is to increase the
switching speed of the transistor, However, there are physical limits for this switching
speed Which can not be exceeded. The second is to put more and more transistors on
the chip, since the speed of transmitting & signal between two tansistors on the same
chip is at least one order of magnitude less than transmiwing a signal between two
chips, When putting more transistors on a single chip, the size of the transistor must
be decreased 10 maintain a reasonable levet of yield. Decreasing the wransistor size,
however, will decrease its driving capebilities, which will limit the maximum wire
length on the chip and consequently the number of transistors on the chip. One solu-
tion 1o this problem is to use 3-D VLSL 3-D VLSI rechnology is still in its enfancy,
and there are some technological difficulties to be overcome before it can be accepted
as a standard technology. But, with the work going on now at IBM and Hughes
Research Lab, one can expect 3-D VLSI chips to be an available in the near future.

The advantages of using 3-D VLSI layour are two fold, First, as will be proved
in Chapter 2, using 3-D VLSI layout will tesult in less total volume for any circuit
than its 2-D counterpart. This will lead to more dense chips, Second, 3-D VLSI layout
will result in less maximum wire length, which can lead to a faster circuits,

This thesis will sudy the possibility of 3-D VLS, and introduce improved lower
and upper bounds for both the volume and the maximum wire length required to lay-
out the different families of graphs,

13.2. The Design of a Systolic Arrays.

The second part of this thesis is concemned with the design of a systolic array,
Although the use of systolic arrays is increasing, there is as yet no methodology that
can map any recumence into & systolic array. Methodologies presented in current
literature are either dedicated to solving onc specific problem, or will take an
exponential time to solve the problem. This thesis assumes that the problem is

presented as a set of recurrence equations and that we want o map it into a square

11

array of processors. The second part of the thesis, introduces the concept of contral
flow systolic array. A heuristic methodology for mapping a sct of recurrence equa-
tions into a two dimensional control flow systolic army is also presented.

We chosed 10 map the recurrence into & 2-D mesh of processors for two main
reasons, The first is that 2-D layout is the predominant technology at the present time.
Second, the work presented here for 2-D arrays can be easily extended to support
three dimensional meshes when they become available,

1.3.3. Macropipelines of Systolic arrays.

Many applications in image and signal processing requires that more than one
systolic computations be performed on the data in a pipeline fashion. Accordingly,
output of one systolic array is fed directly to the input of another amay. However, the
output of one array may not be in the required format for input into the next array in
the pipe. The use of a common memory will slow the systern and can cause a
bottleneck. The last part of this thesis is concerned with the design of converters to
convert the data from the output format of one array to the required input format for

the next atray, in order to directly interface two systolic arrays.

1.4, Organization of the Thesis

The remaining of this thesis is organized into three chapters. Each chapter deals
with the interface between Integrated Circuit design and system design. Chapter 2 is
the most theoretical, being concerned with the inherent limitations on our ability to
compute using VLSL Chapter 3 deals with the design of the systolic array to solve a
specific problem, Chapter 4 deals with the system level, where we are concerning with
arranging the systolic arrays in a pipeline fashion to solve a certain problems.

Chapter 2 discusses the 3-D layout of VLSI circuits. In this chapter, we examine
the compiexitics of volume and maximum wire length for mapping circnits
represented as undirected graphs to 3-D systems. Tighter bounds than those previ-
ously known are shown for various families of graphs in both the one-active-layer and
the ungestricted layouts. Finally, a cost mode! is developed to reflect the cost of

12



implementation in the third dimension in order to optimize the number of layers to
minimize the overall cost.

Chapter 3, discusses the design of a systolic array, One of the most important
factors in the design of an army is how to map the algorithm into the array. Several
methods have been proposed for mapping the uniform recurrence into a systolic array,
In this chapter, the integration of control flow and data flow for mapping nonuniform
recurrences into a systolic array is presented and a methodology for integrating the
control flow with the data flow is introduced

Chapter 4 discusses the macropipelining of systolic armys. Tn a macropipeline of
systolic armays, outputs of one systolic array in a given format have to be fed as inputs
to another systolic array in a possibly different format, As mentioned before, a com-
mon memory becomes a bottleneck and fimits the number of systolic arrays that can
be connected together. In this chapter, the designs of buffers to convert data from one
formar to another is stedied. The minimum number of buffers is determined by a
dynamic-programming algorithm with &n?) computational complexity, where n is the
problem size. A general-purpose converter to convert data from any distribution to
any other in a subset of the possible data distributions is also proposed. Finally,
buffer designs for a macropipeline to perform featre exmaction and parern
classification are used to exemplify the design process.

13

CHAPTER 2
3-D VLSI LAYOUT

2.1. Introduction

The increasing demands for faster processors in scientific as well as commercial
computations indicate the need for tremendous computing capacity, in terms of speed
and volume. One way to achieve this is to build chips with more active devices. To
increase the number of devices in a single chip while maintaining A reasonable yield,
the transistor size should be decreased. There exist problems with decreasing transis-
tor size, such as the short-channel effect and the nonstatistical behavior of transistors
that span only a few hundred or a few thousand silicon atoms [NuEB5). However,
long before. these problems become important, the problem of reduced driving capabil-
ity of smaller transistors will have an equally profound impact on the layout of VLSI
<hips, since the average wire length grows linearly with the number of transisors, As
a result, a Timit will be reached at which the size of a mansistor cannot be decreased
any more without affecting its ability to correctly transmit a signal to another transis-
tot.

Recently, 3-D VLSI circuits have been shown to be feasible. 3-D VLSI circuits
are more flexible than their corresponding 2-D counterparts because wirs routing is
casicr and more systematic, the runs of wires are shorter, and the volume of a 3-D
realization may be less [Ros#3a]. Wise has demonstrated this phenomenon in a two-
tayer layout of the Banyan/FFT networks;, however, his work was directed towards the
printed-circuit level rather than the VLSI-chip level [Wis81], With increased flexibil-
ity of device placement in a 3-D circuit, the complexity of the resulting circuit can be
reduced. Hence, the driving capability of a transistor and the overall power



requirement can be reduced. Dr. Gibbons, the president of Texas Instruments,
predicted the feasibility of such chips in the earlier 1990s [Gib82], Examples of
current implementations include IBM’s **modestly”” three-dimensional Thermal Con-
duction Module (TCM) circuit package [BIB82] and Hughes’ 32-by-32 3-D cellular
computer 1o be finished in 1987 {NuE85]. Nudd, Eichells, and Grinberg have pro-
posed a cellnlar machine employing 3-D technology to perform image understanding
operations [GrN84] [NuE8S].

3-D VLSI technology is still plagued by four major problems. One problem is
the alignment of in successive layers of a chip. Another problem is the creation of
ruly cylindrical holes. Due 1o effects like diffraction, scattering, and nonuniform
exposure to solvents, the holes tend to be accentuated at the top or the bottom
{MeC80]. Recent work on X-ray beam and refined optical lithography [Ros83a] has
suggested that this issue will be less of a problem in the future. The third problem is
that the placement of active devices, using MOS technology, deep inside a 3-D
volume requires multiple layers of monocrystalline silicon to be deposited, and subse-
quent processing of the chip would destroy the crystal structure of the monocrystalline
silicon. Recent work at Texas Instruments [LaT80] and IBM {WeiB1] has suggested
that full layers of the monocrystalline silicon are not needed, and that transistors can
be fabricated on islands of monocrystalline silicon that reside on a sea of oxide. The
fourth problem is the cooling of such chips. However, the shorter wire lengths in 3-D
circuits generates less heat than the corresponding 2-I circuirs., Moreover, the prob-
lem is less severe in a one-active-layer chip in which active devices exist in only one
layer, with the rest of the volume being used for wire routing [Ros83a} [Ros81}.

In this chapter, improved bounds on volume and maximum wire length of 3-D
layouts will be shown, in both the one-active-layer and unresiricted models, Section
2.2, will present a model for 3-D layouts. In Sections 2.3 and 2.4, tighter lower and
upper bounds on volume and maximum wire length will be proposed and ropose lay-
outs for the various familics of undirected graphs will be presented. Finally, an

optimization model will be presented to minimize the overall cost of the design.
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22. A Model of 3-D VLSI Circuits

This section, describes the model used to obtain the lower and upper bounds of
volume and maximum wire length for mapping vatious families of undirected graphs
in 3-D circuits. Other attemnpts in this field will be described briefly.

The model used here is an exiension of Thommpson's 2-D model into three dimen-
sions [Tho80]). The model consists of & 3-D grid of width W, length L, and height H
(Figure 2.1). A vertex in this grid, (x.,y,2), where 0sx<W, 0gy<L, and 0<z2<H,
denotes the location where a device may reside. An edge in the grid represents a wire
in the circuit. It is assumed that three mutually perpendicutar lines in the grid can
pass through one point without physically touching each other. As a special case, the
traditional 2-D circuit with two levels of metalization can be considered as a one-layer
3-D circuit because the two levels of metallic conductor can cross without rouching
cach other, It is further assumed that any active device will require a unit volume,
that the cross section of any wire is a unit area, and that the separation between the
wires in any direction is of unit length. These assumptions are not ooverly restrictive
as it is the order-of-magnitude asymptotic complexities that are under consideration.

To find the upper bounds of volume and maximum wire length for mapping an
undirected graph G=(V, E), where ¥ is a set of vertices and E is a set of edges con-
necting the vertices, it is necessary to find a one-to-one mapping between the set of
vertices of the graph and the ser of nodes of the grid and, at the same time, a one-to-
one mapping betwesn the set of edges in the graph and the set of disjoint paths of the
grid. The volume of the layout is the minimum volume of a paralielepiped containing
the layout, while the maximum wire length is the maximum lwngth of a wire between
any two active devices.

Rosenberg has proposed two maodels of 3-D layouts [Ros81] [Ros83a]. The first
model is the one-active-layer moxdel, in which active devices arc allowed to reside in
either the top or the bottom layer, with the other layers used for the routing of wires,
The second mode! is the unresiricted model in which active devices can be placed
anywhere in the volume. In general, the one-active-layer model requires more volume

and longer wires than the unrestricted mode.
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Teble 2.2.
Lower bounds on volume and maximum wire length for the one-active-l
model. (Note that a lower bound is intended to mean the lar ekl
bound for a graph in the given family.) pest known lower
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{LeR36]) (N loglog )
B(NY), QN QINTHZy QNI QN
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can further be decomposed into two subgraphs by removing no more than F/a edges.
In general, any subgraph in level i can be decomposed into two subgrephs by remov-
ing no more than Ffo' edges. This decomposition can be represented by the decom-
position tree in Figure 2.5.
A decomposition tree is said 10 be a fully balanced decomposition tree if
(1) when decomposing any subgraph into two smaller subgraphs, the number of
nodes in the two smaller subgraphs are equal; and
() when decomposing any subgraph into two smaller subgraphs, the number of
edges connecting the subgraph to the rest of the original graph is divided into
two equal sets that are distributed in the two decomposed subgraphs.
Bhan and Leighton also proved thar any graph with a (F, o) bifurcator has a fully bal-
anced decomposition tree with a (F*, o) bifurcator, where F’ is related to F by a con-
stant. Leighton showed that if F=N7, then the total number of cdges connecting any
subgraph with N/ 2% nodes in leve! i of the decomposition tree to the rest of the origi-
nal graph is k(N/21)3, where k is a constant [Lei83b]. As a result, a graph with N®
scparator has a (N9, 29} bifurcator.
In the rest of this section, upper bounds on volume and maximum wire length for
the lanoyt of the various families of undirected graphs in both the one-active-layer and
the unrestricted models will be developed.

2.4.1. One-Active-Layer Layouts

The following theorems prove the upper bounds on volume and maximum wire
length for the layout of the various families of undirected graphs in the one-active-
layer 3-D layouts. The family of planer graphs is treated in the same way as the fam-
ily of graphs with &(VN) separator.

In the following theorem, the upper bounds for graphs with O(VN) separator are
proved. Although Leighton and Rosenberg have proved the same bounds before, they
have assumed in their proof the existence of a layout of an n-node subgraph in which
the ports of this subgraph “‘are sufficiently sparse that the routing is guaranteed 1o be
possible’” [LeRB6]. We will assume in the following proof thet the porms of a
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Figure 2.1
A 3-D gri¢
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Rosenberg proved that there is an unrestriceed 3-D realization of the n-input rear-
rangeable permutation network that consumes ©(n*2) volume, and that thers is a
one-active-layer 3-D realization of the same network with Q?uz_om n) volume”
[Ros81] [RosB3a]. Preparata has proposed a layour for the cube-connected-cycles
using the unrestricted model. Prepurata also developed upper and lower bounds using
the VT2 and VT measures, where V is the volume, and T is the computation time
[Pre83a]. He pointed out that the VI measure is suitable for the unrestricted Iny-
out, while the VT measure is suitable for the one-active-layer layout. Leighton and
Rosenberg have found lower and upper bounds for the layour of various families of
undirected graphs [LeR83a] {[LeRE6].

In the next two sections, improved lower and upper bounds to map an undirected
graph to 2 3-D grid for the one-active-layer and the unrestricted layouts will be
presented and compared to previous results. The undirected graphs considered are
classified into families characterized by their separators, which define the retationship
between the area or volume of layout and the connectivity of the graph. An N-node
graph G is said to have f(N) separator if (a} G can be partitioned inte two graphs, each
with N/2 nodes, by cutting no more than f(N) edges; and (b) both of the two N/2-
node subgraphs have f(N/2) separators. Lipton and Tarjan proved that any N-node
planar graph has O(VN) separator {LiT77a) [LiTT77b]. Since the result discussed
above is an upper bound, it is possible for planar graphs to have scparators less than
8(VN) and possible for non-planar graphs to have B(VN) separators. The relation-
ship between the separator and the comresponding arce of layout wes first observed by
Thompson [ThoB0], who showed that the lower-bound area lay out & graph with
separator @ is Q(w?). Leighton obtained lower and upper bounds on the area and
maximum wire length for layouts of various families of graphs with @{N%) separator,
where q<1/2, q=1/2, and g>1/2, and the family of planar graphs vsing 2-D technolo-
gies [L«iB4].
= ) indicmes the et of fuwticos with the samo ordor-of-magniesde compleiry: CF indicater the vt of fancticas wih

the upper-bound orderf-magritude complexity; L2 indicates the ser of functions with the fower-bound oeder-of-
magnituds complexity.
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2.3. Lower Bounds on Volume and Maximum Wire Length

In this section, improved lower bounds on the volume and maximom wire length
are developed for the various families of undirected graphs in the one-active-layer
model. To prove the lower bounds on embedding the variows families of nndirectsd
graphs in a 3-D grid, it is necessary 1o find a representative graph in each family such
that this graph wilt have the greatest lower bound. No improvement in lower bounds
for the unrestricted model was found because the existing lower bounds on volume are
equal to the improved upper bounds (Section 2.2), except for graphs with S(N2/3)
separator, and hence arc already right. Table 2.1 summarizes the existng lower
bounds on volume and meximum wire length for the unresmicted model [Ros83a)
[LeR86] [LeRB4],

The following theorem gives the plane area required when & 3-D circuit to be
converted into a 2-D circuit, This theorem is an improvement over the one proved by
Leighton and Rosenberg {LeR86), showing that the area required is 4BH? instead of
9BH? and that the degree of the graph can be six instead of four.

Theorem 1: Any 3-D layout of voleme V, base area B, and height H can be
transformed into a 2-D layout of area A=4BHZ. If the maximum wire length in the
3-D layout is Wig, then the maximum wire length in the 2-D layour is
Wag < 2max( H, 3y Wa,.

Proof: Without loss of generality, a 3-D grid of base area B=WL and height H will
be transformed into a 2-D grid of arca A=4WLH?. Consider the 3-D grid in Figure
2.2a. Assume that the nodes of this grid are located in the Cartesian coordinates
(x.y.2}, where 0<x<W, Osy<L, 0sz<H. Point {x,y,2) in the 3-D grid is mapped to
point (x’,y’) in the 2-D grid such that

X =Hx+z: y "=Hy+z (2.1}
Note that the width and length of the 2-D grid are W’ = HW and L’=HL, respectively.

Figure 2.2b shows the mapping of the 3-by-3-by-3 grid into a 9-by-9 grid, where
solid lines represent connections in the first plane in Figure 2.2a, dashed lines

represent connections in the second plane, dotted lines represent connections in the
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Figure 2.2

The mapping of a 3-by-3-by-3 grid into a 9-by-9 grid. (a) 2 3-D grid; (b) a mapping
of the 3-D grid in (a) to a 2-D grid; (c) a section of the 2-D grid with diagonal con-

nections; (d) an expanded section of the 2-D grid without diagonal connections.



Table 2.1. Lower bounds on volume and maximum wire length for the unrestricted
model. (Note that & lower bound is intended to mean the largest known
lower bound for a graph in the given family.)

Graph Maximum
Separator f{N} Volume Wire Length

B(V), 0=q<2/3 QM) [Ros83al, | LUN'3/logN)

[LeR86],[LeR84] [Ros83a)
Planar QM [Ros83a), | QUN'2/logN)
(LeR%6],[LeR84] {Ros83a]
B(N%), 2/3<gs1 QN*?) [Ros83a] | QNYY/1ogN)
[Ros83a}

third planc, and diagonal lines represent connections across different plenes. The
effect of this mapping is that two nodes in a smaight line in the x or y direction in the
3-D) grid are mapped into two nodes in a straight line in the same direction in the 2-D
grid, but the distance between them is multiplied by H. For example, 8y ; and a; 3 are
separated by a distance of two units and are in the x direction in Figure 2.2a. These
two points are separated by a distance of six units (H=3) and are also in the x dirce-
tion in Figure 2.2b. Note that nodes in 2 straight line in the z direction are mapped to
nodes in a straight line in the diagonal direction in the 2-D plane. Since most models
in 2-D VLSI layouts do not allow connections in the diagonal direction, the problem

can be circumvented by multiplying the area by four and mapping diagonal
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connections to a sequence of horizontal and vertical connections, Figure 2.2c shows a
generic node connected to its six neighbors, where the distance between adjacent
nedes in the x or y direction is unity. Figure 2.2d shows the same set of nodes after
doubling the distance between two nodes and quadrupling the area of each node,
hence, multiplying the total area by four. Here, a diagonal connection is altered 1o be
a horizontal segment followed by a vertical segment and finally a horizontal segment.
As a result, the area is

A = 4(HW)(HL) = 4(WLH?) @2

To prove the result on the maximum wire length, note that a wire connecting any
two nodes in the 3-D layout is composed of wires running in the x, y, and 2 direc-
tions. The length of wires in the x or y direction is multiphied by 2H during the
transformation, while the length of wires in the z direction is multiplied by a constant
less than six. It is straightforward to show that

Wag S 2max( H, 3rWiy, (2.3)

which proves the theorem. O

In the following theorem, the mesh of trees is considered as an cxample in the
family of graphs with &(YN) separator, while the tree of meshes is considered as an
example in the family of planar graphs. These wo example grephs were used by
Leighton in proving the lower bound of bothe area and maximum wire length in 2-D
layouts [Leig1].

The mesh of trees is defined as follows [Leig4) [Lei81]. Starting with en n-by-n
matrix of nodes (n is assumed 10 be a power of 2) and adding nodes wherever neces-
sary, a complete binary tree is constructed using nodes in each row and column of the
matrix as leaves. Hence, each node in the mesh is a leaf of two orthogonal binary
trees, one for the binary trec encompassing rodes in the row containing this node and
another for the tre¢ encompassing nodes in the column. (Orthogonal trees is another

name for the mesh of trees.) An example of the mesh of tress is shown in Figure 2.3.



Figure 2.3
A 4-by-4 mesh of trees
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The tree of meshes is defined as follows [Lei81] [LeiB4]. Ina complete binary
wee, each node is replaced by a mesh and each edge by several edges that connect the
meshes together, The root is replaced by an n-by-n mesh {n is assumed to be a power
of 2). Its children arc replaced by nf2-by-n meshes. These meshes’ children are
replaced by n/2-by-n/2 meshes. This continues until the leaves of the original binary
tree are replaced by 1-by-1 meshes. Figure 2.4 shows a 4-by-4 tree of meshes.

Theorem 2: (2) Any 3-D one-active-layer layout of the mesh of trees will require
Q(Nlog N) volume and Q(VN/loglogN) meximum wire length. (b) Any 3-D one-
active-layer layout of the wee of meshes will require Q(NVlogN) volume and
Q(VN/iog N) maximum wire length,

Proof: These lower bounds will be proved by contradiction. Leighton proved that any
2.D layout of the N-node mesh of rees will require Q(Nlog® N) area, and thar this
layout must have Q(Nlog N/ toglog N) maximum wire length {LeiB4]. He also
proved that any 2-D layout of the N-node tres of meshes will require Q(Nlog N) arca,
and that this layout must have (VN log N) maximum wire length.

For the mesh of trees, assume the existence of a 3-D one-active-layer layout with
a volume V<©(NlogN) and maximum wire length W<&(YN/loglogN). The base
area of this one-active-layer layout should be G, as it should be large enough to
accommodate the N nodes of the praph. Therefore, the height of this layout is
H<B{logN). According to Theorem 1, this 3-D layout can be transformed into a 2-D
layout  with  area A<O(Nlog?N) and  maximum  wire length
W, <0(Nlog N/loglog N}, which contradict Leighton’s results [LeiB4]. Thus, any
3.0 one-active-layer layout of the mesh of wees will require Q(Nlog N) volume and
N r1og log N) maximum wire length.

For the tree of meshes, assume the existence of a 3-D one-active-layer ayout
with volume <A®aza ) and maximum wire length in@?ﬂ [logN). Since the
base of this layout should have $N) area, the height of this layout is H<®(Vlog N).
Using Theorem 1, this layow can be transformed into a 2-D layout with area

A<B(NlogN) and maximum wire length Woq<@(VNAlogN), ‘which contradict
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Figure 2.4,
A 4-by-4 Tree of meshs
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Leighton's results. Hence, any 3-D one-active-layer layout of the trees of meshes
should have Q(Nviog N') volume and Q(¥N/log N) maximum wire length. B

The upper-bound volume of the family of undirected graphs with @(NY) separa-
tor, 1/2<q51, will be shown in Section 2.4 to be O(NY2), A5 the base ares has
Q(N) compiexity, the height of this layout has O(NT'/2} complexity. Leighton has
proved the lower-bound maximum wire length for the family of undirected graphs
with 8(N") separator, 1/2<g5l, in a 2-D layout to be Q(NY) [Leif4]. From Theorem
1, the maximum wire length in the 3-D one-active-layer layout should be Wa/H =
QNYNT12) = (N

For the family of graphs with &(N%), scperator (%q<1/2, Paicrson, Ruzzo, and
Snyder have proved the lower-bound maximum wire length in 2 2-D layout of a
binary tres to be Q(VN/ logN) [PaR81}. In & one-active-layer 3-D layout, a similar
argument ¢an be made such that nodes of a binary tree are in one layer, and that the
maximum distance between two nodes separated by 2logN edges is Q(VN). Hence,
the lower bound in the 3-D case is the same as that of the 2-D case.

Table 2.2 summarizes the lower bounds obtained for the one-active-layer layout
and compares them with previous results.

24. Upper Bounds

Before introducing the results on upper bounds, some of the mathematical back-
ground behind the theory of layouts should be reviewed, Thompson introduced the
idea of the minimum bisection width of an undirected graph and proved a relation
berween the minimum biscction width and the minimum arca required to lay our the
given graph [Tho80]. Lipton and Tarjan introduced the idea of separator for a family
of undirected graphs and proved that the family of planar graphs has an O(N)
separator [LiT77]. They also proposed a linear time algorithm to compute this separa-
tor, Bhatt and Leighton introduced the ideas of bifurcators and decomposition trees
[BhL34]. An N-node undirected graph has (F,q) bifurcator if it can be decomposed
into two subgraphs, G, and G, by removing no mere than F edges, Both G; and G,
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Figure 2.5,
Decomposition tree for a graph with (F, ) bifurcator.

subgraph are equally spaced along one side of its layout. In connecting two n-node
subgraphs inte a 2n-node subgraph, a complete crossbar switch will be used to per-
form the routing, and the pons in the resulting subgraph will also be equally spaced
along one side of the resulting layout. The above model allows a better upper bound
on volume for the family of graphs with ©(N%) scparator to be proved. This will be
shown in Theorem 4.

Theorem 3: Any undirected graph with &(v¥N'} separator has a 3-D onc-active-layer
layout with O(NlogN) volume and O(VN ) maximum wire length.
Proof: Assume that the balanced decomposition tree of the graph is known. The proof
is by induction on a graph with n nodes. The case for n=1 is trivial. For the indue-
tion hypothesis, assume that an n-node graph can be mapped into a parallelepiped
with volume V(n), height H(n), and a square base of side L{n}=kevn, where k is a
constant. It is Further assumed that the cVit ports to connect any node in this sub-
graph 1o another node cutside this subgraph are aligned and equally spaced along one
side of the top layer of this layout (sec Figure 2.6, where the ports are represenied by
circles). In the induction step, consider the volume needed to lay out four n-node sub-
graphs. We will combine these four layouts to produce one 4n-node layout with
volume V(4n), height H(4n), a square base of side L(4n)=kcV4n, and that the cVdn
ports of the 4n-node subgraph are aligned and equally spaced along one side of the
top layer. This will be done by first showing that one additional layer is nesded to
accommodate the necessary interconnections when two n-node subgraph layours are
combined to form one 2n-node subgraph layout,

Consider two n-node layouts placed side by side as shown in Figure 2.6, Figure
2.7 shows the edditional top layer thav is created when the two n-node subgraph lay-
outs are combined, It is necessary to (a) create ¢V2n ports in the 2n-node subgraph
layout; and (b) connect 2 maximum of cVn ports in one of the n-node subgraphs to a
maximum of e¢¥n ports in the other n-node subgraph, Since it has been assumed that
the subgraph has a balanced decomposition tree, half of the ¢v2n ports in the com-
bined layout will be connected to ports in the first layont, while the other half will be
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Figure 2.6,
Two n-node subgraph layouts with 8(vn } separator, {The cvn' ports of each lay-

Out are represented as circles and are aligned on one side of the top layer.)
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Figure 2.7
New layer on top is created when two n-node subgraph layouts arc combined 1o
fom one 2n-node subgraph layout in the one-active-layer model. (Circles
represent the ¥ ports in each n-node layout. Squares represent the ¢¥2n ports

in the combined Iayout.)
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connected to ports in the second layout.

In Figure 2.7, the cvn ports of the two n-node subgraphs are represented by cin
circles along the sides. The newly created ¢VZn ports of the 2n-node subgraph are
represented by squares equally spaced along the top side. The objective is 1o route the
o¥2n ports in the combined layout to ports in the two original layouts and to connect
the 2cVn ports in the original layouts together. This can be done by creating & track
out of each port in the original layout and extending it across the top layer in the new
layout. These tracks are represented by the solid horizontal lines in Figure 2.7
Tracks are also created for cach of the cV2n ports in the combined layout end
extended across the top layer, These tracks are shown by the dotted vertical lines in
Figure 2.7. These harizontal and vertical racks allow us to form a complete crossbar
switch that connects any port in the two n-node layouts to any port in the combined

layout. To connect the c¥n ports in enc of the n-node layouts to the c¥n ports in the

other n-node layout, a maximum of c¥n vertical tracks (represented as dashed lines in
Figure 2.7 are created) to form a complete crossbar switch. The above construction
process is feasible for k22 in the induction hypothesis because the number of horizon-
tal tracks is 2cVn, which is less than keVrr, and the maximum number of vertical
tracks is (c¥2n + ¢V ), which is less Zkevh,

In combining two n-node subgraph layouts to form onc 2n-node subgraph layout,
an additional layer is needed. The number of layers in the resulting layout can be
computed from the following recurrence.

H(2n} = mEa . - (2.4)
1 nsl

Similarly, we can combine two 2r-node subgraph layouts 1 form one dn-node
subgraph layout. In general, for an N-node subgraph layout, where N is 2 power of
two,

H(N) = logN 2.5)

Since the base area of an N-node layout is {keVN vp. the total volume will be
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VyaL(N) = k2c2Nlog N = O(Nlog N 2.6

In compating the volume, no constraint is put on the routing of wires, hence, 2
wire can run along the logN layers in a zig-zag fashion in the worst case. The max-

imum wire length is
TogsN
WialN)=0[2 ¥ keq \m.um = O(VN) @n
=0
According to the theory of induction, the theorem is proved, O

Theorem 4: Any undirected graph with &(N?) separator, 1/2<g<], has a 3-D one-
active-layer layout with O(NT"'/%) volume and O(YN') maximum wire length.

Praof: The proof is similar to that of Theorem 3 except that cnd edges connect any n-
node subgraph to the rest of the graph. Assume that there are two n-node subgraph
layouts, each in the form of a parallelepiped with height Hin), square base with side
keva, and that the cn ports are arranged in the form of a rectangle of width n1/2
and length eV in the top layer (see Figure 2.8). In forming a 2n-node layout, ¢(Zn)d
Rew ports must be created and routed to 2 maximum of 2cn? ports of the two n-node
layouts, and the pons of the two n-node layouts must be connected together in a simi-
lar way as in the proof of Theorem 3. To form a complete 3-D crossbar switch to per-
form the routing between the c{2n)? ports in the combined 2n-node layout and the
corresponding pons in the two n-node layouts. a¥ /2 layers arc necessary, another
n*2 fayers are needed to form a complete 3-D crossbar swiich to connect the ports
in the two n-node layouts.

The height of the layout can be computed from the following recurrence.

H(n) + 203172 n>1
Hn) =1 | n<l (2.8)
In general, for an N-node layour, where N is a power of 2,
logyN q-112
HN) = 3 2 ﬁw = O(NTI2) 29
i=1
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Figure 2.8.
Two n-node-subgraph layouts with G(NY), 1/2<gs1, Separator.
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Since the base area of the N-node layout is (kevN ), the toral volume is

ViaL(N) = OQN-NT2) = o112y (2.10)
Using the same argument s in the family of graphs with ©(YN) separator, the max-
imum wire length is

Wiar = O(VN) (.11

Nots that the upper bounds on volume and maximum wire length are optimal because
they are the same as the corresponding fower bounds (ses Table 2.2). O

Table 2.3 shows the upper bounds in the one-active-layer mode] and compares
them with previous results [LeR84] [LeR86]. Note that the upper bounds on volume
are tight in all cases except for the family of planar graphs.

2.4.2. Unrestricted Layouts
The next two theorems give the complexities of layouts in the 3-D unrestricted
model in which devices can be placed anywhere in the 3-D volume,

Theorem 5: Any complete binary tree with N nodes has a 3-D unrestricted layout
N3
logN

with V(N) = O(N} and » maximum wire length W(N} = Q

Proof. Figure 2.9 shows a 3-D H-layour wee, which is a direct extension of the
2.-D H-layout tree, with a volume V(N)=OfN), and & maximam wire length
W) = N3, where N is the number of nodes in this tree. Notice that the layout has
the shape of a cube, and the maximum wire length is half the sidelength of the cube.
The technique used in this proof is similar to the 2-D minimax wirctength for the mee
of meshs [CzR88] [Ramn82].

Given a 3-D H-layout of a tree of height 3loglopN'>, the number of nodes in
this tree is 20F0BOBN™ _ 2163N13 nodes, and the volume of this layout i3
V=0(og’N"). In the previous layout (3-D H-layout of a tree of height
a7
logNL?

JlogtogN'? each linear dimension is oxu.w:nnn with a factor B, where =

o3

36



37

Table 2.3.
Upper-bound volume and maximum wire length for the 3-D one-active-layer lay-

outs. (The previous and new results may be the same but obtained by different
methods.)

Graph Volume Maximum Wire Length

Separator

D oS el DNy j Dlevy,

(N, O(N) [LeR86) m_ﬁma O(N/logN) | O(VN/log Ny

Osg<1/2 [LeR86) {L=R86]

Planar O(Nlog N) ONlog Ny [O(N) oOWR)
[LeR86) {LeR86]

8(VN) O(Nlog N) O(Nlog N) |O(¥N)) O(N)
[LeR86] [LeR86)

O(NY), ON"2 logN) | O(NT"12) |O(VN)) O(VN)

[LeR86)
12<qsi [LeRE61

\
\

—

Figure 2.9
3-D H-layour of a binary mes
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is a constant, Each point in this layout is expanded into a cube with side B and
volume B, and every edge is expanded into a channel of side length B and height P.
A mee of height logN will be embedded into this expanded H-layout. First, the root
of this tree is embedded in the center of the layout, with the second ievel nodes on
either side and the nodes in the top levels stacked together in a breadth-first manner.
As shown in Figure 2.10, nodes in successive levels are equally spaced at a distance
% apari. Assume that k levels of the tree are embedded in this manner.

It is necessary to ensure that every channel is wide enough 1o accommodate the
nodes stacked in it. To do this, assume that all the nodes in the first k levels are
stacked together in the same channel, This is an over-cstimation, but suffices for this
proof, In the first k levels, there are 2x2* nodes, it will be proved that this number is
smaller than the channel side.

2% <p (2.12)
substituting the value of B we get

k < 1ogN' + logoc = 1 — loglogN/? 2.13)
Selving for k we get

k = clogN!P? cs<l (2.14)

The rest of the levels ( logN — clogN'? ) still nced 10 be embedded, This is done in
the leaves of the original H-layout, which became cubes of side B. The condition to be
satisfied is that the total volume of these cubes is not smaller than the number of the
rest of the nodes (in the H-layout, O(N) volume is needed for layout of mee with O(N)
nodes).

B x log? N/ 2 208N o slogN — clogh'? 2.15)
1/3
_oMzuM = x log?NP = N 2.16)

which is satisfied for ot 2 1.

The total volume of the layout is 7 % log®N'"® = ¢>N. The maximum wire length in
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Figure 2.10.

A cross section in the 3-D H-layout of a binary wee



the first stage is bounded by B, and in the second stage by the sidelength of the cube,
z:w
log N

a

which is . The maximum wire length W(N) < O

Theorem 6: Any undirected graph with @(N7) scparator, 0<gsl, has a 3-D
unrestricted layout with volume

om) 0sq2/3
V(N) = { O(Nleg’N)  g=2/3 217
O(N%¥'2y 2/3<ggl

with maximum wire length

O3y 0sq<2/3
W(N) = { O(N'Plog Ny q=2/3 2.18)
| oz 2/3<q<1 .

Proof: Assume that the balanced decomposition tree of the graph is known. The proof
is by induction on a graph with n nodss. The case for n=l is wiviel. For the induc-
tion hypothesis, assume that an n-node layout is in the form of a cube. Further,
assume that the ¢n% ports of this layout are arranged in the form of a square with side
kVen® in one of the faces of the cube, where k is 2 constant. In the induction step, it
will be shown that eight n-node subgraphs can be combined into one 8n-node layout
in the form of a cube, with the c(8n)% ports of this layout arranged in the form of a
square of side wa .

The induction step is proved by first amanging the eight n-node layouts in the
comners of a larger cube, such that ports of the four upper cubes are directed down-
wards, while ports of the four lower cubes are directed upwards (see Figure 2.11).
First two n-node subgraph are combined layouts to form one 2n-node layout, It is
necessary 10 (a} create ¢(2n)? new ponts for the 2n-node layout, and (b) connect the
ports in the two n-node layowss. Figure 2.12 shows the 2(cn®) ports of the upper and
lower layouts, each in the form of a square with side KVen? » where k is a constant.

By adding 2%%kVen? layers between the upper and lower cubes in Figure 2.12, a
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H(8n

D(8n)

rew

Figure 2.11

Combining eight n-node layouts to form one 8n-node layout.



complete 3-D crossbar switch can be created 1 perform the necessary routing betwecn
the newly created c(2n)? ports and any of the 2¢n? ports in the two original n-node
layouts. The newly created ¢(2n)¥ ports are arranged in the form of a rectangle of
length kVen? and width 29kVea?. To perform the necessary connections between the
two n-node subgraph layouts, each with a maximum of cn% ports, another complete
3-D crossbar switch with k¥en? layers is created between the upper and lower lay-
outs, as shown in Figure 2.12.

In a similar way, four 2n-node layouts can be combined to form two 4n-node
layouts, and two 4n-node layouts can be combined into one 8n-node layout. In each
case, O?ﬂilv layers have been addeed between the two layouts concerned. The

beight, length, and width of the 8n-node layout can be computed from the following
TeCUITENCES.

2H(n) + ky Ven? n>1

H{8n) = 1 =l (2.19
2L{n) + w»¢n=a 1

L@ =1, el (2.20)

2D(n) + kyVend w1
D(8n) = 1 n=1 (2.21)

where ki, ky, and k; are constants, Solving these equations,

Oy O<q<2/3
DNy =LMN) =HN) = 1 ON'"PlogN)  ¢=2/3 (222)
O(N3'2y 2/3<qs1.

The volume of the layout will be

O(Ny 0sq<2/3
V(N)= { O(Nlog’ N} q=2/3 2.23)
O(NYY 2/3qsl.
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kyend inyers to connect
a maximum of cn? porns
of each layout together

——r

e{2n)? ports of the

¢n? ports of each 2n-node layout
of the two n-node arranged in a
layouts arranged in & Iolen¥2-by-29%Vp n??
square with side rectangle

kvend /

Figure 2.12
Combining two n-node layouts to form one 2n-node layout in the unrestricted
model.
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Table 2.4, :
For the maximum wire length, note that the maximum wire length of the 8n-node cv_un?dozsn<o_=EnEE3§mB=Bi.d.a:mSmSSou-U:HnmSnﬁn ?ﬁﬂm

(The previcus and new results may be the same but obtained by a
layout is equal to the maximum wire length of the n-node layout plus «L{8n), where method.)

L(8n) is the length of each side of the Sn-node layout, and o is & constant. (Due to
the crossbar connection, the maximum distance betwesn any two ports is eL(8n)).

Maxi Wire Len
The maximum wire length can be computed from the following recurrence. wow.hw_ﬂw_. Volume mum Wire Length
W{8n) = W(n) + aL(8N). (2.24) s s "
BN, O(N) [LeR36] O ON'7) ILeRB6] | O(NY3
Substitating L from Eq. (17), ] 0=q<1/2
113
O(N"™) 0<q<2/3 Planar  [O(Nlog?/?N) oM  |ONPViogN) Ot
WN) = { O(N"P1ag Ny q=2/3 2.25) [LeRR6) [LeR86}
O(N%/2y 2/3<gsl.
: O(N)  [[O(NIog"/2N) ON)  {O(N*"+logN) O(N'73)
According 1o the theory of induction, the theorem is proved, O [LeRB6] [LeR86]
Table 2.4 shows the upper bounds obtained here for the volume and maximum B(NY, || ONTi2gpiiay, O(N) O(NYVUIoe Ny [ O(NL/3)
wire length, and compares them with previousl results [LeR83a] [LeR86] [LeR84]. 12<q<273 (LeR86] (LeR36)
Comparing the upper bounds in Table 2.4 and the lower bounds in Table 2.1, all upper 8V oqogN) | ONIe £N) [ O T O(NPlogN)
bounds on volume obtained here are tight except for the family of graphs with [LeR86) {LeR86]
B(N?) separator.
o), { O P10 Ny | O(N'2) | ONHIIoeN) | vy
2/3<q<t [LeR86] [LeR86]
2.5. Optimization of Totat Cost of Implementation

Up to this point, the voleme occupied by the components of 2 3-D VLSI layout
hes been considered to be the cost of the layout. In general, the volume is not directly
related to the cost of implementation because the cost of Tunning & wire or placing a
device in a 3-D volume may depend on its location in the chip. In contrast, in a 2-D
implementation, the cost of Tunning a wire or placing a device is independent of its
location, and hence, the area is related to the cost of implementation by a constant,
To compare the wade-off between 2-D and 3-D implementations, the criterion used
must be based on costs.

In this section, it is assumed that the cost is & function of the number of layers in

the 3-D chip and the total cost, instead of volume, is minimized in a one-active-layer



layout. In the foilowing discussion, planar graphs are treated in the same way as
graphs with @(VN) separator, although planar graphs may have separators less than
BN,

Consider the problem of laying out a graph with B(NY) separator, 0<q<1/2.
Since the complexities of a 3-D layout are ©(N), which is the same as that of a 2-D
layout {Lei84), the cost of 2 3-D implementation will differ from that of a 2-D imple-
mentation by a constant factor.

To lay out & graph with &(N%) separator, 1/259s1, Leiserson has proved that the
arca required for a 2-D implementation is {Lei80]

A = aNDA(N), 2.26)
where
logN { q-1/2
DiN)= ¥ = 227
=0 L2

@ is a graph-dependent constant, and N is a power of 2. The i’th term in the summa-
tion in Eq. (2.27), (N/2'}*/2, is the increase in area to connect two (N/29-node sub-
graphs together in a 2-D implementation. It was shown in Section 2.1 that
2N/ 2972 Javers are needed it a 3-D implementation to conneet two (N/ 21)-node
subgraphs together (one layer will be needed if ¢=0.5). Hence, if the interconnec-
dons of a2 set of subgraphs are implemented in the third dimension, then the
corresponding terms in Eq. (2.27) should be eliminated in computing the area of the
base, and the height of the chip will be increased by the sum of the terms eliminared,
Note that this is an upper bound on the number of layers, since it has been assumed
thet a crossbar connection was used 1o perform the routing. Suppose that h layers are
used in the third dimension, then & number of terms will be chosen from Eq. (2.27) to
sum up to h. The terms chosen will depend on the graph concerned and the cost of
implementation in the third dimension. The area of the base of the layout using h
layers is

By, = aN[D(N) - h + 12 1<hgH, {2.28)
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where H is the maximum height. The maximum height can be computed from Eq’s
(2.5 and (2.9).

logN for graphs with ©(VN) separator "2
H= BN/ for graphs with ©(N%), separatori, 1/2<g<1 @29
where B is & graph-dependent constant. The volurae of this chip is
Vi (N} = Byh = oN[DN) -k + 11h (2.30)

If ¢{j) is the cost of implanting layer i in a 3-D VLS$1 layout, then the total cost of
using h layers is

h
costy =aN[DMN)-h+12Fe(f) 1 sheH (231)
=t
Hence, to minimize the total cost of implementation, it is necessary to solve the fol-
lowing optimtization problem:

._
. |. I n .
_mﬂr 851 _mu__ﬁg Tz:uoé w_+__ mncu% (2.32)

As an illustration, if c(j) is a constant independent of j, then the cost of the cir-
cuit is the same as its volume. The number of layers h should be set as D(N) w
minimize the volume, and the maximum number of layers will be used,

2,6. Summary

In this chapter, we have developed improved lower and upper bounds on volume
and maximwm wire length in both the one-active-layer and unrestricted layouts
[AbWS7]. Optimal complexities on the volume of tayout have been found except for
two cases: the layout of planar graphs in the one-active-layer model and the layout of
graphs with ®(N?*} separator in the unrestricted model, To compare between 2-D
and 3-D implementations, a simple model has been proposed 1o compute the total cost

of layout. Table 2.5 summarizes the results obtained in this chapter,



Table 2.5.

Summary of 3-D VLSI layouts results,

Graph
Separator Layout Comments
Ny
one sactive {| Bounds on volume and maximum wire length are
layer already tight.
(N,
0<q<1/2 | unrestricted | Bounds on volume are already tight. Improved
bounds on maximum wire length, bounds are now
tght.
onc active | Improved lower bounds on volume and maximum
layer wire length have been found. Bounds on volume
and maximum wire length are not tight.
Planar
unrestricted || Improved upper bounds on volume and maximum
wire iength have been found. Bounds on volume
are tight.
on¢ active || Improved lower bounds on volume and maximum
layer wire length have been found. Bounds on volume
are tight,
&Ny
wnrestricted (| Improved upper bounds on volume and maximum
wire length have been found. Bounds on volume
are tight.
one active | Improved lower bound on maximum wire length
layer and upper bound on volume have been found,
Bounds on volume and maximum wire length are
tight.
BN,
1/2<gsl ungestricted || Improved upper bounds on volume and maximum

wire length have been found, Bounds on volume
are tight, except for graphs with @(N“/°) separator,
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CHAPTER 3
THE DESIGN OF SYSTOLIC ARRAYS

3.1, Introduction

This chapter focuses on synthesizing systolic amrays. Any synthesis process
begins with a high level specification of the problem to be solved. A final impiemen-
tation is then systematically derived from this specifications. Earlier work on syn-
thosizing systolic arrays was based on the analysis of the data dependency of initial
specifications. The inidal specifications were assumed to be a system of recurrence
equations, This chapter continues to use the system of recurrence equations as an ini-
tial specification. As we will sec in Section 3.3, most of the previous methods for
synthesizing systolic arrays are most successful for uniform recurrence equations, but
fall short of expectation in the case of linear or non-uniform recurrence equations.

In this chapter, the idea of & Control Flow Syswolic Array is inroduced. The
controt flow systolic amay is a powerful tool that can solve uniform, linear, or non-
uniform recurrence equations, A methodology for mapping a system of recurrence
cquations into the control flow systolic array will be proposed. Section 3.2 briefly
reviews the recurrence equations. Section 3.3 focuses on the previous work in syn-
thesizing systolic arrays. Section 3.4 inwroduces the idea of a controi flow systolic
array. Section 3.5 proposes the model o be used throughout the rest of the Chapter.
Section 3.6 proposes & methodology to efficiently search for a good solution in the
space of all pessible solutions. In section 3.7 we use the methedology to implement a
control flow systolic array for both the transitive closure and dynami¢ programming
problems, and show an cxample for a system of recurrences with nonlinesr dawm

dependencies. Section 3.8 discusses some experimental resnits. Secrion 3.9 is a



conclusion section.

3.2, Classification of Recurrences

Recurrence equations have long been used by mathematicians to express a large
class of computations [KaM67] [Raj86] [RaF86]. These computations involve the
evaluadon of a funcdon f at all points in a domain D. The recurrence equation
specifies how the value of f at a point p in D depends on the valuc of f at other points
in the domain. Based on these dependencies, recurrence equations are classified as
uniform, linear, or non-tinear; one-dimensional or muttidimensional,

A simple example is the well known factorial function which is specified by the
mczo.s.w_m equation.

1 n<d
=t arfa-1) n>i ERY

The factorial recurrence is a uniform recurrence with non-constant coefficients, To cal-
culate f(n) we have to know f(n—1), which is a constant distance away from f(n) in the
n hyperspace. However, because n is not a constant, this problem has non-constant
coefficients. Notice also that the subscripts in the above example (representing the
domain over which we want to determine f) range over only one index, In other
words, the domain D is the set of integers. In general, D may be n-dimensional {typi-
cally a subset of the lattice peints in Euclidean n-space E” ), and the right hand side
of the equation may be any non-tinear function of the values of the predecessors.

In combinatorial mathematies, where the primary concern is solving recurrence
equations, the problem can be stated as follows, Given a recurrence relation describ-
ing f(F) in terms of (&), determine a closed-form cxpression for (), Le. an cxpres-
sion of £(f) that does not invoive the value of f at any other points. Our objective
here is somewhat different, We are not interested in finding a closed-form expression
for f. We are intcrested in mapping the compuration of £() onto a systolic architec-
ture. This means that the taxonomy of comstant coefficients versus non-constant

coefficients is of no concem to us here, We are interested in the relation between the
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point T (at which the function £ is 10 be computed) and the other points on which it
depends. The following three definitions, the first two of which are due to Karp and
Miller [KaM67], will be helpful at this point.

Definition 1. A tecurrence equation over a domain D is defined as an equation in the

form:
== Tﬁ:.n@. ..flg 5_ +¥(p) G2

where pe Digye D forimi...k @ is a single valued function which is strictly
dependent on each of its arguments, and ¥ represents the input.

A system of m recurrence equations over a domain D is defined to be a family of
of m mutually recursive equations, where each of the f;’s is defined by an equation of

the form
fpy=0 T_ @hh, (@) -.. P?FL +¥i(p) 3.3

Deflnition 2 A. recurrence equation of the form defined above is called a uniform
recurrence eguation i q =p+d; for i=1.. .k where d;'s are constant n-
dimensional vectors, and n is dimension of the hyperspace {the domain D) in which
the recurrence is to be calculated. An example of a uniform recurrence is the matrix
multiplication operation. Multiplying two matrices, A and B, and storing the result in
C, can be represented by the following recurrence.

C(1,L,K) = C(LEk-1) + A(LK) x B(K,J) (3.4)
In this case d = (0,0,1), Many problems, such as convoludon, FIR filters, nunerical
solution of partial differential equations, and singular value decomposition, can be
represented as uniform recurrences.

A family of uniform recurrence equations may be defined analogously. Consider
the matrix multiplication example mentioned above. Pipelining the two input vari-

ables, results in a system: of uniform recurrence equations as follows.

C(1,].K) = C(LLK-1) + A(LK,]) x BK,I.D {3.52)
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ALKy = ALK J-1) (3.5b)
B(K,LD) = BKJI-1) (3.5¢)

Intuitively, a uniform recorrence equetion can define a computation in which the
dependencies are completely described by a finite number of constant vectors d;,
regardless of the size of the domain. This classification was first proposed and studied
by Karp and Miller [KaM67]

Definition 3. A recurrence equation as defined by Definition 1, is said to be a linear
dependency recurrence equation (or linear recurrence cquation) if for
i=1...k qi = Ajp+b;, where A; is a constant nxn matrix and b, is a constant n-

dimensional vector. The linear recurrence equation has the following form.
fipy= TE% +by), f(Agp +ba) .. flA P+ et_ +¥(p (3.6)

As with uniform recurrence equations, the definition for & linear recurrence equa-
tion can be extended to a family of m mutually recursive equations. It is obvious
from the previous definition thet uniform recurrence equations are 2 special case of the
lincar recurrence equations, when A, is the identity matrix. Many problems in image
processing can be formulated as linear recurrences. Examples include the transitive
closure problem, shortest path problem, matching problems, optimal search trees, and
coniext free langnage recognition,

A good example of & linear recurrence is the wransitive closurs problem. To find
the transitive closure of a matrix C(1,J). the problem is formulated as

C(L,1,K) = C(LI,K-1) ¥ €I, K,K~1) A C(K, J,K~1) an
'100] 0

A={010] b=]|0 (3.8)
00t -1

and
[10 0] 0

Ay= 001 b= [0 3.9)
100 1] -1
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0t 0
10 by = |0 (3.10)
01 -1

&
0
oo o

A system of m recurrence equations can be defined analogousty, Example of a system
of two mutsally dependent recurrence equation is as follows.
A(LJK) = A(HLK,K-T) + B(HK+], K+J,K~1)
B(LJ,K) = A(LJ+LK~1) + B(LI-LK-1) G.1n
Definition 4: A recurrence is called a non-tinear recurrence if q; ='¥(p;) and the
function ‘¥ is any non-linear function. Notice that ¥ could be given by a table indicat-
ing for each point p in D the points g; that are needed as arguments. Many problem
in optimization can be formulated as non-linear dynamic programming problem with
non-linear recurrences. An example of non-linear recurrence is the knapsack problem.
In the knapsack problem we are given n objects, where object j has weight a, and
value b; . The desired goal is to pack a knapsack with a subset of these objects so as
to maximize the valuc (or to minimize the negative of the value) without exceeding a
given maximum weight W [AhH74].
One formulation for this problem s as a non-uniform recurrence equation
[KaH67].

f0,00=0

flk,w)} = min Tu. JW— #v_v (3.12)
je i}

where j; = j:J<kand (j,w=-ay) corresponds to an equivalence class }

A s corresponding 1o the equivalence class consists of all sequences

{iy ...i;} <8 such that i, =k and 8, +aj, +...a; =w are donated as (k, w) , and

5 is the set of all sequences ij,ip,...1, such that i <i;<...<i, and
mr.TP.a +...mm.m¢<.



Similarly, a set of mutually dependent non-linear recurrences can be defined. As

an example,

A(LLK) = A(12, JxK,K~1) + B(IxJ,K,K~1)

BULJK) = A%, K) + B(xK,],k-1) @13
are a set of non-linear recurrences,

Many other problems in combinatorial mathematics, such as the traveling sales-
man problem, finding a shortest reset sequence, and I-dimensional stock cufting, can
be represented as non-linear recurrence equations,

As mentioned earlier, a recurrence equation can be viewed as defining a depen-
dency graph in which a precedence relation is defined between the evaluation of f at
various points p& D. According 1o Karp and Miller [KaM67], point p directly

depends en point g, and is denoted by p [W q if and only if
() pe Dandq=p+d for the uniform recurrence:
(2)p € D and q =-A;p + d; for the linear recurrence;
(3)p € D and g ="¥;(p) for the non-linear recurrence.

1
Thus p — q if and enly if f(g) is one of the arguments in f{p). t step dependency is

o 1 t~f 1
defined s follows: q — q and p — q if there exists  such thatp=randr—q. Itis

also true that p — q if p I.‘ q, for some positive integer .

The objective of this chapter is to reorganize this dependency graph into an alter-
nate configuration that preserves the functionality of the original BnE.HH.an and that it
can be mapped directly to a systolic army. A graph can be mapped directly to a sys-
tolic array if it is at most two dimensional and if all communications (dependencies)
are between neighboring points. In this case 2 function i(p) is assigned that indicates
the time at which the computation of f(p) will take place. «(p) rmust obey certain con-
ditions imposed on it by the dependency graph. For example, if p— g, then
t(p) (), which means that if the computation of f{p} requires f(y) as one of its argu-
ments, then f(p) should be calculated after computing f(¢). Notice that this condition

is necessary but not sufficient. If f(q) was calculated in a non-neighboring processor ro
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the one that computes f(p), the time needed to transmit £(q) from where it was ori-
ginated 1o where it is needed must also be accounted for.

33, Previous work

This section will review previous work in designing systolic arrays. Table 3.1
shows 19 methods for synthesizing systolic arrays and briefly explaing each method. A
complets description for each method can be found elsewhere [FoF86].

Most of the methods shown in Table 3,1 are dedicated to wlving one type of
recurrences, namely, a system of uniform recurrence equations, while few methods are
proposed for general recurrences. Moreover, all of these methods formulate the prob-
lem &s a search in the space of all possible solutions, This space is usually exponential
in size and in some cases is infinite [Mol83).

The next section presents the idea of a control flow systolic arry, which proves

to be effective in solving both linear and non-uniform recurrence equations,

3.4. Control Flow Systolic Arrays

Most of the methods shown in Tabie 3.1 are particularly successful in solving
uniform recurrences. The main reason for this is that there is a direct relationship
between uniform recurrences and systolic arrays. In using uniform recarrences to cal-
culate the function at a point p, we need the value of the function at a fixed distance
away from p (usually a distance of +1 or ~1 away from p). In systolic arrays , we
allow communications only between neighboring processors On the other hand, for
linear and non-uniform recurrences, where the dependencies between different points
in the domain may not allow all adjacent points to be mapped to neighboring proces-
sors and may vary with time, it is much more difficult to map this problem into a sys-
tolic array.

In this chapter, the idea of Control Flow Systolic Arrays is inwoduced. A control
flow systolic array is an ordinary systolic arry, with all of the limitadons on systolic
arrays such as modularity and nearest neighbor connections, but with one major

difference. This difference lies in the propagation of control signals in addition to data



Table 3.1.

Summary for the previous work in the design of systolic arrays

Method Description
Lt and WahjStarting from a uniform recurrence equation, they defined 3
[Liw83a} parameters for the systolic array, speed of data, period of com-
‘[Liw83b) putations, and data distribution. The 3 parameters are com-
[LiW85a] bined to form a system of constrained vector equations. A

solntion that minimize a certain criterion is found by systemat-
ically searching the space of all possible solutions

Moldovan  and]
Fortes [Mol82)
[Mol831

|Starting from a high leve] language algorithm (equivalent to a
non-linear recurrence), they modeled the algorithm as five
tplers (index set, set of dependencies, set of computations,
input set and output set). A linear transformation is used to
wansform the original algorithm into a computationally
cquivalent algorithm with a prespecified set of dependencies.

[FoMB85]
Johnson and
Cohen  [JoC81a)
[1oC81b]
[JoWB1]

Starting from 2 mathematical expression (equivalent to a uni-
form recurrence), they mapped it directly into a VLSI circuit.
They then improve the design by symbolically manipulating
the original expression to climinate unwanted operations
(simultaneous addition or multiplication) and introduce pipe-
lining.

Jagadish, Kailath,
Newkirk and
Mathews [JaK84)

-

Starting from a block diagram describing the aigorithm
(equivalent to a uniform recurrence equation). Each module is
represented as a graph. The graph is sorted 1o ensure that there
are no scparator free loops (separator is a delay node). A
schedule is sought for each sepamtor in the graph, and these
schediles are combined together to produce a schedule for the
whole graph,
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Table 3.1 (continued)

Method

Description

Miranker and
Winkler
[MiW384]

Starting from a do loop or a set of uniform recurrence equa-
tions, They interpreted the computation process as a graph in
physical space and time, which directly corresponded to a sys-
tolic array. They embedded the graph representing the data
fiow of the program loop or the recurrence equation into the
graph representing the computation process.

Melhem and|
Guerra [MeG85]

Starting from a high-level-problem specification, they
transformed it into a (possibly non-linear) recurrence equation,
Their procedure began with determining 2 coarse timing func-
tion for the different computations in the recurrence. The tim-
ing function, together with a subset of the data dependencies,

were used to guide the search for an index transformation to
map the computations into the systolic aray.

Delosme and
Ipsen [Del8Sa]
[Del85b]

Starting from a a system of linear recurrence equations, they
derived a mathematical description for the dats dependency of
the recurrence equations. By applying different affine transfor-
mations, different systolic arrays can be obtained. The problem
of synthesis the arrey is formulated as an integer programming
problemn,

Leiserson, Rose,
and Saxe
[LeR83b}
[LeS81)

Starting from a graph representation of the problem
(equivalent to a non-linear recurrence), they mapped it directly
into a VLSI array, which is not necessarily systolic. Transfor-
mations, such as retiming and k-slowdown are used to elim-
inate global communication and convert the amay into & sys-

tolic array.
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Table 3.1 {continued)

Methed

description

Quinton [Quis3]
(Quig4]

Starting from a system of (possibly non-linear) recurrence
cquations, a timing function that satisfies the dependency con-
ditions is found. This tming function, together with the
dependency conditions, is used to find a space mapping func-
tion such that, if two computations are mapped to the same
time unit, they should be mapped to two different PE’s. Using
these two functions, a recurrence cquation can be mapped
directly into a systolic array.

Cappelle and|
Steiglitz [CaS81])
[Ca$34]

Starting from an algebmic equation {equivalent of uniform
recurrence equation), the concept of time is introduced to pro-
duce a recurrence equation. A space ransformation and a time
transformation are used to map the recurrence into & systolic
array. A geometric transformation is then used to transform
the systolic army to a different, but computationally
equivalent, systolic array. This process is repeated until a satis-
factory design is found,

Rao and Kailath
[RaK85]

Their model is a linear systolic array with each PE represented
as a transfer or scatiering matrix. Starting from a mathematical
expression (equivalent to a uniform recurrence), they showed
how to systematically map the expression into the model array.

Schartz and
Barnwell
[ScBR4]

Starting from an algorithm described by shift-invariant flow
graph (equivalent to a uniform recurrence equation), their
method consists of applying a set of rules to the flow graph
that systematically manipulate the flow graph into 2 systolic
form, which can be mapped directly into a systolic array.
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Table 3.1 (continued)

Method description
Jover and Kailth|{Starting from a graph that represents certain computations
[JoK84] (equivalent to a uniform recurrcnce), they introduced the

notion of Line of Code (L.OC). The LOC represents a stream
of values in different stages of computation. Since the LOC in
a graph is not unique, they scarched for the LOC that satisfies
some desimble propertes. Knowing a LOC determines the
speed of the data, the rate of pipelineability, the input rate, and
the output rate of the systolic array.

Lam and Mostow
[LaM83]

Starting from a high level specification (high level language),
they applied some software transformation so as to obtain an
algorithm suitable for sysiolic implementation. This
transformed algorithm is the input to a program called SYS,
which decomposes the algorithm into two parts: primitive code
segments and control and dats-access informaton. $YS
designs a systolic implementation based on the control struc-
ture and data access pattern. The high level language is
equivalent to a non-linear recurrence.

H. T. Kung and
Lin [Kul83]

Starting from an alpebraic representation (equivalent to a uni-
form recurrence), algebraic transformation similar to the
transformations used in linear algebra are used to generate
alternative but computationally equivalent designs satisfying
some desirable properties.

S. Y. Kung
[Kun84]

Starting from a signal flow graph (equivalent to & non-linear
recurrence), a methodology is proposed to convert a Signal
Flow Graph into a synchronous systolic array or & data-driven
array.




Method

description

Rajopadhye and
Fujimoto
[RaF83] [RaF§6]

Starting from a linear recurrence equation, they determined a
timing function and an allocation function to map the
recurrence into a systolic array. They presented a technique to
determine such two functions. They also presented a technique
called explicit pipelining which allows them to derive a sys-
tolic implementation for any afine recurrence equation.

Kung, Lo, and
Lewis [KulL87b]

Starting from a linear recurrence equation, which defines a
dependency graph, they mapped the recurrence directly into a
two dimensional systolic array. A transformation is then used

to reindex the nodes of the dependency graph 1o sliminate any
global communication,

Chen  [Che86]
[CheB5a)]
[Che85b)
[Che85c]

The initial specification of the problem is in the language
Crystal, (equivalent to a non-linear recurrence) The language
is & general purpose language for paraliel programming. The
synthesis process is decomposed into two transformations, The
first transformation limits the degree of fan in and fan out for
the different computations, The second transformation incor-
porates pipelining into the design to fully utilize the hardware

resources. Using these two transformations, a systolic algo-

rithm can be systernatically derived for any problem.

in the systolic array. There are two major ways to incorporate control signals in a sys-
tolic array. The first is to continuously execute a microprogram stored at cach PE. No
global information is available except for the address of the PE (the address of a PB is
& pair (3,j) which indicates the Cartesian coordinates of the PE in a mesh of proces-
sors, of & number i to indicate the position of the PE in a lincar armay). The control in
this case is implicit, as the information needed for the control is propagated ag data.
The second form of control is in the form of additional control bits traveling with the
data, either at the same speed or at a different speed. The action taken at each proces-
sor depends on the control signals that reach the PE.

3.5, The Modet

The model we use throughout the rest of this chapter is a square (or linear) amay
of processors. The architecture of the individual processing ¢lement will be discussed
later. We will also study the effect of various control strategies (different control stra-
tegies wii be discussed later) on the complexity of the processor element. .

The model is & square mesh of processors with nearest neighbor connection as
shown in Figure 3.1. There are three reasons for choosing this architecrure.

(1) Modularity: The square mesh of processors is moduler. This makes it suitable
for VLSI implementation.

(2) Balancing /O and computations: The square array of processots is the best for
balancing the /O bandwidth and the computation time for a great variety of problems.

(% Reconfiguration: The square array of processors can easily be reconfigured into
a linear array [LeL82] [LeL85], thus achieving all the benefits of linear ammays, such as
fault tolerance, minimal clock skews [FiK83a], and limited /O requirements.

Figure 3.1 shows a schematic diagram for the systolic system. n® Processor Ele-
ments (PE) are connected together as & mesh. “n global buses, onc for cach row, are
connected together by one global bus to the main controller. The host controls both
the main controller and the mesh of PE’s. The internal architecture of the PE is shown

in Figure 3.2.
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Each PE is composed of:

Each PE is connected by four communication registers to each of its four neigh-
bors. R; and R, are connected to the two processors in the same row. R; of a cer-
tain PE will be connected to R, of the next PE. R; represents the input row regis-
ter for this PE. This is the register that receives the dama from a neighboring PE
and makes it available for use in this PE. R, is the cutput register of this PE.
This is the register that holds the output data to be received by R; of the nexi PE.
These functions will be served by C; and C, for connected PE's in neighboring
rows. Notice that R; and R, are not fixed. They are interchangeable according to
the direction of the data flow. If the data are wraveling from left to right, the left
register will be R; and the right register R, If the data are waveling from right to
left, the right register will be R;, and the left register will be R,,.

The ALU is the part of the processor responsibie for the actual computation. It is
capable of performing simple arithmetic and logical operations. The ALU also
contains an accumulator to store the output of the last operation perforrned in the
PE. It cun receive its input from R; and C; or from the storage unit. Similarly, it
can direct its output to R, or C,, or it can store the output in the storage unit.
The ALU is also capable of transferring a piece of data from the storage unit to
sither C, or R,. The ALU is controlled by the microprogram unit.

The storage unit is composed of registers 1o hold intermediate results and to
introduct delay into the data traveling across rows or columns. The number of
the registers is very important in the design of the array. As will be scen later in
this chapter, some algorithms require a constant number of buffers, while others
require O{n) buffers, where n is the size of the problem.

The microprogram unit contains the microinstructions to be executed by the ALU
during the solution of a problem. The microprogram is loaded from the the main
controller before the beginning of the solution process, It is capable of recogniz-
ing the PE address, where the PE address is taken to be the position of the PE in
the mesh, (i.e. {i,j}). If the same microprogram is 10 be executed at all PE's, the
main controlfer will broadcast it with a specific address mask which will be

accepted by all PE's in the mesh. Otherwise, each microprogram will be sent to a
sposific PE according to its address (i,j). The microprogram unit should be capa-
ble of executing instructons, such as, get dara from R; or C;, load data to R, or
Ca, Store contents of accumulator in buffers, and load data from buffers 1o the
accumulator,

3.6, The Methodology

A considerable amount of research has been dedicated to the design of systematic
methods for synthesizing specified sysiolic arrays [FoF86]. Most of the methods are
most successful in solving either uniform recurrence equations or program segments
that can be represeated as unifonm recurrence equations. Moldovan [Mol82 Mol83]
has shown that finding the optimal transformation to map a uniform recurrence into a
systolic ammays can be solved as nxm diophontine equations with n® variables. This
requires exponential complexity, where n is the dimensions of the space in which the
Tecurrence equation is to be solved, and m is the number of data dependencies. Very
few methods that can be used with linear or non-uniform recurrence equations have
been proposed. This chapter is concemned with the development of a heuristic metho-
dology that can handle both uniform and non-uniform recurrences, and do the design
in a reasonable amount of time.

The basic idea behind the following methodology is to develop a relationship
between the data dependencies of the recurence and the hardware model to be used.
The complexity of the solution and the time required to solve a given problem wilt
both depend on the complexity of the hardware in the Processor Element (PE) and the
complexity of the instruction st of the microprogrammed unit. A very simple casc is
when there is only one buffer for any PE, and the PE uses FIFO control strategy. The
more complicated PE architectures contain a variable number of buffers and random-
access buffer capebilities.

This methodology will be implemented in the form of a procedure. The input of
this procedure is the given recurrence. The output is a complete timing function that
gives the location and time of the different computations, The output will glso contain



complete information about the variables that is broadcast, and the location of these
variables.

The rules developed in this chapter are not intended to be the compicte set of
rules for solving any recurrence. We will begin with approximately 10 rules. Combi-
nation of these rules can lead to approximately 30 different designs, although some of
these designs may not be feasibie. As we gain experience in solving more problems,
more powerful rules will be discovered. These rules can be added o improve the
capabilities of our procedure 1o solve additional problems,

The solution for a specific problem is implemented as a search operation in the
space of all different solutions. Finding the solution for a specific problem can be
represented by a search in the space of all combination for a solution that optimizes =
certain criterion. A large amount of time is required for the procedure to go through
all of the different combinations for solving a given problem. It is known, for

instance, that it will take exponential time to explore all combinations for simple cases -

involving uniform recurrences. In addition, increasing the number of rules will lead to
an even larger number of combinations. As the space of all possible solutions grows,
it will not be practical to search through all the possibilities. In this case the search
operation must scarch a subspace of the whole space 1o find the best solution within
this subspace. Because time is limited, and because the procedure searches in a sub-
space of the solution space, the search must be ordered in such a way that the parts of
the space that will most probably contain the best solution are searched first.

To order the search, the recurrences are divided according to distinguishing
features into ¢ groups, Gj, where 1 €j<4{. The different rules are then given different
weights where

W,; 1sisL,1sj<¢ where L =the number of mies (3.14)

W, ;. then, is the weight of Rule i with respect to Group j, or the effectiveness of Rule
i when applied to & problem which belongs to Group j. When the procedure considers

a problem in Group |, it applies Rule k first, where Wy ; = min W; ;. It then tries the
\

rule with the next smallest W;; and so on, until the allowed time for computation is
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over. After completing the search process, the procedure orders the solutions obtained
acconding to a certain criterion from the best to the worst, and gives a weight oy; to
the solution produced by Rule i. The rule that produced the best solution is given a
weight of 1. The rule producing the second best solution is given a weight of 2, and
so on. The ordering of rules may change after each subspace is searched.
Modifications are made to reflect the experience learned from each solution.

Wij=Wiy+Bxe;  where pisaconsant <1 (3.15)

W;,; should then be normalized to prevent unlimited growth of Wi ;

f<.
25 ﬂ IUF_.. i—_.ﬂ-dWH —5%_.- EE G.nmv

The two main difficulties in mapping a non-uniform recurrence into a systolic
array are non-neighboring communications, and communications that change with
time. For both of these sitations, pipelining of variables to communicate between
non-neighboring processors will be used. The rules that will be used are grouped into
three major groups: (1) projection, (2) pipelining, and (3) delay and timing calcula-
tions,

Projection: In celculating a recursive function #(p}, the values of f at all points
of a hyperspace D must be calculated, The casiest way to do this is to assign a PE o
each point in the domain D. If the dimension of D is n. Then, the value of f at point
(G iz, - . .4 iy) Will be calculated at PE (i} iz, ..., 1y). This will not be an efficient
way to calculate the recurrence for two reasons. Firse, if the dimension of D is more
than 2, the resulting army will be complicated and irregular, Second, each PE will per-
form one computation for one time unit and will be idle for the rest of the time
needed w complete the computation.

An alternative way to calculate the recursive functions on a two dimensional
army is by projecting the hyperspace into & two dimensional space
(i1, ..., im) = (x,¥), where m is the dimension of the hyperspace (domain) in
which the recurrence is to be solved. The most straightforward way to map the m

dimensional hyperspace onto a two-dimensional space is w chose x =1 and y = ij,



Although more complicated mappings exists [Mol83], we will not investigate them in
this thesis. In our methodology, the number of ways to project computations into
two-dimensional array is m{m~-1)/2. {equal to chooesing 2 out of m dimensions).

Pipelining. Pipelining is one way to overcome communication difficulties
between non-neighboring processors. In principle, it involves feeding data through a
pipeline of neighboring processors.

Assume that we have a recurrence relation of the form:
—.A:_mu R mn.v =¢ T.GHLM CRE Q.BL Am.w‘wv

where (fy,j2 ..., jm) 18 any function of (ij,is ..., im). If we project on iy, iy, then
the left hand side of the previous recurrence is to be calculated at PE iy, iz), and the
right hand side is calculated at PE (j1.j2). If (iy,ia) and (jy,j2) are nor neighboring
PE’s, then the result generated at PE (jy,j3) must be sent 1o PE (i;,i;). This could be
done using processors along the rows and columns of the array. In cases where diago-
nal connections are allowed, data can be sent along the diagonal connections directly.

Timing and delay calculations: In the rest of this section, the different control
strategies are described.

Control Strategy 1. This is the fastest stratcgy for solving any recurrence. It is
assumed that there is an unlimited number of buffers in each PE, and that each PE can
randomly access any data item in its buffers. The only restriction is that in calculating
the recurrence at any point p, it is necessary for all q;'s that have already been com-
puted o be mansmitted from where they were computed to where f(p) is being com-
puted.

Assume that we have a recurrence of the form,
fi1dz, ..., in)=® M Grajz -« o v dm) (3.18)

and that this recurrence is projected on the iy,i; directions. (This is not a constraint
on the solution, since the otder of the index variables inside the recurrence can be
changed to project in any chosen direction). Denote the fime at which
flindz, . .. im) is caloulated by Higiz, ..., im). Let .

(1) iy, ig,1.32s - - - » Jm): the time at which the broadcast message originating
from £(j;,j2. . . .+ Jm) has reached the row input register of PE (i;,iz);

(2) troliy iz, Jy.j2, - - » jm) be the time at which the broadcast message originat-
ing from (3;,j2, . . . » jm) teaches the row output register of PE (i) ,i;);

(3) wifiy,iz.j; ..., jm) be the time at which the broadcast message originating
from £(j;,jz . . ., jm) has reached the column input register of PE (i ,iz);

(4) teaiy,iz.js - ..+ jm) be the time at which the broadcast message originating
from £Gy.ja ...+ jm) has reached the column output register of PE (iy,ip).

The conditions to guarantee a correct exccution are:

_Am_.mu. .... m:._v “ -.-._WH * &Am_.mn..r. .... Hav . muG—'va +_. /* - Aw.—@u

where p(iy,i;) is an amay thar holds the time of the last operation performed at PE
(i} ,i), and the maximum is taken over all the arguments of the original recurrence in
Eg. 3.18

ﬂdﬁ_..mnl.._...r LERE .u_ﬂv +1 mu VHM
wilip izt - o0 Jm) = 1 maxiteoliyisjidz, o0 Jmd ML+ 1) 2 =j2 3.20)
H.OA_.: L.n.fu..wm ey .rﬂv +1 mu. .A.wu.

where r(i,j} is an array that holds the tme of the last data item that was sent through
the row direction of PE (iy,iz). Por tei(i.iz.hy, ... jmh

teofiy~Liz.j1 ..., jm)+ 1 iy >ji
teilinaizg,jie oo oo Jm) = { maxitliy.iz .. ., im), oliniz) + 1} iv=h G321
ﬂOOAm—..TwLNLT ey E.:u 41 mm .A.wn

where ¢(iy iz} is an armay holding the time of the last data jlem that was sent through
the column direction of PE (i}, i},

oliy oy - .. Jmd = iy, dzdy ..oy Jmd s (3.22)

woliy,izaf1 -« - Jm) = teilip,izaji . o0 m). (3.23)
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Notice that in this strategy the only constraint for calculating the function at a
certain point (13,7 ..., i) is that its arguments must have already been calculated
and oansmitted to the PE where the point f(i,,iy ..., in) is being calculated. By
solving this system of recurrence equations, we get the values of t{iy,iy, ..., ip),
Gy dg.jidz -0 Jmbh lnindnd oL dmh mOGyiauird2 .. im) and
teofiy, iz j1.J2 - -+ jm) at all poinis in the domain D. From these values we can
determine the maximum number of buffers in each PE and the delay encountered by
each datz element at any given PE. The maximum number of buffers nceded in each
PE can be caiculated using t(i;,i, ..., i), which represents the time at which the
computations of £(i;, ..., ip) takes place at PE (iy,i3), and mi(is,iz.jrdz -+ jmh
which represents the time at which £(j;.j2. .., .jm) arrives PE (i;,i3).

The boundary conditions for these recurrences represent the input or the initial
conditions for the original problem. For example, if we assume that

tli1, ..., im-1.0y =0, then we are assuming that all of the initial conditions of

f(iy ..., im-1,0) are stored before the beginning of the computations in PE (ij,iy).”

Alternatively, if we assume that 1(iy, ..., ig-;,0) =iy, then, we are assurning that the
initial conditions are pipelined through the first row to the rest of the array.

Control Strategy 2. The second control strategy assumes that the PE is capable
of mndomly accessing any buffer of its memory and that the number of buffers is
bounded by ¢. In this case, a PE cannot siore more than ¢ data items at the same time,
Because of this limit on the number of buffers, no PE can accept a new variable
unless it has cleared the same variable from ¢ iterations ago. Assume that
£(01,072,. .., 9m) is the variable used in calculating £(i; .12, . . ., i) ¢ iteratons ago. In
this case, we have

t€0(iy—Lyiz,j; cjm) + 1 >
ik iz, J1eim) = 1 max] Wigigajiseendm) » €linaiz) + 11} =i (3.24)
teo(iy+1,i,j) seendm) + 1, iy <jy
oy dg =L jperjm) + 1 i >4
iy, iz jiaemdm) = | max{ eofiy,iz,jyunfm) s ML)+ 1) iy =h (3.25
wofiy, izl ) jm) + 1 iy <y

Tt

wo{iy,igsj1eijm) = Bﬂx*nﬂﬁ?mu::.:.&msv , Woliy,ig, 01 - dm) + H¥ (3.26)
nooﬁmfmn.u.f.:&.u.v = E*nﬂﬁ?#&?.:&:—u + Hcﬂ_.wnue.— S Q)+ Hv @B

Control Strategy 3. In the third control strategy, each PE has an unlimited
number of buffers but can access these buffers in a FIFO order only. This accessing
scheme greatly simplifies the PE design and results in a smaller number of microin-
structions, In essence this strategy means that if PE (i1.i3) needs f() k... ky) before
it needs f(jy.j2....jm)» then PE (i;,i;) cannot accept the broadcast message
f(i1.i2,J1.3202Jm)  unless it has already accepted the broadcast package
i), iy, k1.kznkm). If PE  (iy,iz) needs f(k;.kz,.... kp) before it needs
Gesjas -+« » jm)s then

ﬂdam?mulu.r caay h_.a._v +1 mn V._.u
Wity izt « ooy Jm)d = | max {woliy,b,iriz, - Jmd T2} +1) B =ja (3.28)
woli,ig+hj) - .- jw) +1 I <ja
toofiy—Liz.j1 « ..o m) + 1 i >y
teifiy,dn,dty .oy Jm) = 3 max {t(iq,iz ..., i), el + 1) h=ji (329
80Amu+~.pn.,m? ey h.n_v +1 iy A.T
ﬂdAm— .wu..u.?......m--v = Eﬁsﬁm— -mu.u.w—.:.. L_ﬂv » ﬂ.mAm—-wM.WT R Wau +1 ,* AW.MOV
(001, o) = MAX TE_ dsitenim) » i1z Ky, - - ki) +1 v (331)

Control Strategy 4. The fourth control strategy employs a limited number of
buffers, ¢, and FIFO access capabilities. This is a combination of Strategy 2 and Stra-
tegy 4. The equations for this control strategy are:

t0(i1 ~Ligo 1 cosjom) + 1 iy >
il iz, j1mnim) = | max{tls,izenim) » el i) 411 iy =} (332)
_"GGA.S +H.mn..m_ ....L:.L +1 m_. A.:
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00 ig=1uit cerm) + 1 iy >j1
R.R.S .mur:.:..u.n.u = aﬂx-ngﬁw:mu,.r.:&_ﬁv ' -.nmu.mnv + : m— ".: Aw.umw
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oy, 2,15 -0nsm) = max (trigiy,ip.j1seenjm)d 5 il d2,00, ..., dm)+1,

il niadk. .o, kg) + 1)(3.34)
and
1€0(iy d3,]1.-rjm) = max{iciCiy iz 1seendn) + @G, I2.00. .. O + 1,

teidd ik .., k) + 1X3.35)
where f(0;,.... Om) and f(ky, ..., k) have the same meaning as in Strategies 2
and 3,
3.7. Examples

To illustrate the methodology, it will be applied to implement systolic arrays for
the mansitive closure and the dynamic programming problems.

3.7.1. The Transitive Closure Problem

Consider a directed graph G(V,E), whers V is a set of vertices, and E is a set of
directed edges. The graph G*(V,E*), which bas the same vertex set V as graph G, and
has an cdge from v to u if and only if there is & path from v to u in G, is called the
reflective and transitive closare of G [AhH74). This graph G can be represented by its
adjacency matrix A, whose elemnents #;,j = 1 if there is an edge from vertex i to vertex
§i otherwise a;; = 0. The transitive closure problem requires computations of the tran-
sitive closure matrix A*, whose clements a*;j = 1 if there is & path of length zero or
more from vertex i to vertex j. The shortest path problem can be stated in the same
way if a;; represents the distance between vertex i and vertex j and is equal to =} if
there is no edge berween i and j, then a%;; is equal to the shortest distance between

vertex i and vertex j, and a*;; equal to = if there is no path from vertex i to vertex j
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The Warshal-Floyd Algorithm uses A as an input matrix and produces A" as the
output. This algorithm is given below, where x(i,j,0) = a; ;, and x(i,j,N) = &5

fork<— 1toN
forie—1t0oN
forje— 110N

x(i,),K) « x(i,j.k-1) + x(3,k.k-1} x x(.1k-1)

Notice that + represents the Boolean OR, and x represents the Boolean AND. H + is
changed to the minimum operation and X to the addition operation, we get the shorest
path problem.

A number of other researchers have proposed systolic arrays for the transitive
closure problem. All of these proposals use approximately N? PE's to perform the
compurations in O(N) fime, and all require some control signals to temporarily phase
the PE’s (phasing the PE means each PE will perform one or more functions accord-
ing to & specific control signal traveling with the data).

The first systolic array developed for the wransitive ciosure problem was a three-
pass mesh connected array described by Guibas, Kung, and Thompsen {GuK79]. This
structure is relatively slow and requives wrap around interconncction. Hexagonal
arrays have been proposed by Kung and Lo [Kul35] [LiW85], by Rote [Rot85], by
Robert and Trystram [RoT85], and by Kung, Lo and Lewis [KuL37h]

The following section uses the methodology described in this thesis to design a
systolic szray for the transitive closure problem. The resulting design is faster than its
predecessors.

The first step in designing such an array is to choose the axes that we will project
on, In this case, the k axis will serve as a first trinl. Figure 3.3 shows the data depen-
dency for the transitive closure problem, where n=4, The different i-j planes are drawn
separately, and the arrows indicate the data movements between the different PE’s. Tt
is obvious that there is communication between non-neighboring processors. More-

over, the data dependency changes as k changes (i.e., the data dependency changes
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k= k=4

Figure 3.3

Data dependency graph of the ransitive closure problem
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with time). Using strategy 1, which puts no limits on the number of buffers or access-
ing of the buffers,

t,jk) = ae,* i, k- 1), tridh, .k, k1), o, M.TL _ (3.36)
troi, j+1,ip,jy.kp ) + 1 i<k

L i g ki) = Bﬁﬁga.:;._.wz.zi* i=i (337
1061, i ki) + 1 i<y

ol juiy.ji. k1) = till.jis .y k) {3.38)
woli+1,j,11.J1 ki) + 1 i<iy

teijiradr ) = aiaa..: Jieky), %.cw | i=i (339
teoli-1,i,i1, 31,k ) + 1 <y

and

teodi,f, iy ji ) = titk.jody jioki) . (3.40)

Figure 3.4 shows the modified data dependencies after pipelining the broadcast
variables through the different rows and columns. By solving these equations, assum-
ing the inifial conditions 1(i,j,0) = 0, we get a solution for the wansitive closure prob-
lem.

Figure 3.5 shows the array used 1o solve this problem, where the PE's in Figure
3.6 are replaced by the times at which the different computations will take place.
Notice that the initial conditions is t{},j,0) = 0 which means that the ;; was stored at
PE (i,}) before computations begin. Notice that in iteration k, the k-th row and the
k-th column will act as source nodes to broadcast the content of its accumulator in

both directions. This can be achieved with a single control bit that travels across the
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2.2 3 4 4 3 4 5§
33 3 4 5 4 56
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K=1 =2 k=1 k=2
8 7 8 9 1312 1 12
7 6 7 8 12 11 10 11
38 7 6 7 1w 9 10
¢ 8 7 8 12 11 10 9
k=3 k=4
K=3 K=4
Figure 3.5

The time of the different computations for the transigve closure problem using
strategy 1 (n=4)

Figure 3.4
Data dependency for the transitive closure problem after pipelining
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rows and the columns, sigmaling to each PE when to broadcast the content of its accu-
muiator. The rest of the PE’s will use a handshaking mcchanism, where each PE will
wait until it recsives the two data items through its input row and column registers to
complete its computation. The time for this solution, 5N ~ 7, is faster than any previ-
ous solution. Because for any i,j t(i,j,k) < trici, Jaitair Ky}, the maximum number of
buffers needed in cach PE is one.

If Strategy 3, which allows one buffer in each PE, is considered, the equations
are the same, except that tco has the following form
1,5,k +1) j=h and iy =k, +1

teo(i, j,i.j k) = *ﬁﬁ&.#&.?w: otherwiss (3.41)

Figure 3.6 shows the array used to solve this problem, where the PE’s in Figure
3.6 are replaced by the times at which the different computations takes place. The
time is SN - 6, which is faster than the array proposed by Kung and Lois [KuL87b].

3.7.2. Dynamic Programming Problem

Many problems in computer science can be solved by using dynamic program-
ming techniques; including shortest path, optimal parenthesization, partition and
matching problems. For a fuller discussion of this spectrum see the review article by
K. Brown [Bro78)] and the references mentioned thercin, The following example on
the optimal parenthesization problem, which can be formulated as

Oa&u .Emnﬁ n?5+a?b “ (3.42)
ke

This in turm, can be translated to
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Figure 3.6

The time of the different computations for the transitive closure problem using
strategy 3 (n=4)



fori <— 1ton-1
for j €<— i+l ton

for k «—ito j-
o(i.jb0) = e(i,j,k=1) + min cfikk=i) , c(k,j.k—)

Any direct implementation of this recurrence will lead to a solution with time Ofn?).
Pigure 3.7 shows the data dependency for the dynamic programmiing problem, pro-
jected on the k axis, where node (i,j) represents the computations of ¢(i,j,k). Close
examination of Figure 3.7 shows that to calculate cfi,j) the first available terms are
¢(i.if2) and e(i/2,j). A beuter algorithm, then, is

fori«— 1 wn-1

for j e~ i+l ton

forke—11to .ﬂ|.

ofijk) =c,jk-1) + n::*nm.ialwi.w: , e(i+m—k+1,j,ky) (3.43)

where  k; = E..wt Ky = TT:M_*.._
By applying the rules in Strategy 1, we get
Wi.j, k) = max (e, j k-0, G5k d0oke) o i iz dzke) (3.44)

where

=1, j 1 = i+m-k+l, k1=

Iy = Hm—k+1, ja2 Hw. k 7=
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ﬂdﬁ&.i—.! ...r.w_v.v 1 .m V.:

il oy i, ke ) = {max(ooi,j i k), Wil i=h (3.45)
woli, j+1,i1,j1, k) + 1 i<l

wolt.jdy ik ) = wilg g ,K) (3.46)
noOAmlmL.m—L._——nmv.T 1 mv:

wilhjudn i,k ) = max(eli fipajrdk) , o)) 1= 347
teo(i+1.j,i,j1. k1 )+ 1 ici;

and

ol iy J1. k1 ) = teii,j,iy.j1.k ) (3.48)

Solving these equations results in the array shown in Figure 3.8, This arrgy is similar
to the array proposed by Guibas, Kung, and Thompson [GiK79], The time it takes to
solve a problem of size n is 2(n-3). Table 3.2 shows the movement of
¢(1,2),e(,3),¢(1,4),c(1,5),c(1,6) assuming that n = 12. Notice that each data clement
will travel with a speed of 1 until it will be used by any computation, Then it will
travel with a speed of 1/2 except in some prespecified processors (PE(1,3) andPE(1,9))
which will always have a speed of 1. This means that each PE has two buses, one
with 4 delay of | for the unused data, and the other with a delay of 2 for n,_o data that
was used by this PE, except for processors PE(1,3) and PE (L.9) which has a delay of
1 for the two buses. Table 3.3 shows the movement of the same elements according
to the design Guibas, Kung, and Thompson design [GuK79].

3.7.3. Examples with non-linear Data Dependencies

In this section, we discuss in detail two examples. The first, although has no
physical meaning, was chosen because it has a very complicated data dependency. It
shows the power of this method in dealing with complicated data dependencies. The
second example is to show how this method can be applied in a case of non-linear

data dependencies.
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Figure 3.3
Systolic array for the dynamic programming problem
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Table 3.2. Table 3.3.
The time at which c(i,j) will reach PE (ij) The time at which c(i,j) will reach PE(i,)
using our proposed design using Guibas, Kung, and Thompson design [GuK79]
PE PE
eij) | 12113 (14,5 L6718 |19 L0111} 1,12 eij) |12 |3 (1415 1,60 07148119 1,10/ 1,11 ( 1,12
L) || 2 3 4 [ 7 9 11 | 13 14 16 18 c(l2y | 2 3 5 7 9 11| 13 1 15 17 19 21
(1,3 3 4 5 6 8 10 | 12 13 15 17 c(1,3) 4 5 [ 8 0} 12 | 14 16 18 20
c(1,4) 4 5 6 7 9 i1 12 14 16 c(l,4) 6 7 8 9 11 [ 13 15 17 19
c(1,5) 6 ? 8 9 10 n 13 15 c(1,5) 8 9 Wy n|i 14 16 18
<(1,6) 7 8 9 10 11 12 14 c(1,6) 10§11} 12|13 14 15 17




Example: Solve the following recurrence on a mesh connected systolic array,
f(i,}. k)= f(i+k, jH-k, k-1) + f(i~1,j~i, k-1) (3.49)

Assume that we projected on the k axis. Figure 3.9 shows the data dependency of
recurrence equation 3.49 when n=3 in the I-J plane. Applying Strategy 1 to this equa-
tion, we get the solution in Figure 3.10 in which the systolic ammy is drawn for
different values of k, and the time at which the calculations of £(i,},k) is shown in the
I~J plane.

Figure 3.11 shows the same situation applying Strategy 2, with the maximum
number of buffers ¢ setto 1.

Example: Solve the following systern of recurrences using a mesh connected

control fiow systolic array.

f(i,j.0.k) =, Talraﬁc.s.c._nlc . mQ.:QIS.PWIH# (3.50)
g0i.j,0.k) = Dy Aai. h.TTm,W.‘T: i .ﬁ%.ﬁ.f& (3.51)

where u(x) is the unit step function.

First, we map this system into a 2-dimensional systolic amay using the mapping
{1.j.0.k) = (i.j), which means that each PE will perform n® computational steps to
compute n? values of f and g. The data dependency represented as a graph is too com-
plicated to be presented here, Using Stategy 1, and 1 < 4,j,1k <4 we get a the systolic
array shown in Figure 3.12 where the tuple (x,y) shows the time to calculate f(i,j,1.k)
and g(i,j,1.k) for 1 £ 1,j,1.k <4.

3.8. Experimental Results

In this section we show some experimental results for the running time of this
method on randomly chosen samples of system of linear recurrences. We investigate
equations on the form.

fip) =, T (A p+ c:#
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Systolic array for solving equation 3.49 using strategy 1
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Systolic array for solving equation 3.49 using strategy 3
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Figure 3.12

Systolic array for solving equation 3.50,3.51 using Stratrgy 1 (The numbers inside
each PE represents the time at which £(i,j,1,k) and g(i,j,1k) is computed



where i represents the number of equations in the system, j represents the number of
arguments for a single equations, p= ?.v..nv._.. and 0 <x,y,z510. To do this, we
randomly generated the matrix A;; and the vector b;;» and we ran the program for a
large number of inputs until we got a 90% interval confidence (the number of runs is
bettween 10 and 50). Tabie 3.3 shows the time 1o run this method on a VAX 117780
fori=1,2,5 and j=2,3,4, 5, In this table H represents the average time to run the
program, and E represents the margin of errors to guarantee a 90% confidence (i.e.
when running this program for a certain number of argoments and functions, we are
90% confident that it will take ime between L~ E and i + E).

3.9. Conclusion ]

In this chapter, we have studied Control Flow Systolic Array which is capable of
solving more complicated problems than the ordinary systolic arrays, We have also
introduced a methedology to map the recurrence into the Control Flow Systolic Amay.
Finally we illustrate the power of this methodology by designing an armay for the wan-
sitive closure problem. The resulting array is faster than any previcusly known errays,
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Table 3.4

The time needed to run our proposed method on a randomiey
choosen set of linear dependency recurrence equations

# of equations | 2 arguments | 3 arguments | 4 arguments | 5 arguments
p=£).620 u=0.900 pw1.120 u=1.700
1
E=0(.008 E=0.022 E=0.009 E=0.017
p=1.770 u=3.600 n=5.930 §=T7.430
2
E=0.025 E=0.077 E=0.249 E=(.301
n=7.200 W=11.540 n=15.480 n=19.350
5
E=0.197 E=1.583 E=1.907 E=1.195




CHAPTER 4
BUFFERING IN MACROPIPELINES
OF SYSTOLIC ARRAYS

4.1. Introduction

This chapter will consider the architecture of a large system of systolic arrays, in
which more than one systolic amay cooporate together to solve a specific problem.

In a farge system, especially in real-time applications, a pool of systolic arrays of
different rypes can be configured into a macropipeline to solve a given problem. A
macropipeline is a pipeline of systolic amrays with the outputs of one array acting as
inputs to another army in the pipe. Each stage of the pipe is a systolic array that per-
forms one operation, such as matrix addition or multiplication, This structure of
macropipelines characterizes most image-processing algorithms [Nud80], [NuN83).
Exampies include real-time vision systems [NiH79], analysis of motion [Agl80],
image reconstruction from projections [Far78), rader signal processing [Arm79], air
waffic control [Han73], pattern analysis and image database management [FuHS5),
recursive filtering [ScK85], and pattern recognition [HwS83). The Programmable
Systolic Chip [FiK84] and the Warp array processor [KuMB84] are examples of
reconfigurabie systolic armays dedicated to handling compute-bound problerns in image
and digital signal processing. A number of these arrays can be used in a pipelined
fashion to perform the various tasks in image and signal processing.

A data distribution of a systolic armray is either the format of inputs fed into the
systolic array or the format of outputs exiting the systolic array. The input data distri-
bution of one systolic array may be different from the output data diswibution of

another. Hence, when two systolic arrays arc connected together, it may be necessary
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to convert the outputs of the systolic army that feeds data to the other array into thw
required input data diswibution form. A conventional approach for this problem is to
use a common memory to buffer the outputs of the systolic ammays. This becomes a
bottleneck, however, when many systolic arrays arc sharing the common memory.
Another approach is to design the systolic arrays such that the output format of one
array is the same as the input format of the next array in the macropipeline and to
connect the systolic arrays directly. This may not be always _uoam_.u_n. especially when
the macropipeline is reconfigurable. A third approach is to design a converter
between two stages of the macropipeline, which consists of muitiple buffers and a
control unit to select the appropriate buffers for inputs and outputs [B:F82). This
approach is exemplified by MOSAIC [LiS86], a project carried out at ESL Inc. The
system consists of & statically scheduled crossbar switch that connects multiple Warp
processors, cach with local memory modules, into a macropipeline. The local
memory modules are used to store input data and to restructure them into the required
input format. Since Warp processors are reconfigurable general-purpose systolic
arrays, the memeory requirement for each module is not defined at design time. Hence,
all memory modules are of the same size.

The concept of using buffers to perform data conversion is illustrated in Figure
4.1a. C; and C, are converters used to convert the output data into the required input
formats. Figure 4.1b shows this conversion. To convert data from disaribudon D; 10
D, at least six buffers are needed. The first column of D, cannot be ouiput until the
third column of Dy has arrived. Six buffers are needed to store the data in D; such
that elements in the first column of D, are aveilable in the buffers. Likewise, five
buffers are needed for the second column, and three butfers are needed for the last.
Note that the input and output rates may not be the same when the minimum number
of buffers are used.

In a previous work by Wah and Shang [WaS85] the minimum number of buffers
required to convert between any two distributions was calculated. this work will be
extended in this chaoter to find the necessary transformations to convert the data

between any two given distributions. The design of converters to interface systolic
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Figure 4.1

Macropipelining of systolic amays. (a) A macropipeline of systolic arrays, (b}

Conversion of data from one distribation 10 another,

arrays in a macropipeline will also be studied. This destgn depends on the type of
macropipeline. A staric macropipeline consists of a fixed pipeline of sysiolic armys
with a fixed function in each array. The conversion of data distributions between adja-
cent stages is fixed as well, and special-purpose converters are needed. In contrast, in
a dynamic macropipeline, a subset of systolic arrays are selected from the pool and
configured into a pipeline depending on the application, Sinc the configuration of a
dynamic macropipeline may not be fixed and data of different formats may be fed into
a given array, general-purpose converters are needed here.

The objective of this chapier is to provide a methodology o design an efficient
converter for given input and outpur distributions. It is assumed that both the inputs
and the outputs are two-dimensional arreys in which the elements &re cqually-spaced
along the rows and columns in the data disiributions, that there are no duplicated data
in the diswribution, and that daa can be described by two vectors to be discussed in
Section 4.3.1. The macropipeline is asynchronous, and the interarrival times of data
may be different for different systolic arrays. In the remaining sections, we will study
the minimum number of buffers for a given conversion [WaSg5] {WaA38], propose
design procedures for general-purpose and special-purpose converiers, and exemplify
the design process.

4.2. Minimam Number of Buffers

A converter is made up of buffers, the interconnections among the buffers, and
the necessary control hardware that issues signals to buffers to accept or send data at
the proper times. By, is defined as the minimum number of buffers in a converter 1o
buffer incoming data before they are output. In this section, an algorithm will be
presented to find By, for given input and output distributions.

4.2.1. Data Distributions

To describe different data distributions, two vectors are introduced in [LiW85a],
Suppose that the row and column indices of X are i and j, respectively. The row vec-
tor of X is defined as the directional distance between xi,; and x;,1 ; and is denoted by
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N Similarly, the column vector of X, denoted cwu.m is defined as the directional dis-
wnce between x;; and Xij1. A data distribution with <on§.m|mp=a%mm denoted by
DB, Two data distributions are illustrated in Figure 4.2,

The geometric layout of a dat distribution can be described in the Cartesian
plane. Without loss of generality, it is assumed that Xy,1 for both the tnput and output
distributions is placed at the origin, that x, ; is among the data items to be input and
output first, and that data is moving in the direction of the positive x-axis, Vectors T
E%En used to define a data distribution and to determine the locations of its ele-
ments uniquely. C,(i,j) and Cy(i,j) denote the x and ¥ coordinates of elemen: X Iy
and Iy are the projections of vectors Tand Ton the x-axis. Likewise, ly and J, are the
comresponding projections on the y-axis. Therfore,

G =G-DI + -1, @1
O‘?bumlcr+o|:b T 42
Note that if I,, I, Iy, and J, are integers, then the coordinates will be integers.

In the Cartesian-coordinare representation we have adopted, the x-coondinate
indicates timing, That is, clements with the same x-coordinate arrive at {or depart
fiom) the converter at the same time. Data with the smaflesy x-coordinates arrive at
(or depart from) the converter first, while data with the largest x-coordinates arrive (or

depart) last. The i’th (input or outpur) step is defined as the ser of clements in the
(input or outpur) dismribution with the x-coordinate equal 1o 1.

4.2.2, Finding the Minimum Number of Buffers

In this section a &_._wa%-v_dgnmnm formutation is developed 10 find Brins
the minimum number of buffers to convert the data distribution from DitoD,. Letb;
be the sumber of buffers needed after the (i-1)'th cutput step has been carried out and
before the i'th step of D, can be output, while the hecessary data to output in the i'th
output step have been received, In deriving by, it is assumed thas all input data items
are buffered before they can be output. Further, let B; be the maximum number of
buffers needed when the i'th step of Dy, is output, and the boundary conditions are
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Two data distributions and their corresponding vectors. (The first data distribu-
tion has three streams of dataflow, and the second one has five streams, assuming

that data are moving from left to right)



Bg=0., For the example in Figure 4.1, before x,,), x; 5, and X),3 can be output, b (=
6) buffers are needed to buffer the first three columng of Dy. Before the second output
step of Dy can be carried out, data in the first four input steps with elght data items
must have been received. Hence, by is five assumning that the first output step has
been completed. Similarly, by = 3. Asa result,

By=0; (4.3a)
By =max (b, Bi; 1 i=0,23. 4.3
Brin = B3 = max {by, max (by, max {by, Bg}}} =b; =6, 44

Nete that in deriving the minimum number of buffers, the input and output clocks
may be running at different rates.

To allow & more precise formulation, two partitions on the data set X =
{xj:1%i,j<n) and a partial ordering of these partitions are introduced.

An input partition partitions the input amay X into N, disjoint subsets, Iy,
1<p=N;, where
T
I = {xij | G = G-D L +G-1) 3} =4l p=lL..N, 4.5

and N; is the number of input steps. T and 7" are the row and column vectors of the
input distribution, respectively, and Ii and J i are the corresponding projections on the
x-axis. I, rcpresents the set of input elements with the same x-coordinate a;, I is
the set of input data that arrive at the converter firs, and K, is the p'th arrival set.

An owsput partition partitions the output array X into N, disjoint subsets Oy,
1<kSN, , where

Oy = [ x;,Cali) = (i=1)T2 + G112 =a), k=l,.,N,, (4.6)

and N, is the number of output steps for the output distribution. vw. Eﬁ..? are the
vectors of the output distribution, respectively, and I and IY arc the corresponding
projections on the x-axis. Oy represents output elements with the same x-coordinate
. Oy represents the set of data that departs from the converter first, and Oy is the
k’th departure set.
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Figure 4.3a shows D; and D, of a 3-by-3 array X. Since X arrives in three s1cps,
there arc three input partitions (i.c., N;=3). Similarly, there are seven output parti-
tions (i.e., N, =7) because the outpuis depart in seven steps. Let S and O be the sets
of input and output partitions and T1 be their urion.

$ = (I, | 1<p<N;) “n
0= [0y | 1<ksN, ) 48)
N=S_0 (49)

For me T, I represents the number of elements in ;. The corresponding input and
output partitions in Figure 4.3a are shown in Figure 4.3b,

The example in Figure 4.3 shows that there exists a refationship between the Oy s
and Ips. A partial ordering **—'" can be defined on IT as follows. If Iy ~1p, then
data in I, will arrive carlier than that of L. If O -0y, then date in O, will leave
carlier than that of Q. Further, if Oy 1, then data in I, must arrive before data in
Ok can depart. To output the elements in Oy, all clements in Ips such that
O..Dfn@ must have arrived ar the conventer. In short,

1) n__l..-v if k>p;

(2) O0x -0, if k>p;

(3) O =1, if either Oy ~T, *@ or there exists an integer g such that
L0y #@ and thar I =1,

The above definitions imply that if Cy— L. then
Oy >y, =2 1. The integer 94=p such that Oy -1, and that
Ok +# Ipyy i3 defined as the key number for Oy. Note that all the relationships among
the I,s and Oy will be known once 4 15 found, The partial ordering of the parnitions
can be tepresented in a lattice, Figure 4.3¢ shows the lattice of the partial ordering for
the example in Figure 4.3a. For instance, q3=2 is the key number for Oy since
Os\I; = {x3,;}, and Oy can be output once tlements in ¥ have amived.
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L Figure 4.3
Partitioning and partial ordering. (a) Input distribution D; and output distribution

D,. (b) Input and ourput partition:
tve arcs are not shown),

s. (c) Lattice for the partial ordering (fransi-

To use dynamic programming to find By, Oy, Oa, ..., O are examined sequen-
tinlly. It is assumed that the inputs and owtputs may be driven by different clocks.
That is, the minimum amount of data are input to generate the necessary outputs. If
qx is the key number for O, then Iy, I, wn Lq, TSt have arrived at the converter
before elements in Oy cen depart, The reason is that either I, 1<p<qy, contsins
data in Oy, or I, does not contain data in Oy but Iy, —1,. Therefore, elements in the
set Iy layy -+ (I, that remain after X, has arrived and Oy has lcft must be
buffered. In other words, the number of buffers needed by, is
L=
.Mm Oy k=lL..N, 4.10)

200
b =3, mu__ -

=1 13
By the Principle of Optimality, which states that an optimal sequence of decisions has
the property that whatever the initial state and decision are, the remaining decisions
must consdtute an optimal decision sequence with regard 1o the state resulting from

the first decision, we can formulate the problem in dynamic programming as follows,

=0  [Oy=0; qo=0 (.118)
oy b, &y _
by = _ur.-._. - _ORQ—_-.. M _m.: k=1.,N; (4.11b)
e+l
By =0 {4.128)
By = max(by, By y) k =1,..,N, {4.12b)

Note that the summation in equation 4.11b is zero if the lower Limit is greater than the
upper limit.

To establish the partial ordering of partitions, a counter is used to count the
number of elements in each partition, and the key number Qi is kept for each Oy,
Ci(i.j) and C261,j) are computed for every clement x;,j in the input and output diseri-
butions, If X;j is in Oy and I, then Oy—1,, and the counters for Oy and I, are
incremented. q; is updated to p i p is larger than the previous valve of Gx. The alpo-
rithm to compute the partial ordering is shown in Figure 4.4, The computational
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procedure compute_partial_ordering;

/* Inputs; IH. E.n.w." vectors for input distribution;
DMC.: =Cf1,1) =0, and all me..w and C2(i,j) are integers;
I? an? vectors for output distribution;
Ni: number of input steps;
N,: number of output steps;
Quiputs:  Three arrays ©(Np), Q(Np), S(N;), where
Dk) = _O_.__. the number of elements in Qy;
Q(k} = qy, the key number for Oy;
S(p)= T_.“. the number of elements in L. ¥
(1} Initalize @, Q, and S to zeroes.
(2) fori=l tondo|
for j=l tondo [
k= CRj+1 Ok = dE)+1;
P=Ciap+l  Sp):=SE)+1;
Q(k) := max {Q(k), p}

Figure 4.4

Algorithm to compute the partial ordering of partitions.

comnplexity of the algorithm is O(n?), since all elements in D; and D, must be con-
sidered, A better algorithm with a computational complexity of O(max{N;, N} +
min{13, J¢}) can be devised but will not be presented here,

The example in Figure 4.3a is used to iltustrate the algorithm. Initially, all key
numbers are initialized to zeroes, N;=3, and N,=7. Since C(1,1)=0, and
Ci(1,1)=0, x,,,€04 and x; e1y. q; and the counters for O, and I, are updated 1o
ones. Similarly, it is found that x; 3 € O3 and x1,3€ Iy The counters for Oy and |y
are incremented, and g3 is set to one. For xy4, it is found that x3i1ely and thar
x2,1€03. The counters for O3 and I are incremented, and Q3 is set to max{qq, 2) =
2. Likewise, the remaining elements in X can be examined. The results of applying
the algorithm in Figure 4.4 are

¢=[1,12,L2,1,1; Q ={1,1,2,2, 3,33 § =(3..3,3

Applying cquation 4.11 resuits in ] =(3,2,4,2,4,2,1). From equation 4.12, we
obtain By=4.

4.3. Combinations Of Data Distributions

In this section, we will discuss some properties of data distributions that are use-
ful for designing the converters. As mentioned before, a data distribution is character-
ized by two non-parallel vectors. Two data distributions, Umw ..w; and Uma.l._av. are
said to be equivalent (or belong to the same equivalence class) if
I1=12 and J}=12 and {4.132)
a1l Y2333 >0 (4.130)
where 1} (resp. J1) is the projection of T' Aa%.uwv on the x-axis, The first condition
(equation 4.13a) ensures that the data disiributions heve the same projections on the
x-axis. Consequently, the orders in which data arrive at the systolic array for the two
data distributions are identical. The second condition (equation 4.13b) ensures that
the data arriving at the systolic array at the same time have the same permutations.
Note that for two <on§.m.|w§nﬂ if 8 is the angle in a clockwise direction ndalmvaﬂ
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then mFA@uuA_au..\x_wunEmv_.__w_ ). The number of swearns of data flowing into the
systolic array for two equivalent data distributions may not be equal and can range
from n to (2n-1). As an example, the two data distributions in Figure 4.2 are
equivalent, but have different number of streams of dataflow,

The foliowing theorem shows the number of possible equivalence classes of data
distributions.

Theorem: There are Q(2™) cquivalence classes of data distributions for an n-by-n
array of data.

Proof: In proving the number of equivalence classes, only the projections of the vec-
tors on the x-axis have to be considered. Without loss of generality, assume that 1 is
not orthogonal 10 the x-axis. From the x-projections of the first row of data, Ci(1,1),
Ce(1,2), .., Cy(L,n), it is necessary to determine the number of possible X-projections
for the remaining rows. Consider the x-projection of Xa;. Assurning  that
Cel2,1)2C,(1,1), there are 2n possible positions for C,(2,1), namely, C,(2,1) =
Cel,i), i=t, .y m, Cyf1,i) < C:(Z.1) < Cy(1,+1), i=], .., n~1, and Cu(2.1) > Ci(1,n).
Suppose that C,(1,1) < C,(2,1) < Cx(1,2). In this case there are thres possibilities for
Ce(3,1), namely, C,(3,1) = Ci(1,2), C(2,1) < G311 < Cy(1,2), and Cy(1,2) <
Ce(3,1} < C(1,3) (see Figure 4.5). When C3.1) = Ci(1,2), the positions of the
remaining elements are determined. However, when oE.ﬂ G@ < 31 <
Ge(L2) or $,(1,2) < Cx(3.1) < C(1,3), then Cy(4,1) can fall in three possible
ranges, as shown on the second level of the tree in Figure 4.5. The same argument
can be applied to the remaining levels of the tree for XS5, 1v . Xpy. In level 0,
L<d<n-3, there are 2°~! terminals, while in level n~2, there are 322 terminals.
The total number of terminals is

n3

T2 4320 2 St S gy

) 4.14)
o=

A similar argument can be made when GlL1) > Ge(2,1) or €,(2,1) > C,(1,2). Since
each of the above dama distributions belong to a distinct equivalence class, the total
number of possible data distributions is Q™). O
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Levet 0 Ce(1,1) < Cr2,1) < Cx(1,2)

x21

Level 1 Cy(2.1) < C (3,1) C:(3,1) C(1,2)<C,(3,1)

X3,1 <C rﬁ—.Mu HAHMC.NV <C nmu-WV

Level2 31 G G2 GBI C@,l) C(LY)

21 <GdD) =G <GED <D =003 <G
<Cy(1,2) <C(l3)  <C(L,3) <Cy(1.4)

Figure 4.5

Possible positions for X3 1, X314 o Xy 1 -
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It is practically impossible 1o design a general-purpose converter to petform all

the possible data transformations, mo:.oamu.mnmc.ﬁm_.dsonnwwsa_.&:nnsn%uno (D) (1)(2) (293€3) (37)0a) (8'3(5) (57}(8) (6101 (77)(8) (ar)
of data distributions.

If <on§m.w.m=n.w§ restricted to have only unitary or zero projections on the x- i r od. 4 hl nl OJ L Fas . w V An Aﬂ ot /.l
and y-axis, then there will be eight possible directions ma_.lw_uo:&:n at 0°, 45°, 90",
135°, 180°, 225", 270, and 315°. For each direction omlm there are six possible direc- =

tions mﬂlm excluding the cases in EE%:WB&.WE pointing in the same or opposite —\ ﬁr J \M \ a/ J ;V ” % V V A A MNS

directions, Thus, there are 8x6=48 possible combinations of data distributions (Figure

4.64). Out of these 48 cases, there are only 16 equivalence classes A.a_mﬁ utions in 7’ v_\ \« Ja 7 ?- s\w 44 !/ V V .ﬁ h Jr

the same column of Figure 4.6a belong to the same equivalence class).® Data distribu- " .
tons in class i, 1<i<8, can farther be combined with the comresponding data distribu-
tions in class i, 1<i<8, into a new equivalence class if a reversal circyit is available to

reverse the order of data amiving simultaneously at the converter. The resulting eight (&) Alt possible combinations of date distributions.

standard distributions are shown in Figure 4.6b. (A (8) (c) (0} {£) {F) (G} (H)

4.4. General-Purpose Converters % W — _ -X M ﬁ /
In this section, we discuss the design of a general-purpose converter that can

convert data from any distribution to any other distribution provided that the vectors

tepresenting the data distributions have zero or unitary projections on the x- and y- : (%) Eight standard output data distributiany.
axes. We will give the mathematical representation of this converter as a series of

transformations applied to the input data distribution to produce the required output

distribution. It is assumed thay <88n|?m represented by the corresponding projec-

tions on the x and y axes. That is,

L Figure 4.6

I=LR+5F =11, L]T 4.15
LY = [y 2 @13 Possible data distribution when %ﬂa%gﬁ tither 2ero or unitary projections on the

Tean be represented similarly, The data-distribution vectors are represented as a 2- x- and y- axis

by-2 matrix D= m...nm A wansformation process T is a two-by-two matrix, and a

* Note thet elemeras in each equivaience class are not unique acourding 1o Eg. (4.13b). Figure 4,68 shows ona of the
possible sets of equivalence classes.



transformation on a data distribution is the product of the transformation matrix and
the corresponding mattix representation of the data-distribution vectors. It is further
assumed that the fnput distribution Pmm.lmv and the output distribution U&Im. .luav are
given, and that they belong to one of the 48 data distributions in Figure 4.6a. Figure
4.7 shows the transformation process,

The first transformation is on reducing the number of data streams from the out-
puts of the previous stage of the macropipeline. It is assumed thar the input matrix
cnters the converter in n streams, that is, the distributions in the first row or columns
(5) thry (8} in the third row of Figure 4.6a are nsed. If the output data from the pre-
vious stage require more than n streams, then both <88a|_~ and T of this data distri-
bution must have nonzero x and y projections, that is, the distribution belongs to those
in the second row or columns (13 thru (4"} in the third row of Figure 4.6a. In this
case, the output data are multiplexed into n streams using n multiplexers before they
arc output from the previous stage (Figure 4.8a). This multiplexing is equivalent to a
linear ransformation T;.

1 0
Ts m;.

which changes the data distribution in the second row or columns (1) thra (4} in the
third row of Figure 4.6 into that of the first row or columns (5) thru (8%} in the third
row. The data distribution after multiplexing can be represented by D, mm.l.m ).

T,

{4.16)

by L
Euu_u..ltum. Pulnn._ﬂ U
wly lydx ¥ if I3 0y 05,0520
7i
m=-—, f=1 . . .
H if 1x=0, Iz, Jju0
U~ H..—.».Um where H_. A&—‘wv
=L = ; . R
o = i B if 1520, 1120, Ti=0
@ =0, Pi=1 otherwise

111

D; Dy D; Dy Dy Ds b,
I[ld-l'ﬁulld.ullu.al'.ﬂu]lﬂa_l'

Multiplexing Staggering  Rotation
datainte  dainte by angle
nsteams  the mesh 8

Staggering  Reversal Demultiplexing
datagutof of data  datainto
the mesh slice  2n-1 streams

Figure 4.7

The sequence of tansformations in the conversion process.
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Multiplexer Demultiplexer
———
e
—
—iy
() (b)
T Multiplexer
i —d
w E <
-—— - - Lu.

©) (d}

Figure 4.3
Axchiecture of the general-purpose converter {n=3}. {a} Muhiplexing data from (2n—1) streams into n
streams using n multiplexses (N=3) (b) Demuhiplexing data fram n streams into (2n~1) streams using

T demultiplexers {n=3) () 3-by-3 mesh of buffers (d) Reversal network

The n-by-n array of data is routed into an n-by-n mesh of buffers with four-
neighbor connections until they are filled (Figure 4.8¢). If the data distribution
belongs to one of those in colurnns (5) thru (8") inrows 1 and 3 of Figure 4.6a, then it
needs to be transformed into one of the dat distributions in column (1) thry (4) in
row I, which is the distribution of data that can be stored in the mesh of buffers, This
transformation is represented by T,

T= Tm i (4.18)

which transforms Dy, 7'} into Dy, 7).

1 h eyl
=7, Bry=—gp— if 1,=0
el Il Y
_—-_ ¥
UM = .Hu .Um where 1 1 1 APHOV
=, By=—m—t f14=0
i Iy
%1 ¥

The two-dimensionel interconnections in the buffers allow data 1o be shifted in
one of the four directions, Data are input in one direction and may come out from
any one of the four directions, Accessing data in one of the four directions ¢an be
represented as a rotation of vectors T and .%_uw an angle 6, where 8, is 0°, 90", 180",
or 270°. This rotation can be represented as transformation Ty,

cos(B;) ~sin(s) . o 1o amne
dn?@ cost@y)|  ©3=0".90", 180°, 270", (4.20)

which wransforms D;(1%, %) into Dy @, T°).
Dy =T3'Dy, (4.21)

where

114



90°  if (17, Ij=0and I$=-13) or (12, 12=0 and J $=—J3) or
(3. 15=0and J3=—32) or (I 1, J9=0 and 1§ =-12)
180" if (I9=—17 and 1}=0 and 9 ¢ = UZ1) o
i (Tg=-17 and J }=0 and 11}t = Z1) (4.22)
2770°  if (7, Ip=O and I?=12) or (1}, 12=0 and T 2=12) or
0%, 33=Dand I 3=y or (12, 130 and 1 2=13)
0" otherwise.

8,

<]

Ty is equivalent to transforming one of the distributions (1) thru (4"} in the first row
of Figure 4.6a to another one in the same set.

In conjunction with the rotation, the shifts of data from the buffers may be con-
trolled by different clocks to allow staggering of data in different rows. This is
equivalent to transforming one of the distributions (1) thru (4”) in the first row of Fig-
ure 4.6a into one of the diswibutions in columns (5} thru (8”) in rows 1 and 3. This
transformation can be represented by T,

T, = Tw i . 4.23)

where Py is the time difference between the output of the first element in row i and
the first element in row (i+1). T, transforms Uumw .1.3 into U»@»UJ.

w=lN:, Be=i2fY] 130

Dy =Ty Dy where a=12032, Pu—mbw m:wuo.

(4.24)

Note that if the distributions are limited to those in Figure 4.6a, then By =0or £1.
However, Ty can also be applied w more general dara distributions that will be dis-
cussed in Section 4.6.

Next, data may be routed through a reversal network to obtain the PIOpEr permu-
tation (Figure 4.8d). The reversal network maps data with output distribution (i) into
that of (i) in Figure 4.6a. This can be represented by a transformation Ts,
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Ts = T o& {4.25)

which maps Uthl-u ..m._v inwo Uumu .wmv

|.,h n if 1320
_.—t _._om Y
I
Ds =TsDy where o5 = H& ¢ (426)
¥ Y eyd
TS if 1320
¢
iyl 1ly)

Before data exit the converter and are scnt into the systolic array in the macro-
pipeline, they may be demultiplexed by n demultiplexers from n streams into (2n—1)
streams as shown in Figure 4.8b. This can be represented as a transformation Tj.

_J1r 0
ol

which maps Uumw .MJ into the output distribution Uoﬁl_a..mau.

12 i s
Qm.hnlu. @oH—IQmMW. u».Hv.HQ
x ¥
D, =TeDs  where 32 & (4.28)
og=—L, Be=t-os—- ifI5=0
= I

The wransformations described above are sufficient to transform any one of the 48
distributions in Figure 4.6a 10 any other distribution in the same figure. By using
multiplexers (T1) and by controlling the timing of different rows of data input into the
mesh of buffers (T;), any one of the 48 distributions in Figure 4.6a can be
trensformed into a distribution represented by vectors in the x and y directions only.
Note that these distributions belong to one of those in columns (1) thru (4 inrow 1
of Figure 4.6a. To wansform between any two distributions represented by vectors in
the x and y dircctions, a rotation of angle 8, where 8 is 07, 90", 180", or 20, is

needed. This can be achieved by selecting the direction to output the data in the mesh
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of buffers (Ty) and a reversal network (Ts). Likewise, by using demultiplexers (Tg)
and by controlling the timing of the different rows of data output from the mesh of
buffers (T4), onc of the data distributions in columns (1} thru (#) in row 1 of Figure
4.6a can be transformed into any one of the 48 distributions,

The above design requires the entire matrix to be stored in the buffers before
they arc output. This simplifies the control but increases the delay. An alternative
design uses demultiplexers to inpur data into selected buffers other than those on the
perimeter. n demultiplexers, dy, dy, ..., d,, are added to the n rows of buffers in Fig-
ure 4.8¢. In the resulting design shown in Figure 4.9, d; and d, are two-way demulti-
plexers, while the rest are four-way demultiplexers. For buffers in row i, I<ien, the
four output tines of d; are connected to cells L, i, (n=i+1), and n. These connections
are used to adjust the dataflow by outputting data as soon as possible and to obtain
ouiput distributions in columns (5) thra (8 }in rows 1 and 3 of Figure 4.6a. Note that
this is equivalent to applying T, to the data distribution with fis = 1, if we route d; to
cell (n—i+1} and with B4 =~1 if we route d; to cell i, For example, to convert from
input distribution (1) to output distribution (5) in the first row of Figure 4.6a, demulii-
plexer d; is connected to cell (n—i+1), 1sisn. Elements in the first row will stay in the
buffers for one time unit, while elements in the i’th row will go through i buffers and,
hence, will stay in the buffers for i time units. Data will be output in the castern
direction.

4.5. Special-Purpose Converters

This section will discuss the heuristic design of special-purpose converters. An
optimal design of these converters is difficulr because they are problem dependent.

The conversion between any pair of the eight standard distributions in Figure
4.6b is straightforward and is llustrated in the following examples. To convert from
distribution (A} 1o distributions (B), (C), or (D), o buffers are needed. The input data
are propagated from left to right and are output in the western, southern, or northern
direction after the buffers are filled. To convert from distribution {A) to (E), a{n+1)/2
buffers are arranged as shown in Figure 4.10a. The conversion from distribution (A}
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IAWD (row 1)

4 ™

{row i) = -
S
(row n) =
n«% oW n —‘ﬂ

Figure 4.9
Organization of buffers for the maodified general-purpose converter.
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to (F) needs n? buffers. Data are output from the west after the buffers are filled.

Data in row i are output one step ahead of that of row (i+1). The conversion from (A}
X X Xy ]} Tz R o (G) is similar to that from (A) to (E), and that from (A) to (H]) is similer to that
i xn xn  ——s] Je > 2 Xn Xp from (A} to (F). The conversion from distribution (E} to (A) requires n(w+1)/2
X X X buffers (Figure 4.10b). For the conversions from distribution (E) 1o (B) or (O), n?

X X3 —e e {1~ o oxm

buffers are needed. The conversion from {E) to (D) is similar to that in Figure 4.1b,

The conversion from (E) to (F} requires n® buffers, and data in row i are output one

(a) step ahead of data in row (i+1). The conversions from (E) to (G) or (H) are similar to
that from (E) to (F).

The design of a special-purpose converter between data distributions not defined

in Figure 4.6 may be complicated, and a heuristic procedure is proposed here. First,

Brnin, the minimum number of buffers, is found by En algorithm in Section 4.2, A

feasible control circuit with By, buffers is then searched. The control circuit containg

X1 Xy X demultiplexers thar are individually controlled by stored microprogram. If s feasible
x —{ I} =1 2z x ) . . I
Moz X solution cannot be found easily or if the contral circuit is too complex, then more
Xn Xz Xp —{ > xn oz o bufers arc added, and the procedure is repeated.

X X X
X311 X33 X; I.||I* _l.' 31 32 33

4.6. Data Conversion In Feature Extraction and Pattern Classifications
This section, contains an example of interfacing the systolic .5.3.... in & macro-
pipeline using converters. The specific problem 10 be discussed are patiern
classification {ScK85] [HwS83].
Given an mY-by-one input vector x, a feature extractor has o produce a set of m”
®) transformation vectors, It = {d; ) i=I, ..., m’}, using 8, a set of waining samples with
known classes, where d; is an n-by-one column vector, m, is the sample mean of class
s, and ¥} is the j'th training feature vector of class 8. The cutput of the extractor is
the feature vector y = D-x. Figure 4.11a shows the schermatic design of a VLSI
Figure 4.10 feature extractor, which has a macropipeline of matrix multiplication, LU decomposi-
Special-purpose converter. (a) Conversion from data distribution (A) 1o (E) {n=3). tion, and triangular-matrix .Eﬁﬂ.mom.r
For the pattern classifier, it is necessary to compute the featre offset vector

M=, My, , solve the linear system Aﬁ$+ﬁs >V =m for the discriminant vector v,

{b) Conversion from data distribution (E) to (A) (n=3).
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- and use V to compute the dischiminant function Fiy) and classify the vector y. Figure
e m e —— e e
4.11b shows a schematic diagram for the VLS feature classifier, which has a macro-

pipeline of matrix multiplication, LU decomposition, and wriangular-system solver.

z1 D Moz frertr Figure 4.12 shows a fast systolic array to multiply two fi-by-n matrices in g pipe-
s 1
lined fashion {(n=4). The outputs of the systolic amray exit in (2n—1) streams and are

multiplexed by the converter into n streams. Figure 4.13 shows the systolic array for

LU decomposition [Kun80a) and the associated input and ouiput data formats,
Although the outputs of the matrix-multiplication systolic array are in the same format

P
{

as the inputs of the LU-decomposition systolic array, the outpuss of the multiplication
systolic army are multiplexed from (28-1) streams into n streams to decrease the
number of connections between the two chips. Hence, it is necessary to demultiplex

the input data into (2n—1) streams in the LU-decomposition array. Note that this

conversion is not needed if the two systolic arrays are on the sarme chip.

Figure 4.14 shows the triangular-matrix inverter and the associated input and out-
put data distributions [LiW85a), Figure 4.15 shows the conversion of the output
L e e 4 matrix U from the LU-decomposition systolic array (Figure 4.3) into the inputs of the
matrix-inverter array {Figure 4.14). Figures 4.15b and 4.15f show the data-
distribution vectors of the inputs and outputs of the converter, respectively. Although
the input distribution in Figure 4.15b is not one of the 48 standard data distributions
in Figure 4.68, it can be converted by n multiplexers into the data distribution in Fig-

el e e S P |

ure 4.15c. These multiplexers are an implementation of the transformation process T

in equation 4.16 with o;=1/3 and F1=2/3. The data distribution in Figure 4.15¢ is

then converted into that of Figure 4.154 by entering the data into the n-by-n mesh of

Figure 4.11 buffers undl they are filled. This is an implementation of ransformation Ty in equa-
Applications of macropipelining in image processing and pattern recognition. (a) tion 4.18 with &p=1/2 and By=-1/2. The data arc output from the north side of the
Feature extractor. arrgy, which is equivalent to a rotation of 270°. The resulting distribution is shown in
Figure 4.15c. Finally, n demultiplexers are used to convert the data distribution in

Figure 4,15¢ to that of Figure 4.15¢, which is transformation Ts in equation 4.28 with

26=Ps=1. The conversion for the triangular array L can be dene similarly,
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Figure 4.12
Marrix-multiplication systolic array and the comresponding input and output data distri-
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Figure 4.16 shows the conversion from the outputs of the matrix inverter (Figure
4.14) to the inputs of the matrix-multiplicaton systolic array (Figure 4.12). Figure
4.16b shows the dara distribution of the outputs of the matrix inverter, which can be
ransformed by n multiplexers into the data distribution in Figore 4.16¢. Only n of the
(2n~1) inputs to the multiplexers are used since the input matrix is an upper triangular
matrix, The data will fill the n-by-n mesh of buffers and will be output in a staggered
fashion to obtain the resulting data distribution in Figure 4.16d. This corresponds to
transformation Ty with ¢q=2 and Py=1. Finally, the data distribution in Figure
4.16d is converted into that of Figure 4.16e by a reversal network, This corresponds
1o Ts with otg =1,

Similar operations are used in the pattern classifier except thar it is necessary to
solve the system L-U-v={ after the LU decomposition A=L-U. This is done by first
solving L-E=£ and then Uv=E 1o get the solution vector v. Figure 4.17 shows a
special-purpose converter to transfonn the output matrix L of the LU-decomposition
armay (Figure 4.13) into the inputs required by the linear-system solver [Kun80a]. The
Superscript in an input element indicates the number of time units that this data jtem
will stay in the buffers. n multiplexers will route a daza item to the appropriate row in
the buffers, which cause the necessary delay, and n dernultiplexers will convert the
data to the required format of the linear-system solver. The conversion of array U
into the required format is done similarly,

4.7. Conclusion

Macropipelining of systolic arrays can be used in a wide range of applications,
especially in signal and image processing. This chapter studied synchronization of the
dataflow in a macropipeline of systalic arrays. To avoid the bottleneck of a commen
MmEemory, CORYETICTS are necessary 1o convert the output data from a systolic array into
the required input data format of the next systolic array in the pipeline, An efficient
elgorithm was also developed to find the minimum number of buffers for any conver-
sion. By studying a special subset of frequently used conversions, 2 methodology for
designing a general purpose converter was presented. Methods to design speciat
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before entering the converter. (¢) Input data distribution to buffers after multiplexing.
(d) Data distribution after the buffers are filled. (e) Qutput data distribution from the
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purpose converters were alse examined. The proposed design methods are exemplified
by the design of converters for macropipelines in feature extraction and pattern
classification.

4.8. SUMMARY

This Chapter, focused on the macropipelines of systolic arrays. Macropipelines
of systolic arrays can be used in a wide range of applications, especially in signal and
image processing. To synchronize the dataflows in a macropipleline and to avoid the
bottieneck of a common memory, converters are necessary to convert the output data
from one systolic array into the required input data format of the next systolic array in
the pipeline. In a previous work [WaS85), an efficient algorithm was developed to find
the minimum number of buffers for any conversion. By smdying a special subset of
frequently used conversions, a methodology to design a general-purpose converter was
presented. Methods to design special-purpose converters have also been examined,
The proposed design methods have been exemplified by the design of converters for

macropipelines in feature extraction and pattern classification.
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CHAPTER §
CONCLUSIONS AND FUTURE RESEARCH

5.5 Conclusions

This thesis, has introduced a comprehensive overview for the design of & system
of systolic arrays, from the VLSI layout fevel to the system level.

Chapeer 2 discussed 3-D VLSI layout, where tighter Jower and upper bounds for
the volume and maximum wire length for the layout of the different families of graphs
in a 3-D environment were discussed. Except in two cases, all the bounds for the
volume are optimal. The first case is the one-active-layer layout of the planar graphs,
the other is the unrestricted layour for graphs with scpamators N9 .,q =2/3, A cost
modet for reflecting the real cost of the layout, instead of taking the volume as a
measure of cost, was also developed.

In Chapter 3, a methodology was developed for designing a systolic array swan-
ing from recurrence equations. The idea of Control Fiow Sysiolic Arrays to handle
uniform, as well as nonuniform recurrence cquations, was also developed. This
methodology is basically & search for a heuristic solution in the space of afl the possi-
ble solutions. Because of the unlimited scarch space, the search process must be
guided for the search (o be completed in a reasonable amount of time

Chapter 4 introduced the idea of converting the dara between two systolic arrays
that were directly interfaced, instcad of using 2 common memory which would be a
bottleneck for the whole system, The minimum number of buffers required to convert
the data between two given distributions was alse calculated, a general purpose con-

verter was also proposed.
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5.2. Future Research

Two main areas for future research are proposed here.
The first is in 3-D layout. Although optimal layouts for volume have been developed
in this thesis, there is still much work 0 be done in minimizing the maximum wire
fength, which directly affect the speed of the circuit. The tree of meshes and the mesh
of trees are very good graphs to embody the different families of graphs for 2-D VLSI
layout. However in 3-D layout, these graphs lead to inferior results. Graphs for 3-D
that are analogous to the mesh of trees and the tree of meshes and will lead to an
optitnal wire length in 3-D VLSI have yet to be found.

The second major area for future research is in the design of systolic arrays. In
this thesis, when solving & recurrence equation in a domain D, the points of D have
been projected on two indices i; and i;. The question of how the recurrences govern-

ing the different strategies will look when using more complicated projections is still
open,
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