4
In: Infotech State of the Art Report on Distributed Computer Systems, 1979.

Distributed Computer Systems
- A Design Methodole and 1ts Application Lp the
Design of Distributed Data Base Systems

C. V. Ramamoorthy, G. S. He and Benjamin W. Wah

Computer Science Division, Department of EECS,
and the Electronics Research Laberatery
University of California, Berkeley
Berkeley, Calif. 94720

w
Research sugBerted by the Ballistic Missile Defense
Contract DASGBED-TT7T-C-0138.

ABSTRACT

In this paper, a systematic design and development
methodology for large distributed computer systems 1is
presented. The methodology will provide guidelines for the
systematic design and construction of distributed computer
systems so that system requirements are satisfied if there
exists a feasible design under the given constraints. 1In
order for the methodology to be general enough and applica-
ble to a wide class of computer systems, the design and
development approaches are studied in the logical lével.
Following the methodology, design issues of distributed data
base systems are examined. The issues are classified in a
top~down fashion from both users' point and designers' point
of view. The distributed data base system is decomposed
into two successive architectural levels: DCS memory and
nodal memory. The nodal memory is further divided into vir-
tual memory and data base machine. The architectural and
operational aspectsin each level will be discussed in

detail.

1. INTRODUCTION

The character, demand and economics of computer sys-
tems have been continuously changing and the need for new
computer organizations and architectures seems unavoidable.
Until recently major emphasis has been placed on maximizing
the hardware utilization of uniprocessor systems or tightly
coupled multiprocessor systems. With the advances in large
scale integrated logic and memory technology, coupled with
the exploding size and complexity of the application areas,
the designeré are encouraged to consider the distribution of
processing, leading to distributed architectures. However,
current approaches to the design of-computer systems and
data bases and their evaluation, unfortunately, are based
primary on experience and intuition. The specification,
design, implementation and evaluation of large embedded com-
puter systems, such as the air traffic control systems,
ballistic missile control systems, patient monitoring éys—
tems and large archival data bases, are very expensive, dif-
ficult to test adequately, slow to deploy, and difficult to
adapt to changing reguirements [DAV76). In order to cope
with these problems, a systematic approach for the design
and development of large distributed COmputef systems (DCSs)

is urgently needed.

In this paper, a systematic design and development

methodology for large DCSs is presented. The methodology

will provide guidelines for the systematic design and con-
struction of distributed systems so that system requirements
are satisfied if there exists a feasible design ﬁnder'the
given constraints. Based on the methodology, the design
igssues of distributed data base systems and somne solutions
are examined. The paper is divided into eight sections. In

section 2, the difficulties in the design of DCSs and the

- characteristics and objectives of the methodology are out-

lined. In section 3, the development phases in the methodol-
ogy are discussed in detail. In order for the methodology to
be general enough and applicable to a wide class of DCSs;
the design and development approaches are stﬁdied only in
the logical level. Specific architectural and control issues
of distributed systems 1ike communication protocol, distri-
puted control, reconfiguration, etc., are discussed in a
-previous paper [RAM76al. Following the methodology, design
jssues of distributed data base systems are examined in sec—
tion 6. These issues are classified in a top-~down fashion
from both users' point and designers’' point of view. We
will concentrate on ﬁhe architectural and operational issues
in the rest of the paper. The distributed data base system
is decomposed into two successive architectural levels: DRCS
memory and nodal memory. The nodal memory is further
divided into virtual memory and data base machine. The
architectural and operational issues-in.each level will be
discussed in sections 6 and 7 respectively. Finally, sec-

tion 8 provides the conclusion.

1.1 Definition of DCS

Basically, a Distributed Computer System (DCS) is
considered as an interconnection of digital systems called
Processing Elements (PEs), each having certain processing
capabilities and communicating with other. This definition
encompasses a wide range of configurations from an unipro-
cessor system with different funétional units to multipli-
city of generai purpose computers (e.g. ARPANET). In gen-
eral, what people call "distributed systems“ vary in charac-
+er and scope from each other [RAM76a). S0 far there is no
accepted definition and basis for classifying these systems.
In [JEN75], a texoncmy of the interconnection of distributed
systems was given based on the transfer strétegy, transfer
control method and transfer path structure. 1In [RAVT6],
distributed systems are categorized based on the distribu-
tion of functions among processing agents and the degree of
interaction among agents. In this paper, we will limit our
discussion to a class of DCSs which have an interconnection
of deaicated/shared, programmable, functional Processing

Elements (PEs) working on a set of related jobs.

1.2 Motivations for DCS

There are several motivations for the development of
distributed computer systems and among them the most impor-—
rant ones are: i) modularity and structural implementation,
ii) reliability and availability, iii) throughput and

response time, iv) geographical distribution and resource

sharing, and v} application orientation. Modularity and
structural implementation is closely related to the ease
with which system modifications can be achieved. The DCS
design approach encourages modularity and permits expansion
of system over a wide iange of sizes to suit a gi&en appli-
cation. It also permits graceful degradation in performance

when some modules fail.

Another important motivation for distributed pro-
cessing is the potential to provide more reliable systems
with improved availability despite some system failures.
Thus in a distributed processing system, it is possible to
provide a comprehensive error detection mechanism and iso-
late the faulty modules without impairing the entire system
operation. For example, in a distributed data base , if
nultiple copies of data files are kept in different process-
ing nodes, files lost due to a node crash can be récovered

from their copies.

Improved throughput and response time can be a major
consideration in certain applications. In a distributed sys-—
tem, the throughput can be increased by the exploitation of
parallelism. In real time environments, the DCS appreoach of
using multiple processors and multiple data files can meet
the time constraints that might otherwise be impossible in a

uniprocessor system [WAN72].

Finally, geographical distributions and resource

sharing is another important motivation for many of today's

distributed systems. In many applications,_sﬁch as airline
reservation systems, processing nodes are dispersed geo-
graphically but working in cooperation with each other. In
these applicatiohs, most of the transactions are local and
need fast response time. However, some informétion such as
flight reservations and some utility programs ére shared by
several users. Thé distribution of processing and/or data
base provides improved response time and ability to handle
large volumes of information which might otherwise be impos-

sible in conventional systems.

2. DESIGN METHODCLOGY

2.1 Difficulties in the Design of DCS

The major difficulty in the design of DCSs is the
largeness of the systems. The activities of the systems are
so varied and so complex that they are beyond the graép of a
single individual. For example, the BMD systems include,
besides the data processing subsystem, the radar and missile
subsystems. Each of these subsystems regquires special exper-
tise to design, implement, and enhance its operations. As a
result, each subsystem is usualiy developed and maintained
by a group of experts who have little knowledge of the other
subsystems. This produces great difficulties in synchroniz-
ing and optimizing tne development process. One common prob-
lem has been that some final decisions dn primitives (esseh—
tial system characteristics} are made in one subsystem,

generally without considering the overall system

requireﬁents. These early commitments bias the development
process and force and restrict the choices.of the other
primitives to accommodate them, which, in turh, impose undue
constraints on design freedom and reduce the flexibility
during integrating and interfacing the system. As a result,
the development process is more expensive and time consuming
than it should be, and the design that'is obtained is usu-~

ally far from optimum.

Another problem faced in the development of large
computer systems is the rapid deployment reguirement of the
systems. For example, the ballistic missile defense system
is developed in a rapidly changing enviroment. The system
must react to an ever increasing threat complexity and
rapidly improving technology. This forces the requirement
for a development approach which will insure rapid deploy-
ment but have the flexibility to rapidly react to external
changes [VI(C76]. However, more too often, systems are
designea without taking into account the provision for
future changes. When the system evolves, the changes are
incorporated into the system in a very disorganized manner.
As a result, the unstructuredness (or the entropy) of the
system increases enomously [BEL77} and leads to a regenera-
tive, highly non-linear, increase in the effort and cost of
system maintainence [LEH76]. 1In addition to this, the relia-
bility and the integrity of the system are also jeopardized

greatly.

In large scale critical real time systems, such as
the air traffic éontrol system, the development.process is
further complicated by the real time constraints and the
criticalities of the systems. These systems must perform all
the required functions correctly within the given time lim~
its otherwise a large penalty have to be paid (for example,
large loss of life due to a plane crash). However, these
systems cannot be tested in its real operational enviro-
ments. As a result, systém validation has to rely heavily on
analysis and simulation. Due to the high complexity of the
systems, exhaustive resting will be impossible. The only
solution is to design the systém in a orderly way so that

both validation and testing can be done efficiently.

2.2 Characteristics of the Methodology

The philosophy behind the methodology is based on
hierarchical modelling of a DCS. the objective of establish~
ing the hierarchy is to map the overall system reguirements
successively into lower levels of finer detail. At the top
level in the hierarchy, the reguirements described are
abstract and the coupling between various attributes and
associated functions may be loose. As we proceéd down the
levels, the characteristics of varioug functions and the
attributes are elaborated and become more specifid (Figure
1). The use of abstraction at the top level allows a
designer to initially express rhe system requiremenﬁs in a

very general manner and with little regard'to the details of

+fser Specification

L

Multifunctional Multi
Interaction Levels

Figure 1. Hierarchical Design

<

- 1¢ -

the design and implementation. These initial system
requirements are then refined in a step by step manner by
gradually introducing more and more details (e.g. con-
straints and attributes) of the system. This combination of
abstraction and stepwise refinement enables the designer to
overcome the problem of complexity inherent in the construc-—
tion of a complex DPS by allowing him to concentrate on the
relevant aspects of his design incrementally at any given
time, without worrying apout other details. By this
hierarchical approach, the assumptions and decisions made
throughout the design process can be traced systematically
and any revisions or modifications of the design as a result
of the design development can easily be incorporated. How-—
ever, it must be emphasised that it does no: mean the whole
design process can be automated. The engineering decisions
will often be very complex and dependent on the experience.
of the designers. In summary, the design methodology is a

first step trying to achieve:

(1) guarantee that the architecture {statement of need,
system objectives, and constraints) of the problem
be preserved. |

(2) support orderly evolution of the systenm satisfying
the constraints such as performance, re}iability,
etc. without major revisions.

(3) provide formal (mathematically rigorous) basis for
the approach allowing precise evaluation of com-

pleteness, consistency and correctness of

(4)

(3)

- 11 -

requirements at any level of definition.

represent effectively and efficiently the decision
making constraints of a DPS by a specification
language. _

provide design atﬁributes and documentation for evo-
iution (growth and modification) so that changes can
be made without reconsidering the wnole design pro-

cess.

- 12 -~

3. THE FOUR PHASES OF THE METHODOLOGY

The design methodology proposed here can be broken

down into four successive phases (Figure 2):

(1) Requirement and specification phase
(2) Design phase
(3) Implementation phase

(4) Evaluation and validation phase

The requirement and specification phase starté with some
(possibly incomplete, vague, and informal) system reguire-—
ments tnat approximate the desiréd system, and finishes when
_the modified and elaborated requirements have been formally
encoded and tested to the satisfaction of the system
engineers and the "customers”. This is the most difficult
hut also the most important step in the development process.
‘Experience has shown that many design failures are due to
either ill-~defined (inconsistent and unclear) requirements
or misinterpretation of the original problem statement.
These account up to 85 percent of requirement errors
[BOE75,BEL76]. In order to avoid the above mis;akes,,a for -~
mal specification language is used here. It has been shown
by a TRW study that more than 5#% of these errors can be

avoided by formal specification (Figure 3).

The design phase starts with the requirement specif-
ications and finishes when the system specificatidns are

produced. The objective is to optimize and organize the sys-

ASVHd NOILVGAIIVA
NV NOILVY9O3LNI

_ ISVHd
zomk<hzmzm4mzw

3SYHd N9oisad

3S¥Hd NOILVIIAIJ3dS
ANV INIWIEINO3Y

TF

r—

L i

Kbojopoyzay uawdolarsg umoq dol gz d4nbiry

SASATTYNY
anNv
ONILSAL

INIW40T3A3d
3YYML40S ANV 3YYMQUVH

*JL3
ONINOILI LYV
anNv
NOILIS0dW0I3d

LK 3 |

"o oads WALSAS ieen

SR aleda 40
1-*23dS WILSAS S73d0W
SINIWIVINTIY

W3LSAS

e e — —

Sa3aN ANV
ERYSMEIR: (¢

UOLINGLAISLE 4044] Juswadinbay |estdAy ¢ aJnbyyg

$100L GILvwWolny .
J9YNONYT 3S1034d .
INIT4 1081 Q3UNLINYLS

HONOYHL 3791SS04 NOILONGIY = N\\\y |

3400$-40-LN0 31GVLSILINN _ .
S,0dAL LINILSISNOONI 31EYIIVELNA 123440ONT 31314WOONI SNOND 1 dWY

I¥

, y WV\
2 Y, | D,
‘Hn
N S
7 I

=
=

NOIS3Id IUYYML40S FHO43d
g310313d 1ON SW3Td0¥d
SINAWIYINDIY LNIOY3d

....15 -—

tem in a well formed structure. It involves an hierarchy of
decomposition and partitioning of the-syétem into subsys-—
tems. Decomposition is the process of dividing the system
into several levels of components and subcomponents, and
partitioning is the process of grouping these components and
subcomponents into subsystems so to minimize the among of
interactions and to satisfy the performance and reliability
constraints of the system. After each decomposition and par-—
titioning step, the subsystems are verified to be conéistent
to the original system. Any discrepancies and mismatches are
corrected before they can propagate into the next level.
'After the design process, the system functions will be well

specified and will be ready for implementation.

The implementation phase takes the system specifica~
tion and develops the system architecture. It then maps the
system functions into either hardware or software functions.
It is only at this step that‘physical constraints and tech-

nology comes into consideration.

The final step is the evaluation and validation of
the system. This phase uses the bottom up validation
approach. It takes the final design and ensures that the
system meets the original requirements. This step uses both
analytical modelling and simulation. Mistakes or unfulfiled
regquirements are traced back to the source of the error. The
system is then redesigned from that point. Since the system

is broken down hierarchically, only the subsystems affected

- 16 -

by the error and therefore only those that are stemming from

the error point have to be redesigned.

It should be mentioned that the development process.
is not a straight top down process. Tests and checks are
conducted throughout the development process. Whenever
errors are found, the design is backed uprto the previous
jevel. Therefore there is a feed-back path from eaéh
development process back to tne previous one. In the follow-
ing sectlons, the reqguirement and specificaton phase, and
the design phase of the methodology will be discussed in
more detail. However, the implementation and valldatlon
phases are too technology and architecture dependent and are

beyond the scope of this paper.

3.1 Requirement and Specification Phase.

The requifement and specification phase starts with
nformally specified users’ needs and elaborates on them to
generate the formal system requirement specifications. These

specifictions are used for two purposes: (1) as a problem
definition of the design process, (2) as a means against
which an implementation may be validated; This phase con-
sists of four major steps (Figure 4): (i).requirement ela-
boration, (ii) requirement specification and attribute for-
mulation, (iii} process definition, and (iv) verification of

_reguirements.

3.1.1 Reqguirement Elaboration

.."\ -

|
Users' Requirements |

Requirement
Elaboration
Requirement Attribute
Specifications Formulation
Process
— s B I
Definition
No

DESIGN
PHASE

Figure 4. Requirement and Specification Phase

~ 18 -~

The requirement elaboration step can be considered
as a problem understanding stage. The objective is to let
the requirement engineers to have a bird's-eye view on the
operations of the system. In this step, the closed system
épproach is chosen. In a closed system, the designed sys&em
and its enviroment are considered as a single entity. The
activities (between the designed system and its enviroment)
in the closed system afe identified and investigated in a
homogeneous manner. In this way, the closea system confi?
guration can be formulated. For example, the air traffic
control system has to interact with the airplanes, the
radars, the airline offices, the flight service stations,

4
etc. The_closed system configuration can be formulated as
shown in Figure 5. Based on the closed system configuration,

the system requirements and system attributes can then be

formulated.

3.1.2 Requirement Specification and Attribute Formulation

From the required behavior of the system, the system
objectives can be formally expressed in the.system require-
ments and system attributes [VIL76]. The system requirements
are the objectives and constraints which the system must
satisfy. Any system which meets the requirements is a candi-
date solution to the users' problem. +tributes, on the
other hand, specify either options or evaluation criteria
for qualitative comparisons of competing systems that meet

the system requirements. They are used o specify the

19 -

BEACON RADAR

- ..
P
LONG RANGE
RADAR SITLS PRIMARY RADAKR
COMMON
DIGITIZER . NAVIGATIONAL
AIDS

RADTO
AIR DLFLNSL '
] -
COMMAND TELEPHONE
TOWERS ﬁ

TRACONS \
FLIGHT
SERVICE @ 'Y .
STATIONS AIR TRAFFIC CONTROL SYSTEM
A1RLINE ‘r’f;,,’f—JV
OFFiCES
OTHER /
ARTCC'S

r Traffic Control System

Figure 5 Closed System Configuration of a Al

- 28 -

preferences of the users. The generation of these system
reguirements and attributes is the reguirement specification

and attribute formulation step.

(A) Reguirement Specification

Based on the closed system configuration, the system
requirements are specified in terms of the interfaces of the
designed system and its enviroment. The interfaces specify
the input (stimulus) and output {(response) relations of the
system. These input to output mappings can be expressed
either vigofously in mathematical formulaé [WYM76,] or less
formally in a specification language [RAMT78cC,R0OS77]. In
real-world situations, the problems are So complex that pure
mathematical formulation is usually impossible. Therefore |
in this methodology. the'approach of using a specification

language 1is chosen.

A specification language 1is a syntacticaliy and
semantically well defined language possibly intermixed with
mathematical equations. Its whole purpose is to provide a
efficient and effective medium for defining the system
requirements. Many specification languages have been
developed previously [CON??,ROS??,TEI??,BEL76,HAM76]. This
paper does not intend to developing a new specification
language. We will choose a specification language and
express the system réquikements in it. In choosing the
specificatibn language for a distributed system, the con-

structability and comprehensibility of the language must be

- 2} -

evaluated carefully. The specification language must be able
to express the functional requirements of the system effi~
ciently and be easily understood by the customers {users)
and the regquirement engineers. It must be modulaf enough to
expreés the inherent modularity of a distributed system. It
must be eguipped with powefful communication constructs in
brder to specify the interactions between system modules and
provide capabilities of performance specifications in the
case of real time systems. The language should be amenable
to both static (hierarchical relationship, data definition,
etc.) and dynamic (control flow and data flow) analyses
[BEL76,HAMT76,PET77]. It would be extremely helpful if sy§~
tem simulation can easily be generated from the system
specifications as similation is oftenly used in predicting
the characteristics and performance of a distributed system.
Finally, the language should be backed up by a specification
data base management system and power ful graphical supports
to provide easy and efficient accesses %o the designed sys-—

tem.

One great problem in the specification of require-~
ments is the misinterpretation of the original sysﬁem
requirements. A plausible solution is to use multiple
independent specification teams to develop the system
specifications from the closed system configuration. This
approach has been used in the development of critical real-
rime software for nuclear power plants [LON77]. In that pro-

ject, two independent specification teams are used. Each

- 22 -

specification is first “vélidated“ against the original
reguirements and then "compared" against the other.
Discrepancies are resolved to the satisfaction of both
teams. By this multiple specification approach, most of the
errors due to.ambiguities and misinterpretations can be

corrected before they can propagate into the next rhase.

(B) Attribute Formulation

Attributes are the evaluatioﬁ criteria for gqualita-
tive comparations of competing systems that meet the system
requirements. For a distributed system, the attributes are
cost, reliability, availability, flexibility, expandability,
reconfigurability, etc. They are very difficult to be quan-
tified. Usually, the situation is further complicated by the.
fact that the system attributes are interdependent on each
other and they may compete and interact with_each other.

The degree and manner in which they interact are greatly
dependent on the architecture of the system and will be dis-
cussed in detail in the design phase. What is to be done by
the designers at this step is to list and rank the system
attributes according to their importance. In this way, the
designers are forced to consider design tradeoffs early in

the development process.

3.1.3 Process Definition

The process definition step accepts inputs from the

requirement specification and attribute formulation step and

- 23 =~

identifies major functions to be performed. First the input
stimulus and the required responses are characterized. This
involves stating the form of the input and-outpuﬁ signals.

They may be mechanical, electrical, optical, etc. From this,
the required I/0 processes can be defined. For example, in

an air traffic control system, it contains the fadar control
process, the graphic display process and the interactive I/0

process.

In parallel to the formulatibn of the 1/0 processes,
the functional requirements can.be decomposed into data pro-
cessing reguirements, communication reguirements, precedence
constraints, etc. Similarly, the performance requirements
can be decomposed into resource reguirements, scheduling
reguirements, etc. Based on these reguirements and the
attributes defined previously, the information flow and con-
trol flow of the system can be modelled and analyzed to
identify the major operations to be performed. From these
analyses, the system processes required to perform the above
functions can be defined. These process definitions state
precisely thne function of the processes, the resources
required by the processes, the interaction between the
processes and_the test experiments %to be performed. At this
stage, the virtual syétem is formed and is ready for verifi-
cation. For example, based on the processing regquirement of
the air traffic control system (Table 1) the storage and

per formance requirements can be generated (Table 2 and 3}.

-2_;(_-.

ANNUAL OPERATIONS, 1968-1995 (IN MILLIONS)
1968 1980 1995
Air Carrier 11 21 31
General Aviation 84 167 L4 8
Military 33 34 40
Total: 128 222 519
Table 1 Processing Requirement of the Air Traffic Control System

STORAGE REQUIREMENT (WORDS)

Enroute Terminal National
Data Aquisition 74000 56000
Command & Control 6300 80000 -
Present ATC Functions 1150000 260000
Flow Control 62200
Collision Avoidance Systemn 39400 75000
Monitor ‘ 100000 75000)
Total: 1486400 546000 62200

Table 2 Storage Requirement of the Air Traffic Control System

-2

Max.

48.5

MAXIMUM INSTRUCTION EXECUTION RATE (MILLION INSTRUCTIONS/SEC.)
Largest Enroute Largest Terminal
1930 22.5 19.9
1995 32.5 28.4
Sizing Model L42.7

Table 3 Performance Requirement of the Air Traffic Control System

- 26 ~

3.1.4 Verification of Reguirements

In this step, the processes of the virtual system is
verified to meet the original users' reguirements. As the
system is developed hieraréhically, the specifications of
one level are the requirements of the next level. To verify
the correctness of the virtual system, we only have to ver-
ify the consistency between the specifications and regquire-
ments between consecutive levels. This simplifies the verif-~
ication process a lot and if an analysable specification
language is used, the consistency can be verified automati-
cally. In addition to this, test experiments generated |
automatically [RAM76b] or formulated from the enviroment in
the reguirement elaboration step can-Be used to gheck the
quality of the virtual system. If the %tests are not accept-
able, necessary changes ate incorporated into the reguire-
ment specifications. The affected processes will be updated

and the corrected system will be tested again.

3.2 Design Phase

The .design phase starts with the defined processes
which are the output of the requirement and specification
phase. The major steps involved in the design phase are
decomposition and partitioning, functional specification and
finally verification (Figure 6). Basically, the design phase
requires a provision to trace the system requirements
through all levels of design, and a means of accessing
trade-offs at the functional level and comparing design

alternatives.

3.2.1 Decomposition and Partitioning

After the reguirement process, a well defined, com-
plete, consistent, unambiguous and testable set of system
process specifications are produced. These system process'
specifications insure that the system behavior will be
satisfactory to the customer and that the required system
can plausibly be designed and implemented. Usually the
specified system at this stage is so complex that it is very
difficult if not impossible for the hardware designers to
start implementing the system. In order for the design pro-
cess to be manageable, it must be decomposed and.partitioned
in such a way that most decisions can be made locally, based
on data available within a local area of the developing sys-~
tem specifications. To achieve this, the system is decom-
posed into progressively more detailed components which are

then grouped into partitions (subsystems) to minimize the

-2 &

System
Specification

System and
Attribute
Decomposition

DECOMPOSITION

Partitioning
< based on
Interaction

Interaction
Evaluation

4

|
t
J
}
1
]
]
1
]
]
|
1
1
AND 3
PARTITIONING
! _
I
]
I
I
]
t
|
!
1
i
1

Functional
Specification

Test No

—m mm mm e He A e e e AES M W e R MM T A e e e e e

Yes

TMPLEMENTATION
PHASE

Figure 6. Design Phase

- 20 -~

amount of interactions between partitions (Figure 7). The

remaining steps of the development process can then indepen-—

dently (or nearly so) elaborate the design of each subsys-

tem, maintaining the inter-subsystem interaction as design

invariances. however, decomposition and partitioning must be

carried out very carefully satisfying the following cri-~

teria:

(1}

(2)

The decomposed (i.e. decomposed and partitioned)

system must be well-defined -~ they are consistent,

complete, unambiguous and testable.

The decomposed system must be capable of being

- integrated.

(3)

(4)

(5}

The decomposed system must meet the resource allo~
cation reguirements, reliability reguirements, per-
formance reguirements, etc.

The decomposed system must satisfy the parametric
logical specifications such that minor changes in
the regquirements would not reguire a redesign of the
whole system. |

The decomposed system must be expandable so that
future growth of the system can be easily incor-

porated.

In accomplishing the above criteria, a decomposition

and partitioning procedure will be used to guide the

designer to generate a satisfactory decomposition of the

system. The objective here is not to produce an optimal

- 30 -

------ - = - LEVEL 0

C 1 I] - =~ = - LEVEL 1

! ; Eﬁ/WEJJ 1413 ----- LEVEL 2

PARTITION PARTITION PARTITION
1 2 3

Figure 7 Reconfiguration and Partitioning -

- 31 ~

solution, but to develop a set of tools to help him to make
his decisions. Most of the steps in the decomposition and
partitioning process will be automated as to relieﬁe the
designer from tedious computations. However, some tradeoff
decisions reguire human experience and intéraction, and must
be made by the designer. As a result, a close interaction of

the designer is reguired.

A large distributed system will have many processes
that are only loosely coupled, for example, the communica-~
tion subsystem and the data processing subsystem. These
loose subsets of tightly coupled processes can easily be
identified by the designer and can be used. to partition the
system into Subsystems. Thus, the whole system is decomposed
into smaller subsystems, each represents a different aspect

of the original system.

After the preliminary decomposition; each subsystem
can be decomposed further according to the data flow and
control flow of the system. It can also be decomposed func-
tionally into subfunctions. This step. is greatly dependent
on the characteristics of the system and the experience of
the designers. After the system is decomposed,_the attri-
butes can be decomposed accordingly. For example, the
tracking function in the air traffic control system is
decomposed functionally into the radar control function, the

position and velocity calculation functions, and the display

- 32 -

function. The attributes of the tracking function can be

- passed to each of the decomposed function (Figure 8).

Another way that attributes can be decomposed is
according to the architecture of the system. For example, in
a distributed network, the reliability attribute can be
decomposed into a payoff tree as shown in Figure 9. Other.
attributes can be decomposed similarly [MAR77]. Bésed on the
payoff trees, the payoff interactions can be formulated
(Figure 18) and can be used to access tradeoff decisions

made in the partitioning step.

(B) Partitioning based on Interaction

The objective of interaction partitioning is to
reduce the amount of interactions between subsystems. This
in turn reduces the complexity of the interfaces and the
amount of communication between subsystems in a distributed
system. The interaction partitioning prbcess'can-be divided
into two cooperating steps: (1) decision step which requires
direct interaction from theldesigner, and {(ii) solution
finding step which can be highly automated (Figure 11). In
the decision step, based on the processes definitions and
their attributes, the designer assigns weights to the
interaction between the processes. These weights represent
the degree of coupling between the processes and will be a
function of communication cost, amount of traffic flow,
degree of synchronization, ranking of the attributes, etc.

By using this weighting function, tightly coupled processes

~ 33~

WalsAS LOATU0) Otdedl 41y :@|duex3

uo13150dW033Q 93NGL433Y PuR eUOLIdUNY g dunbiy

AV13d

AJVdNIDV

' AJVHENJIIY e AJYHNIIY
NOILISOd dvavy
(e N
1 AJYVMUNIOV e AJVYNIIV
AV1dsSid ALIJ0T3A
ALIDOTAA NOILISOd
><4meQ SNOILYINdWOD - dvavy

—

_—

ONIADVYL

ONTAIVYUL

NOILISOdW023d

JLngIdLLY

NOILIS0dW023d

TYNOILONNA

-~} -

SL19 10 "ON

INVS $NId 30 'ON +
. JWYS » FYNLYHUIIWIL o
aunb L4 JNVS o VoS »
394] jjoked AqLyiqeL(ay 6 Sivs o ALY o
ININ
NS ¢ =NOUIAN3 35 =
ALIX3Wd
INys * ~WO2 LINJHID »
{15715
) 185) 3TvIS
INYS ¢ NOILYYDILNI *
{OIMAAH "UYIN
WOM "WvY) ~17 VL)
ADOTONHDIL » ADOTONHD3L @
SHOSSID SHOSS3D 3WYS’ ZLVH JUNIIVA
=0ud YO —~OHd HO4 INYS AINVANNQA3H
SV 3WVS o SY JAVS IRVS SIHNLITLIHOUY
334HNOS asve HHOM * JjouL O/t $31Y SHOSS30
—3J4 vivQ =13IN =NQJ —OW3N —QHd
_ } _ | _ |
_
oYL . S0LY IYILL ONE SANTT ‘Hd143d S30v4 ‘MLIN sH3ILNd
—NQD ’ -3Vl =—H31IMS famlie) £ ~HILNI ‘WWOD -NQ2
| | _ _]
_
NOILVYD ‘MLIN
1H"ddNS ».mu.— I ldav “WWOD S3Q0N
{ i i
we WH

$4d

-3 -

diysuoLieiay aunseay j30Aed QL aanb 14

),
\

|

. avE03 SSINOUYH » [TCIENY
NOLLYINTANDOW vos IRFERVES _ . AYNIWHIL e ~AYHYHD
SONYHD 40 BOM4 \ s3ssauLs qOAM IEUN0IGIW ¢ ¥l
ALVIOVSSIOY saust WVNAD 15008 e ADILYMAS
ALIVINGOW / -N2LIVUYHD BIVAS LSINIAILTTIA XIVLLY

. ETY ILvY VS . \ .
:b?...ow‘nm...-, . IALLIZBHOD —NIATHS / INZBIHNI 4NO23Y "gNNQ3Y ISNI43IT AvVIgHL

—/ T 1

{]
>~ = 1
JALLVHLS ANIYW 04N 701
—ININGY SIS LIV £navs .
f _ Y
INIL ALy JAVH "LNIVIA \ 3ivy 3WIL
~RIVINIVR ‘Aud | UMV NOISSIW
I _

H

We

-3b-

START

MODEL THE INTERACTION
BETWEEN PROCESSES BY
AN INTERACTION GRAPH

l

PARTITION THE GRAPH
WITH CRITERION OF
MI?IMUM INTERACTION
USING SOLUTION
FINDING PROCEDURE)

IMPOSE RESTRICTIONS
ON INTERACTION
GRAPH

Figure 11 Flow Chart of Graphical Partitioning

- 37 -

will be assigned a high weight between rhem. Processes that
should be in different modules (for example, due +o relia-
bility reguirement) are assigned a very low welght between
them. With this weight assigning function, we will theﬁ_
model the system by an interaction graph (Figure 12). In the
interaction graph, nodes represent processes and the weight
assigned to each arc corresponds to the amount of interac-—
tion of the two processes connected by the arc. In this
way, the system is then partitioned into subsystems antomat-
ically by the solution finding step. After each iteration,
the partitioned system is checked by the designer.to deter—
mine whether all the requirements are satisfied.'Discrepan—.
cies are identified and required'changes are imposed onto
the interaction graph which .is analyzed by the solution
finding step again. These two steps are iterated until all

specifications are met.

Solution finding procedure: In this step,'the system
which is representéd by an interaction graph is partitioned
into loosely coupled subsystems such that the system
requirements are satisfied. First, the interacﬁion cut-tree
(Figure 13) will be generated from the interaction graph by
using the maximum flow minimum cut algorithm [FOR62]. It
involves choosing two nodes arbitrarilj in the interaction
graph and finding the minimum cut-set of the two nodes by
the maximum flow minimum cut algorithm. This minimum cut
divides the interaction graph into two subgraphs. Two other

nodes are then chosen arbitrarily in one subgraph and the

— 38 -

Figure 12 Interaction Graph

Figure 13 Interaction cut-tree

- 39 -

above procedure 1is repeated_(with the other subgraphs being
considered as macro nodes) until ihe interaction cut tree is
generated. By this transformation, the interaction require-
ments between processes are represented very clearly by the
interaction cut~tree. The minimal cut-set separating two
nodes in the interaction graph is in one to one correspon-
dence with the minimal cut~set of the corresponding two
nodes in the interaction cut-tree. In addition to this, the
values of the corresponding cut-sets in the two graphs are
equal. For example, the minimal cut-set separating nodes a
and f partitions the interaction graph and the interaction
cut-tree identically into two subgraphs; {a,b} and
{c,d,e,f}. The two.cut sets both have values equal to 22.
As a result, the decomposition can be per formed on the
interaction cut~tree rather than the interaction graph.

This simplifies the computatioh greatly and displays clearly
to the desigﬁer the condition -of tha system. The minimum
cut can be identified easily in the cut-~tree as it is the
minimum weighted arc in the unique path connecting the two

nodes.

After the interaction cut-tree has béen generated,
the system can be partitioned into loosely coupled subsys-
rems such that the total weight of all the arcs in the cut-
set 1is minimum. In addition to this, the partition should
preserve the special configuration imposed by the require-
ments specified by the designer. For example, because of

resource reguirements, processes a and f, process a and 4,

- 40 -

and processes e and f have to be in different modules. In
order for a and d to be on different modules, either arc
(a,b), (b,f) or (f,d) has %to be cﬁt_in the cut-tree. These
requirements are then expressed in a table as shown in Table

4.

The decomposition can now be achieved by finding the
set of arcs in Table 4 such that each row in the table con-~
tains at least on cross in the arcs cnosen. This can be
solved by the set covering algorithm [GAR72]. In our exam-
ple, arcs (b,f) ané (e,f) are chosen such that the interac-
tions between subsystems 1s minimized (Figure 14). In gen-
eral, this method will give a solution very closé to the
optimal solution and the computation complexity is very low

when compared with that of generating the optimal solution.

3.2.2 Functional Specification

The next major step in the design phase is func-
tional specification of the partitioned processes. This
functional specification is different from the process
specification described in the requirement specification
phase. The objective of the process specification is to
define the interactions of the the processes for the decom-
position step. The objective of the functional specification
here is to define the characteristics of the functions so to

enable optimization in the functions to processors mapping.

In the functional specification, all the processes

~4i-

SEPQ%E?ING‘ (A,B) (B,F) (c,F) (D,F) (E,F)
A,F X X

A,D X X X

E,F

Table 4 Cut Table

Figure 14 Decomposed System

- 42 -

in the same partition are considered as a éingle function.
Similar to the process specification, the input and output
relation, the precedent constraints and the interactions
between different functions are determined. In addition to
these, the characteristics of the function are defined.

These include:

(i) types of operations to be performed -~ matrix opera-
tions, floating point or integer operationé, etc,
{ii) resource requirementé ~~ gstorage reguirement, pro-
cessing power, etc.
(iii) speed regquirements ~~ frequency and exeéution

speed of the function.

Based on these information and the processors avail-
able, the functions are mapped onto the available proces-
sors. In [MUN69)], an efficient mapping algorithm §f two pro-
cegsors system is discussed. For the general case of n pro-—

cessors, no efficient algorithm is known at this time.

3.2.3 Verification of Design

In order to be able %o verify the correctneés of the
design and to evaluate the effectiveness of the control, the
system is represented in some abstract model. This abstract
model should be capable of analysing the intercommunication,

the synchronization, the performance and the coordination of
the functions in a distributed system. However, no single

model is powerful enough to have all the above features. The

- 43 -

control flow of a distributed system can be modelled quite
effectively by Petri net, UCLA graph model, E-net, etc.
{PET77,G0871,NOE73]. These models represent clearly the flow
of information and control in a distributed,syStem,'éspe—
cially those which exhibit asynchronous and concurrent pro-
perties. However, they do not provide any support for system
data interpretation and therefore are unable ﬁo model data
sensitive control flow. Various extensions have been pro-
posed to include system data interpretation in the models,
but the models become so complex after the extension that

they are very difficult to analyse.

In order to predict and analyse the performance of
the designed system, gqueueing models and simulation are
oftenly used [FER78]. However, assumptions and abstractions
usually have to be made to simplify the calculations and.the
results cobtained may not be realistic. For examplé, when
gueueing models are being used, assumption like poisson
arrivals and exponential service time are usually made.
These assumptions may not be true especiallyrwhen tasks are .
interdependent on each other. On the qther other, simula-~
rions are almost expensive to run, and it is difficult to
simulate all the possible features of the system. A unified
model for the analysis of distributed systems is needed and

much research should be dene in this area.

3.3 Implementation, Evaluation and Validation

The implementation phase takes the virtual system.

-~ 44 -

and develops the system architecture. It then maps the sys-
tem functions into either hardwafe or software functions.
This step 1is greatly'dependent on the technology, the archi-’
tecture chosen and the physical constraints of the system.
The final phase is the evaluation and validation of the sys-
tem. This phase usés the bottom up validation apprdach. Both
analytical modelling and simulation will be used. Because of
the hierarchical decomposition, each subsystem to be
analysed should be small and therefore complexity shoﬁldrbe
low. Mistakes or unfulfiled requirements found are traced
back to the source of error. The system is then redesigned

from that point.

In the following sections, the design issues of dis-
tributed data base systems are discussed. The distributed
data base system is decomposed into three successive levels:
DCS memory, nodal memory and data base machine; Design

issues for each level are discussed in detail.

- 45 -

4., DISTRIBUTED DATA BASE SYSTEMS

In the remaining sections of the paper, we will dis-
cuss the design issues of a distributed data base system. A
data base is a collection of stored operational data used by
the application systems of some particular enterprise
[DAT77], [FRY76], and a distributed data base (DDB) can be
thought of as the data stored at different locations of a
distributed system. It can be considered to exist only when
data elements at multiple locations are interrelated and/or
there is a need to access data stored at some locations from
another location. The rise of DDB's is the result of two
trends in data processing - growing need for large data base
systems and recent advances in data communications. The
prime concept of the generalized data base system is based
on the definition of & data format to store the data and on
a generalized data base management software for accessing
the data. Due to the ever-increasing demand for on-line
processing, there is a need for decomposing very large data
bases intoe physically/geographically dispersed units and/or
integrating existing data bases held in physically isolated
nodes into a single, coherent data base that will be avail-
able to each of the distributed nodes. The DDB is not only
an important application of distributed systems, but it is a
good example as well as an important application of the

methodology proposed in this paper.

- 46 -

There are three major logical componenté in a data
base [BRA76]. First, there is the structured information or
schema which describes the data structures and the validity
criteria of the data. Second, there is the data itself.
Finally, there are various programs or processes which con-
trol the operations of the data base. A level below the
schema is another structural component, the sub-schema. It
describes the data base as user applications see it. The
control programs, together with the sub—schema, collectively
form the Data Base Management System [FRY76], [BAC75]. The
Data Base Management System allows data sharing among a com-
munity of users, while insuring the integrity of the data
over time,; and providing security against unauthorized
access. It also provides the transparency of the data, in
order to allow the data to be stored in different formats in
different parts of the system. Finally, it provides an
interface between the users and the system. The above logi~
cal components of a data base are built on a distributed
computer memory system (DCS memory system), which consists
of nodes interconnected by a network of channels. At each
of these nodes, an uni-processor or a multiprocessor system
exists and is supported by the storage sub-system whose
function is to provide the nodal processor sub-system and
users with fast retrievals and accesses of the stored data.
The storage sub-system usually consists of a memory hierar-
¢hy which is divided into levels. These levels are made up

of memory elements of varying speeds and the fastest level

- 47 -

is interfaced to the processor sub-system. The file system
on the memory hierarchy are usually broken into pages and
they act as an unit of transfer among the levels. Further,
intelligence have also been distributed to various levels of

the hierarchy. One such design is the data base machine

[HSIT7].

The data base can he classified according to how
these compohents are being put together. In [ASCT74], two
classifications are proposed, the first is based on the
number of Data Base Management Systems in the network and
the second is based on the centralization or decentraliza-
tion of the file directory and the data. In [BOO76], the
DDBs are classified into two structures, partitioned data
bases and replicated data bases., A partitioned data base is
one that has been decoﬁposed into physically separate units
distributed across multiple nodes of a computer network.
The partitioning will normally be based on the distribution
of access requiremeﬁts. In a replicated data base, all or
part of the data base is being replicated at multiple pro-
cessing nodes. The amount of partitioning and replication
will depend on the architecture of the distributed system,
the amount of traffic anticipated and other requirements

such as reliability, security, etc.

- 48 -

5. ISSUES IN DISTRIBUTED DATA BASE SYSTEMS

The issues associated with the design of a DDB can
be classified éccording to users' point of view or from sys-
tem designers' point of view. From users' point of view,
the users are concerned with the type of organization and
controis which can give efficient and reliable operations
and can satisfy their requirements. The users usually do
not relate very closely other factors such as technology and
architecture in their considerations. On the other hand,
from designers' point of view, the designers are more con-
cerned with the architecture of the system and its limita-
tions due to techneology dependency. However, the issues
considered from both views are not independent and must be
investigated jointly in the design of a DDB. We have there-
fore taken an integrated approach and have classified these
issues into four categories. The classification are

diplayed in Figure 15.

5.1 Architectural Issues

5.1.1 DCS Memory Design

The DCS memory system is made up of nodal memories intercon-
nected together through an interconnection network. There
are many issues associated with the design of network
memories in addition to the design issues of efficient nodal
memories. Among these are: the selection of network topol-
ogy; the selection of the channel type; the design of net-

work control strategies; the design of communication

sua1s4Ag aseq ®IBQ POINQIIISTC UT SINSST JO UOTIBOTJISSET) °¢T 2andij

£3oTouypa],
HHHHHHHHHHUIGOﬂu:Ho>m
UOTIBZTIPIBPUEIS
AITTIQRTTISY
Aoeatag » £31anoeg
d
TeAaTI39Y/3uriepdp HoEIEIIco
Juropsydg yser
To013U0)
gag uo Burssanoxg Lisnd
Ayoaeaaty mhc&wszHHHHHHHHUV uor1eadIR ¥
JuswWaIBT STT
qaa Td @Tt4
8 e}
TP4A®7 Ted1sAyd MMMmMH
0] ToA27 Tenidsouon woxay Burddey
T9s27 Tenidsouogy 2yl Jo udrsag uorreaTUES10
TE2T807
T2POH ®BIBQ JO UOTIISTRS
92BJI9IUT IIS[
sjdaouc) TeINIIII
—Tyoay popssy SUPUIER 9std BITQ udrseq Aio0
SUOTII9UUODIIUT —SH TEPON
udysog AicuwoR ﬂmsuuﬂ>mWWWWWWWthLuumMMﬂm Axouop
uotleZTEI1dD 2IMIDDITYIIY
*219
u3rsag
2dA] TouurYy) JO UOTIDITIS Arouay §0ad

£8otodog yiomioN JO UOTIOSSG

- 50 =

processors, ete. These issues have been examined carefully

in [RAM76], and therefore will not be repeated here.

5.1.2 Nodal Memory Design

The nodal memory design is concerned with the design of the
memory hierarchy and the data base machine which can effi-
ciently support data base operations. Issues like the
selection of the number of levels and the size of each level
of the memory hierarchy; the utilization of gap~filler tech-
nology; the hardware design for supporting data base opera-
tions in a data base machine; the interconnection structure
between memories and processors; etec. must be considered in

the design.

5.2 Issues in Logical Organization

These issues are related te the user-system interface

and can be classified as:

5.2.1 User Interface

An important issue in the design of a DDB is the design of
user interface for efficient and easy users' access to the
data base. This interface basically consists of the commun-
ication interface and a query language. It should help the
users to find the exact location of the reqired'data. The
complexity of this interface depends on the required ease
with which users access the data and it directly governs the

design of communication processors.

5.2.2 Data Base Organization

'f51-

A data base is generally organized in one of the data
models: relational, hierarchical or network [DAT77]. There
are other models like the binary association model and the
external set model which are not quite popular. The effi-
ciency of a DDB is very much dependent on the type of organ-
ization since it affects the storage organization, access
mechanisms and the communication requirements. The criteria
for designing and selecting a model has not yet been well
understood or established, nor is it likely to be esta;
blished in the near future. The designers of a DDB are
therefore encountered with two decisions: which data model
to utilize and how to structure the data for a chosen model

{SIL761].

5.2.3 Design of the Conceptual Level

The conceptual level is a level of indirection between the
external level which consists of different data models and
language interfaces and the internal level which consists of
the physically stored data. The conceptual level actually
maps the users' view onto physical data and is intended to
provide a solid and enduring foundation for the total opera-
tion of the DDB., 1Its design depends on how the data are
being stored, the physical storage media, the number of dif-
ferent data models, the way that data are being distributed
on the DCS and other user requirements. It is important to
construct a conceptual schema at a suitable level of
abstraction in the design stage [DAT77). Many of the tech-

niques in artifical intelligence have been applied

- 52 -

successfully in this design.

5.3 Operational Issues

5.3.1 Control

These issues are concerned with the efficient, correct,
reliable and secure operations of the data base. They can
be classified as:

(1) File Placement and Migration

This relates to the distribution and migration of data
base components, namely, schema, data and contrel pro-
grams on the DDB and the files and programs on a memory
hierarchy with the objective of minimizing the overall
storage, migration, updating and operational costs on
the system. A related issue in DDB is how to decompose
the request so that they can be processed in parallel by
the different nodes of the DCS.

(2) Task Scheduling

This is to schedule jobs and requests on the DCS so that
high parallelism and overlap can be achieved. This
parallelism is important on a DCS because in order to
attain high throughput, the parallel hardware and
resource must be efficiently utilized. The control of
task scheduling can be distributed or centralized. 1In
distributed control, each node may act independently and
coordinate with each other s¢ that equilibium can be
achieved. In centralized control, there is a primary

node in which all scheduling control will be performed

- 53 -

there. The decision of which is the better control
mechanism depends very heavily on the interconnection
structure and the communication overhead involved.

(3) Updating/Retrieval

In a DDB where several users share the same data, there
are several problems associated with multiple accesses
and updates. When several users try to access the com=-
mon data, there would be interference among the users,
and the communication protocol should be designed to
minimize this interference. Another problem related to
consistency arises when data elements with multiple
copies at different locations are to be updated. Simple
locking mechanisms cause excessive delays and may cause
throughput degradation in the distributed system. Effi-
cient updating schemes are needed and the architectures

would be very much influenced by such schemes [ESWT76].

5.3.2 Security and Privacy

Another important issue in the design of a DDB is security
and privacy. Security refers to the protection of data
against deliberate or accidental destruction, unauthorized
access or modification of data. On the other hand, privacy
refers to the right of an individual user td determine for
himself what persoconal information to share with others as
well as what information to receive from others. As the
size of the data base increases, the threat to security and
privacy increases. In addition, it is increasingly diffi-

cult to implement effective measures in a DDB. Additional

- 54 -

techniques such as data encryption would influence the
transmission efficiency and the communication mechanisms

[BAD781, [(DOWT7].

5.3.3 Reliability

The determination of the needed hardware and data redundancy
and the reconfiguration strategies is another major issue in
the design of a DDB. Multiple copies of data base realm
offer fast recovery; checkpointing of realms, dumping and
Journal rollback and roll-forward offer a slower but cheaper
recovery. The effect of any recovery mechanism and reconfi-
guration strategy on the response time and the associated
- overhead must be weighed against the reliability require-

ments [KRIT8].
5.4 Evolution

In order for the system to be able to adapt to new
application requirements and technology advancements, Evolu-
tionary measures must be designed into the system at the
design stage. Two of the contradicting issues for evolution

are:

5.4.1 Standardization

Cne of the major inhibiting factors in the development and
evolution of DDBs is the lack of standardization in the
areas of programming languages, user interface commands,
data models, concurrency control mechanisms, hardware com-

ponents (e.g. disks, tapes), data formats, network proto-

- 55 =

cols, etec. Standardization of hardware and software com-
ponents allow modular expansion of the system. On the other
hand, with a highly evolving technology on hand, standardi-
zation may cause costly refitting later and may even hinder

acceptance of new ideas.

5.4.2 Technology Dependence

Techneology is one of the most important driving force
for the success of a computer system. There are a variety
of device manufacturing technologies [MOE78]. These dif=-
ferent technologies are able to offer a variety of semicon-
ductor memories with different access times and prices
[THE78], [UPT78], L[FET76]. 1In Table 5, the typical access
time and power consumption for several semiconductor memory
types are shown. Given these diverse types of memories
available on the market, the designer must therefore decide
at the design stage which one is the most suitable.

Table 5 Typical values for LSI Semiconductor RAMs (1978) (Prlce
is shown for quantities of 100)

] Memory " Access i+ rower (lon- i Approx. Price |
| Type i Time (nsec) sumption (mw) | (#/bit) i
: . 125=300 7 0. 30|
| 4K NMOS dynamic | 150~350 i 460 i 0.33 i
| 4K EgL static 1 30 | 1000 H 0.85 i
14K L dynamic ! 120 ! 450 ! 0.59 H
14K TTL static i 50-70 i 600-900 t 0.80-1,00 i
t4K MOS static ' 55-170 H 30~500 | 0.61-0.92 !
11K CMOS static ! : 150 H 4 | 1.02 |
11K TTL static ; 40~100 i 500-800 | 0.85 i
| 1K ECL static ! 35«60 | 500-800 | 1.30 |

On the other hand, magnetic device technologies have also

improved significantly. With the improvement of disks,

- 56 -

fixed-head disks, drums and tapes, the invention of the bub-
ble memories [BOB71], and the Electron Beam Access Memories
(EBAMs) [HUGT75], it is now possible to provide inexpensive
secondary and archival storage to the computer system.

With these evolving technologies, there are three sig-
nificant impacts on the design of computers. First, new
technologies add extra design alternatives to the designers.
With more freedom in the alternatives, the designer may be
able to design a system with improved performance and
decreased system complexity. An example is shown by the
recent developments of bubble memories, CCD memories and
EBAMs which have emerged to fill the "access gap" between
the two traditional memory technologies. The access gap is
the region characterized by an access time between 10"6 sec.
(MOS memories) and 10”3 sec. (fixed head magnetic disk) (see
Fig. 16). Much time and effort is expended in computer sys-
tems in finding efficient ways to accomplish at minimum cost
the necessary transfers of information across the access
gap. With the utilization of "gap~filler" technologies,
improved performance and less complex transfer algorithms
can be envisioned. But before a successful utilization can
be achieved, some questions have to be answered. These
gquestions include where, in what sizes and what type of
memories to use. The utilization of these memories is
likely to change the current design and control algorithms.
Therefore, the design of a DDB must be developed jointly

with the availability of gap~filler technologies in mind.

Price/bit, cents

1UU

I | i I i i I] i
Bipolar
10 —
1 -
PROM
Bipoldr
cassette
1071 | MOS RAM system —
and core it
OEM Board *: Flexible
Card Chip disk
system
MOS RroM
-2 |- HI -
lD Tape_
cartridge
system
Memory and
storage systems
1072 _
Automated Tape-
;. tape file casette
o medium
disk '::::..[[HII].' I]]]]
10'4 L medium ers : Laser -
| ROM
7/ sttt
Removable ° 3 I3
disk pack Al
gl High-speed semiconductor technologies ':¥EL
1072 |- EZZZZZZZZ Gap-filler technologies
(MMM Low-speed disk and tape technologies
Tape—-
cartridge
med ium
1076 | | i i 1 13 12 ! i
107% 108 1077 107® 107 107 102 10?7 1wl o1

Access time, seconds

Figure 16 The Price-Performance Spectrum of Today's Memory and Storage

Technologies for Large Systems [FET76]

- 58 -

Second, increasing logic on a chip allows the designer to
inceorporate more logical capabilities into the storage sub-
system in addition to the storage capabilities. These logi-
cal capabilities include abilities to execute arithmetic
operations like summation, finding averages, as well as log-
ical operations like maximum/minimum searches, equality
search, etc. The designer has to decide what logical capa-
bilities are needed in the system and how they should be
designed. The last impact of changing technologies on com-
puter system design is that there is an increasing speed
mismatch among the elements of the computer system. With
the development of high speed processors such as the CRAY-1
and-multiwprocessor system such as C.mmp, there is zan
increasing need of higher bandwidth from the supporting
memory sub-system. In order to improve the bandwidths of
memories, it is necessary to have intelligent architectural
designs and efficient access algorithms for supporting
retrieval operations in addition to the utilization of fas-
ter memory components. Special emphases should therefore be
placed on the utilization of new technologies, the design of
new memory architectures and the study of efficient access
algorithms.

Evolving technelogy allows the users more freedom in
specifying and operating the system. More stringent
requirements can be specified and many of the system's func-
tions can be designed in hardware. However, the dependence

of the system on evolving technology usually is a severe

- 59 -

constraint on the designer, and the evolutionary capabili-
ties of a system depend very heavily on how well the

designer can predict the future technologies.

We have outlined some of the issues in the design of
a distributed system supporting a DDB. These issues are by
no means complete and other issues, both design and opera-
tional, have to be considered. Alternative solutions to
these issues provide the options to be decided upon in the
design phase. In the next two sections, we will discuss
some of these issues and their solutions in detail. The
issues that we will discuss include the architectural issues
and the operational issues. We have also integrated the
discussion so that the operational issues are discussed with
respect to the memory architecture, namely, nodal memory and
DCS memory system. Issues relating to the logical organiza-
tion and evolution are neot studied and they are beyond the

scope of this paper.

- 60 -

6. DCS MEMORY DESIGN

The memory system on a DCS is made up of nodal

memor ies connected together by a network and communicates
via the connected processors (Fig. 17a). Each node in the
system, which consists of a set of processing elements and
the supporting storage sub-system, may be active or passive.
If the node is active, it acts as a requesting source and
can access the memories at other nodes via the communication
sub-system. Each of the active nodes in the system has the

following functions in addition to the local file accesses.

{1) Remote access control

This module detects all remote access requests from this
node and is responsible for processing them. When a
remote request is detected, this module will look up the
network directory, and assess the file status. If the
file exists on the network and is accessable by the

request, this request will then by transmitted.

(2) Local access control

This module is responsible for processing all remote
requests received from other nodes in the network. It
acts as a security filter and determines whether the
file is accessable. If so, the local file is accessed

and the data will be transmitted.

(3) Redundant file maintenance control

This module coordinates all the local and remote updates

Communication Subsystem

| L] |]

Storage
Processor Processor Control
Processor
Storage Storage Storage
Subsystem Subsystem Subsystem
node 1 node 2 node n
active node active node passive node

Figure 17(a) A DCS Memory System

Figure 17(b) Functional Design of an Active Node

Communication Subsystem

rS A A~

4 4 ,

redundant
remote local .
file
access access
maintenance
control control
control

\ /

remote terminal
operating system

local

storage applications
subsystem

- Hh2 -

at this node and the management of multiple copies of a
file on the system. In coordinating updates, if the
update is originated from a remote node, the status of
the file is checked. In case that a conflict occurs and
the data cannot be updated, a status message is being
sent. On the other hand, if no conflict occurs, the
file will be updated. If the update originates at this
node, this module will look up the network directory and
send out all the requested updates to all redundant

copies on the system.

The relation of these modules in an active node is

shown in Fig. 17b.

Due to the information explosion and the need for
more stringent requirements, the design of an efficient
coordination scheme for the local memories is a very eriti-
cal problem in DCS. To indicate the amount of data pro-
cessed, we shown in Table 6 the typical data base processing
requirements for a ballistic missile defense system [DDP781,
operating in a centralized environment. For this system to
be distributed, several issues have to be resolved. Many of
these issues are inherent in the DCS. Details of these
issues have been presented in an earlier paper [RAM76] and
will not be repeated here. We discuss in this section the
operational issues of a DDB. These issues, which include
the program/file placement/migration problem and the resi-

lient multiple update problem, are related to the correct

- 63 =

Table 6 Typical Ballistice Missile Defense Data Base Processing
Requirements in a Centralized Environment [DDP78]

3.4x10%, 60 bits
24K

No. of writes/sec
RTOS events/sec

iTask TNumber of iIndependent tasks : 2U
JF1les I Rumber of dynamic flles] 177
i i Local i 30
] | Global | 87
' ' Dynamic file storage requirement | 431K, 60 bits
i i Local | 26K, 60 bits
i i Global ! 405K, 60 bits
1 ! RTOS storage requirements ! 10K, 60 bits
iProcessing i Processing speed i 13.9 MIPS
Environment iNo. of reads/sec E 7x10 60 bits
I]
l I

and efficient operations of a DDB. The issues concerned
with the design of the nodal memories will be discussed in

the next section.

6.1 Program/Data Placement/Migration Problem

The problem is defined as follows: given a number of
computers that process common information files, how can one
allocate the files so that the allocation yields minimum

overall operating costs. This problem has been called the

File Allocation Problem (FAP) [ESW74]. A more general prob-

lem is the Dynamic File Allocation Problem (DFAP) in which

the files are allowed to migrate over time so as to adapt to
changing access requirements. The FAP and the DFAP deals
with the placement of files. On the other hand, the Query

Processing Problem (QPP) deals with the partitioning of the

queries. The query is an access request made by an user or
a program in which one or more files have to be accessed.

For a given distribution of files on a DCS and a query which

- 64 -

is decomposable into sub-queries, the QPP is concerned with
the order in which the sub-gqueries should be processed.
Depending on the ways in which the sub-queries are pro-

cessed, QPP can further be classified into Sequential Query

Processing Problem (SQPP) and Parallel Query Processing

Problem (PQPP). In SQPP, the sub-queries are processed in
sequential order. Using the results produced by the pro-
cessing of the previous sub-query, the processing of the
present sub-query will produce some results to be used by
the next sub-~guery in sequence. If the files used by the
sub-queries are separated geographically, intermediate
results have to be transferred over communication lines.
The objective is to minimize the amount of communications
required. In PQPP, the files to be used by the different
sub-queries are transferred to a single location. The
queriles are then processed there and the results are sent
back to the requesting location. The amount of communica-
tions required is usually greater than segquential query pro-
cessing, but the response time is smaller because all the
communications are done in parallel (it is assumed that the
major overhead is in communications and not in processing).
For a compromise between the amount of communications and
the response time, a combination of sequential and parallel
query processing should he used. The QPP has been studied
in [WON76], [WON77]. The FAP and the QPP are not indepen-
dent. The sclution to the QPP depends on the assumption

that the files have been distributed optimally. On the

- 65 -

other hand, the solution to the FAP depends on the stra-
tegies of decomposing the queries. A general problem of
file distribution and query processing is therefore a combi-

nation of the FAP and the QPP.

The major reason for allocating multiple copies of a
file to certain part of the system at certain times and the
unnecessariness of keeping a copy of every file at every
node all the time is because users have localities of access
in any time interval. At any particular time, a file may be
used by a group of users and it will continue to be used by
the same group for a certain length of time. For a particu-
lar user, the file that he wants to access may be available
locally,.in which case, he can access the file with very
little cost. If the file is not located at the node that he
is working, he would have te pay a cost in terms of delay in
accessing the file and also intreoducing congestion in the
DCS before he can make the access. Under this situation
that we should consider moving a copy of the file to his
node. Introducing a new copy would alsc increase the cost
in terms of storage space and the additional overhead in
locking and concurrency control. Therefore, the decision of
whether to introduce a new copy of a file involves a balance
of the cost between the two cases. The costs are a function
of the topology of the system, the type of communication
protecols used and most importantly, the extensiveness of
usage at a particular node.. The last factor is measured

over a particular interval and is actually the area under

- 66 =

the access frequency (versus time) curve. The access fre-
quency for the future may not be known and therefore a
priori predictions may have to be made in advance. The
inaccuracy by which we make these a prieri predicticons can

be a major source of error.

In Fig. 18a, the utility gained through migration is
plotted against the staticity of the request patterns for .
different ratios of the cost of migration to the cost of
making the access without migration. The staticity of the
request pattern 1s the rate of change of the request pattern
with time. Since it is difficult to measure this for a DCS,
we c¢an only classify it as dynamic, semi-dynamic, static,
etc. We see that when the request pattern is statie, no
utility is gained through migration. However, when the
request patterns change with time, we get higher and higher
utility through migration. The curve is convex because of
the increasing desirability to migrate the files as the
request patterns become more dynamicec, We also see that as
the ratic¢ of the costs is higher, the gain in utility is
lower for the same staticity of request patterns. The rela-
tion with the ratio of costs and the staticity of the
request patterns is further displayed in the three dimen-
sional graph in Fig. 18b. From Fig. 18, we conclude migra-
tion of files may not be a suitable scolution to all file
distribution system. Only when the request patterns are
dynamic and the costs of migration are low c¢can we consider

helpful to migrate the files.

utility

obtained
through
migration
high
Cl
€y
C
3
0 < C1 < C2 < C3
low staticity of
static dynamic request patterns

Figure 18(a) 2-dimensional diagram showing the utility obtained
through migration for different ratios of (cost of
access after migration +cost of migration)/(cost of
making the access without migration).

utility obtained
from migration

high

(cost of access after optimal
migration + cost of optimal migration)

(cost of making the access

static without migration)
low high

dynamic

staticity of
request patterns

Figure 18 (b) 3-dimensional diagram showing the utility
' - obtained through migration.

- 68 -

The problem of file placement/migration can be clas-

sified in three dimensions as follows:

(1) The level of sharing

The entities that exist on a data base can be classified
inte objects and agents. An object refers to a file, a pro-
gram, a subroutine or any piece of information considered as
an unit. An agent is an object which accesses another
object. An agent can therefore be an user, a program or the
operating system itself. The o¢bjects in the data base can
therefore be classified as agents and non-agents. The level
of sharing refers to the degree of inter-dependence between
the agents and the objects. When neo sharing takes place,
there is.no allocation problem since each nede can carry the
objects that might be requested at that node. When there
exists sharing, an ¢bject may be requested by several agents
at different nodes, and we have to consider the alternatives
of moving either the agents to the unique object or to place

identical copies of the requested object at different nodes.

(2) The behavior of access patterns

The behavior of access patterns can be classified as static
which does not change with time and dynamic which changes

with time. Most real world situations fall inte the latter

category.

(3) The level of information available Lo each node

This refers to the extent by which changes in one part of

the system is propogated to another node in the system. If

- 69 -

every node has complete informatien ¢of the system, then sig-
nificant overhead is needed to propogate all the changes in
status to other parts of the system. For example, when an
user logs off from a terminal, it may be necessary to propo-
gate this piece of informaticon te¢ other nodes so that the
objects that this user was using can be released. However,
in most cases, incomplete information about the status of
the system is available at each node and it may be too
expensive or impossible or unnecessary teo propogate all

changes in status to every part of the system.

Most of the previous studies on optimization is
based on static distribution, that is, the allocation does
not change with time. Some variation of dynamic distribu-
tion involves the application of static algorithms whenever
need arises. These algorithms are very expensive to run in
real time. A particular solution te this proeblem invelving
a 30 site network required about an hour on an IBM 360/91
computer [GRA77]. The difficulty in c¢ptimization is also
exemplified in [SIC77]. Moreover, most of the algorithms
are shown to be NP—complete1 [ESW74,]1, (KAR72]. Although
polynomial algerithms could exist for some special cases of
the problem, e.g. the allocation of files in a two processor

system [{MUN69], their use in practical applications is very

NP-complete problems is a class of problems for which
there are no known optimal algorithms with a computa-
tion time which increases polynomially with the size of
the proeoblem. The computation times for all known op=-
timal algorithms for this class of problem increase ex-
ponentially with problem size, i.e., if n represents
the sizeg of the problem, then the computation time goes
up as k= where k>1.

- 70 =

limited. This result suggests that the distributed system

designer should focus his attention to efficient heuristics.

Heuristiecs for file distribution on a DDB are usu-
ally interactive algorithms. A feasible solution can be
generated. Users or some decision algorithms then have to
decide whether to improve the solution or not and how to
improve it. The disadvantages of these types of algorithms
are that they usually find a local optimum instead of a glo-
bal optimum and the validation of the algorithm is very dif-
ficult. For most cases, the heuristics can be shown to per-
form satisfactorily for some example values, but its worst
case behavior is very difficult to determine. Four of the

. . 2
most commoen heuristics are

(1) Hierarchical designs

This is a heuristic procedure in which attention is
first restricted te the more important features of a
system. In a file allocation problem in a DDB, étten-
tion can first be restricted to geographical regions.
After analysis has been performed and the files have
been distributed to different geographical regions,
attention can be directed to the less impertant details
such as allocating files within a geographical region or
within a memory hierarchy. This stepwise refinement

procedure can continue down many levels. At each level

€ The first three heuristics are applied and controlled
by the redundant file maintenance module. The last
heuristic is applied at the interface between the ap-
plications and the network operating system (Fig. 17b§.

(2)

(3)

- 71 =

of optimization, it is hoped that the effects on the
optimization of the current level from the levels above
and the levels below are very small. Nonetheless,
iterations and design cycles may exist toe refine the

solution.

Clustering algorithms

Clustering algorithms are horizontal design processes
which have a similar objective as hierarchical alge=-
rithms, namely, to reduce the complexity of the analysis
in & large system. Clustered file e¢rganization have
been studied in centralized data bases in which related
or similar records are grouped together into classes, or
clusters of items in such a way that all items within a
cluster are jointly retrievable, e.g. [SAL77]. S3uch
algorithms are developed for single file searches. In a
DDB, the files can be clustered according to criteria
different from those of a centralized data base, e.g.
geographical distribution of access behavior [LOOT75,
[LOOT76]. If the usage of files can be clustered accord-
ing to geographical regions, then we can design network

of each region independent of each other.

Add-drop algorithms

In applying this algorithm, a feasible distribution of
files is first found. The total cost of the system can
be improved by successive addition or deletion of file

copies, When a feasible solution with a lower cost is

- 72 -

found, it is adopted as a new starting solution and the

process continues. Eventually, we come to a point in
which addition or deletion dees not reduce the cost.

therefore reach a local optimum. The whole procedure

can be repeated with a different starting feasible dis-

tribution and several local ¢optima can be obtained.

taking the minimum of all the local minima cobtained, it

is hoped that we can get very close to the global
optimum [MAHT6].

(4) Query decomposition

The approach using query decomposition has been

developed for relational data bases. In this approach,

optimization is performed on the processing of a single

query originated at a node. The objective is to minim-

ize the cost of data (relations) movements from one node

to ancther. It is assumed that the major cost lies in

the communication overhead and not in the local process-

ing. This approach is proposed for the design of the

centralized version of INGRES [WONT76] and is extended to

the design of SDD«1, a distributed data base [WONT7T7].

The above techniques are by no means complete. The

choice of which type of algorithms to use depends very

heavily on the topology and the architecture of the DCS, and

should be resolved by the designer at the design stage.

6.2 Resilient Concurrency Control

- 73 -

This area is concerned with the problem of providing
control mechanisms that allows concurrent accesses to a DDB,
such that each transaction, apart from timing, sees and
proceeds as if it is served by a dedicated data base system.
In particular, if a transaction is consistency preserving
and terminates in finite time when runs alone, it should
" also do so when runs concurrently with other transactions.
Further, since one of the requirements of a DDB is high
reliability, the underlying concurrency contrel must also be
robust teo failures. In summary, the main objectives of a
concurrency contreol mechanism is to preserve consistency of

the data base and to resolve deadlocks when they c¢occurs.

6.2.1 Requirements for the design of a concurrency control

mechanism

The requirements for the design of a concurrency

control mechanism are:

(1) Correctness

(a) Consistency

There are two types of consistency: mutual con-
sistency, which states that all copies converge to
the same state and would be identical should update
activity ceases; and internal consistency, which
states that each distinet copy of the data base must
remain consistent within itself, as in a conven-

tional centralized data base [ESW76], [BER771],

[BAD783f

- T4 -

{b) Deadlock free

Another problem associated with synchronization 1is
deadlock. Basically, a mechanism may choose te
avoid or detect deadlock, Appropriate rollback pro-
cedure must be tailored for the specific data base
enviornment. The proof that a system is deadlock

free is usually not easy [BERT77].

(2) Reliability

(a) Robustness

In order for the DDB to be reliable, the underlying
concurrency contrel mechanism must be robust when a
node fails or when the network is partiticned due to
the failure of a set of nedes. It is impertant to

incorporate robustness at the initial design stage.

(3) Cost-Effectiveness

(a) Efficiency

(b)

The final system must be efficient and satisfy the
response time requirements. In order to improve the
efficiency of the system, we can try to reduce the com-
munication delays and the control overhead while on the
other hand try to maximize the degree of concurrency.
Low cost

The cost of concurrency consists of: communication cost,
storage cost for control (lock) tables, cost of re-
initiation when a query has to be re-initiated due to

conflicts of access in the last initiation and lastly,

- 75 -

the cost of developing and executing control algorithms.
The cost of control algorithm can be reduced by using
homogeneous scolutions, that is, all nodes would use the
same control algorithm. Besides easier to develop and
maintain, this can greatly facilitates the proof of

correctness [ELL761].

(4) Evolution

(a)

(b)

Independence of network model

It is desirable that the control mechanism can function
independently of the topology of the network. There may
exists different routes from one point of the network to
another. If the mechanism is independent of the topol-
ogy, it would function correctly even though the order
of information received is different from the order sent
[ELLT7]. |

Modular growth

The control mechanism must be able to adapt to technol-

ogy and design evolution.

In designing the concurrency control mechanism, the

design should be balanced between performance and reliabil-

ity.

In some systems, this is the duty of the data base

administrator. In other systems, the user can have the

freedom of choosing the desired performance—reliability

ratio for himself. For example, in System R, the user is

allowed to have several levels of consistency and therefore

he can trade consistency for efficiency [ASTT6].

- 76 -
6.2.2 Types of Controls

Concurrency centrol mechanisms can be classified
according to whether it is centralized or distributed. When
a distributed algorithm is used, we can further classify it
according to whether'primary sites3 exist among multiple
copies and the means of synchronization (e.g. locks, times-
tamps, etc.). As an example, Table 7 characterizes seven
existing concurrency contrel methods. These mechanisms are
believed to represent a typical sample of current research

interests in concurrency control mechanisms.

Table 7 Classification of Seven Existing Concurrency Control

Methods.

"Reference | Controlling " Primary | osynchronization

3 ! Sites ! } Metheod

T [MENTE] centralized - "Tocking With fully redundant.
| ' | i lock tables

' [8T0781 | distributed | yes | Locking with localized lock
| t i | tables

i\ [THOT78) ! distributed | no | Majority consensus on the vali-
| i) ! dity of the base variables
i 1 i ' based on time stamp values.
d i ! | Each site maintains a localized
| i 1 ' table of pending requests.

! [ELL77] | distributed | no ! conflict test. No lock tables.
i | i ! Each site remembers one and
| i i ! only one pending update (inter-
i i) | nal) request.

! [ROS77] | distributed | no ! Locking with localized lock
: 1 i | tables

i [ROT77] ! distributed | no A time stamp mechanism with
i !) ! varying degrees of synchroniza-
) i i ! tion. Each site maintains a
i i ! | table of classes of pre=-
i | | | analyzed transactions.

| [ALS76] | distributed | vyes | unspecified

3 -

up

A %rlmary site in a data base is a
da

es from user processes will be initiated there.

nede at which all

- 77 =

Design of concurrency control mechanisms for DDBs
has been ad hoc in nature. This is probably due to the
large number of factors one has to consider and 1t is diffi-
cult to identify all of them at the design stage. Further,
efficient methods are usually difficult to find even when
the parameters can be jdentified. In practical designs,
most of the reguirements presented cannot probably be satis-
fied. The final algorithm is usually tailored towards the

particular network and applications.

- 78 -

7. NODAL MEMORY DESIGN

The storage sub-system of a data processing system
at a node comprises a memory hierarchy that stores programs
and data. Its spectrum ranges from bulk store and magnetic
tape on one end to the fast register storage and cache
memory in the CPU on the other end (Fig. 19). Further,
there is an increasing tendency to distribute the processing
of the CPU to the various levels of the storage sub-system.
One successful implementation of this is the data base
machine (Fig. 20) [HSI77]. The data base machine may be a
separate member of the storage sub-system or it may
represent a level of the memory hierarchy with extra intel-
ligence. The optimization of performance of a storage sub=-
system is very important because the storage sub-system is
very expensive and can be more than 50% of the total system
cost [SCH78)]. In this section, we will discuss some issues
and scolutions concerning the memory hierarchy and the data

base machine.

7.1 Memory Hierarchy

It has been realized for a long time that the con-
flicting requirements for high performanée and low cost
storage sub-system at a node can be satisfied by a combina-
tion of expensive high performance devices with inexpensive
low performance devices which results in a memory hierarchy.
However, before a "good" memory hierarchy can be designed,

many issues have to be resolved. Some of these issues have

CPU

address §

space

address

\

file

space

Figure 19

4 CPU

CPU ﬂ Registers

\ Cache

Main Memory

Bulk Store (using
gap filler technology-1985)

Disks

Mass Storage (tape cassettes
loaded automatically)

Year Year
1975 1985
20 MIPS 40 MIPS

3
500B 107B
108 10%8
106B 1083

0B 1078
10%8 10ty
lDllB 1013B

Storage Hierarchy (with typical sizes

shown for years 1975 and 1985)

Host
Other Nodal Host Communication Oth
Storage Sub- Processor Controller . e
g » Hosts
ystems
I
N

—+| Backend Controller

LI Processor

Processor Processor Processor

] I

Interconnection Switch

L I

Memory Memory Memory . e - Memory

Paging
Device

Figure 20 Architecture of a Data Base Machine

- 81 -

been studied extensively in the past. Others are currently

under research. Among the most important issues are the

following.

7.1.1 Architectural Issues

(1) Virtual Memory Support of an Automatic File Management

System [TUE761, [POHT75], [DEN70]1, [BAST70]
The problems studied in virtual memories include:
(a) The evaluation of replacement and retrieval algo-
rithms [BEL66], [MUNT41, [EAST7I, (EAST8];
(b) The effects of page size and primary memory allot-
ment on page fault rate [DEN681, [FAG76]1, [SMIT61];
(¢) The optimization of program distribution and block
transfer size [ROB711, [HIR73], [BOYT4], (FERT761,
[CHOTT].
The success of a data base is very much dependent
on the efficiency of the virtual memory. A file on a
data base is likely to be large and cannot reside
entirely in the main memory. The use of virtual memory
can relieve the users from the laborious task of storage
management. However, past researches have concentrated
on machine instruction executions and data accesses on a
virtual memory. On a data base, the characteristics of
the accesses are usually different. The requests made
on a data base access single or multiple files as an
unit. This characteristics may change for different

applications. We are therefore faced with the following

- 82 -

research tasks related to a data base.

(a) Characterize file access patterns;

(b) Relate file access patterns to query access behavior
in order to make projections;

(e) Study restructuring of a data base based on the
access pattern so that the page fault rate can be
reduced;

(d) Evaluate different file access and replacement algo-
rithms;

(e) Study the relation between block transfer size and
page size and the page fault rate;

(f) Study the effects of fragmentation due to the vir-

tual memory on the data base.

(2) Optimization of Memory Hierarchies

In optimizing the memory hierarchy, we have te¢
select the major components of the memory hierarchy and
to in?estigate control algorithms when certain
behavioral (statistical and application) information is
Known about the programs being run, under certain
specifications. These specifications will have been
defined after the requirement phase and include: (a) the
effective access time of a request which is the time
petween the initiation of the request and the delivery
of the result; (b) the throughput, which is the average
number of words accessed by the CPU per unit time; (c)
the word width, which defines the word size of the CPU

and (d) the cost. Further, there are two applicatien

- 83 -

dependent requirements: (e) the request rate or a dis-
tribution of the request rate and (f) the correlation
between the address of the current request and the
address of the next request in segquence. This correla-
tion will determine the sequentiality and locality of
the memory accesses. Tradeoffs must be made so that the
final design satisfies these requirements. The designer
is faced with the decision of optimally selecting the

following design alternatives.

(a) Physical parameters of the memory

These include the number of levels of the hierarchy
"and the size and the speed of each level. Tradi-
tionally, this problem falls into the class of NP-
complete problems. The optimization of physical
parameters of the memory hierarchy can be sclved by
integer programming {RAM70], [WAR76]. However,
their use in practical situations is rather limited.
The designer should therefore search for heufistics
whose execution time is proporticonal te a polynomial

of the problem size for the optimization.

(b) Intercennection mechanisms

This is the problem of designing the interconnection
paths among the different levels of the memory
hierarchy. A simple design would allow communica-
tions between adjacent levels. However, it 1is res-

tricted when accessing or updating data not residing

- 84 -

in an adjacent level of the hierarchy. The data to
be accessed or updated have to pass through all the
intermediate levels and therefore cause unnecessary
traffic and overhead. However, it would be less
expensive than a design which allows each level to
communicate directly with a number of other levels.
In the latter design, it is necessary te decide
which are the essential paths. Accessing and updat-
ing algorithms are also more complex. Quéstions
like whether the data is made available to all the
connected levels when they are accessed or updated
should be answered [SMIT76b], [POH75]. The major
advantages of the latter design are faster response
time and less overhead in propogating the accesses

and updates.

7.1.2 Operational Issues - Control Algorithms

(1) Scheduling algeorithms

Memory requests made by the processor are scheduled
so that some overall objective like the completion time
is minimized. Investigations show that most of the
optimal scheduling algorithms for ordering requests in
memory hierarchy are NP-complete. However, in some spe-
cial cases, polynomial algorithms exist and can be
implemented. An example of this is shown in the
scheduling of reguests for an interleaved memeory with a

fixed buffer size and data path width [RAM78b]. It is

(2)

- 85 -

found that an algorithm which initiate the memory module
with the maximum number of queued requests will minimize
the expected completion time of the requests. For most
of the other NP-complete scheduling problems, it is
necessary to find goed approximation algeorithms or

heuristics.

Record/file distribution and migration algorithms

This is a similar problem we have discussed earlier
on file allocation in a DCS. The location of a
record/file in a memery hierarchy is an important cen-
sideration in minimizing response time and meeting
real-time constraints. Further, as the locality of
accesses changes when the processor switches processes,
it may be necessary to reorganize the files at different
levels of the hierarchy. The objectives for our optimi-
zation are multi-folds. We would like to minimizé the
storage cost for a file in a level and transfer cost of
migrating a file to another level while trying to make
available as much as possible, all the files accessed by
the processor currently and in the future on the fastest
level of the hierarchy. Further, since the locality of
execution changes from time to time and it is difficult
to anticipate exactly what locality the system would
change to in the future, the migration algerithms are
necessarily dynamic, that is, the files in the system
are reorganized whenever the locality changes.

Se¢ far, several studies have been made on the

- 86 =

problem of file distribution and dynamic migration. The
areas studied include replacement algorithms [MUNTU4],
[FRAT4]; characterizing the access behavier [STR771],
[REV75]); the fragmentation problem [CON761, [WAR76] and
distributing files on a distributed data base [CHU69],
[cAST72], [LEV75], but very few studies have been made on
an unified approach to study file placement and migra-
tien in a memory hierarchy. Research is therefore

urgently needed in this aspect.

Most of the control algorithms for the memory
hierarchy belong to the class of NP-complete algorithms.
The designer therefore has teo look for good heuristics which
can be executed within the real time constraints. However,
the evaluation of these heufistics are usually difficult.
Evaluation methods and techniques are usually of three
kinds, analytical techniques, simulations and approximation
algorithms. Analytical techniques generally have to make
some simplifying assumptions about the system parameters and
the results obtained are usually not accurate. For example,
when using queuing theory [KLE75] to evaluate the perfor-
mance of a system, assumptions like poisson arrivals and
exponential service time have to be made in order for the
solution to be tractable. On the other hand, simulations
are almest always expensive to run, and it is difficult to
exhaust all the possible cases of the system. A third type
of evaluation algorithms are approximation algoerithms

[WEI77]. There are two classes of these approximations, one

- 87 -

guaranteeing a near-optimal solution always, and the other
producing an optimal or near-optimal solution "almost every-
where". These types of algorithms are still in the research
stage and a unifying approach in designing algorithms of
this type is stiil lacking. The future trend is in the
direction of investigating good approximaticn algorithms for

memory hierarchies.

7.2 Data Base Machines (DBMs)

7.2.1 Objectives for DBMs

The objectives for the design of DBMs are:

(1) Parallelism

As the size of information processing grows, it becomes
inereasingly difficult to use an uni-processoer to
achieve the system's requirements. One alternative is
to exploit the possibility of using multiple, less
expensive and less powerful processors to form a
conglomerate of parallel processors which can usually
achieve the system's requirements in a more cost-

effective way.

(2) Communication overhead

Processing on large file systems are often 1/0 bound.
Many of the file operations are quite simple and a sig-
nificant communication overhead 1is incurred in transfer-
ring the file to a level of the memory hierarchy where

the processor can process it. By distributing the

- 88 -

intelligence to the different levels of the memory
hierarchy, the DBM can allow parallel processing with

very little communication overhead.

(3) Hardware or firmware realization of data base functions
The complexity of data base system software is largely
due to the processing of memory ﬁapping operations.
Memory mapping operations convert the file accesses by a
query inte actual memory addresses and must be highly
optimized if they are to perform well. These operations
often utilize complex data structure to achieve effi-
ciency. On the other hand, data base software are
divided into modules which perform specifie tasks. For
example, modules may exist for query parsing, directory
access, directory processing, data retrieval and update,
and data security. These modules usually have diverse
capabilities and bottlenecks exist if these modules are
executed on the same processor. The system per formance
is consequently degraded. The DBM solves the above two
problems by eliminating the complex address mapping
operations and utilizing hardware/firmware to replace
the software. The query is transferred directly from
the processor to the DBM without address mapping. Then
hardware/firmware will procss the query and realize the

data base functions.

7.2.2 Issues in the design of DBMs

Although DBMs have been successfully designed or

- 89 -

implemented, e.g. Data Base Computer (DBC) [BAUT6al, Context
Addressed Segment Sequential Storage (CASSM) [LIPT78], Rela-
tional Associative Processor (RAP) [OZKT77], Reotating Associ=-
ative Memory for Relational Data Base Applications (RARES)

[LINT6], Datacomputer [MART5], etc., the design of DBMs are

still plagued by many issues.

(1) Architectural Issues

(a) Parallelism - kind and degree

The designer has to decide what functions can be
processed in parallel and in what degree. These
functions include address mapping operations, and
the data base functions itself. With parallel pro-
cessors, the designer alse has to consider the effi-
cient scheduling of tasks on these processors.

(b) Technology dependence

The design of the DBM must take into account the
available technology. Using disk technologies,
there is a large overhead in translating the signal
available from a disk head to an useable form by the
DBM. With bubble memory, it is very difficult to
implement extra logie and hardware onte the same
memory chip. A goed candidate now is the CCD memory
where the logic and the memory cells can be imple-
mented together on the same chip. The design must

also be able to adapt to future technologies as they

are made available.

- 90 -

(2) Issues in Logical Organization

(a)

(b)

(c)

Interface where and in what form:

The problem is to design a good interface between
the DBM and the host processor. This interface may
be implemented in hardware/firmware or software or a
combinations of beoth. This interface translates
queries from the host processer to data base func-
tions processable by the DBM. Important questions
l1ike where to put this interface and its capabili-
ties must be considered. Should it be a part of the
host, or should it be a part of the DBM? Should the
interface be able to access the memory hierarchy?
How should the interconnection network be between
the DBM and the storage sub-system? What type of
language primitives should be used? These questions
have to be considered carefully by the designer.

Storage structure

The kind of storage structure is very important. If
keyed accesses, that 1is, accessing data via a key,
are allowed, then additiconal hardware capabilities
like asscciative memory or extra pointers are neces-
sary to support it. Further, questions like whether
storage structure is dynamic in order to adapt to
applications should alseo be considered.

Backend primitives

The designer has to trade the availability of back-

end primitives (which include functions like sort-

- 91 -

ing, file merging, etec.) with the cost and the dif-

ficulty of implementing it.

(3) Operational Issues

(a) Control algorithms

Because the memories of a DBM are usually slow (of
the order of 100 psec access time), much overlap and
parallelism are necessary in order to achieve a high
throughput. Control algorithms like scheduling and
file placement and migration algorithms are there-
fore very important. The problem is very similar to
that of designing control algorithms for the memory
hierarchy which is discussed earlier and will neot be

elaborated here.

7.2.3 Key Architectural Concepts in the Successful Design of

DBMs

To overcome the issues discussed, a few of the key

architectural concepts must be followed.

(1) Associative memory

The associative memory is an impertant architectural
component for the design of a DBM. Using the associa-
tive memory, logical operations like equality searches,
extremum searches, and arithmetic operations like sum
and difference can be performed on the records of the
file associatively. 1In {RAM78a], a design for a sequen-

tial associative memory which is capable of performing

- 92 -

logical operations like equality and extremum searches
is shown (Fig. 21). Research is now under way to
include arithmetic operations in the associative logic.
This design can be generalized further where each word
is made up of a memory block. Note that the asseociative
logics are the blocks representing the parallel proces-

sors in Fig. 20.

(2) Function partitioning

The design of a DBM requires thorough analysis of the
requirements and properly delegating (partiticoning) the
functions teo various processors. The basic idea of par-
titioning and analyzing the application is to tailor the
system architecture to suit the application and to util-
ize the system resources efficiently. In a DBM, the
data base functions are partitioned so that each of the
functions can be implemented in hardware/firmware. The
decomposition and partitioning technique we have dis-
cussed earlier in Section 3 is useful in this context.
In Fig. 22, we have shown an example where the user
request handling are partitioned into different modules
TPHI78]. In this functionally specialized system, the
components are individually designed to adapt te their
functions optimally. Since all the majeor functions and
capabilities are well specified, estimation of the
required processing power and memory capacity is much
easier. Further, as each of the unit is a hardware com-

ponent, their speeds can be designed to aveid

bit slice
control logic

2 N -
word 0 | R/W associative
— 5 logic
“ —.._-+ o I} .
word 1 | R/W +»! associative
* — logic
< . -
word m—1 . R/W associative
> — logic

Sequential Memory

Figure 21 Associatve Logic for Associative Sequential Memory

(3)

- 94 -

pottlenecks. An example of such hardware partitioning
is shown in the design of the Data Base Computer
[BAUT6b], [HSIT6al, [HSI76b]l, where the design is parti-
tioned into seven major functionally specialized com-
ponents: the keyword transformation unit, the structure
memory, the mass memeory, the structure memory informa-
tion processor, the index translation unit, the data
base cemmand and control processor and the security

filter processor (Fig. 23).

Lookaside buffers

The memories used in a DBM are usually slow, e.g. CCD
memory, and the access time is rather leng. To aveid
unnecessary waiting in updating the files, a fast memory
called the lookaside buffer is used to store these
updates. Normal processing can resume after the looka-
side buffer is updated because the data in the lookaside
buffer now represents the most current copy. Updates
can now be performed in the main memory without
interference to the execution of other data base c¢pera-

tions.

The concepts listed here are only a few of these

that occur in the design. New concepts will be develeped

during the design and implementation phase for which the

designer will have to make judicious decisions and innova-

tive designs.

Finally we conclude that the DBM is a very powerful

File
Storage
System
Messages

Output

Message [USer

Reply

/
/
/
Assembl¥¢
Reply
System I~
Transaction S\
Receive - - "7T Control ~ \f
= Message - N
Request) ~ -~
\
\ Update
Delete
Transactjon
e Data
————— Control

1/0 Process
System Task

Transaction Process

Figure 22
[PHI78]

Function Partitioning for User File Request Handling

Information Path
—~——= Control Path

L S S e e S — e Ay ——

DBCCP: Data Base

From PES Command &
Control
To PES - Processor
KXU: Keyword
Transformatior
MM: Mass Unit
Memory SM: Structure
SFP: SECUI’”Y Memory
Filter SMIP: Structure
Processor Memory
Information
Processor
IXU: index
Translation
Unit

Figure 23 Architecture of Data Rase Computer (DBG) [BAU76b]

- 97 -

architectural concept. We visualize that the nodal memory
sub-system for a future computer system will consist of a
memory hierarchy with each level being replaced by a data
base machine or with distributed intelligence to handle
local processing requirements. At the present time, only
the bulk storage level (see Fig. 19) have been designed inte
a data base machine. However, with the availability of
inexpensive processing units, distributed intelligence

memory hierarchy will become a reality in the future.

- 98 -

8., CONCLUSION

This paper has discussed a systematic procedure for
a distributed computer system and the design issues of a
distributed data base. The main objective of the methodol-
ogy is to develop reliable, effective, modifiable systenms
with leow cost and lead time. The methodology uses the con-
cept eof abstraction, step-wise refinement and modularity to
design a DCS. By following the design guidelines of the
methodology, the system can be developed systematically in a

hierarchical manner.

The design methodeleogy is divided into four succes-
sive phases: (1) requirement and specificaticon phase, (2)
design phase, (3) implementation phase and (4) evaluatien
and validatien phase. The first two phases have been
explored in detail in section 3. In the requirement and
specification phase, the réquirements and the characteris-
ties of the system are elaborated and expressed in a formal
specification. The basic steps involved, the primitives to
be specified, and the choice of specification language are
discussed. In the design phase, the system specifications
are analyzed to generate the virtual system. A systematic
decomposition procedure is proposed. The design issues of a
distributed data base are then investigated in sections 4,
5, 6 and 7. The issues that have been discussed are divided
into the architectural and the logical aspects and the

architectural aspect are examined in detail. The distri-

- 99 -

buted data base is systematically divided into the network
memory level and the nodal memory level. On the network
memory level, two of the important operational issues,
namely, the file allocatien-query processing and the resi-
lient cencurrency centrol are examined. The nedal memory
level is further divided intc the design of virtual memory
and data base machines. Issues concerning the design and
optimization of the virtual memory are discussed. Some of
the key architectural concepts for a data base machine have
alsoc been proposed. In particular, it is neoticed that the
data base machine concept can be extended tc every level of
the memory hierarchy. Lastly, the last two phases of the
methodology are only cutlined priefly. They are tco tech-
nolegy and architecture dependent and are beyond the scepe

of this paper.

~ 1086 -

BIBLIOGRAPHY

[ALS76)] Alsberg, P. A., and Day, J. D., "A Principle for
Resilient Sharing of Distributed Resources”, Proc.
of 2nd Int'l Conf. on Software Engineering, 1976,
pp. 562-578.

[ASC74] Aschim, F., "Data-Base Networks - An Overview",
Management Information, Vol. 3, No. 1, 1974.

[AST76])] Astrahan, M. M., et. al., "System R: A Relational
Approach To Data Base Management", ACM Trans. on
Data Base, Vol. 2, No. 2, June 197&.

{BAC75] Bachman, C., "Trends in Data Base Management",
Proc. of AFIPS National Computer Conference, 1975,
Vol. 44, AFIPS Press, Montvale, NJ, 1975, pp. 569-
576.

[BAD78] Badal, D. Z., "Data Base System Integrity”, Digest
of Papers, Compcon Sp. 78, pp. 356-359.

[BAS78]) Baskett, F., Browne, J. C., and Raike, W. M., "The
Management of a Multi-level Non-paged Memory Sys-
tem", Spring Joint Computer Conference, 1970, pp.
459-465.

[BAU76a]) Baum, R. I., Hsiao, D. K., "Data Base Computers - A
Step Towards Data Utilitieg", IEEE Trans. on Comp..,
Vol. C-25, No. 12, Dec. 1976.

[(BAU76b] Baum, R. I., Hsiac, D. K., and Kannan, K., "The
Architecture of a Database Computer, Part I: Con-
cepts and Capabilities", Ohio State University,
Tech. Rep. OSU~CISRC-TR-76-1, 1976.

[BELL66] Belady, L. A., "A Study of Replacement Algorithms
for a Virtual Storage Computer", IBM Sys. J., Vol.
5, 1966, pp. 78-~161.

[BEL76] Bell, T. E. and Thayer, T. A., "Software Require-
ments: Are they Really a Problem?" Proceedings of
the 2nd International Conference on Software
Engineering, October, 1976.

[BEL77} Belady, L. A. and Lehman, M. M., "The Characteris-
tics of Large Systems", IBM Research Report,
RC6785, September 1977.

[BER77] Bernstein, P. A., et. al., "The SDD-1 Redundant
Update Algorithm (The General Case)”, Tech. Rep.

[BOB71]

[BOE75]

[BOO76]

[BOY74]

[BRA76]

[CAS72]

[CHO77]

{CHUB9]

[CON76]

[DAT77]

[DDR78]

[DEN68]

[DEN78]

[DOW77]

- 181 -~

No. CCA-77-89, Computer Cbrporation of America,
575, Technology Square, Cambridge, Mass, 62139.

Bobeck, A. H., and Scovil, H. E. D., "Magnetic Bub-
bles", Scientific American, Vol. 224, No. 6, pp.
78-9@, June 1971.

Boehm, B. W. and McClean, R. K., "Some Experience
with Automated Aids to the Design of Large-Scale
Reliable Software", Proceedings of the Interna-
tional Conference of Reliable Software, 1975.

Booth, G. M., "Distributed Data Bases =~ Their
Structure and Use", Infotech State of the Art
Report on Distributed Systems, 1976.

Boyse, J. W., "Execution Characteristics of Pro-
grams in a Page-On-Demand System", CACM, Vol. 17,

Bray, O. H., "Distributed Data Base Design Con-
siderations", Trends and Applications, Computer
Networks, 1976.

Casey, R. G., "Allocation of Copies of a File in an
Information Network", AFIPS, SJCC, 1972, pp. 617~
625.

Chow, W. M., and Chin, W. W., "A Program Behavior
Model for Paging Systems", IBM Research Rep. RC~
6452, 1977.

Chu, W. W., "Multiple File Allocation in a Multiple
Computer System", IEEE Trans. on Computers, Vol.
C—lS, NO- 16; OCt. 1969; pp- 885—'889-

Considine, J., "A Computable Measure of Fragmenta-
tion for Direct Access Volumes", IBM Research Rep.
RC~6241, Oct. 1976.

Date, C. J., "An Introduction to Data Base Sys-
tems", 2nd Edition, Addison-Wesley, 1977.

Distributed Data Processing Workshop, Stanford
University, Feb. 15-17, 1978.

Denning, P. J., "The Working Set Model for Program
Behavior", CACM, Vol. 11, May 1968, pp. 323-~333.

Denning, P. J., "Virtual Memory", Computer Surveys,
Vol. 2, No. 3, Sept. 1974, pp. 62-97.

Downs, D., and Popek, G. J., "A Kernel Design for a
Secure Data Base Management System", Proc. Very

[EAS77]

[EAST78]

[ECK76]

[ELL76]

[ELL77]

[ESW74]

{ESW76]

[FAGT76]

[FER76]

[FER78]

[FET76]

[FOR62]

[FRY76]

[GAR72]

_lgz__

Large Data Base, Oct. 1977, pp. 587~514.

Easton, M. C., and Bennett, B. T,, "Transient Free
Working Set Statistics", CACM, Vol. 20, No. 2, Feb.

Easton, M. C., and Fagin, R., "Cold Start vs Warm
Start Miss Ratios", CACM, to appear.

Eckert, J. P., "Thoughts on the History of Comput-
ing", Computer, 9, 12, Dec. 1976, pp. 58-65.

Ellis, C. A., "The Duplicate Data Base Problem",
MIT Report RFC-112, May 1976.

Ellis, C. A., "A Robust Algorithm for Updating
Duplicate Data Bases", Proc. of 2nd Berkeley Conf.
on Distributed Data and Computer Networks, May
1977, pp. 146-161.

Eswaran, K. P., "Placement of Records in a File and
File Allocation in a Computer Network", Information
Processing, 74, IFIPS, North Holland Publishing
Co., 1974.

Eswaran, K. P., et. al., "The Notions of Con-
sistency and Predicate Locks in a Data Base Sys-—
tem"p CACM, VOl- lgp NO- llp NOV. 1976' pp. 624“"
633.

Fagin, R., and Easton, M. C., "The Independence of
Miss Ratio on Page Size", JACM, Vol. 23, No. 1,
Jan. 1976, pp. 128-146.

Ferrari, D., and Law, E., "An Experiment in Program
Restructuring for Performance Enhancement”, Proc.
of 2nd Int'l Conf. on Software Engineering, 1976.

Ferrari, D., Computer Systems Performance Evalua-
tion, Prentice-~Hall, Inc., Engllewood Cliffs, 1978.

Feth, G. C., "Memories: Smaller, Faster, and
Cheaper"”, IEEE Spectrum, June, 1976, pp. 36-43.

Ford, L. E. Jr. and Fulkerson, D. R., Flow in Net~
work, Princeton University Press, Princeton, N. J.,
1962.

Fry, J. P. and Sibley, E. H,, "Evolution of Data
Base Management Systems", Computer Surveys, Vol. 8,
No. 1, March 1876, pp. 7-42.

Garfinkel, R. S. and Nemhauser, G. L., "Integer
Programming", Wiley -~ Interscience, 1972.

[GOS71]

[GRAT77]

[HAMT76]

[HIR73]

[BS176a]

[HSI76Db]

[HSI77]

{HUG75]

[JENTS5]

[KAR72]

[KLE75]

[KRI78]

- 183 ~

Gostelow, K. P., "Flow of Control, Rescurce Alloca-
tion, and the Proper Termination of Programs", Ph.
D. Dissertation, School of Engineering and Applied
Sscience, University of California, Los Angeles,
Dec. 1971.

Grapa, E., Belford, G. G., "Some Theorems to Aid in
Solving the File Allocation Problem", CACM, Vol.
20, No. 11, Nov. 1977, pp. 878-882.

Hamilton, M. and Zeldin, S$., "Higher Order Software
Methodology for Defining Software”, IEEE Trans. on
Software Engineering, vVol. SE-2, No. 1, March 1976.

Hirschberg, D. S., "A Class of Dynamic Memory Allo-
cation Algorithms", CACM, Vol. 16, No. 18, Oct.
1973, pp. 615-618.

Hsiao, D. K., and Kannan, K., "The Architecture of
a Database Computer, Part II: The Design of Struc-
ture Memory and 1its Related Processors", Ohio State
University, OSU-~CISRC-TR-76-2, 1976.

Hsiao, D. K., and Kannan, K., "The Architecture of
a Database Computer, Part III: The Design of the
Mass Memory and its Related Components", Ohio State
University, OSU~CISRC-TR-76-3, 1976.

Hsiao, D. K., and Madnick, S. E., "Database Machine
Architecture in the Context of Information Technol-
ogy Evoluticon", Proc. Very Large Data Base, Oct.
1977, pp. 63-84.

Hughes, W. C., et. al., "A Semiconductor Nonvola-
tile Electron Beam Accessed Mass Memory", Proc.
IEEE, Vol. 63, No. 8, Aug. 1975, pp. 12390-1244.

Anderson, G. A. and Jensen, E. D., "Computer Inter-
connection Structures: Taxonomy, Characteristics
and examples”, Computing Surveys, Vol. 7, No. 4,
December 1975.

Karp, R. M., "Reducibility among Combinatorial
Problems", Complexity of Computer Computations, R.
E. Miller and J. M. Thatcher eds., Plenum Press,
New York, 1972, pp. 85-164.

Kleinrock, L., "Queuing Systems, Vol. I: Theory",
John Wiley and Sons, 1975.

Krishnarao, T., A Systematic Design and Analysis of
Reconfigurable Distributed Computer Systems", Ph.D.
Dissertation, University of California, Berkeley,
June 1978.

[LEH76]

[LEV75]

[LIN76])

{LIP78]

[LONT7]

{LOO75]

[LOO76]

[MAH76]

[MART75]

[Mar 77]

[MEI77]

[MENT78]

- 104 ~

Lehman, M. M. and Parr, F. N., "Program Evolution
and its impact on Software Engineering", Proceed-
ings of the 2nd International Conference in
Software Engineering, October 1976.

Levin, K. D., and Morgan, H. L., "Optimizing Dis~
tributed Data Bases - A Framework for Research",
Proc. NCC, 1975, pp. 473-478.

Lin, C. S., et. al., "The Design of a Rotating
Associative Memory for Relational Data Base Appli-
cations", ACM Trans. on Data Base, Vol. 1, No. 1,
March, 1976.

Lipovski, G. J., "Architectural Features of CASSM:
A Context Addressed Segment Sequential Memory",
Proc. 5th ann. Symp. on Comp. Arcih., ACM-SIGARCH,
pp. 31-38.

Long, A. B. et al, "A Methodology for the Develop-
ment and Validation of Critical Software for
Nuclear Power Plants', Proceedings of the COMPSAC,
November 1977.

Loomig, M. E. S., "Data Base Design: Object Distri-
bution and Resource Constrained Task Scheduling",
Ph.D. Dissertation, Comp. Sci. Dept., UCLA, 1975.

Loomis, M. E. S., and Popek, G. J., "A Model for
Data Base Distribution", Symp. on Trends and Appli-~
cations, 1976, Computer Networks, IEEE, 1976, pp.
162-169.

Mahmoud, S., Riordon, J. S., "Optimal Allocation of
Resources in Distributed Information Networks", ACM
Trans. on Data Base, Vol. 1, No. 1, March, 1976,
pp. 66-78.

Marill, T., and Stern, D., "The Datacomputer -~ A
Network Data Utility", AFIPS Conference Proceed-
ings, 44, 1975, pp. 389-395.

Mariani, M. P., "The Use of Payoff Trees in the
Distributed Data Processing Design Process", Dis-
tributed Data Processing Technology FY 77 Research
Conference Publications, 1877.

Meindl, J. D., "Microelectronic Circuit Elements”,
Scientific American, Sept. 1977.

Menasce, D. A., et. al., "A Locking Protocol for
Resource Coordination in Distributed Systems”,
Proc. 1978 ACM-SIGMOD Conf. on Management of Data,
Austin, Texas, May 1978.

[MCE78]

[MUN69]

[MUN74]

[NOE73]

[CZK77}

[PET77]

[PHI78]

[POH75]

[RAMT70]

[RAM76a]

[RAM76Db]

[RAM78a]

- 185 -~

Moeller, A., “"Fabrication Technology and Physical
Fundamentals of Components used for Semiconductor
Memor ies", Digital Memory and Storage, W. E. Proeb-
ster Ed., Braunschweig: Vieweg, 1978.

Muntz, R. R. and Coffman, E. G. Jr., "Optimal
Preemptive Scheduling on Two-Processor Systems”,
IEEE Trans. on Comp., Vol. C~18, No. 11, Nov. 1969,
pp. 1814-1828.

Muntz, R. R., et. al., "Stack Replacement Algo-
rithms for Two Level Directly Addressable Paged
Memories”, SIAM J. on Computing, Vol. 3, No. 1,
March, 1974, pp. 11-22.

Noe, J. D. and Nutt, G. J., "Macro E~Nets for
Representation of Parallel Systems”, IEEE Trans. on
Computers, Vol. C-22, No. 8, Aug. 1973.

Ozkarahan, E. A., et. al., "Performance Evaluation
of a Relational Associative Processor", ACM Trans.
on Data Base, Vol. 2, No. 2, June 1977, pp. 175~
195.

Peterson, J. L., "Petri Nets", Computing Surveys,
Vol. 9, No. 3, Sept. 1977.

Philips, B. J., "The File Store ~ A Distributed
Modular File Handling System", Ph.D. Dissertation,
University of California, Berkeley, June 1978.

Pohm, A. V., "Cost/Performance Perspectives of Pag-
ing with Electronic and Electro-mechanical Backing
Stores", Proc. of the IEEE, Vol. 63, No. 8, Aug.
1975, pp. 1123-1128.

Ramamoorthy, C. V., and Chandy, K. M., "Optimiza-
tion of Memory Hierarchies in Multi-programmed Sys-
tems", JACM, Vol. 17, No. 3, July, 1978, pp. 426~
445,

Ramamoorthy, C. V., and Krishnarao, T., "The Design
Issues in Distributed Computer Systems", Inftotech
State of the Art Report on Distributed Systems,
1976, pp. 375-409@.

Ramamoorthy, C. V. and Ho, S. F., "Testing large
software with Automated Software Evaluation Sys-
tems", IEEE Trans. on Software Engineering, March
1976.

Ramamoorthy, C. V., Turner, J. L., and Wah, B. W.,
"A Design of a Fast Cellular Associative Memory for
Ordered Retrieval", IEEE Trans. on Computers, Vol.

[RAM78Db]

[RAM78c]

[RAVT76]

[REV75]

[ROB71]

[ROS77a]

[ROS77b]

[ROT77]

[SAL77]

[SCH78]

[SIB77]

[SIC77]

- 1846 -

C—27" No. 9’ SEPt- 1978¢

Ramamoorthy, C. V., and Wah, B. W., "A Model of
Interleaved Memory for a Pipelined Processor",
Research Report, University of California, Berke-
ley, 1978.

Ramamoorthy, C. V. and So, H. H., "Software
Requirements and Specifications: Status and Per-
spectives”, Memorandum No. UCB/ERL M78/44, Univer-
sity of California, Berkeley, June 1978.

Ravi, C. V., “The Structure and Characteristics of
Distributed Systems", Proceedings of the 2nd Inter-
national Conference on Software Engineering,
October 1976.

Revelle, R., "An Empirical Study of File Reference
patterns", IBM Research Report, RJ-1557, Apr. 1975.

Robson, J. M., "An Estimate of the S5Store Size
necessary for Dynamic Storage Allocation", JACM,
Vol. 18, No.3, July, 1971, pp. 416-423.

Ross, D., "Structured Analysis (SA): A language for
Communicating Ideas", IEEE Trans. on sSoftware
Engineering, Vol. SE-3, No. 1, Jan. 1977.

Rosenkrantz, D. J., et. al., "A System lLevel Con-
currency Control for Distributed Data Base System",
Proc. of 2nd Berkeley Conf. on Distributed Data
Management and Computer Networks, May 1977, pp.
132-145.

Rothnie, J. B., and Goodman, N., “A Survey of
Research and Development in Distributed Data Base
Management" Third Int'l Conf. on Very Large Data
Bases, 1977, pp. 48-62.

Salton, G., and Bergmark, D., "Clustered File Gen-
eration and its Application to Computer Science
Taxonomies", Information Processing 77, North Hol~-
land Publishing Co., pp. 441-445.

Schunemann, C., and Spruth, W. G., "Storage Hierar-
chy Technology and Organization®, Digital Memory
and Storage, W. E. Proebster ed., Braunschweig:
Vieweg, 1978.

Sibley, E., "Standardization and Data Base Sys-
tems", Proc. Very Large Data Base, Oct. 1977, pp.
144-155.

Sickle, L. V., and Chandy, K. M., "Computational

[SIL76]

[sMIT76al

[SMI76b]

[STO78]

[STR77]

(TEI77]

[THE78]

[TRO78]

[TUE76]

[UPT78]

[VICT76]

[WANT72]

[WAR76]

- 187 -

Complexity of Network Design Algorithms", Informa-
tion Processing 77, IFIPS, North Holland Publishing
Co., 1977.

Siler, K. F., "A Stochastic Ebaluation Model for
Data Base Organization in Data Retrieval Systems",
CACM’ VOl- 191 NO- 2; FEbo 1976f pp' 84'—950

Smith, A. J., "A Modified Working Set Paging Algo-
rithm", IEEE Trans. on Computers, vol. C-25, No.9,
Sept. 1976, pp. 987-914.

Smith, A. J., "Characterizing the Storage Process
and its Effects on the Update of Main Memory by
Write-Through", Research Report, University of Cal-
ifornia, Berkeley, 1976.

Stonebraker, M., "Concurrency Control and Con-
sistency of Multiple Copies of Data in Distributed
INGRES", Mem. No. UCB/ERL M78/24, University of
California, Berkeley, May, 78.

stritter, E., "File Migration", Stanford Linear
Accelerator Center Report, SLAC-200, Jan. 1977.

Teichroew, D. and Hershey, E. A. III, "pSL/PSA: A
Computer ~Aided Technique for Structured Documenta-
tion and Analysis of Information Processing Sys-~
tems"”, IEEE Trans. on Software Engineering, Vol.
SE-3, No. 1, Jan. 1977.

Theis, D. J., "An Overview of Memory Technologies",
Datamation, Jan. 1978, pp. 113-131.

Thomas, R. H., "A Solution to the Concurrency Con-
trol Problem for Multiple Copy Data Bases", Digest
of Papers, Compcon 78, March 78, pp. 56-62.

Tuel, W. G., "An Analysis of Buffer Paging in Vir-
tual Storage Systems”, IBM J. of Research and
Development, Sept. 1976, pPpP. 518-524.

Upton, M., "Price/Performance Game Rules Change",
Computer World, Jan. 23, 1978, p. 6l.

pavis, C. G. and Vick, C. R., "The Software
Development System", Proceedings of the 2nd Inter-
national Conference on Software Engineering, 1976.

wang, G. Y., "Advanced Computer Architecture for
Large~Scale Real-Time Applications”, Ph.D. Disser-
tatiion, University of Texas at Austin, June 1972.

Warren, H. S. Jr., “"Static Main Storage Packing

[WEI77]
[WONT6]
[WONT7]

[WYM76]

~ 188 -

Problems", IBM Research Report, RC~6302, Nov. 1976.

Weide, B., "A Survey of Analysis Techniques for
Discrete Algorithms", Computing Surveys, vol. 9,
No. 4, Dec. 1977.

wong, E.. and voussefi, K., "Decomposition -~ A
Strategy for Query Processing", ACM Trans. on Data
Base, Vol. 1, No. 3, Sept. 1976, pp. 223-241.

Wong, E., "Restructuring Dispersed Data from SDD-1:
A System for Distributed Data Bases", Comp. Corp.
of America, Tech. Rep. CCA-77-083, 1977.

Wymore, A. W., "System Engineering Methodology for
Inter-~Disciplinary Teams", Wiley -~ Interscience,
1976. :

Benjamin W. Wah was born in Hong Keng on September 7, 1952.
He received the B.S. and M.S. degrees in electrical engineering
and computer science from the Columbia University, New York, NY,
in 1974 and 1975, respectively, and the M.S5. degree in cemputer
science from the University of Califernia, Berkeley, in 1976.

In 1973~74, he received the Sleoan Foundation Fellowship, and
in 1974-76 , he was on the University Fellowships. He 1is
currently a Research Assistant in the Electronics Research La-
boratory, University ef California, Berkeley, where he is working
toward the Ph.D. degree 1in computer science. His current
research interests include distributed data bases, design metho-
dology, distributed systems and computer networks, assoclative
memory, memory hierarchy, scheduling theeory, artifical intelli-

gence, and parallel processing.

