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Because of the rapid ad vance s in mi croe I ec troni cs and Very-Large-Scale­
Integrated (VLSI) circuit design technologies, the cost of computer hardware 
has dropped drastically and the processing and communication speeds have 
approached some physical limitations. These technological advances, cou­
pled with the explosion in size and complexity of new applications, have 
led to the development of resource sharing computer S)'Stems. Such systems 
usually consist of a large number of general- and special-purpose processors 
interconnected together by a communication network called the resource­
sharing interconneelion netH·ork (64). 

A. resource in a computer net\vork is a processor that performs com­
putation functions or manipulates data objects. It may.· generate requests to 
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Figure 7.1 A generic model of resource sharing computer systems (Arrow K, 
Pesotchinsky L, Sobel M: On partitioning a sample with binary-type quetions in 
lieu of collecting observations. Journal of the American Statistical Association, 
Vol. 76, No. 324, June 1981, pp. 402-409. 

lowing properties: 

I. The global status information of the system is not available to the indi­
vidual processors. 

2. The interconnection network is the only intercommunication facility 
among processors. 

3. A request may be dispatched to any one in the set of available resources 
that is capable of carrying out the designated task. 

4. A resource is accessible by any request-generating processors. 

A resource-sharing system with these characteristics has the following 
advantages: 

I. Tasks may be executed in parallel, and workload of processors may be 
distributed evenly. 

2. Efficient architectures for performing special tasks may be included in 
the system. 

3. Modifications to include new functions or increased performance can be 
done easily because of the system's modularity. 

4. Malfunctional devices may be removed from the system without stopping 
the entire system. 
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Con<;,equently, the performance of such a system may he improved by in­
crea:-.ing the number of resources or replacing an existing resource by a more 
efficient one. The system is also highly reliable and maintainable. 

A shared resource may manipulate data objects or provide computa­
tional service on request. Issues on sharing data have been studied inten­
sively in recent years. Many schemes have been proposed to deal with the 
synchronization and data-coherence problems. Examples include monitors 
and .-.ynchronization schemes in operating systems (I 3, 23), cache coherence 
schemes in multiprocessors (14), and the methods of maintaining data in­
tegrity in distributed database managements systems (51). However, as dis­
cussed in Section 7.2, schemes for sharing computational devices are less 
developed. Most existing schemes are based on centralized control or simple 
distributed extensions of centralized control. The characteristics of the net­
work are usually not incorporated in the design of resource-sharing schemes. 

This generic model encompasses many existing or proposed systems. 
The dynamic task migration is the basic feature of many proposed distributed 
programming languages such as Hoare's Cooperating Sequential Processes 
(24, 53), CLU developed at MIT (39, 40), and Brinch Hansen's distributed 
processes (21). New operating system designs also provide mechanisms to 
support dynamic task migrations. Examples include pipes in MEDUSA (47) 
and UNIX (50). Many architectures also exhibit the characteristics of this 
generic model. Examples include local computer networks with load bal­
ancing such as the ECN (26) and LOCUS (69), VLSJ-systolic array multi­
processors (5, 35), and dataflow supercomputers (I!). Because resources of 
these architectures represent different levels of abstraction. it is instructive 
to describe them and to indicate their mappings to the generic model. 

Exarnple I: l.ocal Computer Network with Load Balancin[.?. Load bal­
ancing is a scheme that engages communication facilities in supporting re­
mote job execution in a user-transparent manner, so the turnaround time is 
reduced through the enhancement of resource sharing. Depending on the 
workload of processors. the network operating system may distribute jobs 
to a remote processor or may schedule them for local execution. A local 
computer network with load balancing is illustrated in Figure 7.2 (26, 63). 
Corresponding to the model, those processors of heavy workloads are re­
quest-generators, and those processors oflight workloads are resources. The 
resources in this system arc job-level processors. 

Lxample 2: VLS!-Systolic Array Multiprocessors. A VLSI systolic 
array is a parallel pipeline architecture for evaluating a recursive function, 
such as FIR tiltering, matrix multiplication, and FFT. Such VLSI chips are 
usually organil"ed as attached processors to host computers as shown in 
Figure 7.) {)5). In this organization, requests arc generated from procc~sors 
and routed to systolic arrays through the system bus. The resources in such 
'iystem..; are process-lc\·el special-purpose pro<.:cssors. 
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Erample 3: Dataflow Supercomputers. In contrast to the conventional 
von Neumann machine, there arc no sequence-control mechanisms in a 
dataflow machine. The execution of an instruction is driven by the availa­
bility of its input data. An instruction is active when all its input arguments 
are ready. An active instruction is executed at a processing unit. The outputs 
of this instruction will activate other instructions for the subsequent exe­
cutions. A typical dataflow multiprocessor is shown in Figure 7.4 (I I). For 
a detailed discussion, see Chapter 9. 

In this architecture, instructions are allocated in the activity store and 
waiting for their inputs. Once an instruction becomes active, it is routed 
through an arbitration network to a processing element and executed there. 
The output is then routed back to the activity store through a distribution 
network. The activity store is divided into cell blocks, and active instructions 
in a cell block are requests. The processing units are arithmetic and logical 
devices, hence they are instruction-level resources. 

7.1.2. Resource Scheduling 

Resource scheduling entails the allocation of resources (including commu­
nication facilities), so task migrations can be carried out efficiently. In gen­
eral, the migration of a task in a distributed resource-sharing system is di­
vided into three phases: resource-bidding, task-migration, and result-return. 
In the tirst phase, the local processor has to make a request for utilizing a 
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resource. In the second phase, the body of the task, including the task con­
trol. program code, and data, are transferred to the resource allocated and 
executed remotely. In the last phase, the results generated from the exe­
cution of the task arc routed back to the original processor. Basically, on! y 
data transmission is involved during the migration and result-return phases. 
Resource scheduling is carried out in the resource-bidding phase. In this 
phase, system status information has to be collected, and the decision of 
resource allocation has to be made. 

Issues of Resource Scheduling 
The central issue of resource scheduling is to determine a resource mapping 
that maps requests to resources. Resources will be allocated to associated 
requests determined by the mapping. Because a task can be allocated to one 
of a set of free resources, and multiple requests may contend for the same 
resource, multiple requests may be allocated the same resource while other 
resources arc idle. This problem is called resource conflict. If the resource 
has local buffers, the tasks may still be migrated and queued at the resource 
regardless of conflicts. This causes no error in operation but may deteriorate 
resource utilization because of the imbalance of workload. If the resource 
has no buffering capability. every request except one has to be rescheduled 
agam. 

In addition to resource conflict, a bad resource allocation may degrade 
the performance of the network. Depending on the characteristics of the 
system, a physical communication link may be assigned to every processor­
resource allocation and operate in a circuit-switching mode, or links may 
be shared in a packet-switching mode. A resource-allocation scheme that 
minimizes resource conflicts is not necessarily optimal because there may 
be many paths being blocked in the circuit-switching mode, and packets may 
be congested in the packet-switching mode. 

In summary, three major issues will affect resource utilization in re­
soun..:e-sharing computer systems. These include network blocking (or 
packet congestions), request contlicts, and imbalanced workload. Unless 
the scheduling algorithm is carefully designed and implemented. there may 
be many adver:-.e effects on the benefits of resource sharing. 

Efliciency of Resource Scheduling 
To illustrate the effects of these issues, a resource-sharing system may be 
tran..,formcd into a queuing network as shown in Figure 7.5. In this queuing 
rnm.kl, a proce ... sor is represented hy an arrival process vvith arrival rate A,. 
while a resource is represented hy a server R 1 with service rate $-J.,. An 
additional ..,crvcr 51 j.., introduced to model the resource-allocation mechanism 
and the communication network. A branch from the output of serverS feeds 
hack to the input of this server and represents the unsuccessful resource 
alltlCatinns due to network blockage:-. nr rc...,ourcc conflicts. Although the 
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s - A server represents the resource allocation mechanism; 
a - the probability of network blocking and resource conflicts; 
Ai - request generation rate of processor p 1 
J.l j - Service rate of resource r ; ; 
J.l 5 - Scheduling rate of 5. 

Figure 7.5 A queuing model for resource sharing computer systems. 

scheduling mechanism is represented by a single server, it does not imply 
centralized control. Instead, it may be realized in many alternative ways as 
will be described in Section 7.2. Task-transmission delays in the network 
are considered part of scheduling overhead. 

In a word, the service rate of S depends on two factors: the speed of 
the scheduler and the delay of task transmissions. According to the results 
of queuing theory (32), the service rate of serverS is crucial to the overall 
system performance. Thus, improving the efficiency of resource allocation 
is translated to increasing the service rate of S and reducing its feedback 
probability. These may be achieved (1) by a good design of a high-speed 
resource allocation mechanism, (2) by utilizing a good scheduling algorithm 
that generates a good resource mapping, and (3) by using a high-speed com­
munication network. 

Scheduling Disciplines 
Depending on the scheduling disciplines, requests and resources may be 
charactcrizeU by multiple attributes. A request may be represented by the 
types of task it requests, expected execution time. and priority level. On 
the other hand, resources may be modeled by its speed, load. and reliability. 
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A scheduling algorithm has to evaluate the allocation costs based on these 
attributes. 

Consider a scheduling example that consists of two types of requests: 
matrix computations and scalar computations. Suppose that requests for 
matrix computations have higher priority than requests for scalar compu­
tations. that all vector processors are busy, and that only pipelined proces­
sors are available. Then requests for matrix computations would be allocated 
if the requests are scheduled according to their priorities. On the other hand, 
matrix computations may be executed more efficiently on a vector processor 
than that of a pipelined processor. Hence, requests for matrix computations 
may not be allocated if the requests are scheduled according to the pref­
erences of resources. 

In this chapter, we consider only the class of scheduling disciplines in 
which multiple attributes are combined into a single parameter. The param­
eter that characterizes a request is called the priority of the request, and the 
parameter that characterizes a resource is called the preference of the re­
source. Our objective is to investigate the design of efficient resource-sched­
uling mechanisms for resource-sharing computer systems, and explore the 
integration of the scheduling algorithms and computer networks. Several 
goals are to be pursued: 

I. A feasible scheduling strategy for improving resource utilization m re-
source-sharing computer systems will be studied. 

2. The distribution of scheduling intelligence will be investigated. 
3. Fast implementation for the scheduling mechanisms will be developed. 

A unified design methodology is employed to incorporate these three design 
goals. However. we consider only those scheduling schemes that allocate 
one resource to a request at a time. When multiple resources are requested 
hy a single request. they have to he allocated sequentially. 

7.2. A Taxonomy of Resource-Allocation Schemes 

In the design of rc~ource allocation schemes, achieving high-speed sched~ 
uling and obtaining an optimal mapping arc usually two mutually conflicting 
goals. Compromise~ between the optimality of the scheduling decision and 
the overhead of collecting system .... tatu-.; information are reached in many 
ways. Resource allocation schemes can be characterized by the trade-off 
hctween thc~c two goals. In thi"' section, a taxonomy of thest: resource­
allocation scht:mc:-. j..., rrcscntcd. The advantages ami JisaJvanUtgcs of each 
cia...,-.; of n:...,ource-al!ocation scheme' in the taxonomy arc explored. Thi-.; 
kath to the ...:oncJu...,inn that a distributed statc-dcpcrHknt allocation scheme 
j..., prckrahk. To tackk the compkx design problems of distributed state~ 
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dependent resource allocation schemes, a systematic design methodology 
is proposed in this section. 

7.2.1. A Taxonomy of Resource-Allocation Schemes 

A taxonom)'' that categorizes most resource-allocation schemes is given in 
Figure 7.6. Resource-allocation schemes may be classified into t\vo classes 
depending on whether global status information is used or not, and whether 
they arc state-dependent or state-independent. 

In the class of state-independent scheduling schemes, resource allo­
cation is carried out by the individual request-generator. Each request-gen­
erator determines the resource to bid for based on the local information 
available. This information may include the statistics of the system's operating 
history, piggy-backed information carried by the return message of previous 
requests, and the specifications of individual resources. If the processor 
chooses a resource randomly, the scheduling scheme is a random scheduling 
scheme. On the other hand, if the statistics on previous requests and resource 
specifications arc inputs to the scheduling decision, the scheduling scheme 
is a probabilistic scheduling scheme. Because requesting processors do not 
communicate, resource conflicts are unavoidable. Conflicting requests have 
to contend for the resource they bid for. Queuing-network analysis has been 
applied intensively to analyze the eff~ciency of this class of scheduling 
schemes (45. 59, 70). 

On the other hand, in the class of state-dependent scheduling schemes, 
the global status information is crucial. Among them, a localized state-de-

Figure 7.6 A la xnnomy of rcs(>Urcc allo..:<tlion schemes. 
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pendent scheduling scheme requires every processor to maintain a copy of 
the global ~tate information and to determine the resource allocation inde­
pendently. In contrasL in centralized state-dependent scheduling schemes, 
the status information is collected by a central control node that determines 
the resource mapping to be distributed to all requesting processors. A sched­
uling scheme with thi~ kind of organization is called a central scheduler. 
Essentially, only the tasks of resource bidding arc carried out in the central 
control node. Task migrations and result returns are carried out indepen­
dently. However, the central control node may be also responsible for buff­
ering ta<.;ks and dispatching them to resources. In this sense, the scheduler 
becomes a central server. A central server is usually found in systems in 
which resources do not have local memories. Some master-slave mu1tipro­
cessof5 belong to this class (15). 

A distributed schedu/in[! scheme differs from localized and centralized 
scheduling schemes in the way that global status information is collected 
and utilized. In a distributed scheduling scheme, only partial status infor­
mation is maintained by each processor, and the scheduling decision is made 
cooperatively through exchanging information. The amount of information 
tlow is usually lower than that of the previous two approaches. 

Most existing resource scheduling schemes belong to the class of state­
independent schemes (10, 27, 37, 38): The resource sharing protocol of AR­
PANET is a typical example in which task migrations are determined by 
end users (57). This class of resource scheduling schemes is simple and incurs 
relatively little overhead. Nevertheless, the problem of low resource utili­
zation remains unsolved. Centralized state-dependent scheduling schemes 
can be found in many multiprocessor systems with master-slave structure 
(2, !5, 22). However, adopting this approach to distributed systems tends 
to eliminate their advantages. Localized state-dependent scheduling 
schemes arc the direct distributed extensions of centralized control. The 
load balancing schemes of ECN and LOCUS belong to this class. Although 
thio;,; approach can be implemented in an existing network, it incurs a large 
amount of redundant information flow and is hard to maintain a consistent 
state information because of the network delay. Consequently, a resource 
mapping generated by an optimal scheduling algorithm is not necessarily the 
optimal one because inaccurate information may be used. 

Distributed state-dependent scheduling schemes arc generally prefer­
able for the following reasons: (I) the information flow in maintaining the 
global information is reduced because status information is utili.Led effi­
ciently: en they can ~u.:hieve optimal resource allocation: and (?I) their speed 
may he incrca~ed hecau...,c of the concurrent execution of scheduling tasks. 
Only a fc\\ ~imp\e distributed state-dependent schemes have been proposed 
{2lJ. 30. ~I. (12-64). lt is still an open area of ~tudy. \Vc focus un the design 
of distributed ~tate-dependent resource scheduling schemes in this chapter. 
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7.2.2. Implementation Considerations and a Design Methodology 

In generaL a resource-scheduling algorithm generates a resource mapping 
according to the system status information. A good resource mapping is one 
that minimizes a cost function under the network constraints. The cost func­
tion is usually determined by the scheduling disciplines. It is usually easier 
to optimize the cost function regardless of the constraints imposed by the 
network. As a result, many processors may not be allocated a scheduled 
resource because of con1licts in the network. To reduce this probability, a 
high- bandwidth network is usually used (16). A crossbar network has been 
used in systems such as the C.mmp (15, 18). It does not have the network 
blocking problem. However, the cost of a crossbar netw·ork is O(n 2

), where 
n is the number of devices connected, and is not practical when the system 
is large. A multistage interconnection network is a cost-effective choice (64), 
but blocking probability· may· be as high as 60%· if resources are not allocated 
properly 07. 48). These observations indicate that a good resource-sched­
uling algorithm should incorporate net\\'Ork constraints in the optimization 
of a given scheduling discipline. The follov.1ing design methodology is 
proposed: 

1. Formulate the resource-scheduling problem into a constrainted optimi-
zation problem. 

2. Design a distributed algorithm to solve the problem. 
3. Identif:y· primitive operations of each process in the distributed algorithm. 
4. Integrate the primitive operations into the network. 

The cost of collecting status information may also be included in the objec­
tive function, so trade-offs can be made between the amount of status in­
formation used and the efficiency of the scheduling algorithm. A well-de­
signed distributed algorithm should reduce unnecessary message passing. 
The crucial speedup of the scheduling scheme lies in implementing the primi­
tive operation into the network. This approach essentially shifts the re­
sponsibilit;.,. of scheduling requests by the request generators to the network. 

We will show the application of the methodology to the design of re­
source scheduling schemes for a single contention-bus network. Resource 
allocation is studied with respect to requests that need one resource only: 
multiple resources needed by a request are allocated sequentially. The nct­
\\'Ork is assumed to be a reliable rnultiaccess bus \\'ith the broadcast ca­
pability. Carricr-.Yense-multiaccess netH'orks with collision detection 
(CSMA/CD net\vorks) belong to this class, and are exemplified by the Eth­
ernet (56'! (Figure 7.7a). 

CS.\1/\i.CD net\\'Orks evolved from CSMA nclv.'orks. which have listen­
before-talk protocols to avoid overlapping transmissions. The collision-de­
tection capability of CSl\-1A/CD networks allows processors to additionally 
listen-while-talk. so collisions resulting from simultaneous transmissions can 
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Processors 

Resources 
Figure 7.7a A resource-sharing system connected by a single multiaccess bus. 
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Figure 7.7b The operations of a contention bus with altering phases. 

be detected and stopped immediately. The time for a processor to assert 
that there are no overlapping transmissions is the end-to-end propagation 
delay on the bus and is called a contention slot. To avoid repeated collisions, 
a contention-resolution protocol is used to control transmissions and to even­
tually isolate one station for transmitting the message. The operation of the 
bus is thus divided into two alternating phases, the contention-resolution 
phase consisting of a sequence of contention slots, and the data-transmission 
phase consisting of the message transmission (Figure 7 .17b). Many conten­
tion-resolution protocols have been proposed and implemented (4, 7, 8, 19, 
25, 28, 33, 34, 36, 42, 44, 60, 63). They are distinguished by the different 
transmission control. 

7.3. Optimal Resource-Allocation Algorithms 

The optimal resource-allocation problem can be considered as an optimi­
zation problem that optimizes the system performance or cost subject to 
constraints of the network. Let P be the set of request generators and R be 
the set of resources. Each request generator p E P is characterized by a 
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priority Xp, which measures the urgency that the request generated has to 
be serviced. Similarly, each resource r E R is characterized by a preference 
y,., which measures its capability to service a generated request. Because 
there is only one communication channel in a singlc~bus system, only one 
resource can be allocated at a time, and the scheduling problem is reduced 
to finding a pair of request generator and resource that optimize the system 
performance or cost. The optimization can be represented as 

mm H(xp, y,) 
(p.r)EPxR 

(7 .I) 

where H is a cost function defined with respect to a given scheduling 
discipline. 

In general, the cost function H depends on the characteristics of tasks 
and resources, as well as the interconnection network. It may be very com­
plex and difficult to optimize. We will only study a special class of the cost 
functions that are monotonic with respect to Xp andy,.. That is, 

}!___ H(xp, y,) is either positive or negative for all xP andy, 
axp 

_i_ H(xp, y,) is either positive or negative for all xP andy, 
ay, 

(7.2a) 

(7.2b) 

These conditions imply that, for a given resource, the cost is minimized 
by servicing a task of the highest priority (if Eq. (7.2a) is negative), or one 
with the lowest priority (if Eq. (7.2a) is positive). Similarly, for a given 
request, the cost is minimized by choosing a resource of the highest pref­
erence (if Eq. (7.2b) is negative), or one with the lowest preference (if Eq. 
(2b) is positive). For instance, if 

a a 
- H(xp, y,) ~ 0 and- H(xp. y,)"' 0 
axp ay,. 

it follows directly from Eqs. (7 .I) and (7 .2) that 

mm H(x", y,) = H(max(xp), min(y,)) 
(p.r)EP><R ptP rER 

(7.3) 

Optimal resource scheduling can thus be considered as choosing a request 
generator p with the maximum x" and a resource r with the minimum y,. 
independently. 

Many existing resource-scheduling problems can be solved by inde­
pendently selecting the task to be serviced and the resource to service the 
task. Some notable examples are given here. 

I. Random-Access Protocols in CSMA Networks. In CSMA networks, 
all processors share a single communication channel to communicate with 
each other. Processors with message to transmit are request generators, and 
the communication channel is the only shared resource. Contention-reso-
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lution protocols in CSMA networks arc designed to resolve contentions in 
using the channel. Because each reque~t generator has equal right to access 
the channel, its priority can be considered as a random number in (0, 1], 
and the cost function 1/(x" . .\',) = x,. The request generator with the min­
imum number generated is given the access right to the channel. 

2. First-Come-First-Served Discipline in CSMA Neta·orks. The chan­
nel is the only resource to be scheduled. The priority level x,, is an increasing 
function of the task arrival time. The cost function H(x,. Yr) = Xp. 

3 . . )'Jwrtest-Joh-First Discipline in CSMA Networks. The channel is 
the only resource to he <:~cheduled. The priority level x" is an increasing 
function of size of the job. The cost function H(x", y,) ~ x,, and the sched­
uler selects the smallest job. 

4. Priority Schedulinf{. Messages in the network are divided into prior­
ity classes (levels). and the channel is allocated to service messages in de­
creasing order of priority levels. Several CSMA protocols for handling prior­
ity messages have been suggested recently (20, 46, 55, 58). They may be 
classified as linear protocols and logarithmic protocols. Each station is as­
signed the highest priority of the local messages. In a linear protocol, a slot 
i"l reserved for each priority level during the resolution of priorities. An active 
station contends during the slot reserved for the local priority level. When 
the station(s) with the highest priority level is determined, the process is 
switched to identifying a unique station within this priority level. This 
scheme is good when high-priority messages are predominantly sent. A log­
arithmic protocol determines the highest priority level in O(log, P) steps by 
a binary-divide scheme. where Pis the maximum number of priority levels 
(46). This assumes that the highest priority level is equally likely to be any 
one of the P priority levels. Neither of these schemes is able to adapt to the 
various traffic patterns. 

Resource scheduling in this case can be carried out in two phases. The 
first phase determines the highest priority level present in the network. A 
cost function Ht.r". Yr) = - x,, is assumed. There may be multiple stations 
in this priority level. and scheduling for these stations is done in the second 
phase using one of the preceding criteria. 

5. Resource .)'harinR <~(a Pool q(Jdentical Resources. The priority of 
a request generator i-. an integer between l and P. The preference of a 
rcsoun .. :c can he a random number in [0, 1] indicating its status (0 indicates 
that it is busy; any number between 0 and I indicates that it is free). Resource 
"icheduling i:-. carried out in two pha<.;cs. The first phase identifies a request 
generator w·ith the highest priority. The .... ccond phase identifies a free re­
source to service the task. Examples o~· cost function /l(x,, y,.) that can be 
u..;cd arc ( r,, - y,) or ( --· x,,y, ). 

0. /.owl /Jaloncing. This u:-.c" the communication facility to support 
rcnwtc job execution in a uscr-lran-.;parcnt fa:-.hion to improve resource uti­
li;ation and to rninimi1.c re-;pon..,c time. A deci~ion to load balance a job i"l 
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made if the job is likely to be finished sooner when executed remotely than 
when executed locally. Resource scheduling is performed in two phases. In 
the first phase, processors are treated as request generators and are assigned 
priority equal to the average response time of executing a job locally. The 
processor with the highest response time is chosen as the request generator 
to send the job. In the second phase, processors are treated as resources 
and are assigned preferences equal to the sum of the average transmission 
time of sending a job across the network and the average response time of 
executing a job locally. The processor with the lowest preference is chosen. 
The cost function H(x,, y,.) = -xp + y,. is the reduction in response time 
of executing a job remotely at processor r. 

In these examples, only linear functions on Xp and y, are defined. In 
general, they can be any function satisfying Eqs. (7.2a) and (7.2b). 

A general organization of a resource scheduler is shown in Figure 7.8. 
There may be multiple classes of problems in resource sharing and they will 
be assigned different priorities in scheduling. For example, the network may 
be designed primarily for message transfers, and load balancing may be its 
secondary function. The resource scheduler will schedule all message trans­
missions before initiating load balancing for the system. For this example, 
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Figure 7.8 A protocol to support resource sharing of multiple classes of resources 
connected by a multia\.:ccss bus. 
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P = 6 and K = 2 in Figure 7.8. Class 1 tasks refer to load-balancing op­
erations, and Class 2 tasks refer to message transmissions. Generally, within 
a class of resource-scheduling problem, the return of results from a previ­
ously migrated job, if any, is given a higher priority than the migration of a 
new request because any delay in returning results contributes to an increase 
in response time, while an earlier transmission of a request to a remote 
resource may not reduce the response time unless the remote resource is 
idle. The migration of a request is given a higher priority than the identifi­
cation of a new request-generator/resource pair because a request must be 
completely sent before it can be processed, and any delay in completing a 
job transfer may tie up valuable buffer space unnecessarily and reduce the 
resource utilization. 

7.4. A Distributed Minimum-Search Algorithm 

The operations of the resource scheduler in Figure 7.8 can be reduced to 
the primitive operation of identifying the extremum from a set of physically 
dispersed random numbers called contention parameters. The generation of 
these parameters may be dependent on each other, and may also be site­
dependent. For tractability reasons, the parameters are assumed to be in­
dependently generated and possibly site-dependent in this section. Specif­
ically, the identification of the task with the highest priority in Figure 7.8 
can be considered as the search of the maximum priority level from a set 
of priority levels, one from each processor. Similarly, the transmission of 
a message (result or job) can be regarded as the selection of a ready station 
from a set of ready stations, each of which generates a contention parameter 
from a uniform distribution between 0 and 1. Likewise, the identification of 
a request generator or resource is again the selection of the station with the 
maximum or minimum parameter. 

Conventionally, the implementation of an extremum-search algorithm 
relies on the message-passing mechanism to collect all information to a cen­
tral site. This requires O(n) messages, where n is the number of stations. 
ln this section. an efficient distributed protocol for identifying the minimum 
is presented. The algorithm for searching the maximum is similar. The pro­
posed algorithm has a load-independent behavior, which is important for 
resource-sharing applications because the number of processors to partici­
pate in identifying the extremum is usually large. Conventional contention­
resolution algorithms, such as Ethernet's Binary Exponential Backoff al­
gorithm. is load-dependent. but peri'orms satisfactorily because the channel 
load is normally low for point-to-point message transmissions. Moreover, 
these algorithms cannot he directly applied to identify the extremum. 

It i~ assumed that each processor in the network is capable of main­
taining a global reference interval or window, and counting whether there 
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procedure window _prolocoL_siation_j: 

/*procedure to find window boundaries for isolating one of the cont('nding stations t / 

[ /" window- function to calculate window size w, 
random- function to generate local contention parameter, 
estimate- function to estimate channel load, 
transmit_.signal- function to send signal to bus with 

other st.a lions synchronously, 

dett·ct- function to d .. tect whether there is collision on the bus (three-state), 
r 1 - local contention parameter, 
ii- estimated channel load, 

lb_rninimurn- lower bound of interval containing minimum {minimum is L), 
ub mitnmum upper bound of interval containing minimum (maximum is U), 
contending- boolean to continue the contention procPss, 
state- state of collision dct<'ct, can be collision, idle, or success 

(for three-state collision detection). *I 
lb_minimum :--- L; 
ub_miuimum :=--lJ; 
r 1 ;-random (L,U); 
t1 :::...~ estimate (); 

w :c-:: window (lb_minimum, ub_minimum, il); 
contending ;=--: true; 
while (contending) do I 

if (ri> lb_minirnurn and r
1
< w) then [ 

elst' r 

I* parameter is inside window, contend for bus *I 
transmit_signal(); 
I* test for unique station in the window *I 
state := detect (); 
if state :::= c-ollision then 

I* update upper bound of interval containing minimum *I 
ub_rninimurn :=-- w; 

P!se I* successful isolation of minimum *I 
return (Jb_rninimum, ub_rninimurn); 

w :-- window (lb_minirnurn, ub_minirnum, il)] 

state :---= detect(); 
if statp idic th(•Jl 

/* all parameters are outside window *I 
I* 11pdate lower hound of interval containing mwirnum *I 
lb_rninimurn :- c w 

w: window (lb_minimum, uh_minimum, il) 

I* sorrw other 
contf'nding 

r<'turn (failure) 

pararnt·tcrs are inside window, stop contf'nding *I 
falsf' j 

Figure 7.9 Procedure illustrating the basic steps executed in each station for 
contending the channel with a three-state collision-detection mechanism. 
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is none, one, or more than o_ne t'IIJJicntion parameter falling in the window. 
A global window can be mam1111111.·d in all stations if they start in the same 
initial state, receive identical iflln11nation from the bus, and execute the same 
control algorithm in updating ll11· window with information received from 
the bus. Suppose that the set "' U>ntcntion parameters is {xi, ... , Xn) in 
the interval between Land U, II lid I hat y, is the i-th smallest of the XJS. To 
search for the minimum, an 1111l~;d window is chosen with the lower bound 
at Land the upper bound belwn·n Land U. There can be zero, one, or 
more than one contention pal;nJwtcr in this window. If there is exactly one 
contention parameter in the Willclow, it can be verified as the minimum, Y1· 
Otherwise, the window has lo he updated: it is moved if it is empty, or 
shrunk to a smaller size if it tonlains more than one number. This process 
is repeated until the minimuu1 ,.., 11niquely isolated in the window. An im­
plementation of the distributed WIIIdow-search scheme at Station i, I ~ i ~ 
n on a multiaccess bus wtth 11 lhrcc-state collision-detection mechanism is 
shown in Figure 7. 9. 

Figure 7.10 illustrates the· '•h'rs involved in the window-search scheme. 
Initially, five stations are rc:ody. 'IIld they sense that the bus is free. Each 

L 
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w 
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' I I 
i 
I I 
I 
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Step 1: Collision 
Update lJppt-r u .... ,HI tow, 

Step 2: No Transmb~~~ ... 
lJpdale Lowl·r "'•UJHIIn w

2 
'---r-' 

Step 3: Successful 'lr4r.,, 1111 ~-.ion 
Stop. 

Contention 
Parameter 

u 

Figure 7.10 An example illu"11 ·"1rifllhe updates of the global window to isolate 
the ..,tation with the minimum' '•ld,·r1tion parameter. (Braces indicate windows 
u~ed in different steps.) 
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of them generates a random contention parameter in (L, U], sets the window 
as (L, w,], and transmits in the next contention slot if its contention param~ 
etcr falls in the window. Station 3 is eliminated in the first iteration. As 
Stations I, 2, 4. and 5 transmit, collision is detected. The stations reduce 
the upper bound ofthe interval to"'' and set the windows to (L, w2 ) (identical 
for all stations as they use identical window-control algorithms and inputs). 
In the second iteration, no transmission is detected because all contention 
parameters are outside the window. The lower bound of the interval is set 
at w2, and all stations set the windows as (w 2 , wd. In the third iteration, 
successful transmission is detected, and the process terminates. 

The concept of window protocols has been proposed with respect to 
contention resolution on multiaccess networks, but has not been developed 
for resource sharing and extremum search in general. Moreover, efficient 
and practical window-control algorithms have not been found. The optim­
ization of the window size in the Urn Protocol (34) was studied by Hluchyj 
(25), who formulated it into a Markov decision process with an exponentially 
large number of states. Mosley and Humble! proposed to use the generation 
times of messages as a basis for the transmission order on the bus (44). This 
protocol is a generalization of Gallagher's procedure ( 19), which is itself 
based on an idea from Hayes (22) and Capetanakis (6). Towsley and Ven­
katesh (60) and Kurose and Schwartz (36) further extended Mosley and 
Humblet's algorithm by developing new heuristics. Mosley and Humble! 
also proposed that stations can generate random numbers as the contention 
parameters (44). The throughput was analyzed according to an infinite-pop­
ulation assumption. 

The basic operations required for the proposed window~search scheme 
can be implemented easily either in hardware or in software on an existing 
multiaccess network such as the Ethernet. The global window can be main­
tained by updating an initially identical window with a common algorithm 
and using identical information broadcast on the bus. Assuming that infor­
mation broadcast is received correctly by all stations, the global window 
will be synchronized at all sites. 

To count the number of contention parameters falling in the window, 
the collision-detection capability of the network interface can be used ef­
fectively to detect whether the previous contention slot was empty, suc­
cessful, or had collision. Stations with parameters inside the window contend 
for the bus in a contention slot. If there is more than one station with a 
parameter in the window, a collision will he detected. If there is exactly one 
:-.tation with a parameter in the window. a successful transmission will be 
detected. If there is no station with a parameter in the window, an empty 
~lot will he detected. Each iteration of the protocol in Figure 7.9 will he 
l·ornplctcd in one contention slot. Hardware implementation will be dis~ 

cussed in Section 7.4.7 after the window~control algorithms arc presented. 
In sy"itcms where modification to existing hardv.'are is impossible, the 

window protocol can be implemented in software. Software implementation 

a --------------------------
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is only necessary for applications that select a station based on the meaning 
of the contention parameter (such as identifying the statioa with the maxi­
mum response time). For applications that need to randomly select a station, 
such as identifying a free resource, the existing interface suffices. Suppose 
that an existing Ethernet for point-to-point and broadcast transmissions is 
available. Stations with parameters inside the window contend for the bus. 
The station that is granted the bus will broadcast its parameter. However, 
in this case, it is not clear whether exactly one station or more than one 
station have parameters inside the window. (This is equivalent to a network 
with a two-state collision-detection capability.) Hence, a verification phase 
must follow to assert that the broadcast parameter is the minimum. This 
verification phase can be implemented as a timeout period, so other stations 
with smaller parameters can continue to contend and broadcast a smaller 
parameter inside this timeout period. In each iteration of the window pro­
tocol, the channel has to be contended twice, and two broadcasts of con­
tention parameters have to be made. By suitably adjusting the timeout period 
according to the channel load, the station with the minimum parameter can 
be isolated with a high degree of certainty and without significant degradation 
in performance. The window will be adjusted according to the minimum of 
the two broadcast contention parameters. 

7.5. Window-Control Algorithms 

To minimize the number of iterations in the protocol, to identify the minimum, 
the window used in each step must be chosen appropriately. Given the lower 
and upper bounds of the interval containing the minimum contention pa­
rameter, the lower bound of the window is set at the lower bound of this 
interval, and the upper bound of the window is to be chosen. The contention 
parameters are assumed to be independently generated from a uniform dis­
tribution in (0, 1]. When the distribution functions are identical but non­
uniform, the contention parameters can be transformed by the distribution 
function into uniformly distributed parameters. Four algorithms to determine 
the upper bound of the window are described in this section. These algo­
rithms assume that the channel load and the distribution functions from 
which the contention parameters are generated are exactly known. Methods 
to estimate the channel load will be presented in Section 7.5.5. The per­
formance is worse when the channel load is estimated. Lastly, issues on 
finding the distribution functions and implementation arc discussed. 

7.5.1. Binary-Divide Window Control 

A straightforward way to choose the upper bound of the window in each 
iteration is to set it midway in the interval containing the minimum. Binary 
search is applied in each iteration to eliminate half of the remaining interval. 
This method provides a lower hound on the performance. 
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The overhead is analyzed in terms of the number of iterations of the 
protocol to determine the minimum. In any given step, if the window size 
is greater than the distance between the two smallest parameters, y 1 and y 2 , 

the minimum may be isolated depending on the relative positions of y 1 , y 2 , 

and the window (Figures 7.11 a and 7. llb). On the other hand, if the window 
is reduced to a size smaller than the distance between y 1 and y 2 , and the 
bounds of the window are updated according to the procedure in Figure 7.9, 
the minimum will always be isolated in such a window. This is illustrated 
in Figure 7.llc. Hence, the maximum number of iterations to resolve the 
minimum never exceeds the number of steps to reduce the window to a size 
smaller than the distance between y 1 and y 2 , Assuming that k steps are 
required, the following condition holds: 

2-A: < Y2 - y, < 2 <k---o 17.4) 

Taking the logarithm of the inequality in Eq. (7.4) and rearranging it, 

[ 
_ log.(y2 - y1)] < k < [ 1 _ loge(Y, - Y1JJ 

log,2 log,2 
(7.51 

This inequality gives the upper bounds of the binary-divide window-control 
rule for given y, and }'2. 

From the theory of ordered statistics (9), if the y,s are uniformly dis­
tributed in (0,1], then the joint probability density function of y 1 and y 2 is 

1 
n' ( 

~I - 2)! I 
)
n-2 - y, for I "" y, > y 1 "" 0 

(7.6) 

otherwise 

From Eqs. (7.5) and (7.6), E(k), the average number of iterations to 
resolve contentions in the binary-divide window-control rule, can be ob­
tained by integrating the weighted upper bound over the domains of y 1 and 
Y2· 

E(K) < _f,,' (
1
," [1- log,.(y,- y 1)] 

111 (I- • )"- 2 d• d· }, J, log,2 (n - 2)! ) 2 
) 

1 
)

2 

n! Jl [J" J I -
11 

log,.(J'2 - y 1 ) dy 1 (I - y 2 )''-
2 dy2 

(n - 2)' log,.2 o 

Because J(\;c log.,( Y2 - y d dy 1 = Y2 logeY2 
as 

(7.71 

y 2 , Eq. (7.7) can be simplified 

UK!< 
nl il 1 - --=-· (I - y 2 )''-

2 (y 2 log,.y, - v,J dy, 
(n - 2) 1 log,.2 o 
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Window Window 

y, 

(a) Contention is resolved by 
a window with size greater 
than (y1-y1), 

(b) Contention is not resolved 
by a window with size 
greater than (y1-y1). 

Window 

(c) Contention is always resolved 
if size of window is smaller 
than (y2-y1) and lower bound 
or window is smaller than y •. 

Figure 7.11 Possible sizes and positions of a window during a contention step. 

The integration in Eq. (7.8) can be evaluated to become 

l' (I - y,)"- 2y,log,y, dy, ~ Hn- Hn-l 

where Hn is the harmonic mean of the series {I, 2, ... , n). i.e., 

I " I 
Hn ~ - L -; 

n i=J l 

(7.9) 

(7.10) 

The harmonic mean is approximately equal to [log,n + -y + 0(1/n)]/n (49), 
where -y is a constant. Hence, from Eqs. (7.7) through (7.10), we obtain 

n(n - I) [ (logn,n _ E( k) < I - ---':-_c:-'-

log,2 
log,(n -

n - I 

(7.11) 

Because log,n = log,(n - I) for large n, Eq. (7.11) may be reduced to 

E(k) < I + n ( n - I ) (o..:l_+_l:.::o.=:g,,_n:..:) < 3 
log,2 n(n - I) 

(7.12) 

Hence, 

E(K) ~ O(log2n) (7. 13) 
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In addition to the preceding analysis, simulations have been conducted 
to evaluate the performance of the binary-divide window-control rule. The 
simulation program was written in FORTRAN 77 and was executed on a 
DEC VAX 11/780 computer. In each simulation run, N random numbers 
were first generated in (0, I], and successive windows were generated until 
the station with the minimum parameter was obtained. A 95% confidence 
interval of± 0.1 was used in the simulations. The results are plotted in Figure 
7.12. Note that the average number of iterations is smaller than O(log2n), 
which confirms that O(log,n) is the upper bound of the average performance. 

7.5.2. Dynamic-Programming Window Control 

The size of the window in each iteration of the window protocol can be 
controlled by a dynamic-programming algorithm that minimizes the expected 
total number of iterations before the minimum is isolated. The following 
notations are first defined: 

N(a, h) the minimum expected number of iterations to resolve con-
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Figure 7.12 Performance of the window protocol with different window-control 
and load-estimation methods. (Solid lines assume that the channel load is exactly 
known; for dashed lines, the channel load is evaluated from previous experience.) 
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tention given that there are n contention parameters in (a, U] 
and collision occurs in the current window (a, b) 
probability of success in the next iteration if a window of (a, 
w], a < w < h, is used 
probability of collision in the next iteration if a window of 
(a, w], a< w < b, is used 
probability of no transmission in the next iteration if a win­
dow of(a, w], a< w < b, is used 

It follows directly from the preceding definitions that 

t(w, 11, a, b) + g(w, 11, a, b) + r(w, n, a, b) = I (7.14) 

As the Principle of Optimality is satisfied, the problem of minimizing 
the expected total number of iterations is reduced to that of finding w that 
minimizes the expected number of future iterations should collision or no 
transmission be detected in the current iteration. The problem can be for­
mulated recursively as 

N(a, b) = min {I + O·g(w, n, a, b) 
u<w<:_b 

+ N(a, w)-f(w, n, a, b) + N(w, b)·-y(w, n, a, b)) (7.15) 

The probabilities g(w, n, a, b), C(w, n, a, b), and r(w, n, a, b) can be 
derived from the distributions of the contention parameters and the state of 
contention. When transmission is unsuccessful, it is always possible to iden­
tify a window (a, b] such that at least two of the x,s lie in (a, b] and no X; 

is smaller than a. This condition is designated as event A. 

A = {at least two x;s are in (a, b], given that all x;s are in (a, U]) 

Suppose that the window is reduced to (a, w], a < w < b, in the next 
iteration, three mutually exclusive events corresponding to three possible 
outcomes can be identified: 

B {exactly one of the x,s is in (a, w], given that all x;s are in (a, U]) 

C {no x; is in (a, w], given that all x;s are in (a, U]) 

D {more than one x; is in (a, w], given that all x,s are in (a, U]) 

From these events, the probabilities can be expressed as 

,{,'(H', n, a, B) 

r(H', n, a, b) 

{ I } 
_ Pr{A n B) 

Pr B A - Pr{A} 

Pr{CIA} 
l'r{A n C) 

Pr{A} 

(7.16] 

(7.17} 



290 Part llrTopics in Multiprocessing 

The set A n B represents the events that exactly one of the x,s is in (a, w], 
that at least one x, is in (w, b], and that all others are in (w, U]. The set A 
n C represents the event that at least two x,s are in (w, b], given that all 
x,s are in (w, U]. 

Let F,(x) (resp. f,(x)) be the distribution (resp. density) function that 
governs the generation of X;, 1 ~ i ::-:::;:: n, where n is the number of contending 
stations. Then event A occurs with probability: 

Pr(A) = 

,rl, [I- F,(a)]- ;i, {[F,(b)- F,(a)]
1
D, [I- fj(b)]}- ,rl, [I- F,(b)] 

j#-i 

" fl (I - F,(a)) 
i= I 

(7.18) 

The first and last terms of Eq. (7.18) indicate the probabilities that all x,s 
are greater than a and h, respectively. The second term is the probability 
that exactly one of the x,s is in the window (a, b ]. Similarly, 

!,'(w, 11, a, h) = 

L [F,(w) 
1~ I 

Pr(A) fl (I - F,(a)) 
i~ 1 

(7.19) 
r(w, 11, a, h) = 

n 

fl [I - F,(h)] 
i ~ l 

}""i 

" 
Pr(A) fl (I - F,(a)) 

i= 1 

(7.20) 

It follows that an optimal window can be derived in each iteration once 
the channel load and the distributions of contention parameters are known. 
However, the dynamic-programming formulation is continuous and requires 
infinite levels of recursion. Boundary conditions must he set to terminate 
the evaluations after a reasonable number of levels. In practice. the x;s may 
represent indistinguishable physical measures when their difference is less 
than 8. It is assumed that when the window size is small than 8, the prob-
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ability that two stations have generated parameters in this interval is so small 
that contention can always be resolved in one step. The following boundary 
condition is included: 

N(a, h) ~ I for all (h- a)< o 
The value of 8 was set to I/( I 0 x n) in our evaluations for continuous 
distributions, and to I for discrete distributions. The results of the evaluation 
arc plotted in Figure 7. 12, which shows that the average number of iterations 
is bounded by 2.4. independent of the number of contending stations. This 
performance is much better than that of the Binary Exponential Backoff 
Protocol of Ethernet (52) as shown in the simulation results in Figure 7.13. 
It must be pointed out the simulation results for the proposed window pro­
tocol assume that the number of contending stations is known, while those 
of the Binary Exponential Backoff protocol start out with one contending 
station. However. the advantage of the window protocol is that the channel 
load can be estimated easily from previous windows (Section 7.5.5), pro­
vided that the arrival rate does not change abruptly and that the degradation 
in performance with estimated loads is negligible. In case the channel load 
cannot be estimated and the binary-divide window-control protocol has to 
he used, the performance is still much better than that of Ethernet. 

Arrow et al. had studied a similar problem with the difference that the 
number of contending stations in a collided window is assumed to be known 
exactly (I, 54). The problem was formulated into a .finite recursion, and an 
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asymptotic bound of 2.4 iterations was obtained by numerical evaluations. 
We have obtained comparable results when only ternary information on 
collision is available and the infinite dynamic programming tree is truncated. 
This shows that the information on the exact number of contending stations 
is insignificant. 

Although optimal, the dynamic programming algorithm has a high com­
putational complexity, which makes the algorithm impractical for real-time 
applications. As an example, the execution time to evaluate Eq. (7.15) on 
a DEC VAX 11/780 computer is 1.3 s for n = 20, and increases to 828 s for 
n = 100. Efficient hardware implementations will be discussed in Section 
7.5.7. 

7.5.3. Optimal Greedy Window Control 

The optimization of window control using dynamic progra~ming requires a 
high computational overhead because it examines the entire sequence of 
possible future windows to determine the window to be used in the next 
iteration. To reduce this overhead, only one future window may be exam­
ined. An optimal greedy window-control scheme is one that finds a window 
to maximize the probability of success, J?(w, 11, a, b), in the next iteration. 
When the contention parameters have identical continuous distributions, 
F(x), g(w. n. a, b) can be expressed in a simple form as 

g( w, n, a. h) = K[F( w) - F(a)J{[ I - F( w )]"- 1 - [I - F(h )]"- 1} 17 21) 

where K = ni{Pr(A)[I ·- F(A)]"}.lt can be shown that Eq. (7.21) is unimodal 
between a and h, so a maximum exists in the window (a, b]. To find the 
optimal value of w, we set (il/aw)g(w, n, a, b) = 0 and solve for H'. This 
derivation leads to the following equation if f(w) Y' 0: 

[I - F(w)[" 1 --[I - F(h)]''- 1 

= (n - I)[F(w) - F(a)Jll - F(w)J"· 2 17.22) 

If c = I - F(w), Eq. (7.22) becomes 

-" - I 
In - ll[l F(a)Jz" 2 I I - F(b)]"' I 

= () 0.23) n n 

It can be shown that a real root of Eq. (7 .23) exists and 'jatisfics the inequality 
II- Flhll<c,<(l- F(a)).Thereisnoclosed-formsolutiontoEq.I7.23J. 
and:::, has to he solved numerically. Once;,, is obtained. II",, the upper bound­
ary of the window, can he computed directly from::" as 

11', = F 1 (1 c .. J 0.24) 

The pcJi'ormancc of the greedy scheme is measured hy the average 
number of iterations expended he fore the minimum i"' identified. It has hecn 
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proved that the average number of iterations to resolve contention is 
bounded by 2.7 when the contention parameters are generated from a single 
distribution function [see Figure 7.12 (62)]. The computational overhead to 
solve Eq. (7.23) numerically is independent of nand is less than Is of CPU 
time on the DEC VAX 11/780 in most cases. 

It is worth noting that a binary-divide window-control scheme is de­
rived from the optimal greedy window-control scheme by setting n to 2. 
When n is 2, Eq. (7.23) is evaluated to become F(wo) = [F(a) + F(b)]/2. 
If F(y) is uniformly distributed in (0, 1], then W 0 = (a + b)/2. The binary­
divide control rule can also be used as a heuristic for window control with 
general distribution functions. It can be interpreted as one that always pre­
dicts that there are two contending stations. As a result, it petforms well 
when the channel is lightly loaded, and degrades to have an O(log,n) per­
formance when the channel load is heavy. 

7.5.4. Approximate Greedy Window Control 

The approximately greedy window-control scheme is similar to the optimal 
greedy window-control scheme except that an approximate equation on suc­
cess probability is used. Eq. (7.21) may be rewritten as 

n-2 

g(w, n, a, b) = K[F(w) - F(a)][F(b) - F(w)][l - F(w)]"-
2 ~ v' 

i=O 

(7.25) 

where v = [I - F(b)]/[1 - F(w)]. A function g(w, n, a, b) that has a 
maximum very close to that of g(w, n, a, b), can be obtained by replacing 
the term [~7~.? v'] with (n - 1). That is, 

g(w, n, a, b) = K'[F(w) - F(a)][F(b) - F(w)][i - F(w)]"-
2 

(7.26) 

where K' = (n - I)K. By solving (a/aw) log,g(w, n, a, b)] 0, we obtain 

f(w) _ __c:__:_cc____ + 
F(w) - F(a) 

f(w) + (n - 2)j(w) = 
0 

F(w) - F(b) F(w) - I 
(7.27) 

or. equivalently, 

[F(w) 2 + C[F(w)J + D 0 (7.28) 

where 

c = '-'( "c______:_:l lcc.[ f:_'c::( "=--) _+:__:f_.' ( ::_b :..!.) ]_+:__::2 
n 

D 
F(a) + F(b) + (n - 2)F(a)F(b) 

n 
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A solution to Eq. (7.28) in the window (F(a), F(b)] is given by 

-C- VC'- 4D 

2 (7.29) 

The approximate window"'" as calculated from Eq. (7.29) gives a perform­
ance that is nearly as good as that of the optimal greedy scheme (see Figure 
7. 12). The computational overhead to calculate Eq. (7.29) is independent of 
nand can be done in Jess than 100 J.LS on the DEC VAX I 1/780. 

7.5.5. Load Estimations 

Before the window-control protocol is carried out, the number of contending 
processors must be estimated from the distributions of the contention pa­
rameters and the statistics of previous channel activities. This information 
is essential in estimating an initial window and in controlling the dynamic 
changes in window sizes in the current contention period. A method based 
on maximum-likelihood estimation is described here. 

After the 1-th message is transmitted, the window (L, w(l)] that suc­
cessfully isolates the station with the minimum is known to all processors. 
A maximum-likelihood estimate of n(t), the number of stations that have 
participated in the contention, can be computed from a likelihood function 
on the probability of success that the minimum lies in (L, w(t)]. Assuming 
that the contention parameters are independently and uniformly distributed 
in (0, I], the likelihood function is derived as 

LK(ii(t), w(l), 0) = Pr(O < Y1 < w(l) < Y
2

) 

= ii(t)w(l)(l - w(l))""'- 1 (7.30) 

LK(n(l), w(t), 0) is maximized at 

ti(t) = Log,.(l-1 w(I))J 0 < w(l) < (7.31) 

The number of contending stations to transmit the (I + 1)-th message can 
be obtained by adding to fi(t) the difference between the possible arrivals 
after the 1-th message has been transmitted. The average number of iterations 
to resolve contentions using this load-estimation method is 3.1 as shown in 
Figure 7.12. 

Because the extremum is readily available when contention is resolved, 
this information can be "piggybacked" in the packet transmitted. Hence, 
an alternative estimate is based on the density function of this statistics. The 
conditional density of Y1 is 

(7,_1,::0) 
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Because the contention parameters are independently and uniformly dis­
tributed in (0, 1], 

fy,y,(y,, y,) = (n- 1)(1 - y,)"- 2 

Substituting Eq. (7.33) into Eq. (7.32) yields 

I 
f y,(y, I 0 < Y, < IV< Yz) = -

w 

(7 33) 

(7 34) 

This result shows that the distribution of y 1 is determined once the window 
(0, IV] is known. Therefore, no new information is gained by using this first­
order statistic in estimating n. 

The accuracy on load estimation can be improved by using information 
on previous windows that successfully isolate a single station. A technique 
in time-series analysis called Auto-Regressive-Moving-Average (ARMA) 
model can be applied to obtain an estimated window based on all previous 
windows, w(l), w(2), ... , w(t). A simple example is computing a moving 
average, "'""'(/), using the following formula: 

, )-"''"·{t-l)+w(l) 
\1 m,,(f -

2 
(7.35) 

The value of w,,,(l) is then used in Eq. (7.30) to estimate the channel load. 
The pe1i'ormance of using ARMA load estimation is very close to that when 
the channel load is exactly known (see Figure 7.12). 

7.5.6. Estimating the Distribution Functions of Contention 
Parameters 

In applications such as load balancing and finding the highest-priority class, 
the distribution functions from which the contention parameters arc gen­
erated arc unknown and have to be estimated dynamically. Generally, the 
distrihution functions are assumed, and parameters of the distribution func­
tions arc estimated from statistics collected. Because information on the 
distribution functions is essential and must be consistent for all sites to op­
timize the window search, independent monitoring of local information and 
information broadcast on the bus may be insufficient and may lead to un­
stable operations. 

For loading balancing, a single site is responsible for collecting the 
distrihution functions on local response times and distributing them to other 
sites (3). For ~cheduling transmissions with the highest-priority level. in­
formation on the priority levels of messages transmitted can he ohserved on 
the hu~. A~ an example, let A,. he the arrival rate of messages to the i-th 
priority level and t 1 he the arrival time of the most recent packet in the i-th 
level that has been transmitted. Assuming a Poisson process for the packet 
arrivals. the probability that at least one station has a message in the i-th 
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priority level is 

p, = 1 - [. t....,e-"· 1 d! = e-;..,(T-:,) 
. 7 ·~I i 

(7.36) 

v,.:here Tis the current time. The distribution that a station generates ames­
sage in the i-th priority· level is 

F,( k) •••• F " ( T ") • 

k<i 
i ~ k ~ p 
k>P 

(7.37) 

\vhere P is the total number of priority levels in the system. The arrival time 
of a packet may be acquired by piggybacking this information on the packet 
transmitted. The packet arrival rate may be estimated by observing the 
packet arrival times. 

The proposed window-control algorithms arc quite robust with respect 
to changes in the distribution functions. Experiments on variations of the 
parameter of a Poisson distribution did not lead to any significant degradation 
in performance. Ho\\·evec there is always a delay between the time that the 
distribution function is changed and the time that this change is propagated 
to all sites. The optimization in the window protocol may be unstable if 
changes cannot be disseminated in time. The method for estimating the dis­
tribution functions is highly problem-dependent and is currently a problem 
under investigation. 

7.5.7. Implementation of the Window Protocol on Ethernet 
Interfaces 

\Ve have presented four \\.:indow-control protocols in this section. \Vindow 
control using dynamic programming requires a high computational overhead. 
while the other \\'indov,·-control algorithms require less computations but 
give poorer performance. The implementation on Ethernet-type interfaces 
has a stringent real-time requirement because each contention slot has a 
duration of less than ()0 f.1S on a 10-Ivfbps network (l2). The direct compu-­
tation of the binary-divide and approximately greedy windo\v-control 
schemes can satisfy this timing requirement. In this section. \Ve describe a 
lookup-table method for implementing the dynamic-programming window 
control. 

The -;cqucnce of \\·indows evaluated by dynamic programming can he 
precomputed and stored in a lookup table. Given a channel load n. the se­
quence of uptlrnal windows derived from Eq. (7. I)) constitutes a binary 
dcci'iiun tree (Figure 7. !4a). The root of a subtree represents a window. The 
optimal windd\\' ror the next iteration will reside in the left subtree if collision 
j, detected in the curTcnt iteration. It will be in the right subtree if no trans-



i 

L Success ' Success ' U 
• ~32 ~3~ • ~34 

Wz,t "l,l WJ,l Wt,l "'l.l "'1~ 

I e \ I e \1 \ t \ 

I 
I 

(a) Binary Decision Tree 

(b) Corresponding Data Structure 

Number or 
CODteDding 
Stations 

Figure 7.14 Lookup-table implementation of dynamic-programming window 
control. (a) Binary decision tree. (b) Corresponding data structure. 
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mission is detected. A set of binaq.r trees. each of which corresponds to a 
channel load. can be constructed and stored as a lookup table in each station. 
The data structure for implementing the binar:y decision tree is shown in 
Figure 7.14b. The optimal window in each iteration can be retrieved effi­
ciently· in real time. The windows are evaluated based on a uniform distri­
bution of the contention parameters. ln applications where the contention 
parameters have identical but nonuniform distributions, they must be trans­
formed by the distribution function into the uniform distribution before the 
lookup table is used. 

One problem v.'ith the lookup-table method lies in the large memory 
space required. Since the average number of iterations is small, some sub­
trees can be pruned to reduce the memory space without significant deg­
radation to performance. Window boundaries in the pruned subtrees have 
to be obtained by· interpolation techniques. Likewise, for those channel loads 
for w·hich no decision trees are stored, interpolation has to be used to obtain 
the v.. .. indov.r boundaries. 

The lookup-table method has been designed on existing Ethernet in­
terfaces (65, 68). A microcontroller, Intel MCS 8396. is placed between the 
Ethernet-protocol chip, Intel 82586, and the collision-detection chip, Intel 
82501. A decision tree of four levels as evaluated by dynamic programming 
is used, and the microcontroller sv..·itches to binary-divide window control 
when more than four contention slots are needed. Sixteen-bit random num­
bers arc used for the contention parameters and the entries of the decision 
tree. The channel load is assumed to vary from 1 to 100 stations. Hence, 
the total space required for storing the lookup table is 3 kbytes, which can 
fit in the 8-kbyte read-only memory of the MCS 8396. The performance of 
the truncated decision-tree method is less than 3.0 contention slots when n 
:;.= 100 (Figure 7 .12) as the number of slots to resolve contention is normally 
less than four. 

The balanced binary tree in the preceding implementation simplifies 
the data structure. However. the performance can be improved if a skewed 
binary tree is used. The reasoning behind the skewed tree is that when a 
collision occurs, the left subtree is traversed and the size of the interval 
containing the minimum is smal!. In this case, a binary-divide control works 
\veU. On the other hand, \Vhen no transmission is detected, the right subtree 
is traversed and the size of the interval containing the minimum is not re­
duced significantly. In this case, the binary-divide control does not \vork 
well. Experimental results indicate that less than 2.5 slots are required to 
resolve a contention when a ske\ved binary tree with a height equal to n and 
a height of I for the left subtree of every nontcrminal node ( n is exactly' 
kn(nvn) is used. This means that ::.n words are required for every d)mamic 
programming tree. The total rnemory' space required for n ranging from I 
to 60 stations is 7.3 kbytcs. 
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7.6. Conclusions 

In this chapter, we have shown that a class of resource-allocation problems 
for a local computer system connected by a multiaccess bus can be reduced 
to the problem of determining the extremum from a set of physically dis­
tributed random numbers. A distributed algorithm to identify the extremum 
in a constant average time independent of the number of contending stations 
is proposed. The correspondence between the properties of our design and 
the proposed methodology is summarized in Table 7. I. The load-independent 
behavior of the proposed algorithm is important because the number of con­
tending stations to identify the extremum is usually large. Most existing 
contention-resolution algorithms, such as the Binary Exponential Backoff 
algorithm of Ethernet, are load-dependent and cannot be used to identify 
the extremum. The proposed algorithm can be implemented in hardware on 
a contention bus with the collision-detection capability. The overhead in 
each iteration is the time for a contention slot. On the other hand, it can 
also be implemented in software on existing multiaccess networks. In this 
case. two messages have to be transmitted in each iteration. It must be 
pointed out that the proposed window control is optimal in the sense of 
minimizing the number of iterations before the extremum is found, but is 
not optimal in minimizing the expected delay or maximizing the average 
throughput of the network. 

The proposed algorithm requires the reliable transmission of collision 
and broadcast information to all processors. This may be difficult if the 
channel is noisy. Incorrect information received may cause indefinite con­
tentions and the inability to identify the extremum. The problem can be 
resolved by broadcasting the extremum after it is found. Further, the pro­
posed algorithm has a predictable average behavior. Significant deviation 
from this behavior can be used to indicate an unreliable channel. 

Besides the resource-sharing applications discussed in this section, the 

Table 7.1 Application of the Methodology to Design the Proposed Resource­
Allocation Scheme in a Single Contention-Bus Network 

Methodoloxy 

Optimal allocation 

Di..,trihuteJ algorithm 

Prinuttve operation 

lmplenJenlatum 

Design 

{
Request of highest priority 
Resource of highest preference 

Di ... tributeJ minimum-search 

WinJow search 

Colli~ion Jetection 

1 
No explicit message transfer 
2.4 contcntton slots (optimal) 
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proposed algorithm can be extended to resolve contentions for multiple mul­
tiaccess or bit-parallel buses (31, 43, 61, 65), maintain consistency and pro­
cess queries in distributed databases (66), and unify many existing adaptive 
CSMA protocols (28). 

Problems 

1. What arc the advantages and disadvantages of maintaining a queue at 
each resource'! Discuss the issue with respect to the processing speed of 
the resource and message delays in the resource-sharing interconnection 
network. 

2. In a resource-sharing system with a central scheduler, status information 
of a request is obtained by transferring messages through a message­
transfer subsystem. Assuming N requests are pending for service, how 
many message transfers are necessary for the scheduler to determine the 
request of the highest priority? If the distributed minimum-search algo­
rithm is applied, how many message transfers are necessary? 

3. If the resource-sharing interconnection network comprises multiple con­
tention buses. multiple requests can be transmitted simultaaeously. As 
a result, t requests of the highest priority have to be identified when there 
are t buses available. Modify the distributed minimum-search algorithm 
such that multiple buses can be utilized to search these requests in 
parallel. 

4. After the successful completion of the distributed minimum-search al­
gorithm, three events can be identified: (I) no x 1 is in the interval[L, a]; 
(2) the minimum of x,s is in the interval (a, w]; and (3) the second min­
imum is in (w, h]. Formulate a maximum likelihood estimate of Ii based 
on these three events. 

5. Suppose that the number of processors involved in the distributed min­
imum-search procedure is governed by a Poisson process. Use this a 
priori information together with the three events described in Problem 
(4) to formulate a Bayes estimate of ft. 

6. In dynamic-programming window control, a boundary condition is in­
cluded that results in a truncated dynamic programming tree. Show that 
the numhcr of nodes in a truncated tree is proportional to the number of 
contending station~. 
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