
7
Resource Allocation
for Local Computer

Systems

7.1. Introduction

Jie-Yang Juang
Benjamin W Wah

Because of the rapid ad vance s in mi croe I ec troni cs and Very-Large-Scale­
Integrated (VLSI) circuit design technologies, the cost of computer hardware
has dropped drastically and the processing and communication speeds have
approached some physical limitations. These technological advances, cou­
pled with the explosion in size and complexity of new applications, have
led to the development of resource sharing computer S)'Stems. Such systems
usually consist of a large number of general- and special-purpose processors
interconnected together by a communication network called the resource­
sharing interconneelion netH·ork (64).

A. resource in a computer net\vork is a processor that performs com­
putation functions or manipulates data objects. It may.· generate requests to

Rt:-;carch supported partially by CJD\1:\C, a n:search unit of Purdue Uni\nsity, spon­
-;ored by Purdue. Cincinnati Milicron Corporal ion, Control Data Corporation. Cummins Engine
Ct.)mrany. R<msburg C)rroration, and TR \V. and h:-/ ~ ationaJ Science Foundation Grant D!>.1C­
RS 19649.

265

Processors

Resource Allocation for Local Computer Systems

Resource
Sharing

Interconnection
Network

Resources

I I
i I
I I

0-L_ _ ___.--------8
Pi- i'th request generating processor;
rj - j'th resource for necuting a designated task.

267

Figure 7.1 A generic model of resource sharing computer systems (Arrow K,
Pesotchinsky L, Sobel M: On partitioning a sample with binary-type quetions in
lieu of collecting observations. Journal of the American Statistical Association,
Vol. 76, No. 324, June 1981, pp. 402-409.

lowing properties:

I. The global status information of the system is not available to the indi­
vidual processors.

2. The interconnection network is the only intercommunication facility
among processors.

3. A request may be dispatched to any one in the set of available resources
that is capable of carrying out the designated task.

4. A resource is accessible by any request-generating processors.

A resource-sharing system with these characteristics has the following
advantages:

I. Tasks may be executed in parallel, and workload of processors may be
distributed evenly.

2. Efficient architectures for performing special tasks may be included in
the system.

3. Modifications to include new functions or increased performance can be
done easily because of the system's modularity.

4. Malfunctional devices may be removed from the system without stopping
the entire system.

268 Part 11/Topic'i in Multiprocessing

Con<;,equently, the performance of such a system may he improved by in­
crea:-.ing the number of resources or replacing an existing resource by a more
efficient one. The system is also highly reliable and maintainable.

A shared resource may manipulate data objects or provide computa­
tional service on request. Issues on sharing data have been studied inten­
sively in recent years. Many schemes have been proposed to deal with the
synchronization and data-coherence problems. Examples include monitors
and .-.ynchronization schemes in operating systems (I 3, 23), cache coherence
schemes in multiprocessors (14), and the methods of maintaining data in­
tegrity in distributed database managements systems (51). However, as dis­
cussed in Section 7.2, schemes for sharing computational devices are less
developed. Most existing schemes are based on centralized control or simple
distributed extensions of centralized control. The characteristics of the net­
work are usually not incorporated in the design of resource-sharing schemes.

This generic model encompasses many existing or proposed systems.
The dynamic task migration is the basic feature of many proposed distributed
programming languages such as Hoare's Cooperating Sequential Processes
(24, 53), CLU developed at MIT (39, 40), and Brinch Hansen's distributed
processes (21). New operating system designs also provide mechanisms to
support dynamic task migrations. Examples include pipes in MEDUSA (47)
and UNIX (50). Many architectures also exhibit the characteristics of this
generic model. Examples include local computer networks with load bal­
ancing such as the ECN (26) and LOCUS (69), VLSJ-systolic array multi­
processors (5, 35), and dataflow supercomputers (I!). Because resources of
these architectures represent different levels of abstraction. it is instructive
to describe them and to indicate their mappings to the generic model.

Exarnple I: l.ocal Computer Network with Load Balancin[.?. Load bal­
ancing is a scheme that engages communication facilities in supporting re­
mote job execution in a user-transparent manner, so the turnaround time is
reduced through the enhancement of resource sharing. Depending on the
workload of processors. the network operating system may distribute jobs
to a remote processor or may schedule them for local execution. A local
computer network with load balancing is illustrated in Figure 7.2 (26, 63).
Corresponding to the model, those processors of heavy workloads are re­
quest-generators, and those processors oflight workloads are resources. The
resources in this system arc job-level processors.

Lxample 2: VLS!-Systolic Array Multiprocessors. A VLSI systolic
array is a parallel pipeline architecture for evaluating a recursive function,
such as FIR tiltering, matrix multiplication, and FFT. Such VLSI chips are
usually organil"ed as attached processors to host computers as shown in
Figure 7.) {)5). In this organization, requests arc generated from procc~sors
and routed to systolic arrays through the system bus. The resources in such
'iystem..; are process-lc\·el special-purpose pro<.:cssors.

External
Arrivals

Result
Return

CSMA/ CD Network

,...-t-- Load From
Other Processors

• • •
Job Migration

Results

Processor

Figure 7.2 A queuing representation of local computer network with load
balancing.

Inter processor
Communication Network

• • •

Resource Sharing
Interconnection Networks

VLSI- Systolic Arrays

Host Processors

Servers

Figure 7.3 An organization of VLSI systolic-array multiprocessors.

269

270 Part 11/Topics in Multiprocessing

Erample 3: Dataflow Supercomputers. In contrast to the conventional
von Neumann machine, there arc no sequence-control mechanisms in a
dataflow machine. The execution of an instruction is driven by the availa­
bility of its input data. An instruction is active when all its input arguments
are ready. An active instruction is executed at a processing unit. The outputs
of this instruction will activate other instructions for the subsequent exe­
cutions. A typical dataflow multiprocessor is shown in Figure 7.4 (I I). For
a detailed discussion, see Chapter 9.

In this architecture, instructions are allocated in the activity store and
waiting for their inputs. Once an instruction becomes active, it is routed
through an arbitration network to a processing element and executed there.
The output is then routed back to the activity store through a distribution
network. The activity store is divided into cell blocks, and active instructions
in a cell block are requests. The processing units are arithmetic and logical
devices, hence they are instruction-level resources.

7.1.2. Resource Scheduling

Resource scheduling entails the allocation of resources (including commu­
nication facilities), so task migrations can be carried out efficiently. In gen­
eral, the migration of a task in a distributed resource-sharing system is di­
vided into three phases: resource-bidding, task-migration, and result-return.
In the tirst phase, the local processor has to make a request for utilizing a

Processing L'nits

-o Resource Sharing
Interconnection
Network

•

D
,....---

Cell Block- I l--- c
.E.;;,: - . , Q Cell Block-2 - :e $. --. iSZ

Cell Bluck-n

..............
Act1v1ty Sture

Figure 7.4 A dataflow multirrocessor

r--

f-

f-

Resource Allocation for Local Computer Systems 271

resource. In the second phase, the body of the task, including the task con­
trol. program code, and data, are transferred to the resource allocated and
executed remotely. In the last phase, the results generated from the exe­
cution of the task arc routed back to the original processor. Basically, on! y
data transmission is involved during the migration and result-return phases.
Resource scheduling is carried out in the resource-bidding phase. In this
phase, system status information has to be collected, and the decision of
resource allocation has to be made.

Issues of Resource Scheduling
The central issue of resource scheduling is to determine a resource mapping
that maps requests to resources. Resources will be allocated to associated
requests determined by the mapping. Because a task can be allocated to one
of a set of free resources, and multiple requests may contend for the same
resource, multiple requests may be allocated the same resource while other
resources arc idle. This problem is called resource conflict. If the resource
has local buffers, the tasks may still be migrated and queued at the resource
regardless of conflicts. This causes no error in operation but may deteriorate
resource utilization because of the imbalance of workload. If the resource
has no buffering capability. every request except one has to be rescheduled
agam.

In addition to resource conflict, a bad resource allocation may degrade
the performance of the network. Depending on the characteristics of the
system, a physical communication link may be assigned to every processor­
resource allocation and operate in a circuit-switching mode, or links may
be shared in a packet-switching mode. A resource-allocation scheme that
minimizes resource conflicts is not necessarily optimal because there may
be many paths being blocked in the circuit-switching mode, and packets may
be congested in the packet-switching mode.

In summary, three major issues will affect resource utilization in re­
soun..:e-sharing computer systems. These include network blocking (or
packet congestions), request contlicts, and imbalanced workload. Unless
the scheduling algorithm is carefully designed and implemented. there may
be many adver:-.e effects on the benefits of resource sharing.

Efliciency of Resource Scheduling
To illustrate the effects of these issues, a resource-sharing system may be
tran..,formcd into a queuing network as shown in Figure 7.5. In this queuing
rnm.kl, a proce ... sor is represented hy an arrival process vvith arrival rate A,.
while a resource is represented hy a server R 1 with service rate $-J.,. An
additional ..,crvcr 51 j.., introduced to model the resource-allocation mechanism
and the communication network. A branch from the output of serverS feeds
hack to the input of this server and represents the unsuccessful resource
alltlCatinns due to network blockage:-. nr rc...,ourcc conflicts. Although the

272 Part Jlffopics in Multiprocessing

s - A server represents the resource allocation mechanism;
a - the probability of network blocking and resource conflicts;
Ai - request generation rate of processor p 1
J.l j - Service rate of resource r ; ;
J.l 5 - Scheduling rate of 5.

Figure 7.5 A queuing model for resource sharing computer systems.

scheduling mechanism is represented by a single server, it does not imply
centralized control. Instead, it may be realized in many alternative ways as
will be described in Section 7.2. Task-transmission delays in the network
are considered part of scheduling overhead.

In a word, the service rate of S depends on two factors: the speed of
the scheduler and the delay of task transmissions. According to the results
of queuing theory (32), the service rate of serverS is crucial to the overall
system performance. Thus, improving the efficiency of resource allocation
is translated to increasing the service rate of S and reducing its feedback
probability. These may be achieved (1) by a good design of a high-speed
resource allocation mechanism, (2) by utilizing a good scheduling algorithm
that generates a good resource mapping, and (3) by using a high-speed com­
munication network.

Scheduling Disciplines
Depending on the scheduling disciplines, requests and resources may be
charactcrizeU by multiple attributes. A request may be represented by the
types of task it requests, expected execution time. and priority level. On
the other hand, resources may be modeled by its speed, load. and reliability.

Resource Allocation for Local Computer System-; 273

A scheduling algorithm has to evaluate the allocation costs based on these
attributes.

Consider a scheduling example that consists of two types of requests:
matrix computations and scalar computations. Suppose that requests for
matrix computations have higher priority than requests for scalar compu­
tations. that all vector processors are busy, and that only pipelined proces­
sors are available. Then requests for matrix computations would be allocated
if the requests are scheduled according to their priorities. On the other hand,
matrix computations may be executed more efficiently on a vector processor
than that of a pipelined processor. Hence, requests for matrix computations
may not be allocated if the requests are scheduled according to the pref­
erences of resources.

In this chapter, we consider only the class of scheduling disciplines in
which multiple attributes are combined into a single parameter. The param­
eter that characterizes a request is called the priority of the request, and the
parameter that characterizes a resource is called the preference of the re­
source. Our objective is to investigate the design of efficient resource-sched­
uling mechanisms for resource-sharing computer systems, and explore the
integration of the scheduling algorithms and computer networks. Several
goals are to be pursued:

I. A feasible scheduling strategy for improving resource utilization m re-
source-sharing computer systems will be studied.

2. The distribution of scheduling intelligence will be investigated.
3. Fast implementation for the scheduling mechanisms will be developed.

A unified design methodology is employed to incorporate these three design
goals. However. we consider only those scheduling schemes that allocate
one resource to a request at a time. When multiple resources are requested
hy a single request. they have to he allocated sequentially.

7.2. A Taxonomy of Resource-Allocation Schemes

In the design of rc~ource allocation schemes, achieving high-speed sched~
uling and obtaining an optimal mapping arc usually two mutually conflicting
goals. Compromise~ between the optimality of the scheduling decision and
the overhead of collecting system tatu-.; information are reached in many
ways. Resource allocation schemes can be characterized by the trade-off
hctween thc~c two goals. In thi"' section, a taxonomy of thest: resource­
allocation scht:mc:-. j..., rrcscntcd. The advantages ami JisaJvanUtgcs of each
cia...,-.; of n:...,ource-al!ocation scheme' in the taxonomy arc explored. Thi-.;
kath to the ...:oncJu...,inn that a distributed statc-dcpcrHknt allocation scheme
j..., prckrahk. To tackk the compkx design problems of distributed state~

I i,

,i,

274 Part IFf'opics in Multiprocessing

dependent resource allocation schemes, a systematic design methodology
is proposed in this section.

7.2.1. A Taxonomy of Resource-Allocation Schemes

A taxonom)'' that categorizes most resource-allocation schemes is given in
Figure 7.6. Resource-allocation schemes may be classified into t\vo classes
depending on whether global status information is used or not, and whether
they arc state-dependent or state-independent.

In the class of state-independent scheduling schemes, resource allo­
cation is carried out by the individual request-generator. Each request-gen­
erator determines the resource to bid for based on the local information
available. This information may include the statistics of the system's operating
history, piggy-backed information carried by the return message of previous
requests, and the specifications of individual resources. If the processor
chooses a resource randomly, the scheduling scheme is a random scheduling
scheme. On the other hand, if the statistics on previous requests and resource
specifications arc inputs to the scheduling decision, the scheduling scheme
is a probabilistic scheduling scheme. Because requesting processors do not
communicate, resource conflicts are unavoidable. Conflicting requests have
to contend for the resource they bid for. Queuing-network analysis has been
applied intensively to analyze the eff~ciency of this class of scheduling
schemes (45. 59, 70).

On the other hand, in the class of state-dependent scheduling schemes,
the global status information is crucial. Among them, a localized state-de-

Figure 7.6 A la xnnomy of rcs(>Urcc allo..:<tlion schemes.

Re..,ourcc Allocation for Local Computer Systems 275

pendent scheduling scheme requires every processor to maintain a copy of
the global ~tate information and to determine the resource allocation inde­
pendently. In contrasL in centralized state-dependent scheduling schemes,
the status information is collected by a central control node that determines
the resource mapping to be distributed to all requesting processors. A sched­
uling scheme with thi~ kind of organization is called a central scheduler.
Essentially, only the tasks of resource bidding arc carried out in the central
control node. Task migrations and result returns are carried out indepen­
dently. However, the central control node may be also responsible for buff­
ering ta<.;ks and dispatching them to resources. In this sense, the scheduler
becomes a central server. A central server is usually found in systems in
which resources do not have local memories. Some master-slave mu1tipro­
cessof5 belong to this class (15).

A distributed schedu/in[! scheme differs from localized and centralized
scheduling schemes in the way that global status information is collected
and utilized. In a distributed scheduling scheme, only partial status infor­
mation is maintained by each processor, and the scheduling decision is made
cooperatively through exchanging information. The amount of information
tlow is usually lower than that of the previous two approaches.

Most existing resource scheduling schemes belong to the class of state­
independent schemes (10, 27, 37, 38): The resource sharing protocol of AR­
PANET is a typical example in which task migrations are determined by
end users (57). This class of resource scheduling schemes is simple and incurs
relatively little overhead. Nevertheless, the problem of low resource utili­
zation remains unsolved. Centralized state-dependent scheduling schemes
can be found in many multiprocessor systems with master-slave structure
(2, !5, 22). However, adopting this approach to distributed systems tends
to eliminate their advantages. Localized state-dependent scheduling
schemes arc the direct distributed extensions of centralized control. The
load balancing schemes of ECN and LOCUS belong to this class. Although
thio;,; approach can be implemented in an existing network, it incurs a large
amount of redundant information flow and is hard to maintain a consistent
state information because of the network delay. Consequently, a resource
mapping generated by an optimal scheduling algorithm is not necessarily the
optimal one because inaccurate information may be used.

Distributed state-dependent scheduling schemes arc generally prefer­
able for the following reasons: (I) the information flow in maintaining the
global information is reduced because status information is utili.Led effi­
ciently: en they can ~u.:hieve optimal resource allocation: and (?I) their speed
may he incrca~ed hecau...,c of the concurrent execution of scheduling tasks.
Only a fc\\ ~imp\e distributed state-dependent schemes have been proposed
{2lJ. 30. ~I. (12-64). lt is still an open area of ~tudy. \Vc focus un the design
of distributed ~tate-dependent resource scheduling schemes in this chapter.

276 Part IliTopics in Multiprocessing

7.2.2. Implementation Considerations and a Design Methodology

In generaL a resource-scheduling algorithm generates a resource mapping
according to the system status information. A good resource mapping is one
that minimizes a cost function under the network constraints. The cost func­
tion is usually determined by the scheduling disciplines. It is usually easier
to optimize the cost function regardless of the constraints imposed by the
network. As a result, many processors may not be allocated a scheduled
resource because of con1licts in the network. To reduce this probability, a
high- bandwidth network is usually used (16). A crossbar network has been
used in systems such as the C.mmp (15, 18). It does not have the network
blocking problem. However, the cost of a crossbar netw·ork is O(n 2

), where
n is the number of devices connected, and is not practical when the system
is large. A multistage interconnection network is a cost-effective choice (64),
but blocking probability· may· be as high as 60%· if resources are not allocated
properly 07. 48). These observations indicate that a good resource-sched­
uling algorithm should incorporate net\\'Ork constraints in the optimization
of a given scheduling discipline. The follov.1ing design methodology is
proposed:

1. Formulate the resource-scheduling problem into a constrainted optimi-
zation problem.

2. Design a distributed algorithm to solve the problem.
3. Identif:y· primitive operations of each process in the distributed algorithm.
4. Integrate the primitive operations into the network.

The cost of collecting status information may also be included in the objec­
tive function, so trade-offs can be made between the amount of status in­
formation used and the efficiency of the scheduling algorithm. A well-de­
signed distributed algorithm should reduce unnecessary message passing.
The crucial speedup of the scheduling scheme lies in implementing the primi­
tive operation into the network. This approach essentially shifts the re­
sponsibilit;.,. of scheduling requests by the request generators to the network.

We will show the application of the methodology to the design of re­
source scheduling schemes for a single contention-bus network. Resource
allocation is studied with respect to requests that need one resource only:
multiple resources needed by a request are allocated sequentially. The nct­
\\'Ork is assumed to be a reliable rnultiaccess bus \\'ith the broadcast ca­
pability. Carricr-.Yense-multiaccess netH'orks with collision detection
(CSMA/CD net\vorks) belong to this class, and are exemplified by the Eth­
ernet (56'! (Figure 7.7a).

CS.\1/\i.CD net\\'Orks evolved from CSMA nclv.'orks. which have listen­
before-talk protocols to avoid overlapping transmissions. The collision-de­
tection capability of CSl\-1A/CD networks allows processors to additionally
listen-while-talk. so collisions resulting from simultaneous transmissions can

Resource Allocation for Local Computer Systems 277

Processors

Resources
Figure 7.7a A resource-sharing system connected by a single multiaccess bus.

Contention Slot

I
Packet I 0 D D I Packet I 0 0 I Packet

Contention Packet-Transmission
Interval Interval

Figure 7.7b The operations of a contention bus with altering phases.

be detected and stopped immediately. The time for a processor to assert
that there are no overlapping transmissions is the end-to-end propagation
delay on the bus and is called a contention slot. To avoid repeated collisions,
a contention-resolution protocol is used to control transmissions and to even­
tually isolate one station for transmitting the message. The operation of the
bus is thus divided into two alternating phases, the contention-resolution
phase consisting of a sequence of contention slots, and the data-transmission
phase consisting of the message transmission (Figure 7 .17b). Many conten­
tion-resolution protocols have been proposed and implemented (4, 7, 8, 19,
25, 28, 33, 34, 36, 42, 44, 60, 63). They are distinguished by the different
transmission control.

7.3. Optimal Resource-Allocation Algorithms

The optimal resource-allocation problem can be considered as an optimi­
zation problem that optimizes the system performance or cost subject to
constraints of the network. Let P be the set of request generators and R be
the set of resources. Each request generator p E P is characterized by a

278 Part 11/Topics in Multiprocessing

priority Xp, which measures the urgency that the request generated has to
be serviced. Similarly, each resource r E R is characterized by a preference
y,., which measures its capability to service a generated request. Because
there is only one communication channel in a singlc~bus system, only one
resource can be allocated at a time, and the scheduling problem is reduced
to finding a pair of request generator and resource that optimize the system
performance or cost. The optimization can be represented as

mm H(xp, y,)
(p.r)EPxR

(7 .I)

where H is a cost function defined with respect to a given scheduling
discipline.

In general, the cost function H depends on the characteristics of tasks
and resources, as well as the interconnection network. It may be very com­
plex and difficult to optimize. We will only study a special class of the cost
functions that are monotonic with respect to Xp andy,.. That is,

}!___ H(xp, y,) is either positive or negative for all xP andy,
axp

i H(xp, y,) is either positive or negative for all xP andy,
ay,

(7.2a)

(7.2b)

These conditions imply that, for a given resource, the cost is minimized
by servicing a task of the highest priority (if Eq. (7.2a) is negative), or one
with the lowest priority (if Eq. (7.2a) is positive). Similarly, for a given
request, the cost is minimized by choosing a resource of the highest pref­
erence (if Eq. (7.2b) is negative), or one with the lowest preference (if Eq.
(2b) is positive). For instance, if

a a
- H(xp, y,) ~ 0 and- H(xp. y,)"' 0
axp ay,.

it follows directly from Eqs. (7 .I) and (7 .2) that

mm H(x", y,) = H(max(xp), min(y,))
(p.r)EP><R ptP rER

(7.3)

Optimal resource scheduling can thus be considered as choosing a request
generator p with the maximum x" and a resource r with the minimum y,.
independently.

Many existing resource-scheduling problems can be solved by inde­
pendently selecting the task to be serviced and the resource to service the
task. Some notable examples are given here.

I. Random-Access Protocols in CSMA Networks. In CSMA networks,
all processors share a single communication channel to communicate with
each other. Processors with message to transmit are request generators, and
the communication channel is the only shared resource. Contention-reso-

Re .. ource Allocation for Local Computer Sy'>tcms 279

lution protocols in CSMA networks arc designed to resolve contentions in
using the channel. Because each reque~t generator has equal right to access
the channel, its priority can be considered as a random number in (0, 1],
and the cost function 1/(x" . .\',) = x,. The request generator with the min­
imum number generated is given the access right to the channel.

2. First-Come-First-Served Discipline in CSMA Neta·orks. The chan­
nel is the only resource to be scheduled. The priority level x,, is an increasing
function of the task arrival time. The cost function H(x,. Yr) = Xp.

3 . .)'Jwrtest-Joh-First Discipline in CSMA Networks. The channel is
the only resource to he <:~cheduled. The priority level x" is an increasing
function of size of the job. The cost function H(x", y,) ~ x,, and the sched­
uler selects the smallest job.

4. Priority Schedulinf{. Messages in the network are divided into prior­
ity classes (levels). and the channel is allocated to service messages in de­
creasing order of priority levels. Several CSMA protocols for handling prior­
ity messages have been suggested recently (20, 46, 55, 58). They may be
classified as linear protocols and logarithmic protocols. Each station is as­
signed the highest priority of the local messages. In a linear protocol, a slot
i"l reserved for each priority level during the resolution of priorities. An active
station contends during the slot reserved for the local priority level. When
the station(s) with the highest priority level is determined, the process is
switched to identifying a unique station within this priority level. This
scheme is good when high-priority messages are predominantly sent. A log­
arithmic protocol determines the highest priority level in O(log, P) steps by
a binary-divide scheme. where Pis the maximum number of priority levels
(46). This assumes that the highest priority level is equally likely to be any
one of the P priority levels. Neither of these schemes is able to adapt to the
various traffic patterns.

Resource scheduling in this case can be carried out in two phases. The
first phase determines the highest priority level present in the network. A
cost function Ht.r". Yr) = - x,, is assumed. There may be multiple stations
in this priority level. and scheduling for these stations is done in the second
phase using one of the preceding criteria.

5. Resource .)'harinR <~(a Pool q(Jdentical Resources. The priority of
a request generator i-. an integer between l and P. The preference of a
rcsoun .. :c can he a random number in [0, 1] indicating its status (0 indicates
that it is busy; any number between 0 and I indicates that it is free). Resource
"icheduling i:-. carried out in two pha<.;cs. The first phase identifies a request
generator w·ith the highest priority. The ccond phase identifies a free re­
source to service the task. Examples o~· cost function /l(x,, y,.) that can be
u..;cd arc (r,, - y,) or (--· x,,y,).

0. /.owl /Jaloncing. This u:-.c" the communication facility to support
rcnwtc job execution in a uscr-lran-.;parcnt fa:-.hion to improve resource uti­
li;ation and to rninimi1.c re-;pon..,c time. A deci~ion to load balance a job i"l

280 Part II!fopics in Multiprocessing

made if the job is likely to be finished sooner when executed remotely than
when executed locally. Resource scheduling is performed in two phases. In
the first phase, processors are treated as request generators and are assigned
priority equal to the average response time of executing a job locally. The
processor with the highest response time is chosen as the request generator
to send the job. In the second phase, processors are treated as resources
and are assigned preferences equal to the sum of the average transmission
time of sending a job across the network and the average response time of
executing a job locally. The processor with the lowest preference is chosen.
The cost function H(x,, y,.) = -xp + y,. is the reduction in response time
of executing a job remotely at processor r.

In these examples, only linear functions on Xp and y, are defined. In
general, they can be any function satisfying Eqs. (7.2a) and (7.2b).

A general organization of a resource scheduler is shown in Figure 7.8.
There may be multiple classes of problems in resource sharing and they will
be assigned different priorities in scheduling. For example, the network may
be designed primarily for message transfers, and load balancing may be its
secondary function. The resource scheduler will schedule all message trans­
missions before initiating load balancing for the system. For this example,

Highest
Priority
Level

Frtt
Contention

Resull
Return,
Packet
Transrni'ISion

!

p

t-'nrr
Contl'nhon

Job
Migration,
Packet
TnnsmMion

Global Priority Rrsolution

Resource

Rnuuro:e
Schtdulinl
Decision

!

3

Free
Conlentlon

A null
Return,
Packet
Transmission

Job
Migralion,
Packet
Transmis!ilon

l

Lowr~t

Priority
Lnel

Resource
Schrdulinl
lffcision

Schrdulinr, Cia~ K RHourcf'!l Schfitulina Cla!i!i I Rrsourcf'S

Figure 7.8 A protocol to support resource sharing of multiple classes of resources
connected by a multia\.:ccss bus.

Resource Allocation for Local Computer Systems 281

P = 6 and K = 2 in Figure 7.8. Class 1 tasks refer to load-balancing op­
erations, and Class 2 tasks refer to message transmissions. Generally, within
a class of resource-scheduling problem, the return of results from a previ­
ously migrated job, if any, is given a higher priority than the migration of a
new request because any delay in returning results contributes to an increase
in response time, while an earlier transmission of a request to a remote
resource may not reduce the response time unless the remote resource is
idle. The migration of a request is given a higher priority than the identifi­
cation of a new request-generator/resource pair because a request must be
completely sent before it can be processed, and any delay in completing a
job transfer may tie up valuable buffer space unnecessarily and reduce the
resource utilization.

7.4. A Distributed Minimum-Search Algorithm

The operations of the resource scheduler in Figure 7.8 can be reduced to
the primitive operation of identifying the extremum from a set of physically
dispersed random numbers called contention parameters. The generation of
these parameters may be dependent on each other, and may also be site­
dependent. For tractability reasons, the parameters are assumed to be in­
dependently generated and possibly site-dependent in this section. Specif­
ically, the identification of the task with the highest priority in Figure 7.8
can be considered as the search of the maximum priority level from a set
of priority levels, one from each processor. Similarly, the transmission of
a message (result or job) can be regarded as the selection of a ready station
from a set of ready stations, each of which generates a contention parameter
from a uniform distribution between 0 and 1. Likewise, the identification of
a request generator or resource is again the selection of the station with the
maximum or minimum parameter.

Conventionally, the implementation of an extremum-search algorithm
relies on the message-passing mechanism to collect all information to a cen­
tral site. This requires O(n) messages, where n is the number of stations.
ln this section. an efficient distributed protocol for identifying the minimum
is presented. The algorithm for searching the maximum is similar. The pro­
posed algorithm has a load-independent behavior, which is important for
resource-sharing applications because the number of processors to partici­
pate in identifying the extremum is usually large. Conventional contention­
resolution algorithms, such as Ethernet's Binary Exponential Backoff al­
gorithm. is load-dependent. but peri'orms satisfactorily because the channel
load is normally low for point-to-point message transmissions. Moreover,
these algorithms cannot he directly applied to identify the extremum.

It i~ assumed that each processor in the network is capable of main­
taining a global reference interval or window, and counting whether there

282

procedure window _prolocoL_siation_j:

/*procedure to find window boundaries for isolating one of the cont('nding stations t /

[/" window- function to calculate window size w,
random- function to generate local contention parameter,
estimate- function to estimate channel load,
transmit_.signal- function to send signal to bus with

other st.a lions synchronously,

dett·ct- function to d .. tect whether there is collision on the bus (three-state),
r 1 - local contention parameter,
ii- estimated channel load,

lb_rninimurn- lower bound of interval containing minimum {minimum is L),
ub mitnmum upper bound of interval containing minimum (maximum is U),
contending- boolean to continue the contention procPss,
state- state of collision dct<'ct, can be collision, idle, or success

(for three-state collision detection). *I
lb_minimum :--- L;
ub_miuimum :=--lJ;
r 1 ;-random (L,U);
t1 :::...~ estimate ();

w :c-:: window (lb_minimum, ub_minimum, il);
contending ;=--: true;
while (contending) do I

if (ri> lb_minirnurn and r
1
< w) then [

elst' r

I* parameter is inside window, contend for bus *I
transmit_signal();
I* test for unique station in the window *I
state := detect ();
if state :::= c-ollision then

I* update upper bound of interval containing minimum *I
ub_rninimurn :=-- w;

P!se I* successful isolation of minimum *I
return (Jb_rninimum, ub_rninimurn);

w :-- window (lb_minirnurn, ub_minirnum, il)]

state :---= detect();
if statp idic th(•Jl

/* all parameters are outside window *I
I* 11pdate lower hound of interval containing mwirnum *I
lb_rninimurn :- c w

w: window (lb_minimum, uh_minimum, il)

I* sorrw other
contf'nding

r<'turn (failure)

pararnt·tcrs are inside window, stop contf'nding *I
falsf' j

Figure 7.9 Procedure illustrating the basic steps executed in each station for
contending the channel with a three-state collision-detection mechanism.

Resource All,lt':clion for Local Computer Systems 283

is none, one, or more than o_ne t'IIJJicntion parameter falling in the window.
A global window can be mam1111111.·d in all stations if they start in the same
initial state, receive identical iflln11nation from the bus, and execute the same
control algorithm in updating ll11· window with information received from
the bus. Suppose that the set "' U>ntcntion parameters is {xi, ... , Xn) in
the interval between Land U, II lid I hat y, is the i-th smallest of the XJS. To
search for the minimum, an 1111l~;d window is chosen with the lower bound
at Land the upper bound belwn·n Land U. There can be zero, one, or
more than one contention pal;nJwtcr in this window. If there is exactly one
contention parameter in the Willclow, it can be verified as the minimum, Y1·
Otherwise, the window has lo he updated: it is moved if it is empty, or
shrunk to a smaller size if it tonlains more than one number. This process
is repeated until the minimuu1 ,.., 11niquely isolated in the window. An im­
plementation of the distributed WIIIdow-search scheme at Station i, I ~ i ~
n on a multiaccess bus wtth 11 lhrcc-state collision-detection mechanism is
shown in Figure 7. 9.

Figure 7.10 illustrates the· '•h'rs involved in the window-search scheme.
Initially, five stations are rc:ody. 'IIld they sense that the bus is free. Each

L

Station 1

Station 2

Station 3

Station 4

Station 5

w

I

' I I
i
I I
I
I

I
I
I

!
I

I

Step 1: Collision
Update lJppt-r u ,HI tow,

Step 2: No Transmb~~~ ...
lJpdale Lowl·r "'•UJHIIn w

2
'---r-'

Step 3: Successful 'lr4r.,, 1111 ~-.ion
Stop.

Contention
Parameter

u

Figure 7.10 An example illu"11 ·"1rifllhe updates of the global window to isolate
the ..,tation with the minimum' '•ld,·r1tion parameter. (Braces indicate windows
u~ed in different steps.)

284 Part II/Topic:-. in Multiprocessing

of them generates a random contention parameter in (L, U], sets the window
as (L, w,], and transmits in the next contention slot if its contention param~
etcr falls in the window. Station 3 is eliminated in the first iteration. As
Stations I, 2, 4. and 5 transmit, collision is detected. The stations reduce
the upper bound ofthe interval to"'' and set the windows to (L, w2) (identical
for all stations as they use identical window-control algorithms and inputs).
In the second iteration, no transmission is detected because all contention
parameters are outside the window. The lower bound of the interval is set
at w2, and all stations set the windows as (w 2 , wd. In the third iteration,
successful transmission is detected, and the process terminates.

The concept of window protocols has been proposed with respect to
contention resolution on multiaccess networks, but has not been developed
for resource sharing and extremum search in general. Moreover, efficient
and practical window-control algorithms have not been found. The optim­
ization of the window size in the Urn Protocol (34) was studied by Hluchyj
(25), who formulated it into a Markov decision process with an exponentially
large number of states. Mosley and Humble! proposed to use the generation
times of messages as a basis for the transmission order on the bus (44). This
protocol is a generalization of Gallagher's procedure (19), which is itself
based on an idea from Hayes (22) and Capetanakis (6). Towsley and Ven­
katesh (60) and Kurose and Schwartz (36) further extended Mosley and
Humblet's algorithm by developing new heuristics. Mosley and Humble!
also proposed that stations can generate random numbers as the contention
parameters (44). The throughput was analyzed according to an infinite-pop­
ulation assumption.

The basic operations required for the proposed window~search scheme
can be implemented easily either in hardware or in software on an existing
multiaccess network such as the Ethernet. The global window can be main­
tained by updating an initially identical window with a common algorithm
and using identical information broadcast on the bus. Assuming that infor­
mation broadcast is received correctly by all stations, the global window
will be synchronized at all sites.

To count the number of contention parameters falling in the window,
the collision-detection capability of the network interface can be used ef­
fectively to detect whether the previous contention slot was empty, suc­
cessful, or had collision. Stations with parameters inside the window contend
for the bus in a contention slot. If there is more than one station with a
parameter in the window, a collision will he detected. If there is exactly one
:-.tation with a parameter in the window. a successful transmission will be
detected. If there is no station with a parameter in the window, an empty
~lot will he detected. Each iteration of the protocol in Figure 7.9 will he
l·ornplctcd in one contention slot. Hardware implementation will be dis~

cussed in Section 7.4.7 after the window~control algorithms arc presented.
In sy"itcms where modification to existing hardv.'are is impossible, the

window protocol can be implemented in software. Software implementation

a --------------------------

Resource Allocation for Local Computer Systems 285

is only necessary for applications that select a station based on the meaning
of the contention parameter (such as identifying the statioa with the maxi­
mum response time). For applications that need to randomly select a station,
such as identifying a free resource, the existing interface suffices. Suppose
that an existing Ethernet for point-to-point and broadcast transmissions is
available. Stations with parameters inside the window contend for the bus.
The station that is granted the bus will broadcast its parameter. However,
in this case, it is not clear whether exactly one station or more than one
station have parameters inside the window. (This is equivalent to a network
with a two-state collision-detection capability.) Hence, a verification phase
must follow to assert that the broadcast parameter is the minimum. This
verification phase can be implemented as a timeout period, so other stations
with smaller parameters can continue to contend and broadcast a smaller
parameter inside this timeout period. In each iteration of the window pro­
tocol, the channel has to be contended twice, and two broadcasts of con­
tention parameters have to be made. By suitably adjusting the timeout period
according to the channel load, the station with the minimum parameter can
be isolated with a high degree of certainty and without significant degradation
in performance. The window will be adjusted according to the minimum of
the two broadcast contention parameters.

7.5. Window-Control Algorithms

To minimize the number of iterations in the protocol, to identify the minimum,
the window used in each step must be chosen appropriately. Given the lower
and upper bounds of the interval containing the minimum contention pa­
rameter, the lower bound of the window is set at the lower bound of this
interval, and the upper bound of the window is to be chosen. The contention
parameters are assumed to be independently generated from a uniform dis­
tribution in (0, 1]. When the distribution functions are identical but non­
uniform, the contention parameters can be transformed by the distribution
function into uniformly distributed parameters. Four algorithms to determine
the upper bound of the window are described in this section. These algo­
rithms assume that the channel load and the distribution functions from
which the contention parameters are generated are exactly known. Methods
to estimate the channel load will be presented in Section 7.5.5. The per­
formance is worse when the channel load is estimated. Lastly, issues on
finding the distribution functions and implementation arc discussed.

7.5.1. Binary-Divide Window Control

A straightforward way to choose the upper bound of the window in each
iteration is to set it midway in the interval containing the minimum. Binary
search is applied in each iteration to eliminate half of the remaining interval.
This method provides a lower hound on the performance.

286 Part urropics in Multiprocessing

The overhead is analyzed in terms of the number of iterations of the
protocol to determine the minimum. In any given step, if the window size
is greater than the distance between the two smallest parameters, y 1 and y 2 ,

the minimum may be isolated depending on the relative positions of y 1 , y 2 ,

and the window (Figures 7.11 a and 7. llb). On the other hand, if the window
is reduced to a size smaller than the distance between y 1 and y 2 , and the
bounds of the window are updated according to the procedure in Figure 7.9,
the minimum will always be isolated in such a window. This is illustrated
in Figure 7.llc. Hence, the maximum number of iterations to resolve the
minimum never exceeds the number of steps to reduce the window to a size
smaller than the distance between y 1 and y 2 , Assuming that k steps are
required, the following condition holds:

2-A: < Y2 - y, < 2 <k---o 17.4)

Taking the logarithm of the inequality in Eq. (7.4) and rearranging it,

[
_ log.(y2 - y1)] < k < [1 _ loge(Y, - Y1JJ

log,2 log,2
(7.51

This inequality gives the upper bounds of the binary-divide window-control
rule for given y, and }'2.

From the theory of ordered statistics (9), if the y,s are uniformly dis­
tributed in (0,1], then the joint probability density function of y 1 and y 2 is

1
n' (

~I - 2)! I
)
n-2 - y, for I "" y, > y 1 "" 0

(7.6)

otherwise

From Eqs. (7.5) and (7.6), E(k), the average number of iterations to
resolve contentions in the binary-divide window-control rule, can be ob­
tained by integrating the weighted upper bound over the domains of y 1 and
Y2·

E(K) < _f,,' (
1
," [1- log,.(y,- y 1)]

111 (I- •)"- 2 d• d· }, J, log,2 (n - 2)!) 2
)

1
)

2

n! Jl [J" J I -
11

log,.(J'2 - y 1) dy 1 (I - y 2)''-
2 dy2

(n - 2)' log,.2 o

Because J(\;c log.,(Y2 - y d dy 1 = Y2 logeY2
as

(7.71

y 2 , Eq. (7.7) can be simplified

UK!<
nl il 1 - --=-· (I - y 2)''-

2 (y 2 log,.y, - v,J dy,
(n - 2) 1 log,.2 o

I ?.HI

I
I

I.

i
I
'

\

\

I

Resource Allocation for Local Computer Systems 287

Window Window

y,

(a) Contention is resolved by
a window with size greater
than (y1-y1),

(b) Contention is not resolved
by a window with size
greater than (y1-y1).

Window

(c) Contention is always resolved
if size of window is smaller
than (y2-y1) and lower bound
or window is smaller than y •.

Figure 7.11 Possible sizes and positions of a window during a contention step.

The integration in Eq. (7.8) can be evaluated to become

l' (I - y,)"- 2y,log,y, dy, ~ Hn- Hn-l

where Hn is the harmonic mean of the series {I, 2, ... , n). i.e.,

I " I
Hn ~ - L -;

n i=J l

(7.9)

(7.10)

The harmonic mean is approximately equal to [log,n + -y + 0(1/n)]/n (49),
where -y is a constant. Hence, from Eqs. (7.7) through (7.10), we obtain

n(n - I) [(logn,n _ E(k) < I - ---':-_c:-'-

log,2
log,(n -

n - I

(7.11)

Because log,n = log,(n - I) for large n, Eq. (7.11) may be reduced to

E(k) < I + n (n - I) (o..:l_+_l:.::o.=:g,,_n:..:) < 3
log,2 n(n - I)

(7.12)

Hence,

E(K) ~ O(log2n) (7. 13)

288 Part ll/Topics in Multiprocessing

In addition to the preceding analysis, simulations have been conducted
to evaluate the performance of the binary-divide window-control rule. The
simulation program was written in FORTRAN 77 and was executed on a
DEC VAX 11/780 computer. In each simulation run, N random numbers
were first generated in (0, I], and successive windows were generated until
the station with the minimum parameter was obtained. A 95% confidence
interval of± 0.1 was used in the simulations. The results are plotted in Figure
7.12. Note that the average number of iterations is smaller than O(log2n),
which confirms that O(log,n) is the upper bound of the average performance.

7.5.2. Dynamic-Programming Window Control

The size of the window in each iteration of the window protocol can be
controlled by a dynamic-programming algorithm that minimizes the expected
total number of iterations before the minimum is isolated. The following
notations are first defined:

N(a, h) the minimum expected number of iterations to resolve con-

z
2;-
t-z z..,
"'"' z..,
8~
"-< 00..
c:o::=
"'u =<
::;:"'
::le>:
zo
"'"" e,e~::

...:t-
c:o:O ..,_,
;."'
<

4.5

4.0

3.5

3.0

2.5

2.0

Mo¥ing Average with
Ont' Window look Back

________ L __

--- ~ MovmcA_::~~~':h~~'!~oe~c~nts __ ,__ __ _
--- Apprmt. Grft'dy

Oplimiud Greoedy Window Control
Window Control

I . •· '• • '•."' •'.''.' • •.• •• • • ..

..... ·····•·•· • ~ Dynamic-Programming

_: Window Control

1.5 '----c:':,------::L---:',-----'---c:':--'-::---L-----'
0 10 20 30 40 50 60 70 80

NUMBER OF CONTE:>o/DI:>o/G STATIONS

Figure 7.12 Performance of the window protocol with different window-control
and load-estimation methods. (Solid lines assume that the channel load is exactly
known; for dashed lines, the channel load is evaluated from previous experience.)

d
e
a
s
il
e
e

'
' ,

,<?(w, n, a, b)

C(w, n, a, b)

r(w, n, a, b)

Resource Allocation for Local Computer Systems 289

tention given that there are n contention parameters in (a, U]
and collision occurs in the current window (a, b)
probability of success in the next iteration if a window of (a,
w], a < w < h, is used
probability of collision in the next iteration if a window of
(a, w], a< w < b, is used
probability of no transmission in the next iteration if a win­
dow of(a, w], a< w < b, is used

It follows directly from the preceding definitions that

t(w, 11, a, b) + g(w, 11, a, b) + r(w, n, a, b) = I (7.14)

As the Principle of Optimality is satisfied, the problem of minimizing
the expected total number of iterations is reduced to that of finding w that
minimizes the expected number of future iterations should collision or no
transmission be detected in the current iteration. The problem can be for­
mulated recursively as

N(a, b) = min {I + O·g(w, n, a, b)
u<w<:_b

+ N(a, w)-f(w, n, a, b) + N(w, b)·-y(w, n, a, b)) (7.15)

The probabilities g(w, n, a, b), C(w, n, a, b), and r(w, n, a, b) can be
derived from the distributions of the contention parameters and the state of
contention. When transmission is unsuccessful, it is always possible to iden­
tify a window (a, b] such that at least two of the x,s lie in (a, b] and no X;

is smaller than a. This condition is designated as event A.

A = {at least two x;s are in (a, b], given that all x;s are in (a, U])

Suppose that the window is reduced to (a, w], a < w < b, in the next
iteration, three mutually exclusive events corresponding to three possible
outcomes can be identified:

B {exactly one of the x,s is in (a, w], given that all x;s are in (a, U])

C {no x; is in (a, w], given that all x;s are in (a, U])

D {more than one x; is in (a, w], given that all x,s are in (a, U])

From these events, the probabilities can be expressed as

,{,'(H', n, a, B)

r(H', n, a, b)

{ I }
_ Pr{A n B)

Pr B A - Pr{A}

Pr{CIA}
l'r{A n C)

Pr{A}

(7.16]

(7.17}

290 Part llrTopics in Multiprocessing

The set A n B represents the events that exactly one of the x,s is in (a, w],
that at least one x, is in (w, b], and that all others are in (w, U]. The set A
n C represents the event that at least two x,s are in (w, b], given that all
x,s are in (w, U].

Let F,(x) (resp. f,(x)) be the distribution (resp. density) function that
governs the generation of X;, 1 ~ i ::-:::;:: n, where n is the number of contending
stations. Then event A occurs with probability:

Pr(A) =

,rl, [I- F,(a)]- ;i, {[F,(b)- F,(a)]
1
D, [I- fj(b)]}- ,rl, [I- F,(b)]

j#-i

" fl (I - F,(a))
i= I

(7.18)

The first and last terms of Eq. (7.18) indicate the probabilities that all x,s
are greater than a and h, respectively. The second term is the probability
that exactly one of the x,s is in the window (a, b]. Similarly,

!,'(w, 11, a, h) =

L [F,(w)
1~ I

Pr(A) fl (I - F,(a))
i~ 1

(7.19)
r(w, 11, a, h) =

n

fl [I - F,(h)]
i ~ l

}""i

"
Pr(A) fl (I - F,(a))

i= 1

(7.20)

It follows that an optimal window can be derived in each iteration once
the channel load and the distributions of contention parameters are known.
However, the dynamic-programming formulation is continuous and requires
infinite levels of recursion. Boundary conditions must he set to terminate
the evaluations after a reasonable number of levels. In practice. the x;s may
represent indistinguishable physical measures when their difference is less
than 8. It is assumed that when the window size is small than 8, the prob-

Resource Allocation for Local Computer Systems 291

ability that two stations have generated parameters in this interval is so small
that contention can always be resolved in one step. The following boundary
condition is included:

N(a, h) ~ I for all (h- a)< o
The value of 8 was set to I/(I 0 x n) in our evaluations for continuous
distributions, and to I for discrete distributions. The results of the evaluation
arc plotted in Figure 7. 12, which shows that the average number of iterations
is bounded by 2.4. independent of the number of contending stations. This
performance is much better than that of the Binary Exponential Backoff
Protocol of Ethernet (52) as shown in the simulation results in Figure 7.13.
It must be pointed out the simulation results for the proposed window pro­
tocol assume that the number of contending stations is known, while those
of the Binary Exponential Backoff protocol start out with one contending
station. However. the advantage of the window protocol is that the channel
load can be estimated easily from previous windows (Section 7.5.5), pro­
vided that the arrival rate does not change abruptly and that the degradation
in performance with estimated loads is negligible. In case the channel load
cannot be estimated and the binary-divide window-control protocol has to
he used, the performance is still much better than that of Ethernet.

Arrow et al. had studied a similar problem with the difference that the
number of contending stations in a collided window is assumed to be known
exactly (I, 54). The problem was formulated into a .finite recursion, and an

32

28

cr. 24 ;...
~q -- Ethernet
:cz 20 :::;:7
;.:;-
'"£= t6 of-
~~
r:~

t2

~8
"' "''"' 0

K

4

0
() 1() 20 J() ... w 50 6o 70 sn

Figun.· 7.U Compari-.on of Ethernet"-. Binary Expnncntial Backolf Protm:nl with
the propO<.,l'd windtm pn)\()l't)l.

292 Part Il/Topics in Multiprocessing

asymptotic bound of 2.4 iterations was obtained by numerical evaluations.
We have obtained comparable results when only ternary information on
collision is available and the infinite dynamic programming tree is truncated.
This shows that the information on the exact number of contending stations
is insignificant.

Although optimal, the dynamic programming algorithm has a high com­
putational complexity, which makes the algorithm impractical for real-time
applications. As an example, the execution time to evaluate Eq. (7.15) on
a DEC VAX 11/780 computer is 1.3 s for n = 20, and increases to 828 s for
n = 100. Efficient hardware implementations will be discussed in Section
7.5.7.

7.5.3. Optimal Greedy Window Control

The optimization of window control using dynamic progra~ming requires a
high computational overhead because it examines the entire sequence of
possible future windows to determine the window to be used in the next
iteration. To reduce this overhead, only one future window may be exam­
ined. An optimal greedy window-control scheme is one that finds a window
to maximize the probability of success, J?(w, 11, a, b), in the next iteration.
When the contention parameters have identical continuous distributions,
F(x), g(w. n. a, b) can be expressed in a simple form as

g(w, n, a. h) = K[F(w) - F(a)J{[I - F(w)]"- 1 - [I - F(h)]"- 1} 17 21)

where K = ni{Pr(A)[I ·- F(A)]"}.lt can be shown that Eq. (7.21) is unimodal
between a and h, so a maximum exists in the window (a, b]. To find the
optimal value of w, we set (il/aw)g(w, n, a, b) = 0 and solve for H'. This
derivation leads to the following equation if f(w) Y' 0:

[I - F(w)[" 1 --[I - F(h)]''- 1

= (n - I)[F(w) - F(a)Jll - F(w)J"· 2 17.22)

If c = I - F(w), Eq. (7.22) becomes

-" - I
In - ll[l F(a)Jz" 2 I I - F(b)]"' I

= () 0.23) n n

It can be shown that a real root of Eq. (7 .23) exists and 'jatisfics the inequality
II- Flhll<c,<(l- F(a)).Thereisnoclosed-formsolutiontoEq.I7.23J.
and:::, has to he solved numerically. Once;,, is obtained. II",, the upper bound­
ary of the window, can he computed directly from::" as

11', = F 1 (1 c .. J 0.24)

The pcJi'ormancc of the greedy scheme is measured hy the average
number of iterations expended he fore the minimum i"' identified. It has hecn

Resource Allocation for Local Computer Systems 293

proved that the average number of iterations to resolve contention is
bounded by 2.7 when the contention parameters are generated from a single
distribution function [see Figure 7.12 (62)]. The computational overhead to
solve Eq. (7.23) numerically is independent of nand is less than Is of CPU
time on the DEC VAX 11/780 in most cases.

It is worth noting that a binary-divide window-control scheme is de­
rived from the optimal greedy window-control scheme by setting n to 2.
When n is 2, Eq. (7.23) is evaluated to become F(wo) = [F(a) + F(b)]/2.
If F(y) is uniformly distributed in (0, 1], then W 0 = (a + b)/2. The binary­
divide control rule can also be used as a heuristic for window control with
general distribution functions. It can be interpreted as one that always pre­
dicts that there are two contending stations. As a result, it petforms well
when the channel is lightly loaded, and degrades to have an O(log,n) per­
formance when the channel load is heavy.

7.5.4. Approximate Greedy Window Control

The approximately greedy window-control scheme is similar to the optimal
greedy window-control scheme except that an approximate equation on suc­
cess probability is used. Eq. (7.21) may be rewritten as

n-2

g(w, n, a, b) = K[F(w) - F(a)][F(b) - F(w)][l - F(w)]"-
2 ~ v'

i=O

(7.25)

where v = [I - F(b)]/[1 - F(w)]. A function g(w, n, a, b) that has a
maximum very close to that of g(w, n, a, b), can be obtained by replacing
the term [~7~.? v'] with (n - 1). That is,

g(w, n, a, b) = K'[F(w) - F(a)][F(b) - F(w)][i - F(w)]"-
2

(7.26)

where K' = (n - I)K. By solving (a/aw) log,g(w, n, a, b)] 0, we obtain

f(w) _ __c:__:_cc____ +
F(w) - F(a)

f(w) + (n - 2)j(w) =
0

F(w) - F(b) F(w) - I
(7.27)

or. equivalently,

[F(w) 2 + C[F(w)J + D 0 (7.28)

where

c = '-'("c______:_:l lcc.[f:_'c::("=--) _+:__:f_.' (::_b :..!.)]_+:__::2
n

D
F(a) + F(b) + (n - 2)F(a)F(b)

n

294 Part II/Topics in Multiprocessing

A solution to Eq. (7.28) in the window (F(a), F(b)] is given by

-C- VC'- 4D

2 (7.29)

The approximate window"'" as calculated from Eq. (7.29) gives a perform­
ance that is nearly as good as that of the optimal greedy scheme (see Figure
7. 12). The computational overhead to calculate Eq. (7.29) is independent of
nand can be done in Jess than 100 J.LS on the DEC VAX I 1/780.

7.5.5. Load Estimations

Before the window-control protocol is carried out, the number of contending
processors must be estimated from the distributions of the contention pa­
rameters and the statistics of previous channel activities. This information
is essential in estimating an initial window and in controlling the dynamic
changes in window sizes in the current contention period. A method based
on maximum-likelihood estimation is described here.

After the 1-th message is transmitted, the window (L, w(l)] that suc­
cessfully isolates the station with the minimum is known to all processors.
A maximum-likelihood estimate of n(t), the number of stations that have
participated in the contention, can be computed from a likelihood function
on the probability of success that the minimum lies in (L, w(t)]. Assuming
that the contention parameters are independently and uniformly distributed
in (0, I], the likelihood function is derived as

LK(ii(t), w(l), 0) = Pr(O < Y1 < w(l) < Y
2

)

= ii(t)w(l)(l - w(l))""'- 1 (7.30)

LK(n(l), w(t), 0) is maximized at

ti(t) = Log,.(l-1 w(I))J 0 < w(l) < (7.31)

The number of contending stations to transmit the (I + 1)-th message can
be obtained by adding to fi(t) the difference between the possible arrivals
after the 1-th message has been transmitted. The average number of iterations
to resolve contentions using this load-estimation method is 3.1 as shown in
Figure 7.12.

Because the extremum is readily available when contention is resolved,
this information can be "piggybacked" in the packet transmitted. Hence,
an alternative estimate is based on the density function of this statistics. The
conditional density of Y1 is

(7,_1,::0)

Resource Allocation for Local Computer Systems 295

Because the contention parameters are independently and uniformly dis­
tributed in (0, 1],

fy,y,(y,, y,) = (n- 1)(1 - y,)"- 2

Substituting Eq. (7.33) into Eq. (7.32) yields

I
f y,(y, I 0 < Y, < IV< Yz) = -

w

(7 33)

(7 34)

This result shows that the distribution of y 1 is determined once the window
(0, IV] is known. Therefore, no new information is gained by using this first­
order statistic in estimating n.

The accuracy on load estimation can be improved by using information
on previous windows that successfully isolate a single station. A technique
in time-series analysis called Auto-Regressive-Moving-Average (ARMA)
model can be applied to obtain an estimated window based on all previous
windows, w(l), w(2), ... , w(t). A simple example is computing a moving
average, "'""'(/), using the following formula:

,)-"''"·{t-l)+w(l)
\1 m,,(f -

2
(7.35)

The value of w,,,(l) is then used in Eq. (7.30) to estimate the channel load.
The pe1i'ormance of using ARMA load estimation is very close to that when
the channel load is exactly known (see Figure 7.12).

7.5.6. Estimating the Distribution Functions of Contention
Parameters

In applications such as load balancing and finding the highest-priority class,
the distribution functions from which the contention parameters arc gen­
erated arc unknown and have to be estimated dynamically. Generally, the
distrihution functions are assumed, and parameters of the distribution func­
tions arc estimated from statistics collected. Because information on the
distribution functions is essential and must be consistent for all sites to op­
timize the window search, independent monitoring of local information and
information broadcast on the bus may be insufficient and may lead to un­
stable operations.

For loading balancing, a single site is responsible for collecting the
distrihution functions on local response times and distributing them to other
sites (3). For ~cheduling transmissions with the highest-priority level. in­
formation on the priority levels of messages transmitted can he ohserved on
the hu~. A~ an example, let A,. he the arrival rate of messages to the i-th
priority level and t 1 he the arrival time of the most recent packet in the i-th
level that has been transmitted. Assuming a Poisson process for the packet
arrivals. the probability that at least one station has a message in the i-th

296 Part II/Topics in \1ultiprocessing

priority level is

p, = 1 - [. t....,e-"· 1 d! = e-;..,(T-:,)
. 7 ·~I i

(7.36)

v,.:here Tis the current time. The distribution that a station generates ames­
sage in the i-th priority· level is

F,(k) •••• F " (T ") •

k<i
i ~ k ~ p
k>P

(7.37)

\vhere P is the total number of priority levels in the system. The arrival time
of a packet may be acquired by piggybacking this information on the packet
transmitted. The packet arrival rate may be estimated by observing the
packet arrival times.

The proposed window-control algorithms arc quite robust with respect
to changes in the distribution functions. Experiments on variations of the
parameter of a Poisson distribution did not lead to any significant degradation
in performance. Ho\\·evec there is always a delay between the time that the
distribution function is changed and the time that this change is propagated
to all sites. The optimization in the window protocol may be unstable if
changes cannot be disseminated in time. The method for estimating the dis­
tribution functions is highly problem-dependent and is currently a problem
under investigation.

7.5.7. Implementation of the Window Protocol on Ethernet
Interfaces

\Ve have presented four \\.:indow-control protocols in this section. \Vindow
control using dynamic programming requires a high computational overhead.
while the other \\'indov,·-control algorithms require less computations but
give poorer performance. The implementation on Ethernet-type interfaces
has a stringent real-time requirement because each contention slot has a
duration of less than ()0 f.1S on a 10-Ivfbps network (l2). The direct compu-­
tation of the binary-divide and approximately greedy windo\v-control
schemes can satisfy this timing requirement. In this section. \Ve describe a
lookup-table method for implementing the dynamic-programming window
control.

The -;cqucnce of \\·indows evaluated by dynamic programming can he
precomputed and stored in a lookup table. Given a channel load n. the se­
quence of uptlrnal windows derived from Eq. (7. I)) constitutes a binary
dcci'iiun tree (Figure 7. !4a). The root of a subtree represents a window. The
optimal windd\\' ror the next iteration will reside in the left subtree if collision
j, detected in the curTcnt iteration. It will be in the right subtree if no trans-

i

L Success ' Success ' U
• ~32 ~3~ • ~34

Wz,t "l,l WJ,l Wt,l "'l.l "'1~

I e \ I e \1 \ t \

I
I

(a) Binary Decision Tree

(b) Corresponding Data Structure

Number or
CODteDding
Stations

Figure 7.14 Lookup-table implementation of dynamic-programming window
control. (a) Binary decision tree. (b) Corresponding data structure.

297

298 Part ILTopics in Multiprocessing

mission is detected. A set of binaq.r trees. each of which corresponds to a
channel load. can be constructed and stored as a lookup table in each station.
The data structure for implementing the binar:y decision tree is shown in
Figure 7.14b. The optimal window in each iteration can be retrieved effi­
ciently· in real time. The windows are evaluated based on a uniform distri­
bution of the contention parameters. ln applications where the contention
parameters have identical but nonuniform distributions, they must be trans­
formed by the distribution function into the uniform distribution before the
lookup table is used.

One problem v.'ith the lookup-table method lies in the large memory
space required. Since the average number of iterations is small, some sub­
trees can be pruned to reduce the memory space without significant deg­
radation to performance. Window boundaries in the pruned subtrees have
to be obtained by· interpolation techniques. Likewise, for those channel loads
for w·hich no decision trees are stored, interpolation has to be used to obtain
the v.. .. indov.r boundaries.

The lookup-table method has been designed on existing Ethernet in­
terfaces (65, 68). A microcontroller, Intel MCS 8396. is placed between the
Ethernet-protocol chip, Intel 82586, and the collision-detection chip, Intel
82501. A decision tree of four levels as evaluated by dynamic programming
is used, and the microcontroller sv..·itches to binary-divide window control
when more than four contention slots are needed. Sixteen-bit random num­
bers arc used for the contention parameters and the entries of the decision
tree. The channel load is assumed to vary from 1 to 100 stations. Hence,
the total space required for storing the lookup table is 3 kbytes, which can
fit in the 8-kbyte read-only memory of the MCS 8396. The performance of
the truncated decision-tree method is less than 3.0 contention slots when n
:;.= 100 (Figure 7 .12) as the number of slots to resolve contention is normally
less than four.

The balanced binary tree in the preceding implementation simplifies
the data structure. However. the performance can be improved if a skewed
binary tree is used. The reasoning behind the skewed tree is that when a
collision occurs, the left subtree is traversed and the size of the interval
containing the minimum is smal!. In this case, a binary-divide control works
\veU. On the other hand, \Vhen no transmission is detected, the right subtree
is traversed and the size of the interval containing the minimum is not re­
duced significantly. In this case, the binary-divide control does not \vork
well. Experimental results indicate that less than 2.5 slots are required to
resolve a contention when a ske\ved binary tree with a height equal to n and
a height of I for the left subtree of every nontcrminal node (n is exactly'
kn(nvn) is used. This means that ::.n words are required for every d)mamic
programming tree. The total rnemory' space required for n ranging from I
to 60 stations is 7.3 kbytcs.

·I •

Resource Allocation for Local Computer Systems 299

7.6. Conclusions

In this chapter, we have shown that a class of resource-allocation problems
for a local computer system connected by a multiaccess bus can be reduced
to the problem of determining the extremum from a set of physically dis­
tributed random numbers. A distributed algorithm to identify the extremum
in a constant average time independent of the number of contending stations
is proposed. The correspondence between the properties of our design and
the proposed methodology is summarized in Table 7. I. The load-independent
behavior of the proposed algorithm is important because the number of con­
tending stations to identify the extremum is usually large. Most existing
contention-resolution algorithms, such as the Binary Exponential Backoff
algorithm of Ethernet, are load-dependent and cannot be used to identify
the extremum. The proposed algorithm can be implemented in hardware on
a contention bus with the collision-detection capability. The overhead in
each iteration is the time for a contention slot. On the other hand, it can
also be implemented in software on existing multiaccess networks. In this
case. two messages have to be transmitted in each iteration. It must be
pointed out that the proposed window control is optimal in the sense of
minimizing the number of iterations before the extremum is found, but is
not optimal in minimizing the expected delay or maximizing the average
throughput of the network.

The proposed algorithm requires the reliable transmission of collision
and broadcast information to all processors. This may be difficult if the
channel is noisy. Incorrect information received may cause indefinite con­
tentions and the inability to identify the extremum. The problem can be
resolved by broadcasting the extremum after it is found. Further, the pro­
posed algorithm has a predictable average behavior. Significant deviation
from this behavior can be used to indicate an unreliable channel.

Besides the resource-sharing applications discussed in this section, the

Table 7.1 Application of the Methodology to Design the Proposed Resource­
Allocation Scheme in a Single Contention-Bus Network

Methodoloxy

Optimal allocation

Di..,trihuteJ algorithm

Prinuttve operation

lmplenJenlatum

Design

{
Request of highest priority
Resource of highest preference

Di ... tributeJ minimum-search

WinJow search

Colli~ion Jetection

1
No explicit message transfer
2.4 contcntton slots (optimal)

300 Part 11/Topics in Multiprocessing

proposed algorithm can be extended to resolve contentions for multiple mul­
tiaccess or bit-parallel buses (31, 43, 61, 65), maintain consistency and pro­
cess queries in distributed databases (66), and unify many existing adaptive
CSMA protocols (28).

Problems

1. What arc the advantages and disadvantages of maintaining a queue at
each resource'! Discuss the issue with respect to the processing speed of
the resource and message delays in the resource-sharing interconnection
network.

2. In a resource-sharing system with a central scheduler, status information
of a request is obtained by transferring messages through a message­
transfer subsystem. Assuming N requests are pending for service, how
many message transfers are necessary for the scheduler to determine the
request of the highest priority? If the distributed minimum-search algo­
rithm is applied, how many message transfers are necessary?

3. If the resource-sharing interconnection network comprises multiple con­
tention buses. multiple requests can be transmitted simultaaeously. As
a result, t requests of the highest priority have to be identified when there
are t buses available. Modify the distributed minimum-search algorithm
such that multiple buses can be utilized to search these requests in
parallel.

4. After the successful completion of the distributed minimum-search al­
gorithm, three events can be identified: (I) no x 1 is in the interval[L, a];
(2) the minimum of x,s is in the interval (a, w]; and (3) the second min­
imum is in (w, h]. Formulate a maximum likelihood estimate of Ii based
on these three events.

5. Suppose that the number of processors involved in the distributed min­
imum-search procedure is governed by a Poisson process. Use this a
priori information together with the three events described in Problem
(4) to formulate a Bayes estimate of ft.

6. In dynamic-programming window control, a boundary condition is in­
cluded that results in a truncated dynamic programming tree. Show that
the numhcr of nodes in a truncated tree is proportional to the number of
contending station~.

References

l. Arrov .. · K. Pe-.;ott.:himky L, Sohd M: On rartilioning a sarnrk with hinary-typc
L[tH:'>tion'> Ill lieu of collecting oh:..ervation'>. loll rna/ or rltt' A.tnt'rican Stuti\'fical

Aswciation, Vol. 7h. No. J74, June 19HI, pp. 402-40~.

Resource Allocation for Local Computer Systems 301

2. Bacr JL: Computer Systems Architecture. Computer Science Press. Rockville,
MD. 1980.

3. Baumgartner KM, Wah BW: The effects of load balancing on response time for
local computer systems with a multiaccess network. Proc. International Con­
ference on Communications, IEEE, June 1985, pp. 10.1.1-10.1.5.

4. HergerT, Mehrauari N, Towsley D. Wolf JK: Random multiple access and group
testing. Tran.\. on Communications, Vol. COM-34. No. 7, IEEE, July 1984, pp.
769-779.

5. Briggs FA, Fu KS. Hwang K, Wah BW: PUMPS architecture for pattern analysis
and image database management. Trans. on Computers, IEEE, Vol. C-31, No.
10. Oct. 1982, pp. 969-983.

6. Capetanakis J: The Multiple-Access Broadcast Channel: Protocol and Capacity
Considerations, Ph. D. Thesis, Massachusetts Institute of Technology, 1977.

7. C:apetanakis J: Tree algorithm for packet broadcast channels. Trans. on In/or­
marian Theory, IEEE, Vol. IT-25, No.5, Sept. 1979, pp. 505-515.

H. Capetanakis J: Generalized TDMA: The multi-accessing tree protocol. Trans.
on Communications, IEEE, VoL COM-27, No. 10, Oct. 1979, pp. 1479-1484.

9. David HA: Order Statistics. John Wiley & Sons, New York, 1970.
10. Day JD: Resource sharing protocols. Computa. IEEE, Vol. 10, No. 9, Sept.

1977, pp. 47-56.
11. Dennis JB: Data flow supercomputers. Computer, IEEE, Vol. 13, No. 11, Nov.

1980, pp. 48-56.
12. Digital Equipment Corp., Intel Corp., and Xerox Corp., Ethernet: Local Area

Network Data-Link Layer and Physical Layer Specifications, Version 1.0, Sept.
30, 1980.

13. Dijkstra EW: Cooperating Sequential Processes. In Genuys F (ed): Programming
LanguaRes, Academic Press, New York, 1968.

14. Dubois M, Briggs FA: Effects of cache coherency in multiprocessors. Trans.
on Computers, IEEE, Vol. C-31, No. II, Nov. 1982.

15. Enslow PH: Multiprocessor organization. Computing Surveys, ACM, Vol. 9,
March 1977, pp. 103-129.

16. Feng TY: A survey of interconnection networks. Computer, IEEE, Dec. 1981,
pp. 12-27.

17. Frankovich JM: A bandwidth analy~is of baseline networks. Proc. International
Confen'ncc on Distributl'd ComputinK Systl'ms, IEEE, Oct. 1982, pp. 572-578.

18. Fuller SH. Harbison SP: The C.mmp Multiprocessor, Technical Report, Car­
negie-Mellon University, Pittsburgh, PA, 1978.

19. Gallagher RG: Conflict resolution in random access broadcast networks. Proc.
AFOSR Workshop Communicmion Theory and Applications, Sept. 17-20, 1978,
pp. 74-76.

20. Gold Yl, Franta WR: An efficient collision-free protocol for prioritized access-

21.

control of cable radio channels. Computer Network.\·, North-Holland, Amster­
dam, Vol. 7. pp. 83-n.
Ham.en PH: Distributed proce-;ses: A concunent programming concept. Com­
munications ofACM, Vol. 21. Nov. IY7H. pp. 934-941.
Hayc-; JH: An adaptive technique for local distrihution. Tum.\. Communication.\,
1/-.EL. Vol. COM-26, No. X, Aug. 197X.

302 Part II!Topics in Multiprocessing

23. Hoare CAR: Monitor; An operating system structure concept. Communicatiom
ofACM, Vol. 17. No. 10, Oct. 1974, pp. 549-557.

24. Hoare CAR: Communicating sequential processes. Communication (~r ACM,
Vol. 21, No.8, Aug. 1978, pp. 666-667.

25. Hluchyj MG: Multiple Access Communication: The Finite User Population Prob­
lem, Ma<;sachusett<; Institute of Technology, Cambridge, MA, Nov. 1981.

26. Hwang K, et al: A Unix-based local computer network with load halancing.
Computer, fEEt:, Vol. 15, No.4, April 1982, pp. 55-66.

27. Jayaraman B, Keller RH: Resource expressions for applicative language. Proc.
19R2 International Conferenn' on Parallel ProcessinR. fEEt:, Aug. 1982, pp.
162-167.

28. Juang JY. Wah BW: Unified window protocol for local multiaccess networks.
Proc. Third Annual Joint Conference qf'th£• IEEE Computer and Communication
Socit'ties. IEEE, April 1984, pp. 97-104.

29. Juang JY, Wah BW: A multi-access bus-arbitration scheme for VLSI-dcnsed
distributed systems. Proc. National Computa Conference, AFIPS Preo;;s, Vol.
53, July 1984, pp. 13-22.

30. luang JY, Wah BW: Optimal scheduling algorithms for resource sharing inter­
connection networks. Proc. EiRhth International Computer Softu·are and Ap­
plication\· Conference, fEEt;, Nov. 1984, pp. 217-225.

31. Juang JY: Resource Allocation in Computer Networks, Ph.D. Thesis. Purdue
University, West Lafayette, IN, Aug. 1985.

32. Kleinrock L Que~u'inR Theor_v, I, Addison-Wesley, Reading, MA. 1972.
33. Kkinrol:k L, Tobagi FA: Packet switching in radio channels: Part !-carrier

sense multiple access modes and their throughput-delay characteristics. Trans.
on Communications, iEEE, Vol. COM-23, No. 12, Dec. 1975. pp. 1400-1416.

34. Klcinrock L. Yemini Y: An optimal adaptive scheme for multiple access broad­
cast communication. Proc. International ConJl'rt•nce on Communications,
11-.l:L, 1978, pp. 7.2.1-7.2.5.

35. Kung HT: Why sy-;tolic architectures. Computer, lt:F:.'E, Vol. 15, No. 10. Jan.
19H2, pp. 37-46.

36. Kuro-;e JF. Schwartz M: A family of window protocols for time-constrained
application-; in CSMA networks. Pmc. Second Joint Confcn•ncc of" Computer
and Communication Societil's, lf.'Et:, 1983, pp. 405-413.

37. Leinhaugh DW: High-level -;pecifications of resource sharing. Proc. Interna­

tional Conference on Parallel Proces.";ing, 1/::Er:, Aug. 1981. pp. lh2-lh3.
3H. l.cinhaugh DW: Selector: High-level resource schedulers. Trans. on 5;(~/f11·are

f:ngineerinf..!, fEEl::. Vol. SE-10. No. II, Nov. l9X4, pp. 810-824.
39. Liskov BH, eta!: CLU Reference Manual (Lecture notes in Computer Science).

114. Springer-Verlag, l9Xl.

40. l.i~kov BH. On linguistic support for di~tributcd programs. Tmns. on S1!f!H·are
l:"ngiw•t'ring, !EEf;, Vol. SE-8, No.3. May 19H2., pp. 203-210.

41. Manner H.: Hardware task/procc~sor scheduling in a polyproce..,sor em·ironrncnt.
Tmns. on Computas, lf."I:E, Vol. C-JJ. No. 7. July l9H4, pp. h26-hJh.

42. Mct• .. :alfc R.M. Bogg-.; DR: Ethernet: Di~trihuted pat:kct -;witching for lncd com­
puter networks. Comm. ~~f"th1· AC:\1, Vol.]I}, No.7. July 1976. pp .. 19.'i--Hl4.

·B. \lok AK. Ward SW: Diqrihuted broadcw·;t channel accc<.,s. Comf)/tfer SetH·or/..s,
Vol. J. 1979. rr. 327-J.l'i.

Resource Allocation for Local Computer Systems 303

44. Mosley J, Hamblet P: A class of efficient contention resolution algorithms for
multiple access channels. Trans. on Communications, IEEE, Vol. C-35, Feb.
1985, pp. 145--157.

45. Li MN, Hwang K: Optimal load balancing strategies for a multiple processor
system. Proc. Tenth International Conference on Parallel Processing, IEEE,
Aug. 1981, pp. 352-357.

46. Ni LM, Li X: Prioritizing packet transmission in local multiaccess networks.
Proc. Eighth Data Communications Symposium, IEEE, 1983.

47. Ousterhout JK, Scelza DA, Sindhu PS: MEDUSA: An experiment in distributed
operating system structure. Communications of ACM, VoL 23, No.2, Feb. 1980,
pp. 92-105.

48. Patel JH: Performance of processor-memory interconnections for multiproces­
sors. Trans. on Computers, IEEE, Oct. 1981, pp. 771-780.

49. Reingold EM, Nievergelt JN, Deo N: Combinatorial Algorithms, Prentice-Hall,
Englewood Cliffs, NJ, 1979.

SO. Riche DM, Thompson K: The Unix time-sharing system. Communications,
ACA1, Vol. 17, No.7, July 1974, pp. 1278-1308.

51 . Selinger PG: State-of- the-art issues in distributed databases. Trans. on Software
Engineering, IEEE, Vol. SE-9, No. 3, May 1983, pp. 218-219.

52. Shock JF, et al: Evolution of the Ethernet local computer network. Computer,
IEEE, VoL 15, No. 8, Aug. 1982, pp. 10-27.

53. Silberschatz A: Extending CSP to allow dynamic resource management. Trans.
on SojtH·are Engineering, IEEE, Vol. SE-9, No. 4, July 1983, pp. 527-530.

54. Sobel M, Groll PA: Group testing to eliminate efficiently all defectives in a
binomial sample. Bell Sysrems Technical Journal, Sept. 1959, pp. 1179-1252.

55. Shacharn N: A protocol for preferred access in packet-switching radio networks.
Trans. on Communications, IEEE, Vol. COM-31, No. 2, Feb. 1983, pp. 253-
264.

56. Tanenbaum AS: Computer 1\'etworks. Prentice-Hall, Englewood Cliffs, NJ,
] 981.

57. Thomas RH: A resource sharing executive for the ARPANET. Proc. National
Cornputer Confer{' nee. AFIPS Press, 1973, pp. 155-163.

58. Tobagi FA; Carrier sense multiple access with message-based priority functions.
Trans. on Communications, IEEE, VoL COM-30, No. 1, Jan. 1982.

59. Towsley D: Queueing net\\'ork models with state-dependent routing. Journal of
AC'Vf, Vol. 27, No.2, April 1980, pp. 323-337.

60. Towsley: D. Venkatesh G: Window random-access protocols for local computer
networks. Trans. on Computer:.,·, IEEE, Vol. C-31, No. 8, Aug. 1982, pp. 715-
722.

61. Towsley· D, \Volf JK: On adaptive polling algorithms. Trans. on Communica­
tions, IEEE, Vol. COM-32, Dec. 1984, pp. 1294-1298.

62. \Vah BW, Hicks A: Distributed scheduling of resources on Interconnection
networks. Proc. National Computer Conference, AFIPS Press, 1982, pp. 697-
709.

63. Wah B W, J uang JY: Load balancing on local multiaccess networks. Proc. Eighth
Conf(•rcnce on Local Computer l\'ctH•orks, IEEE. Oct. 1983, pp. 56-66.

64. ~Wah B\V: A comparative study of distributed resource sharing on multiproces­
sors. Trans. on Computers. IEEE, Vol. C-33, No. 8, Aug. 1984, pp. 700-711.

304 Part 11/Topics in Multiprocessing

65. Wah BW, Juang FY: An efficient contention·resolution protocol for local mul­
tiaccess networks. Pending patent application, Sept. 1984.

66. Wah BW, Lien YN: Design of distributed databases on local computer systems
with multiaccess network. Trans. on Software Engineering, IEEE, Vol. SE-11,
No.7, July 1985, pp. 606-619.

67. Wah BW, luang JY: Resource sharing for local computer systems with a single
multiaccess network. Trans. on Computers, IEEE, Vol. C-34, Dec. 1985.

68. Wah BW, Li WQ: Interface design for efficient multiaccess networks, in press.
69. Walker B, et al: The LOCUS distributed operating system. Proc. Ninth ACM

Symposium on Operating System Principles, ACM, 1983, pp. 49-70.
70. Wang YT, Morris IT: Load sharing in distributed systems. Trans. on Computers,

IEEE, Vol. C-34, March 1985, pp. 204-217.

