- T Th TR FEERE T T T TR e TR N T e s e

T PR NI, L W A, LR TR A RN T T T T TR R R

R —

-

System Architectures for
Prolog Execution®

Markian M. Gooley
Benjamin W. Wah

INTRODUCTION

Motivation

Expert systems are arguably the most successful and lucrative result of research in
artificial intelligence. However, they generally are executed on conventional com-
puters, not on machines designed to support the operations they frequently must
perform. Worse yet, languages for writing expert systems, or shells, often have
limited power [57] and are interpreted—i.e., executed by a program running on a
computer—rather than compiled to the computer’s actual instruction codes. As a
result, expert systems tend to execute slowly and be limited by their shells [24].
Writing them in a general-purpose language improves their speed and versatility,
but makes them harder to design, implement, and modify.

Why should those who study or implement expert systems take interest in
Prolog? Prolog is no panacea, and it does not have some features built into it that a
shell might have, such as the ability to handle uncertain information or generate
explanations [24]. However,

1. Prolog has its own inference (backward-chaining), and search (depth-first)
mechanisms [45], like a shell.

2. Unlike many shells, it also has the computational power of first-order logic
[26].

* This work was supported in part by the National Aeronautics and Space Administration under
grants NAG 1-613 and NCC 2-481.

17

172 System Architectures for Prolog Execution Chap. 7

3. Shells can readily be written in Prolog, though with some loss of speed. Such
shells can use a different type of inference, handle uncertain information,
provide explanations, and so forth [45].

4. A machine architecture (the Warren abstract machine) [54] already exists for
Prolog and can be emulated in software or microcode or built as hardware: it is
also the building block for Prolog multiprocessors [56]. Anyone designing g
machine for expert systems will profit from tamiliarity with machines designed
for Prolog.

are still written where Prolog is popular (e.g., Japan), or in association with mem-
bers of the logic programming community.

Prolog has been used to build expert systems for all the usual applications. An
especially popular one is the design of circuits or computers: VLSI layouts (28],
compacting microcode [39], and so forth. Other applications include diagnostic and
therapeutic medicine [29], credit evaluation [3], and strategy for games, law [36,
59], and negotiation [30].

Overview

Rk it i e cdr 7 RN Y

The intent of this chapter is to acquaint the reader with Prolog and Prolog machines,
especially Warren’s. First we introduce the language, beginning with simple exam-
ples and proceeding to more exact definitions. Then, again using examples, we
describe Prolog’s method of execution and some features that help suit it to expert
systems. Next we describe the parts of the Warren abstract machine (WAM) [54],

THE PROLOG LANGUAGE

As a supplement to this discussion, the reader may wish to consult an introductory
text such as Clocksin and Mellish [7] or Sterling and Shapiro [45].

Tutorial Introduction

Facts. A facr states a relationship between vbjects. An expert systemt
implemented in Prolog has a knowledge base of facts, For example, here is one way
to represent a family tree:

‘t

174 System Architecty res for Protog Execution Chap, 7

Husband = charles
Wife = Jane ;

Husband = george
Wife = lydia

Husband = filtzwilliam
Wife = elizabeth ;

Prolog looks at the facts for wife in the order that they are written, successively
binding the variables Husband and Wife to husband-wife pairs. A similar query
with only one variabie gives the expected result:

?- wife(Husband,elizabeth).
Husband = fitzwillian ;
no

Conjunctions. Prolog allows conjunctive queries, which have answers if all
of their components do The conjunction is executed from left to right. For exam-
ple, suppose that we want to know whether mrS-bennet has any married daugh-
ters. Then the following is the query (note that the *,” between its parts is a
conjunction and is not the same as the commas within the tuples):

?- mother(b,mrs. bennety, wife(_,D).
D = jane ;

D = 1lydia ;

D = elizabeth H

no

Prolog scans the facts for mother in order, binding p to Jane. Then it scans the
facts for wire, testing whether Jane js a wife; she is. (Because we do not care who
the husband is, we use "7, the anonymous variable, which matches anything and is
never bound). When we ask for another answer with ;" Prolog seeks another
husband-wife pair (it knows nothing of Jaws forbidding polygamy), fails to find one,
and backtracks to mother to find another child of ars_bennet. There it finds
lydia, and so it again scans for facts for wife. lydiaisalso a wife, Again we force
backtracking, and again Prolog scans the rest of wife, fails, backtracks to mother
to find elizabeth, and proceeds to wife to find that she is a wife. We use ;"
wife yields failure, so does mother, and Prolog returns no .

N ———

The Prolog Language 175

Rules. Prolog lets us define rules by which it can infer new relations from
facts. We can base a rule on the query of the previous example:

married_daughter(Mother, Daughter):-

mother(Daughter, Mother),
wife(_,Daughter).

We can now use this rule instead of the compound query:
?- marriedvdaughter(mrs,bennet,D) .

Some relations require multiple rules, which give a disjunction. For instance, a
parent is either a mother or married to a mother (assuming no illegitimacy):

parent(Chlld,Parent):— mother(Child,Parent).
parent(Child,Parent):-—

wife(Parent,Hother),
mother(Child,Mother).

(Note that a variable is local to its rule: Chi1d in the first rule has no relation to
Child in the second.) Now consider the following query:

- parent(jane,Parent).
Parent = mrs_bennet ;
Parent = mr_bennet ;

no

Prolog gets an answer from the first rule; then, when we use ““;”, it tries to get
another answer, fails, and then uses the second rule, which yields another answer to
;" before failing.

Definitions

The foregoing should provide a “feel” for the rudiments of Prolog: information is
stored as facts and retrieved using queries; variables and conjunction make useful
queries possible; and rules define ways to infer further information. The examples
also show something of Prolog’s mechanism of execution.

Terms. We now proceed to define things more rigorously. The zerm is the
basic unit of Prolog’s syntax. A term is a constant, a variable, or a compound term.
Constants are numbers or atoms, where an atom is an alphanumeric (including the
character ““_") string starting with a lowercase letter, Variables are alphanumeric
strings starting with an uppercase letter or “_”, with the solitary “_" reserved for
the anonymous variable.

176 System Architectures for Prolog Execution Chap. 7

A compound term is an atom, called & functor, together with some number of
arguments (its arity), which are also terms; €.g., the term £(9,h(I,J),k) has
functor £, an arity of 3, and arguments g, h(I,J), and k. Sometimes we consider
an atom a compound term of arity 0. Ground terms contain no variables.

Clauses. The facts, queries, and rules we have just seen are special cases of
the Prolog clause. A clause has the form

head:- goal 1, goal2,..., goalon.

»

where the head and the goalsare terms. The “*:-"js g stylized arrow representing
implication, because the clause is in fact a Horn clause, i.e., a conjunction of
premises (goals) implying a single conclusion (head). The logical meaning of the
clause is “The head holds if goal_1 and goal_a and all the goals through goal p
hold.” We can aiso consider the clause to have a procedural meaning, viz., “To do
the task indicated by head, do goal 1 and goal-2 and all the goals through
goal-n.” [45] The goals form the body of the clause.

A fact, then, is a clause whose body is always true (hence omitted); e.g.,
girl(mary). is actually girl(mary) i~true., where true is g goal that always
succeeds. Thus, girl(mary}. means “girl(mary) holds if true holds,” or “To
Prove girl(mary), prove true.” A query lacks a head. It has the form

?- goal_1, goal.2, ..., goal_n.

but the “7-" is the same asa “:-";je., we actually have

false:- goal.1, goal.2,..., goal.p.

In giving Prolog a query, we issue a challenge: “I say that this conjunction of goals
implies falsity. Prove constructively that I'm wrong.” A rule is simply the most
general form of clause.

Predicates and programs. A group of clauses whose heads have the same
functor and arity is considered a predicate. A predicate is the disjunction of its
clauses, as we saw in the example for parent; it is the Prolog version of a pro-
cedure. It can consist of facts, rules, or both. Often we refer to a predicate by its
name and arity, i.e., namelarity, as in parent/2. A collection of predicates forms a
program.

Prolog’s Mechanism of Execution

We have already seen a couple of simple ¢xamples of Prolog execution. We now
describe the general mechanism and give examples that are more complex.

Unification. Suppose that we begin with a query with a single goal:

7= qg{a(x),y).

The Prolog Language 177
Prolog tries to match this with the heads of successive clauses of the predicate g/2:

g(b,X):= r(X), s(X).
g(a(X),b):~ s8(X).
g(a(b(c,d)).e).

Only if its head unifies with the calling goal will the rest of a clause be executed.
Unification is an attempt to make two terms identical by instantiating variables; the
set of instantiations is called the most general unifier. Thus, g(a(X),Y) does not
unify with g(b,X), because no instantiation can make their first arguments the
same (note again that the X in the first term and the X in the second term are
distinct). However, g(a(X),¥) unifies with g(a(X),b): the distinct Xs are made
equivalent, Y is set to b, and the second clause is executed. If backtracking reaches
the third clause, goal and fact unify, with x=b(c,d) and Y=e.

Forward execution. Forward execution of Prolog begins with a query. We
can think of Prolog as maintaining a list of goals to execute [45]. It takes the leftmost
goal of this list and tries to unify it with the head of a clause. If the unification
succeeds, Prolog replaces the goal with the goals forming the body of the clause
matched, keeping track of the instantiations involved. Then it repeats the process
for the new leftmost goal. For instance,

?- ql, q2, 43.
becomes
rl, ré, r3, r4, g2, g3.
and then

sL, s&, ré, i, r4, g2, q3.,

given appropriate clauses. (For brevity, we show no variables.) Eventually the
leftmost goal matches a fact. Because facts have no bodies (strictly speaking, they
have bodies with the trivial goal true), Prolog can delete the current goal and
proceed to the next one. Hence, suppose that s1 and s2 match facts; then the list of
goals becomes shorter:

<8l matches...>
s#, ré, r3d, r4, q2, 93.
<8¢ matches...>

ré, r3d, r4, g2, q3.

When the list of goals becomes empty, the original query is solved and Prolog
returns the instantiations of variables appearing in it.

178 Systermn Architectures for Prolog Execution Chap. 7

Backward execution. If some goal cannot match any clause head, or if the
user asks for another solution to a query, Prolog must backtrack. Returning to the

preceding example, suppose that no clause matches re; then Prolog backtracks to
s@ thus:

rE, ri, r‘; qE; q3.
< backtracking...>
s2, r2, r3, r4, g2, gq3.

Prolog undoes any instantiations done by s2 and then tries to unify s2 with the next -4
untried clause of the predicate it calls. If it succeeds for some remaining clause, we
might have the following:

tl, t2, t3, r2, r3, r4, g2, q3.

If not, Prolog backtracks to s1, undoing any instantiations done by s1, and tries the
next clause of the predicate it calls. If it then succeeds, we might have the following:

sl, s, r2, r3, r4, g2, g3.
ul, w2, s2, ra, r3, r4, qe2, gq3.
If not, we must backtrack to r1:

rl, re, r3l, L4, qet q3.

If we end up backtracking to the original query and no alternatives remain to match 4
its leftmost goal, the query fails. ‘

Features of Prolog

Data structures and recursion. Data structures are constructed from
compound terms. We can represent a binary tree, for example, using a term {
t(< Left >, < Right >), where < Left > and < Right > are either leaves or sub-]

terms representing subtrees. Thus, the tree shown in Figure 7-1 is represented in 1
Prolog by i

t(l, t(t(2, 3), t{t(4, t(s, B)y, 7))

Prolog has a special functor, “.", for constructing lists, and a special atom,
“[1’, to represent the empty list. The list of the first five naturai numbers is 4
therefore .¢1,.(2,. (3:-(4,.(5,))))), but for convenience it is written 1
1.,e,3,4,5. “3
Handling such recursive data structures as trees and lists requires recursive
predicates. This ubiquitous one appends two lists to create a third:]

append{([],L,L).
append([(H[T], L,[H{T2]): - append(T,L,T2).

The Prolog Language 179

Figure 7-1 The term (1, t(tt2, 3), t(tt4,
t(5,6)), 7))) as a tree.

Note the [H|T] in the second clause. This unifies with any nonempty list: H is set to
the first element of the list and T to the remainder—the car and cdr of the list, for
those who know Lisp.

Suppose that we call append/3 with lists as its first two arguments and a
variable as its third. Then append’s second clause matches, “decapitates” the first
list and starts to build the third argument, and then calls itself with the cdr of the
first argument. It repeats this until the first argument is “*’; then the first clause
matches and the second list is copied into the third argument. As the recursive calls
finish, the chopped-off elements of the first list are attached to the third argument,
creating what we want. For example, if we append a,b,c to 1,2, 3, the successive
calls and returns have the following pattern:

append([},2,3),{a,b,cl,2)
append([2,3],[a,b,c],2)
append([3]/[a,b,c),2)
append([],[a,b,c],2)
append([l,[a,b,cl,[a,b,c])
append([3],la,b,c),[3,a,b,c])
append([#,3),{a,b,c]/[2,3/a,b,c])
append([3,2,3),[a,b,cl,[1,2,3,a,b,c])

180 System Architectures for Prolog Execution Chap. 7

append/3 also shows that input and output arguments are sometimes inter-
changeable in Prolog. Calling append/3 with two variables and a list gives, on
back-tracking, all the combinations of lists that, when appended, would yield the
original:
?- append{X,Y,[a,b,c)).

X =[a;b;c]

Y=101:

X =[a,b]

Y =[c];

X = [a]

Y :[b'c] M

X ={]

Y =[a,b,c];
no

The cut. A call to a predicate might produce many answers, but we may
need only one; several clauses may match a goal, but we might want only the results
produced by the first. For interactive queries we may choose not to backtrack (we
need not use ;), but this is not general enough.

Prolog provides a construct, the cut (written “177), that satisfies these needs.
is written as a goal, although it is not in fact one [26]. When Prolog calls a
predicate, matches a clause to the calling goal, and encounters a cut within a clause,
the cut succeeds at once; however, if backtracking returns to the cut, the clause
fails, no later clauses of the predicate are tried, and so the entire call fails. Consider
the following predicate:

Wegry

a(b,X):— !, c(X,¥), d(Y).
a(X,¥):=- c(Y,X,2), e(2).

Calling a/2 with certain arguments (e.g., two uninstantiated variables) ensures that
only its first clause is tried: a/2 will return whatever answer(s) ¢/2 and d/1 allow.

Other cases match only the second clause. Without the cut, a/2 would behave quite
differently.

Negation. Prolog is based on a subset of predicate logic; however, one
feature of logic not included is the ability to represent negative information directly,
L.e., to state that a relationship is false [7]. For instance, there is no negation
operator ** 71" to jet us write

T ogirl(fitzwilliam).

7 (mother(-,Woman), girl(Woman)).

e

g o e s

The Prolog Language 181

or similar useful facts into our family tree example. Allowing negative facts or goals
requires a complicated execution strategy that would make Prolog impractically
slow [34]. Instead, Prolog assumes the closed world assumption [26]—that its data-
base describes its “world” completely. In other words, it considers true anything
that can be deduced from its database and it considers false anything that cannot.
Querying the family tree, we obtain

?— wife(.,cynthia).

no

o~
I

girl(cynthia).
no

That is, someone named Cynthia is probably female, but Prolog has no facts about
cynthia and both queries fail. This is an example of negation as failure [34]:
anything that cannot be proved is taken as untrue, just as if there were an explicit
negative fact stating as much.

We can use negation as failure explicitly in goals, using the built-in predicate
not (sometimes written “/+). A built-in predicate is part of the Prolog system,
often providing a function that cannot be described in Prolog itself; not, however,
can be defined easily:

not(X):- %, !, fail.
not(x).

Note the goal X: Prolog lets instantiated variables be treated as goals. If x succeeds,
the always-failing goal fa11l makes the clause fail, and the cut makes not(x) itself
fail. If x fails, the second clause makes not(X) succeed.

Disjunction, if-then-else. Prolog allows clauses to be written with explicit
disjunctions. For example, the third of these has the same meaning as the first two
combined:

a(X,Y):- b(X,2), c(Y,2).
a(X,¥y:- d(x,2), e(z,Y).

a(X,Y):i- b(X,2), c(Y,2); d(X,2), e(Z,Y).

The disjunction ““;” is not mere shorthand: the single clause-head saves a unifica-
tion, and in some cases we can “factor out” calls common to several clauses.

Prolog’s if-then-else statement combines the effects of the cut and the dis-
junction, behaving as if defined by

(X => Y ; Z)y:- %X, !, Y.
(X => Y ; 2y:—~ 2.

182 System Architectures for Prolog Execution Chap.7

The else is optional:
(x -> Y):- x: !.r Y.
(X -> Y ; 2)chooses Y ifx succeeds and Z if it fails.

Dynamic predicates. Prolog allows its database of clauses to be changed
during execution. Facts or rules can be asserted and retracted using built-in predi-
cates. asserta/l takes a fact or clause as an argument, makes it the first of its
predicates, and succeeds; and assertz/l does the same, making it the last. (a is the
first letter of the alphabet, z the last.} For €xample, g1rl/1 has two facts:

?- girl (Girly.
Girl = kitty ;
Girl = mary ;
no
Now we add a new fact as its last and try it again:
- assertz(girl(georgiana) Y, girl(Girly.
Girl = kitty ;
Girl = mary ;
Girl = georgiana H
no

As the example shows, the assertion predicates do not succeed again on back-
tracking.

retract/l removes clauses from the database. It tries to unify its argument
with the head of a clause of the appropriate predicate, just as with a predicate call. It
removes the first clause with a head that matches. On backtracking, it tries to match
and remove another clause, failing when no clauses match. It can delete an entire
predicate, as seen in the following:

?- retract(girl(xy)).

X = kitty ;
X = mary ;
X = georgiana ;

The Prolog Language 183

no
?— girl(Xx).

no

Input and output. Prolog has a collection of built-in predicates which per-
form input and output. They can open and close files, read or write single characters
or Prolog terms, and so forth. Like the cut and the assertion and retraction predi-
cates just described, these 1/0 predicates have side-effects: they perform actions
unrelated to the logical meaning of a program [45]. A goal that prints a term, for
instance, produces a visible result but does not affect the success of its clause.

read/l reads Prolog terms and write/l writes them; get/1 and put/1 do the
same for characters. Note that read and Put try to unify their arguments with their
inputs, and fail when they cannot. see/1 and te11/1 open files for input or output,
which are by default interactive; seen and told close them. Other I/O predicates,
varying with the dialect of Prolog, exist as well. An example is:

double: -~ read(Term), write(Term), tab(4), write(Term), ni.

?7- double.
|: knock.
knock knock

yes

The system prompts for an input, which for read must be a Prolog term followed by
a period (get is not so choosy). It writes the term, writes four spaces (tab/l writes
the number of spaces given by its argument), writes the term again, and then goes to
a new line.

Metalogical features. Prolog also has built-in predicates that operate on
terms and clauses, finding their properties, extracting their components, or building
new terms from old. Those that test properties succeed if the property holds. var/y,
for example, succeeds if its argument is a free variable:

7 var(Xx).
X=_0;
no

?- var(not.a.variable).

no

(The -0 is the variable’s identifier or address, which depends on the implementa-
tion.)

184 System Architectures for Prolog Execution Chap, 7

Other built-in predicates build or decompose terms. functor/3 returns the
name and arity of a term, or, given a name and an arity, it builds a new term with
new variables for arguments:

- functor(a(b,c,d),F,N).

F=a
N=13;
no

- functor(x,aﬁconst,S).
X = a_const(_L,_?,_d,qq,_LD) H
no

arg/3 extracts a given argument of a term, but fails if the “index” number is out of
range:

?- arg(E,a(b;C(d,e),f);COIIlP).
Comp = c(d,e) :

no
?- arg(S,a(b,c(d,e),f),Comp).

no

The predicate “=. ., pronounced univ [7], translates between terms and lists; the
functor of the term corresponds to the car of the list; the arguments, to the cdr.

?- a(b,c(d,e),f) =.. List.
List =[a'be(dre)ff];

no
?2- Term =. . [t,E,&,L.,a].

Term = ‘t(e;4t‘=fﬂ) '

no

The Wirteo Abstract Machine 185

A(X, Y1 b(X)y, ci(Y,Z), a{Z2,X).
afe,by: b(X), e(X).

a(X, ¥ c(X,Y).

acX, X .

Hs cid] DBeliaves as tollows:

Pooctanse(a(o, o), Body).

Body b{c)y.,c(c, 15)y,d(L5,c) ;
Body c({c.cy

Body true ;

no

Sote thiat the second chinse does not match and that the Gact has the tnvial goul true
Tor o bods

A enterpecter s a program it executes o language dicectly, perhaps trans-
L to annternad representation, T treats a progrian as i series of commands
; thad vhange s state - rather bke a high-level software analog ot a computer. Many

eapert sstems languiges are sull interpreted 240 and carly implementations ot
Prodog [were allinterpresers written in conventional linguages such as Fortran
ot Co Protog s now ustalhy compiied . because that vields faster execution, tvpically

frve Torten tones faster {99 for aogiven machine,

Forcortinn applications such as debugging, providimyg explunations. o1 experi-
ey sl ditferent stratepies of exceouting o languape . interpreters are still
wsetub They are cosy to desien and modifv o and are often fast enough tornteractive

walk [clause lets us winne a Prolog mterpreter in Prolog itseli:
! |)

solve(true).
solve((A, By):- solve(h), solve{B).
solve(RYy:- clause(A,B), solve(B).

Fius looks toveal bat 0 oo exeeoute most programs that do not use budtan preds
cates e ey modified re handle tall Prolop. act as o debugper, or support
featires necded tor s eapert system shelt [45],

THE WARREN ABSTRACT MACHINE

Introduction

AMosr mtodactions to Proloy nachines [23.27] desceribe i detail how a0 Proloyg
e rpreter cwattten mea comventienal Lineuape) works: how e handles tooward

checition backtrackimy contial o construers . and the rest Only then dao thes

186 System Architectures for Prolog Execution Chap. 7

describe the Warren abstract machine {WAM) (54], on which most implementationg
of Prolog are based nowadays, and the progenitor of most parallel Prolog machines.
We describe the WAM and its behavior directly, rather than explain things through
an interpreter; the operation of the machine is no more difficult to understand on it
own, and we spare the reader possible confusion between the two methods.

The WAM is an abstract machine with data areas, registers, and an instruction
set tailored to execute Prolog. Warren devised its original version [53] to describe an
intermediate language for his Prolog compiier. The compiler did two translations:
from Prolog to the intermediate language, and then from the intermediate language
to executable code for the DEC-10 computer. Later Warren altered the WAM [54]
$0 that it could be implemented as a real machine. Many recent compilers [1,4,9]
produce WAM code, called byre-code because of its terse instructions; this then runs
on a WAM emulated in software or microcode, or built as hardware, Byte-code
instructions range from simple to complex, from moving data to calling predicates.

Parts of the WAM

Figure 7-2 shows the data areas and registers of the WAM. Note that the contents of
a register, say Q, are indicated by (Q).

Data areas and their contents. For data, the WAM has five areas of
memory. The code area contains the byte-code version of the program being exe-
cuted; this does not change unless clauses are asserted or retracted. (We assume
that programs are static: handling of dynamic predicates varies greatly among
implementations, and we shall not discuss the details.) The PDL (push-down list)
aids unification; normally it would be called a stack, but that word has another
meaning in the WAM.

The other data areas are known as stacks: the ({ocal) stack, the heap (global
stack), and the trail. The heap contains compound terms (structures), the trail
records how unifications bind variables, and the stack keeps track of the progress of
execution.

A symbol table, not considered part of the WAM proper, contains symbols
and arities for each functor (including alphanumeric constants) in the program, so
that we can refer to each one by a pointer to its entry. New symbols that appear in
data can be added to this table as a program runs (again, in ways varying among
implementations).

Data and the heap. Tags let us tell variables, constants, structures, and lists
apart readily. For a WAM emulated on a conventional machine, two or three bits of
a 32-bit word should suffice; for a hardware WAM, longer tags might be more
practical. For our examples [9], we assume a 32-bit word, with the two least signifi-
cant bits forming the tag. (The machine addresses eight-bit bytes, and all data are
32-bit aligned words, so that the two least significant bits are superfluous for ad-
dressing.) An unbound (free) variable has tag 00 and contains its own address. A

Bl A s W

SN SR

RS R

'——“

The Warren Abstract Machine 187

Memory Registers

Low addresses

i Code area P Program pointer
ICP) 7
I 4/ 7 CFP Continuation program pointer
(P) i E Last environment
: ‘ | B Last choice {backtrack) point
| A Top of stack
51 g Heap TR Top of trail
H Top of heap
tHB) // / HB Heap backtrack point
(H) :
| ; s Structure pointer
! x1 Argument/ terporary registers
X2
Z Stack
Choice X3
(8) point .
s L
(E) Environ-
ment 1 |
A W
| !
! .
I | |
i Trail
{TR) -
'
o —

|
|
7774 POt

High addresses

Figure 7-2 Data areas and registers of the WAM.

functor or constant has tag 01 and points to an entry in the symbol table. A number i
is a 30-bit integer with the tag /0; it contains its own value. We can represent :
floating-point numbers (though of low precision) by using a third bit to distinguish i
between them and integers. A list has tag 11, except for “[}”, which is a constant. :
When a program builds a data structure, it builds it atop the heap, with the
WAM register H keeping track of where the top is. A structure with » arguments
uses 2 + 1 contiguous words on the heap: the functor followed by its arguments.
Figure 7-3 shows a complex structure on the heap. Free variables and structures
appear as names, although in fact free variables point to themselves and constants
and structures point to the symbol table. Note the terse representation of lists: for a
pointer to a list, the car is the word pointed to, and the cdr is its successor.
One more point about data representation. We write of a variable or a struc-

188 System Architectures for Prolog Execution Chap. 7

alx.b(c.dle,ﬂ,YJ.[g.z,h]J

Figure 7.3 A complex structure on the
heap.

until it finds the unbound variable, which it can then copy into X1, making it point
1o exactly the right location. (Dereference chains are very rarely [51) longer than
this.) In describing the operation of the WAM, we sha sometimes mention that
dereferencing occurs, but we shal] not give detaiis.

Execution and the stack. Prolog's mechanism of execution requires that
particular information he saved about the Operations performed in reaching the
current state-—what one author [23] calls “the evolution of the locys of control.”
The stack does this by storing en vironments and choice points.

The Warren Abstract Machine 189

Stack Heap
X
ShP
/—I f
{al
Stack Heap
X
L
(b}

Figure 7-4 Dereferencing (a) Stack and heap before dereferencing. {b) Stack and
heap after dereferencing.

Continuation environment

Continuation code
Variable 1

Variable N

Figure 7-5 An environment.

no environment.) The environment contains a cell for each variable in the clause
(again, there are exceptions), and a continuation. This is a pair of pointers, one to
the code that should be executed after the calling goal succeeds (like a return
address for a subroutine call), and the other to the environment already created for
that code. Figure 7-5 shows the layout of an environment.

A choice point [54] is pushed onto the stack whenever the clause being tried is
the first of a predicate that has more than one clause. It contains the current values
of certain machine registers (H, TR, B, CP, E, and X) sufficient to restore the
current state of computation, and a pointer to the next clause of the predicate.
When a goal fails, the WAM restores its previous state from the most recent choice
point and resumes execution with the next clause. Restoring the old state lets the
recent information on the stack and structures on the heap be overwritten, but it
doesn’t undo instantiations made to extant variables. (That is the purpose of the
trail.) Figure 7-6 shows the layout of a choice point.

190 System Architectures for Prolog Execution Chap. 7

Goal-argument 1 X1

Continuation environment R

Continuation code CP

Goal-argument M XM

Previous chaice paint B

Address of next clause
Trail painter TR

Figure 76 A choice point, with

Heap pointer H . .
Ly corresponding registers.

Instantiations and the trail. Execution instantiates variables; thus, when
backtracking discards the results of execution, some instantiations must be undone,
When a goal fails, any new variables created by it are discarded automatically, but
any variables that already existed and were free when it was called must be free
again after it fails.

The problem is easy to solve: we record atop the trail the addresses of variable
cells (on the stack or the heap) as they are bound. At every choice point we store the
current value of TR, which points to the top of the trail. If the calling goal cannot be
satisfied by the current clause, we clear every variable cell whose address appears on
the trail later than the saved TR, and reset TR from the saved copy.

continuation pointer, holds the return address for the current predicate call—j.e.,
the location of the code to execute next (e.g., the next goal) if the current goal
succeeds. E points to the Jast environment, letting us access the variables and
continuation information stored in it. B points to the last choice point (point of

clauses for the predicate being called. A points to the top of the stack, so that
the WAM knows where to put new environments; A is not essential—the top of the
stack is an offset from E or B——but it makes execution faster.

We have already scen TR, the top of the traii, and H, the top of the heap. HB,
the heap backirack point, holds the value of H at the time the last choice point
(pointed to by B) was created. § points to existing structures on the heap, allowing
access to their arguments. There is also a set of registers that hold both temporary
variables of a clause and the arguments of a goal being called. Warren [54] calis
these by different names when they are used for different purposes: X registers
(X1, X2, and so on) for temporary variables, A registers (A1, A2, etc.) for argu-
ments. We follow recent authors [16,27] and compilers and always call them X
registers henceforth.

Atemporary variable [54] occurs first in the head of a clause, in a structure, or

The Warren Abstract Machine 191

in the last goal, but not in more than one goal of the body, counting the head as part
of the first goal. Any condition in this seemingly peculiar set indicates that the
variable exists elsewhere or will be needed only briefly, so that it will not have to
be stored in an environment. A permanent variable, denoted Y1, Y2, and so forth,
is any that is not temporary; it must be stored in an environment, where a cell is
reserved for it, and the WAM addresses it by an offset from the pointer to its
environment. Environments are arranged such that their variables’ cells have the
highest addresses. If the compiler puts variables in a suitable order, the top ad-
dresses of an environment can be trimmed away and used for the next stack item
when the corresponding variables are no longer needed.

The WAM Instruction Set

WAM instructions fall into five classes: get, put, unify, procedural, and indexing.
The entire set proposed by Warren is in Table 7-1, but we discuss each class
separately, basing our descriptions on his [54]. Implementors [9,51] have extended
the set, renamed some instructions, and so forth, but Warren’s design remains the
standard, and we use his names.

Head Body
proceed execute P
Procedural call P, N
deallocate
get__variable Xn, Ai put__variable Xn, Ai
get__variable Yn, Ai put__variable Yn, Ai

get__value Xn, Ai

get_ value Yn, Ai

Get/put put__unsafe__value Yn, Ai
get__constant constant, Ai put__constant constant, Ai
get_ nil Ai put__nil Ai
get__structure functor, Ai put__structure functor, Ai
get_ list Ai put__list Ai
unify__void N

unify__variable Xn
unify___variable Yn
unify__local__value Xn
Unification | unify__local__value Yn
unify__value Xn
unify__value ¥Yn
unify__constant constant

unify__nil

try__me__else label try label
retry__me__else label retry label
trust.__me__else fail trust label

Indexing | switch__on__term var con lis str
switch__on__constant N, table
switch__on__structure N, table

Table 7-1 WAM instructions.

192 System Architectures for Prolog Execution Chap.7

get instructions. A compiler generates a get instruction for each argu-
ment of a clause’s head. They match a variable that is definitely uninstantiated
(get_variable), a variable that might be instantiated (get_value), a constant
(get_constant), a structure (get_structure), or a list (get_nil, get_list) to an argument
(already copied to an X register with a put instruction) of a calling goal. A variable
can be temporary (in an X register, so that the get moves it from one register to
another) or permanent (in a slot Y of an environment). Note that the list in-
structions have only one argument: the functor or constant is known.

put instructions. Put instructions load an argument of a goal into an X
register, where a get can retrieve it. Each put is the analog of the get of similar
name, except for put_unsafe_value. An unsafe variable does not first occur in the
head or in a structure, and is therefore set by a put_variable. put_unsafe_value
is used instead of put_value for the last goal in which an unsafe variable appears.
Why?

Suppose that the variable is uninstantiated. A cell for an uninstantiated vari-
able points to itself, so that put_value copies a pointer to the variable into an X
register. Now the portion of the environment containing the variable cells will be
trimmed by the execute or call instruction executed presently. So unless the WAM
instead reserves a cell on the heap for the variable and loads a pointer to it into the X
register, that X will point to something else.

unify instructions. A compiler generates a unify instruction for each ar-
gument of a structure (or list). A sequence of unifys is always preceded by a get or
put of a structure or list. If the structure already exists, unification is between the
argument of the instruction and the corresponding argument of the structure. The S
register points to the structure, and is incremented for each successive argument. If
the structure is being built, the unifys construct its new arguments atop the heap
from their own arguments, updating the top-of-heap register H,

unify_void N unifies some number N of anonymous (single-occurrence) vari-
ables, which require no variable cells. unify_local_value replaces unify_value if the
variable has not been initialized to something on the heap (a global value).

Procedural instructions. Procedural instructions handle the overheads of
calling goals in the body of a clause and manage the stack space used by the
environment. A fact compiles into gets (and possibly unifys), followed by proceed,
which simply transfers control. A rule requires that space for an environment be
allocated on the stack. After that, the WAM must get the arguments of the head.
For each goal. the arguments are put into the A registers, and the appropriate
predicate is called. The second argument of call is the number of variables in the
environment; initially there is a cell for each variable, but some can be discarded as
the clause executes. The last goal of a clause needs nothing from the environment
(recall the put_unsafe_value instruction that helps ensure this}), so that the environ-
ment is deallocated (removed) from the stack and the goal is called using execute.

—

The Warren Abstract Machine 193

Note thatarale with one goal needs no environment: allocate and deallocate are not
used . and the posil is executed.

Indexing instructions. Naive mmplomentations of Prolog |38 41] try 10
et s call with every cause of the appropriate predicate. Often this is i waste ot
tune Consider the followmy example:

aiflly-
afp(X,¥)|TL Uy
allg{X,)Tl [o¢Y, 2)U0]y:—. ...

Suppose that we call aze with a (nencemptv) List as its tiest argument. Then trving the
frest chuase s useless s Similariyv it the first argument is indeed the empty list. trying
the other clauses is useless.

ndexmg instructions are meant to keep the WAM from trving clauses that
cannot nrdeh e cadl They ase the principad functor of the predicate-cadl's first
argoment (nregister X as i Aey 1o decide which clauses to trv, B NT dereterences
to dovarmble s the WANM muast try every cluuse. In order 1o handle this case. o
try mie else mstruction precedes the code Tor the first clause. o retry. me_else that
formtermediate clauses and o trast me_else Fail that for the last clause., Fhe
operand s the address of the next cliause; the fail of trust_me else shows thit no
altermatses remain . and the call tails it this clause fails

switch on term exammes XL Its four arguments are the addresses to brinch
tol the dereterenced X is a variable, constant, list, or structure. The first is the
address of the predicate’s try me_else: the others are addresses cither of the code
o asmle miaetung cliause or ol that of a4 hlock of matching clauses. Such blocks
have try, retry, and trust anstructions before their initial. middle, and tinal
chisessrespectively, analogous 1o the try me_else instructions for the variahle
vite It diverse constants o structures appear in the tist arguments of clauses,
switch on constant and switch on_functor look in hash tables (o find the addresses
o the code Tor ciach case

Examples of Execution: append/3

Phe forepomy may seem crvptic, soon this section we present severil examples to
show that the operation ot the WAM s actuadly quite straighttorward. For cach
evanpleswe give Prolog code. the corresponding WAM Cassembly language " and

descripiions of what happens in the WAM 1 response to virious calls.
Farher we presented appends 3

append(| |, L,L),
append ([H{T], L,[H|T¢}): - append(T,L,Ta).

Conmprledanta WANM Gssembler it looks ke this

—

194 System Architectures for Prolog Execution Chap. 7

procedure append/3

switch_on_term -580,_578, 579, fail /*var.,cont.,list rStruct. */
_580: i*yar, */

try_me.else _581,3 *create a chaice point*;
578: f*const. ¥/

get_valee X2 X3

getnil X1

proceed
_581:

trust_me_else fail /*discard the choice polnt*/
579: /*1istx/

get_list X1

vnify_variable X4
unify_variable X1
get_list X3
unify_value X4
unify_vahie X3
execute append/3

its empty body is “called” using proceed; the second has only one goal, so that no
environment is allocated (or, clearly, deallocated); and the recursive call uses an
execute.

A deterministiccall. Let us follow the operation of the WAM a8 it executes
the goal

append([a,b,c],[1,2,3],X).

Figure 7-7 shows the initial state of the registers and data areas. Note that the first
three X registers contain the arguments of the call, in this case (pointers to) two lists
on the heap and one variable of the current environment.

Now the WAM calls append. The switch_on_term sees that X1 is a list (by
checking its tag) and branches to the label _579, the code for the second clause.
All the try instructions are avoided, because no choice point needs to be created:
append is deterministic in this mode, returning only one answer. get_list de-
references the first argument, finds that it is a list, not a variable, and puts the WAM
into read mode. This means that 8, the register that points to structures, is set to
the first argument of the list, and that subsequent unify instructions wil try to match
the existing list rather than build a new one.

rimarigm

ot g

 ————————

The Warren Abstract Machine 195
Stack Heap Trail Registers
P
CP
(HB) E]
(B) s B :
(TR) ,;
(K1) s a A |
-~ ® TR :
E) <
{ 77 (_ b " |
f - e HB
(X3)] X <: ¢ s H
i 0 X1
{A)
X2
X3
{X2) ———f q e
—T_- .
\\‘_ 2
£l

£\

(H)

Figure 7-7 Just before calling append([a,b,c},[1,2,3],X).

The first unify_variable copies a, the head of the list, into X4 and increments $
to point to the next argument, [b, c] (represented as . (b, . (¢ (1)), the tail of the
list. The next unify_variable then gets . (b, . (¢,[])) into X1, which is also the first
argument register for the next call. (The compiler is being clever here.) The second
argument is passed unchanged to the call, so it is left alone.

The third argument, X3, is a variable; get_list therefore puts the WAM into
write mode. Instead of addressing with S a list extant on the heap, the WAM copies
H to X3, giving the copy a list tag. The unify_value then sets the head of the new list
(atop the heap) to a, and the unify_variable makes the tail a free variable (untagged
pointer to itself) and copies it to X3 to prepare for the call. Now X1 has the tail of
the first list, X2 the untouched second list, and X3 the variable tail of the list being
built, as shown in Figure 7-8. The WAM now makes the recursive call to append,
using execute because there is no environment to maintain.

The recursive call proceeds much as the first one did. So does the next one.
Finally the list is whittled down, and we call append with [] as its first argument.
switch_on_term then branches to label _578 and the code for the first clause. Next,

196 System Architectures for Prolog Execution Chap. 7 fr_

Stack Heap Trail Registers
p
CcP
E
B
a {TR) A
TR

{E) 7 C_ ; — i8], (X1 H
////X 7 -

X2
X3

{HB]

(B) —=

4

1

-l *
.
3

T2 [— (X3}
{H}

Figure 7-8 Just before the first recursive call.

get_value sets the variable atop the heap (pointed to by X3) to point to the list
pointed to by X2, forming the “append” of the lists. Now the get_nil matches X1,
and the proceed sets off a series of returns. At the end of these (see Figure 7-9) X3
points to the new (slightly odd-looking) list atop the heap, and the call to append
has finished.

A nondeterministic call. Consider the call
?7- append(X,Y,[a,b]).

which generates the three possible pairs of lists that, when appended, yield [a,b].
We assume that the X registers have been loaded with (pointers to) the two vari-

The Warren Abstract Machine 197

Stack Heap Trail Registers
]

cP

E

B
(TR)
(X1} e a A

[. TR
{E) T - b H
(X3} —— X ~ C [S

{(HB) —

(B} ——

A a
(A} L :;
X3
{X2) —= 1 \ :

Awd

|0

(H}

Figure 7-9 Just after the goal completes.

ables and the list, as shown in Figure 7-10. This time switch_on_term branches to
-580: the WAM will try both clauses. The try_me_else makes a choice point on the
stack, with three siots for the arguments and six more for the state of the machine,
viz., E, pointing to the current environment; CP, the current continuation; B, the
previous choice point; L, the next clause (the argument of the try_me_else); TR, the
top of the trail; and H, the top of the heap. The heap-backtrack pointer HB is set to
the current H, and B is set to the current top of the stack. That out of the way, the
get_value copies the list-pointer in X3 to X2, the get_nil sets X1 to [}, and proceed
completes the call. We get X =[] and ¥ =[a,b], as shown in Figure 7-11.

198 System Architectures for Prolog Execution Chap. 7

Stack Heap Trail Registers

P

(HB} — .

(8) — LI
a8

X) —e a TR A]
o . TR

{E)
W ~ "
0 HB
(X1) —wd X s
/ X1
H

(X2} —— Y (H) X2
(A3) / / X3
»
[]
L]

Figure 7-10 Just before calling append(X,Y,[a,b]).

Stack Heap Trail Registers
P
cP
E
B
a he—— (X3) X A
(E} .~ 77 _F ; {TR) Y L"
”'i/// 0 HB
[X1} X=1[] s
L x1
{H), {(HB)
1X2) +—= Y hy X2
i X3
X3 .
-
X2 .
X1
BCE
BCP
B
BP
TR A
(A, (B) H_

Figure 7-11 First answer.

e

The Warren Abstract Machine 199

Now suppose that we try the calling goal again. Then the WAM branches to
the label _581 of the next clause (retrieved from L in the choice point). There the
trust_me_else fail resets registers B and HB with their values from the previous
choice point and then discards the current choice point. This time the first get_list
gets a variable and puts the WAM into write mode, building a new list atop the
heap. Now the unify_variables put (pointers to) the new (variable) head in X4 and
the new tail in X1. The second get_list gets the list [a, b], and the subsequent unify
instructions make a the head of the new list and make X3 point to [b] (Figure 7-12).
The WAM then makes the recursive cali.

switch_on_term branches to the try_me_else, which creates a choice point
much as before. The gets point the second argument to {b] and complete the list on
the heap with [). The proceed then completes the call, the previous call also com-
pletes, and appena returns X =[a} and Y =[b] (see Figure 7-13).

If execution again backtracks to append, the WAM returns to the most
recent choice point, where it gets the label _581 of the second clause. Again the
trust_me_else fail discards the choice point and retrieves the B and HB registers
from the previous choice point. Everything happens much as it did the last time this
clause was tried; before the recursive call, b is added to the list being built on the
heap, and X3 has (] (see Figure 7-14).

Again the try_me_else creates a choice point. The gets then set the second
argument to {] and match the other [] on the heap. When all the calls complete,
append returns X =[a, b]and Y =[] (see Figure 7-15).

No more answers are possible. Backtracking again restores the saved state
from the choice point and then discards the choice point. The call fails on the
get_list X3 instruction, because ¥3 now points to a[].

Stack Heap Trail Registers
P
CP
(HB) ——= £
(B} —=
B
a b4 A
(TR} "
—t .
E ;
(E} : <~— b Fa—— {X3) H !
S il HB r
X ~ S .
™ \ X1
(X2} — Y a be—— (X4} x2
T -— {X1) X3
[A) (H)
L]
*
-

Figure 7-12 Just before the first recursive call.

L ——

200

System Architectures for Prolog Execution Chap. 7

Heap Trait

Registers

(E) ~

<

(X1

(X2)

(A}, (B}~

Stack

Trail

Registers

Figure 7-14 Just before the

second recursjve call.

The Warren Abstract Machine 201

Stack Heap Trail Registers
P
ceP
E
B
a X A
{E) TR
H
. HB
{1} X -1 S
; X1
(X2) Y g x2
X3
X3 .
X2 .
X1 {H), (HB)
BCE
BCP
. B'
BP
TR
{A), 1B} H

Figure 7-15 Third (final) answer.

Implementing the WAM

Essentially, there are three ways to implement a WAM: in software, microcode, and
hardware. Each has its advantages: software is easy to modify and portable, micro-
code gives some of the speed of hardware but some of the flexibility of software, and
hardware gives the best speed of all. On the other hand, software can be slow,
microcode cryptic, and hardware inflexible and expensive.

Software. A Prolog compiler can produce WAM instructions, or it can
translate them to sequences of instructions native to the machine that it is compiling
for. The first Prolog compiler [53], written by Warren for the DEC-10 and still held
in high regard, did the latter, producing DEC-10 instructions from an early form of
WAM code. Most academic and many commerical [1] compilers produce byte code
and run it on a WAM emulator. The speed of such implementations depends on the
emulator. Writing in a high-level language provides portability and easy mainte-

202 System Architectures for Prolog Execution Chap. 7

nance at the expense of speed; assembly language and threaded code [1] are other
possibilities,

Implementors who choose this method must live with the constraints of the
underlying machine’s architecture. Recall our examples, which are based on the
public-domain SB-Prolog system [9] (a good implementation using a software
WAM): on a machine with 32-bit words and addresses, we find that a tag larger than
two bits costs us access to some of the virtual address space. There is no tidy way to
handle floating-point numbers: a tag ruins their precision, accessing them with
pointers is slow, using double precision creates a data item of another size. Manag-
ing tags is a constant nuisance if our target machine doesn’t support them. Also,
trying to use machine registers for X registers can be difficult; it is easier (but
slower) to use memory instead [9].

Microcode. There are several examples in the Prolog literature of WAMs
implemented in the microcode of other machines [15,17]. Their execution speeds
compare favorably to those of software emulators; however, the microcoder is at
the mercy of the machine’s architecture and microarchitecture, Much of the gain in
performance seems to come from microcoded unification. Special-purpose micro-
coded machines, with many registers and the ability to handle tags, should fare
better than general-purpose machines [15]. With the rise of powerful micropro-
cessors that are hardwired for speed, microcoded machines are less common now
than a few years ago.

Hardware. Many researchers have implemented the WAM in hardware
[13.25,35,48). In general, these machines have microcoded control, but of a
WAM-style architecture, Typically they have large tags (e.g., a 40-bit word, eight
bits of it tag), with some bits used to support “garbage collection.” Memory man-
agement, dynamic predicates, tag checking, and the so-called garbage collection
may all be supported in hardware. Some are stand-alone machines, reminiscent of
Lisp machines; others are designed to be attached to a host computer,

PARALLEL MACHINES FOR PROLOG

Comparison: Parallel Machines for Expert Systems

Typically, machines designed to support expert systems do so by supporting produc-
tion systems, assuming forward-chaining programs written in OPSS or the like. All
of them are parallel, and only one of them [42] consists of specialized processors
analogous to the WAM. The others are collections of conventional processors,
sometimes connected in a complex way, together with logic that is supposed to help
production systems execute. The architecture proper is less important for these
systems than the algorithms they run, notably parallel-match algorithms such as
parallel Rete [31]. Early designs had about a thousand small processors, but now
those with *“‘tens™ of processors [33], each one fairly powerful, are fashionable; most

Parallel Machines for Prolog 203

programs, however, lack the parallelism needed to exploit more than a few
Processors.

DADO {46,47] appears to be the earliest architecture meant expressly for
expert systems. Up to several thousand processors, each with a small local memory
and some circuitry for communication, are connected as a complete binary tree. A
processor operates in SIMD (single instruction, multipie data) mode, executing
instructions sent to all its descendents from some processor higher in the tree, or in
MIMD (multiple instruction, multiple data) mode, executing instructions from its
local memory. The rules of a production system can, for example, be distributed
amongst the processors (ideally, each gets one rule), so that data to be matched
against stored rules can be broadcast and the matching done in paraliel.

DADO is really a general-purpose multiprocessor, as well- or ill-suited to
executing production systems as a conventional computer. Diverse applications [47]
have been proposed for DADO or run on the prototype machines—Prolog, Lisp,
and image-processing software, for example. The largest prototype to date is the
DADO2, with 1,023 eight-bit microprocessors.

Several recent machines are, essentially, modern versions of DADO: similar
to general-purpose machines, with tens of closely coupled processors. The PSM
architectures proposed by Gupta et al. [18] are typical: not more than 64 processors,
each with a local memory and cache, with a shared global memory for the lot and a
“hardware task scheduler.” MANJI [32,33] is similar: a small number of powerful
but ordinary microprocessors, this time with special multiport memories divided
into pages and equipped with page tables. Each processor therefore has its own
virtual memory which can be accessed by other processors at the same time.

Oshisanwo and Dasiewicz [37] propose a complicated model for parallel exe-
cution of production systems and then base an architecture on it. They use tens of
identical processors, grouped into three very different modules that correspond to
three parts of their model. One module is a DADO-style binary tree, another a
collection of independent processors, and the third a collection of four-processor
clusters.

PESA-1[42] is the closest in spirit to the paraliel Prolog machines we describe,
in that its processors have a specialized instruction set, analogous to the WAM’s.
However, these processors are arranged into a pipeline, each stage being a row of
processors sandwiched between two buses. Each bus serves as an input for one row
and an output for the next, so that the pipeline forms a ring of alternating buses and
processor-rows. Buses can be reconfigured to vary the number of stages or the
number of processors in a stage, although it is not clear at what times this is done or
how the machine’s new configuration is decided on.

Prolog Machines

Parallel architectures for Prolog usually exploit OR-paratlelism, AND-parallelism,
or both. Usually they are collections of modificd WAMs: experimental machines
are often ordinary multiprocessors with each processor emulating a WAM. We de-

204 System Architectures for Prolog Execution Chap. 7

scribe first the different forms of parallelism (basing our classification on Conery?s)
and then some representative architectures and models of execution.

Forms of parallelism in Prolog. OR-parallelism [8,55] is the parallel exe-
cution of the clauses that match a call to a predicate. Each clause provides some
number of answers to the call, so that answers to a call are found in parallel,
AND-parallelism [8] is the parallel execution of the goals in a clause. Each goal
provides part of any solution to a clause, so that parts of a solution to a clause are
found in parallel. Most other forms of parallelism are low-level [8], dealing with
handling terms (as in parallel unification) or WAM instructions (as with a pipelined
WAM). rather than larger objects such as goals or clauses.

Forms of OR-parallelism. ~ Conery [8] describes three types of OR-parallel-
ism: pure, OR-process, and search. Pure OR-parallelism spawns a new process for
every alternative clause; the process reports success (and the bindings it made) or
failure, and then terminates. This tends to create a huge number of short-lived
processes which do only simple computations and communicate a great deal, nota
very practical design. The OR-parallelism used in recent machines (described in a
later section) can be considered a restricted form of pure OR-parallelism. OR-
processes resemble the objects of an object-oriented language: each is responsible
for perhaps a few clauses or predicates of a program, and they communicate by
passing messages. Search parallelism results from partitioning a program, distribut-
ing its clauses amongst processors. Typically this requires a program with many
clauses per predicate, so that multiple processors work at matching a goal to one of
these clauses.

Formms of AND-parallelism. Stream parallelism treats a variable common to
two goals as a channel of communication between them; for example, the first goal
can build a list element by element, and the second can process each element of the
list as it becomes available. This is a major source of parallelism in parallel lan-
guages related to Prolog, such as Concurrent Prolog [43], Parlog [6], and GHC [52];
users of these languages must specify it explicitly, annotating variables suitably.
AND-processors try to solve goals of a clause simultaneously. In this case, variables
shared between goals are a nuisance, because two goals running simultaneously may
bind a variable inconsistently. We discuss two solutions to this shortly.

Other forms of parallelism. Parallel unification [40] has already been consid-
ered; however, it seems that most unifications are trivial, that unification is too
low-level to make communication practical between many processors, and that
there is a theoretical limit on the speedup [14] (roughly logarithmic in the number
of processors). Pipelining the WAM provides parallelism of a sort [49], but it does
notappear to be effective [50]. Various combinations of OR- and AND-parallelism
have been proposed [58].

Some parallel models and architectures for Prolog. Early parallel archi-
tectures for Prolog resemble the general-purpose multiprocessors for production

Parallel Machines for Prolog 205

systems: the architecture is not as important as the algorithms that run on it. Most
of the designs we present are more recent. As with the production-system machines
and with multiprocessors in general, these have tens of processors rather than
hundreds or thousands, and usually some form of shared global memory.

Conery’s ANDIOR-Process Model (AOPM). Conery [8] does not specify an
architecture but assumes a set of processes that communicate by message-passing; a
wide range of architectures can support this model of execution. Loosely speaking,
his AND/OR-Process Model (AOPM) has two types of process. An AND-process
manages a conjunction of goals, such as a compound query or the body of a clause,
deciding which of its goals to evaluate next. It creates, for each selected goal, an
OR-process that produces solutions for the goal. An OR-process will generally
spawn descendent AND processes in turn, and so forth.

An OR-process finds all the clauses that match its goal. It creates an AND-
process for each rule, keeping a list, but handles facts on its own. The OR-process
sends its first answer (obtained by either means) to its parent AND-process and
gathers any subsequent results. The parent might send a redo message, asking for
another answer. If the OR-process has any, it returns one; if not, it sends redo
messages to those of its descendent AND-processes that are still active. If all
descendent ANDs are finished and the store of answers is exhausted, the OR-
process responds to a redo with a fail message. When the parent AND fails (due to
the failure of one of its ORs), it sends a cancel/ message to all its descendent ORs,
which they in turn propagate to their ANDs. The message reaches the entire tree of
processes, which terminates, starting from the leaves and progressing upwards.

AND-processes are more troublesome. When a variable occurs in more than
one goal, the OR-processes for the goals might instantiate it to different values.
Conery solves this by forbidding goals with a shared uninstantiated variable to run
in parallel. One instance of a variable is selected (from a mixture of run-time and
static information) as the generator of that variable’s instantiation, with the others
being consumers. Once the variable is instantiated, goals containing it can safely be
executed in parallel.

Backtracking is difficult in the AOPM. As in the WAM or in any Prolog
interpreter, we must undo bindings done by goals between the latest backtrack
point and the point of failure; in the AOPM, the corresponding OR-processes will
have to issue redo messages. Finding the latest backtrack point is complicated but
practical.

The RAP Machine. DeGroot's Restricted AND-parallelism (RAP) [10,11]
resembles the AOPM’s AND-parallelism, but relies on compile-time rather than
run-time analysis. RAP allows parallel execution only if a few simple run-time tests
(e.g., of instantiation and independence of variables) can determine that it will not
instantiate variables inconsistently. We lose instances of parallelism, but save run-
time overhead. For example, if we have the clause

a(X,¥Y):— b(X), c(X,Y).

206 System Architectures for Prolog Execution Chap. 7

the compiler generates something equivalent to

a(Xx,Y):-
var(x)->
b(X}), c(x,¥)

(b(x) & c(X,Y).

where the & represents paralle! execution of goals. Thus, the paralle] code runs only
when it is safe to do so.

Hermenegildo [20-22] presents the RAP machine, a multiprocessor made of
modified WAMs. He describes the extra capabilities a WAM needs to support
AND-parallelism and then proposes extra hardware and an altered model of exe-
cution to provide them. A Processor must be able to assign parallel work to other
processors and keep track of the state of this work, yet retain the useful features of
the original WAM. Hermenegildo shows that his design does these things and
supports RAP. Figure 7-16 shows the data areas for one processor of the design and
the structure of two new types of record.

Records for parallel calls, called parcall frames, now appear on the stack.
Each processor also has a new goal stack onto which it pushes goal frames for goals
that are ready to be executed in parallel. Each goal frame contains the information
needed for remote execution, viz., a pointer to the predicate being called, a copy of
the argument registers for the call, the predicate’s arity, a pointer to its “parent”
parcall frame (EPF), and its position within that parcall frame. When execution of a
clause reaches a parailel call, a goal frame is pushed onto the goal stack for each of
the goals, and processors (including the one executing the clause) can “‘stea)” these
frames and start to execute the goals.

The processor creates a parcall frame on the stack for cach parallel call.
Within this frame, each goal has a slot with three fields: the number of the processor
that “‘stole” it for execution, a bit telling whether it still has alternatives, and a
“ready” bit telling whether the goal’s frame wili actually be put on the goal stack
(this is needed when execution backtracks into the parallel set: the retry should
involve only goals with alternatives). The frame also holds the number of goals left
to schedule, the number executing but not completed, a pointer to the first goal of

fail in three places: before the parallel goal, within it, and after it. In the first case,
we backtrack as usual: in the second, the parallel goal fails and we backtrack to the
previous goal; in the third, we backtrack as usual unti] we reenter the parallel goal.
When we do, we consider only the goals that still have aiternatives (recall that bit in

Paratlel Machines for Prolog

207

Registars

CP

w

TR

HB

CFA

EPF

PF

ID | Status | Ready
fentries for h
other goals)
10 | Status | Ready Pred. name
of goals to schedule Plarity}
of goals to await A
of goal slots
PIP P(2)
Status P{1)
GS’ arity
BPP (previous frame) slot number
CEFP (cont. frame) PF
Parcall frarme Goal frame
(a)
Stack Heap Trail Goal stack
Choice {S) —»
paoint
(B} (TR}
{EPF) —» {HB) —»
(E) —»
Parcall Goal
frame {H) frame
(PF) 1as)
{A)
{b)

EL

o

S e T

a parcall frame’s slot). We backtrack among them in the usual way; when one
succeeds, we lump those on its right into a smaller parallel goal and execute it (this is
the use of the “ready” bits). Of course, if the goals all fail, we backtrack to the goal

X1

X3

Figure 7-16 The RAP machine. (a) New data items. (b) Data areas and registers.

before the original parallel goal.

—

208 System Architectures for Prolog Execution Chap. 7

Recent OR-parallel Machines. In the past few years various researchers have
proposed several execution models for OR-parallelism, closely resembling each
other and with corresponding architectures [55,56]. These models consider program
execution as building an OR-tree, as shown in Figure 7-17. Note that each child of a
node is the result of replacing the first goal with the body of a matching clause. If we
traverse such a tree depth-first and from left to right, we get a series of lists of goals,
resembling execution traces. This is just like serial Prolog execution.

Now suppose that we have a “pool” of workers [55]: modified WAMSs or
processes running on them. We begin by assigning a query (the root of the OR-tree)
to one worker. It begins to work on the first clause that matches its first goal, i.e.,
the leftmost subtree. If other workers are idle, as of course they are initially, it
assigns them the other subtrees, starting from the right. Each worker can do this
with its own subtree, distributing subsubtrees of it to idle workers. If no other
workers are idle, a worker simply executes its subtree by itself, just like an ordinary
WAM, returning results to its parent. Then, when it can do no more, it becomes idle
and waits for another task. Figure 7-18 gives the general idea: each number
represents one of eight workers, and so the label of a node or tree tells which is
working on it. Nodes 2 and 3 have been given the first available subtrees, 4 through
6 subsubtrees as they became available, and so forth.

e

ab
/ \
c,d,b e.f.b g.hib
VAN N
i-k.d.b d.b f.b I.m.t.b h.i.b nh.ib
L/ AN
k.d.b o.b p.q.b r.b s,m.f.b m,f.b i.b th.i.b h,i,b

a:-¢,d, e]

a-ef. e-I.m.

a:-g,h.i. i:-s
fi-r. I

ci-j. k.

[g. n:-t
g:-n. n

d:-o.

d:-p.q h

Figare 7-17 An OR-tree.

A

Parallel Machines for Prolog 209

Figure 7-18 Dividing an OR-tree amongst workers.

The beauty of this scheme is that the available OR-parallelism, in theory, is
always exactly right. We can give an idle worker its own subtree, or let a worker
handle a large subtree on its own. If workers do not get tasks of roughly equal size,
the ones that finish early can help the others. No worker is idle for long, and the
workload seems to balance automatically. Compare this with the AOPM, which
must restrain OR-parallel execution to prevent an exponential number of processes
from being spawned, or with the RAP machine, which relies entirely on restricted
AND-parallelism (perhaps too uncommon to be a mainstay [55]).

A major problem with implementing an OR-parallel machine is keeping track
of the different bindings that different branches of execution make to the same
variable [55]. Counting variations, about a dozen methods exist for doing this [56].
Most involve some sort of binding array or hash table for each worker or for each
node of the OR-tree. For example, Warren’s SRI model {55] gives each processor of
a machine a local memory for storing a binding array.

Most of these machine models assume (or have been implemented on ma-
chines of) 16 to 32 processors, with very fast communication between them, e.g.,
with a shared global memory {12,44]. There are some exceptions, however {2]. The
need to manage bindings quickly makes the tight coupling desirable. For instance,
when a processor switches from one subtree to another, it needs to receive a set of
bindings associated with the parent node of its new subtree. Whether these are
readily available depends on the method for storing bindings; methods that save
effort here require it elsewhere {56].

UMMARY

Prolog is a reasonable alternative to other languages for implementing expert sys-
tems. It has more expressive power than conventional shells, yet shares many of
their advantages, such as built-in inference and search mechanisms. As we have

210 System Architectures for Prolog Execution Chap.7

seen, it has a simple, fairly tidy syntax and an elegant mechansim of execution.
Furthermore, an execution engine, the Warren abstract machine (WAM), already
exists for Prolog: the language translates directly into instructions for the WAM.
The WAM can be emulated in software or microcode, or built; in any case, it
provides much faster exccution than an interpreter.

Parallel machines designed expressly for expert systems usually support pro-
duction systems. Most architectures are conventional multiprocessors with some
hardware for communications or managing memory; only one appears to be based
on processors analogous to the WAM. The software that performs the produc-
tion-system operations in parallel is much more important than the architectures
themselves. Parallel Prolog machines can be conventional multiprocessors, but
more often they are collections of Warren engines. They can exploit any of several
principal types of parallelism.

Implementors of expert systems should seriously consider Prolog, for both its
capabilities and its speed of execution. Those who prefer to use expert system
languages such as OPS5 should realize that these need a standard, serial abstract
machine similar to the WAM; without the WAM, Prolog compilers and Prolog
machines would be far more primitive than they are at present. The execution
engine of the PESA-I processing elements [42] might be a step in the right direction,
but someone needs to make a careful study of the serial execution of production
systems.

REFERENCES

1. ALS Prolog Technical Reference Manual, Syracuse, New York: Applicd Logic Systems,
1987.

2. Ali, K. A. M., “OR-Paralle! Execution of Prolog on a Multi-Sequential Machine.”
International Journal of Parallel Programming 15 (1987): 189-214.

3. Ben-David, A., and Sterling, L. “A Prototype Expert System for Credit Evaluation.” In
Artificial Intelligence in Economics and Management, edited by L. F. Pau. pp. 121-128.
Amsterdam: Elsevier, 1986.

4. Carlsson, M., and Widen, J. SICStus Prolog User's Manual, SICS Research Report
R88007. Swedish Institute of Computer Science, February 1988.

5. Clark, K. L., and McCabe, F. G. “PROLOG: A Language for Implementing Expert
Systems.” In Machine Intelligence 10, edited by Y .-H. Pao. Chichester, England: Ellis
Horwood, 1982,

6. Clark, K. L., and Gregory, S. **Notes on the Implementation of PARLOG." Journal of
Logic Programming 2 (1985): 1742,

7. Clocksin, W. F., and Mellish, C. S. Programming in Prolog. Berlin: Springer-Verlag,
1984.

8. Conery, 1. S. Parallel Execution of Logic Programs. Boston: Kluwer Academic Pub-
lishers, 1987.

9. Dehray, S. K. The SB-Prolog System, Version 2.2.1: A User Manual. Tucson, AZ,
University of Arizona, 1987.

References 211 i

10. DeGroot, D. “Restricted AND-Parallelism.”” International Conference on Fifth Generat-
ion Computer Systems. Tokyo, 1984, pp. 471-478.
11. DeGroot, D. “Restricted AND-Parallelism and Side-Effects.” 1987 Symposium on
,I Logic Programming. San Francisco, September 1987, pp. 80-89.
12. Disz, T., Lusk, E., and Overbeek, R. “Experiments with OR-parallel Logic Programs.”
Fourth International Conference on Logic Programming. Melbourne, 1987, pp. 576-600.
13. Dobry, T. P., Despain, A. M., and Patt, Y. N. “Performance Studies of a Prolog
Machine Architecture.” Twelfth Annual International Symposium on Computer Archi-
tecture. Boston, 1985, pp. 180-190.

14, Dwork, C., Kanellakis, P. C., and Mitchell, I. C. “On the Sequential Nature of Unifica-
tion.” Journal of Logic Programming 1 (1984): 35-50.
15. Fagin, B. S., Patt, Y. N., Srini, V., and Despain, A. M. “Compiling Prolog into Micro-
code: A Case Study Using the NCR/32-000.” MICRO 18 Proceedings. Pacific Grove,
CA, 1985, pp. 79-88.
= 16. Fagin, B. §., and Despain, A. M. “Performance Studies of a Parallel Prolog Architec-
i ture.” Fourteenth Annual International Symposium on Computer Architecture. Pitts-
burgh, 1987, pp. 108-116.
. Gee,]., Melvin, §. W., and Patt, Y. N. “Advantages of Implementing Prolog by
Microprogramming a Host General Purpose Computer.” Fourth International Confer-
ence on Logic Programming. Melbourne, 1987, pp. 1-20.
. Gupta, A., et al. “Parallel Algorithms and Architectures for Rule-based Systems.”’
Thirteenth Annual International Symposium on Computer Architecture. Tokyo, 1986,
pp. 28-37,
. Hammond, P. “Micro-PROLOG for Expert Systems.” In Micro-PROLOG: Program-
ming in Logic, edited by F. G. McCabe. Englewood Cliffs, New Jersey: Prentice-Hall,
1984.
. Hermenegildo, M. V. “An Abstract Machine for Restricted AND-parallel Execution |
of Logic Programs.” Third International Conference on Logic Programming. London, |
1986, pp. 25-39. !
. Hermenegildo, M. V., and Nasr, R. I. “Efficient Management of Backtracking in
AND-parallelism.” Third International Conference on Logic Programming. London,
1986, pp. 40-54.
. Hermenegildo, M. V. “Relating Goal Scheduling, Precedence, and Memory Manage-
ment in AND-parallel Execution of Logic Programs.” Fourth International Conference
on Logic Programming. Melbourne, 1987, pp. 556-575.

. Hogger, C. 1. Introduction to Logic Programming. London: Academic Press, 1984.

. Jackson, P. Introduction to Expert Systems. Workingham, England: Addison-Wesley,
1986.

. Kaneda, Y., et al. “Sequential Prolog Machine PEK.” New Generation Computing 4
(1986): 51-66.

. Lloyd, J. W. Foundations of Logic Programming. Berlin: Springer-Verlag, 1984.

. Maier, D., and Warren, D. 8. Computing with Logic. Menlo Park, CA: Benjamin/
Cummings, 1988.

. Maruyama, F., et al. “Prolog-based Expert System for Logic Design.” International
Conference on Fifth Generation Computer Systems. Tokyo, 1984, pp. 563-571.

212 Systemn Architectures for Prolog Execution Chap.7

29. Matsumura, Y., et al. “Consultation System for Diagnosis of Headache and Facial Pain:
RHINOS.” In Logic Programming '85: Proceedings of the Fourth Conference, edited by
E. Wada, pp. 287-298. Berlin: Springer-Verlag, 1985.

30. Matwin, S., et al. “Logic-based Tools for Negotiation Support.” 1987 Symposium on
Logic Programming. San Francisco, September 1987, pp. 499-506.

31. Miranker, D. P., “Performance Estimates for the DADO Machine: A Comparison of
TREAT and RETE.” International Conference on Fifth Generation Computer Systems.
Tokyo, 1984, pp. 449-457.

32. Miyazaki, J., et al. “MANJI: An Architecture for Production Systems.” Twentieth
Annual Hawaii International Conference on System Sciences. Honolulu, 1987.

33. Miyazaki, J., et al. “A Shared Memory Architecture for MANJI Production System
Machine.” In Database Machines and Knowledge Base Machines. edited by H. Tanaka,
pp. 517-531. Boston: Kluwer Academic Publishers, 1988.

34. Naish, L. Negation and Control in Prolog. Berlin: Springer-Verlag, 1986.

35. Nakazaki, R., et al. “Design of a High-speed Prolog Machine.” Twelfth Annual Inter-
national Symposium on Computer Architecture. Boston, 1985, pp. 191-197.

36. Nitta, K., and Nagzo, J. “KRIP: A Knowledge Representation System for Laws Related
to Industrial Property.” In Logic Programming °85: Proceedings of the Fourth Confer-
ence, edited by E. Wada, pp. 276-286. Berlin: Springer-Verlag, 1985.

37. Oshisanwo, A. O., and Dasiewicz, P. P. “A Parallel Model and Architecture for Produc-
tion Systems.” International Conference on Parallel Processing. St. Charles, IL, August
1987, pp. 147-153.

38. Pereira, F. C. N. C-Prolog User’s Manual. Edinburgh: EdCAAd, 1983.

39. Poe, M. D. “Control of Heuristic Search in a PROLOG-based Microcode Synthesis
Expert System.” [International Conference on Fifth Generation Computer Systems.
Tokyo, 1984, pp. 589-595.

40. Robinson, J. “A Prolog Processor Based on a Pattern Matching Memory Device.” Third
International Conference on Logic Programming. London, 1986, pp. 172-179.

41. Sammut, R. A., and Sammut, C. A. “The Implementation of UNSW-Prolog.”
Australian Computer Journal 15 (1983): 58-64.

42. Schreiner, F., and Zimmerman, G. “PESA-I—A Paralle! Architecture for Production
Systems.” International Conference on Parallel Processing. St. Charles, IL, August 1987,
pp. 166-169.

43. Shapiro, E. Y. A Subset of Concurrent Prolog and Its Interpreter, Technical Report
TR-003. Tokyo: Institute for New Generation Computer Technology, 1983,

44. Shen, K., and Warren, . H. D. “A Simulation Study of the Argonne Model for
Or-parallel Execution of Prolog.”” 1987 Symposium on Logic Programming. San Fran-
cisco, September 1987, pp. 54-68.

45. Sterling, L., and Shapiro, E. Y. The Art of Prolog. Cambridge, MA: MIT Press, 1986.

46. Stolfo, S. J., Miranker, D. P., and Shaw, D. E. “Architecture and Applications of
DADO: A Large Scale Parallel Computer for Artificial Intelligence.”” Eighth Interna-
tional Joint Conference on Artificial Intelligence. Karlsruhe, 1983, pp. 850-854.

47. Stolfo, S. J. “Initial Performance of the DADO?2 Prototype.” Computer 20 (1987):
75--83.

—

References 213

48. Taki, K., et al. “Hardware Design and Implementation of the Personal Sequential
Inference Machine (PSI).” {nternational Conference on Fifth Generation Computer Sys-
tems. Tokyo, 1984, pp, 398409,

49. Tick, E. An Overlapped Prolog Processor, Technical Note 308, Menlo Park, CA: SRI
International, 1983,

50. Tick, E., and Warren, D. H. D. “Towards a Pipelined Prolog Processor.” 1984 Sympos-
ium on Logic Programming. Atlantic City, February 1984, pp. 2940,

51. Touati, H., and Despain, A. “An Empirical Study of the Warren Abstract Machine.”
1987 Symposium on Logic Programming. San Francisco, September 1987, pp. 114-124.

52. Ueda, K. “Guarded Horn Clauses.”” In Logic Programming '85: Proceedings of the
Fourth Conference, edited by E. Wada, pp. 168-179, Berlin: Springer-Verlag, 1985.

33, Warren, D. H. D, Applied Logic—Its Use and Implementation as a Programming Tool,
Technical Note 290. Menlo Park, CA: SRI International, 1983,

34, Warren, . H. D. An Abstract Prolog Instruction Set, Technical Note 309, Menlo Park,
CA: SRI International, 1983.

35. Warren, D. H. D. “The SRI Model for Or-parallel Execution of Prolog—Abstract

Design and Implementation.” 1987 Symposium on Logic Programming. San Francisco,

September 1987, pp. 92-102.

. Warren, D. H. D. **Or-parallel Execution Models of Prolog.” 1987 International Joint
Conference on Theory and Practice of Software Development. Pisa, Ttaly, March 1987,
pp. 243-259.

. Waterman, D. A., and Hayes-Roth, F. **An Investigation of Tools for Building Expert
Systems.” In Building Expert Systems, edited by D. B. Lenat, pp. 169-215. Reading,
MA: Addison-Wesley, 1983.

. Westphal, H., and Robert, P. “The PEPSys Model: Combining Backtracking, AND-
and OR-paralielism.” 987 Symposium on Logic Programming. San Francisco, Septem-
ber 1987, pp. 436448,

. Yoshino, H., et al. “Legal Expert Systems LES-2.” In Logic Programming '86: Pro-

ceedings of the Fifth Conference, edited by E. Wada, pp. 3445, Berlin: Springer-Verlag, .
1986.

