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To reduce the search space, unnecessary e
nance relations. When a node P, dominates
subtree rooted at P; contains a solution node
the minimum (or maximum) solution value o
example, suppose the assignment for a subset
knapsack in the 0/1 knapsack problem has b
ments, P; and P;, on this subset of objects,
assigned to the knapsack for Py is more than th
objects assigned in P, is less than that of P,, the
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inates P;. Another example of dominance tests
cussed in Section 4, A special case of dominan
that are used in branch-and-bound algorithms
Suppose a solution with value v has already bd
with lower bounds greater than v can be termins
better solutions. The minimum of the solution
conveniently kept in a single location called the

A problem can be represented in multiple f
problem may either be represented in an OR 4
bound algorithm [30], or formulated in dynami
acyclic AND/OR-graph search. As another ex
from a set of numbers can be solved by either
algorithm f1] or a decision-tree (OR-tree) sean
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the same solution(s). Kumar and Kanal have shq
procedures for state-space representations (e.g. A
searches (e.g. AQ” [64] ), and game-tree searchd
to branch-and-bound searches with dominance tes

The efficiency of solving & given problem
Although efficient search procedures for some P
the general question of deciding the representation
is still open for many problems, especially wher
Moreover, the best computer architecture for solvi
lem is very problem dependent. Our objective is,
tional requirements of varicus search algorith
designers in assessing whether a general-purpo:
given search algorithm, and in developing the m
algorithm. Special-purpose architectures can als
tional requirements.

In presenting the performance results in thi
are usually assumed, although the search algorith
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ABSTRACT

This chapter presents three paradigms of representations for combinatorial
search problems. Depending on the functions of the nonterminal nodes in the
graphical representation, a search problem can be represented as an AND-
tree, an OR-tree, and an AND/OR graph. This classification facilitates the
design of unigue computer architectures for supporting efficient evaluation of
combinatorizal search problems. For each representation, we develop theoretical
bounds, efficient algorithms, and functional requirements of multiprocessing
architectures, and illustrate these results by examples.
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1. INTRODUCTION

Multiprocessing refers 16 the cor
computer hardware complex with mor
ventionally, multiprocessing is define
ProCessors, input-output processors, da
the advent of VLSI technology, it be
general-purpese and special-purpose
definition of multiprocessing can be ¢
computer systems, systolic arrays, an
cessing can be considered synonymon
range from the IBM 360 computers wi
Cray X-MP, to the latest Fifth Generat

In using a multiprocessing syste
may be spent in designing a good par:
rithre with 2 speedup proportional 10
serial algorithm. This has to be done
involves tradeoffs in computational o
ments.

The solvability of the problem b;
lem should be polynomially solvable
an exponential complexity with respe
mial time unless an exponential numbe
technologically infeasible when the pr
algorithm requires 2" microseconds
microseconds (or 366 centuries) to sol
speedup is possible, it would require
mately one second, and 2% processor:
able problems, approximate solutions :
in a reasonable amount of tme.

Another important issue is on |
tiprocessing. It is important to obs
improve the computational efficies
extend the solvable problem spac
size N and complexity N* can be s
sor. Assuming that N processors ar
the new problem size that can be sc
following equation.

NN = X
The left-hand-side of the above equ
N¥ units of time with N POCESSOTS.

Operations 1o be performed in solv
equation yields

X= Zm.x.;n

* By saying that a problem is intracta
the best parallel algorithm cannot h:
Mumber of processors. Suppose (his
Algorithm can solve the problem in pol
Problem has an exponentia complexity
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Figure 1. Outin-tree representation of the sort-merge aigorithm,

processor utilization and communication overhead.

There have been contradictory views on granularity in previous studies:
some researchers advocate a fine grain, while others suggest a coarse grain. For
axm:ﬁo.. in designing the FFP machine {59], a small grain is chosen based on the
E%oﬁ.roem that appropriately designed small-grain multiprocessors will prove
superior to large-grain ones in supporting ease and generality of parallel computa-
uons. In contrast, in Redifiow [36], large-grain parallelism is used to minimize
noﬂh.uéanmmo: overheads. Further, only qualitative results were derived in these
studies,

A number of related studies have been carried out for scheduling tasks with
tree precedence relationships in order to minimize completion time. The process-
ing of such a task graph on = set of identical parallel processors such that the
completion time is minimized have been extensively swudied [12,14,27]. ¥
preemption is allowed, then the same problem can be solved optimally either by
Muntz and Coffman’s Critical Path Scheduling (CPS8) algorithm in O(N)
time [63], or by other polynomial-time algorithms [23]. In the CPS atgorithm,
the next job chosen is the one with the longest length of unexecuted jobs. This
longest path is called the critical path, If preemption is not allowed, then
optimal scheduling algorithms have been obtained only for two cases: (a) all tasks
have equal execution times and the precedence relationships are in the form of an
intree (Hu's algorithm) {32] and (b) when two processors are used {11]. Hu's
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optimal scheduling algorithm is indeed a CPS algorithm. Many other cases have
been proved to be NP-hard [48,71]. The CPS algorithm, besides efficient and
optimal, is easy to implement and, consequently, is one of the most common
scheduling algorithms [45, 58].

In case that the precedence graph is a tree, that all processors are identical,
and that each task requires t, O<tjSty.., units of time to complete, the
nonpreemptive CPS algorithm turns out to be almost-optimal in the sense that

Tp®) £ T () < Ty () + b 3

where Tpp(k) and Tp(k) are, respectively, the total time required by the
nonpreemptive and preemptive CPS algorithms using k processors [35]. Some
researchers have strived for nompreemptive scheduling algorithms to solve
scheduling problems with tree precedence [19,27,45]. Recently, Garey, Dolev,
et al. have studied the scheduling of forests consisting of intrees and cuttrees.
Given a fixed number of processors, polynomial algorithms with high complexi-
ties to find an optimal schedule of these forests have been developed [19,25).

2.1. Scheduling Algorithms for Qutin Trees

In studying the optimal scheduling of outin trees, an asynchronous model of
parallel computation is adopted. A set of k identical parallel processors is
assumed. These processors are connected by an interconnection network or a
shared memory. The precedence graph of an outin tree is represented such that
the entry node is at the top of the figure and the exit node is at the bottom. An arc
is assurned to be always directed towards ihe bottorn of the graph, The number
inside 2 node is the task execution titne, while the number next to & node, called
its length, is the sum of the task execution times for nodes in the longest path
from this node to the exit node. Figure 2(z) is an example of an outin tree.

. The execution time of a task can be interpreted as either its maximum pro-
cessing time or its expected processing time. In the former case, the worst-case
tme t0 compleie the schedule is considered, while in the latter case the length of
the schedule represents a rough ¢stimate of the average time of computation. In
some outin-tree problems, the execution time of each task can be predicted quite
accurately. For example, in evaluating arithmetic expressions, the time to exe-
cute a primitive operation, such as a multiplication, is known. In other cases, the
average execution times may have to be estimated from statistics or from previ-
ous experience. In all cases, the communication overhead is non-trivial when
Preemptions are allowed, and the task time should also include the overhead of
preemptions.

The evaluation of an outin tree can be divided into the splitting, all-busy,
and combining phases with respect to k, the fixed number of processers. In the
splitting phase, the problem is decomposed, and the number of busy processors is
increased from one up to at most k—1 (the number of busy processors must always
be less than k if the number of available tasks at any time is less than k). In the
combining phase, the subproblems are composed, and the number of busy proces-
sors is decreased from at most k—1 to one. During these two phases, some pro-
cessors are idle. In contrast, in the all-busy phase, all the k processors are busy.

The interface between the all-busy and the combining phases, called a
“heightline” by Schindler [68}, is useful in determining the optimal schedule for
outin trees. Schindler has proved that the schedule of a precedence graph is
optimal if either the computations can be completed in only the ali-busy or com-
bining phase, or it can be partitioned into the all-busy and combining phases by



110

wavefront
© (k=2)atts2

* +wavefront
(k=2) a1 =4

Figure 2b. Task precedence graph
as outin tree using element tasks.

Figure 2a. Task precedence graph
as outin tree.
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Figure 2c. Timing diagram for General Scheduling (processor sharing)

the heightline.

Three altemative scheduling algorithms for outin trees are considered in this
section: the preemptive 2nd nonpreemptive CPS algorithms, and the general
scheduling algorithm.

Preemptive Critical Path Scheduling (PCPS) Algorithm. The PCPS
algorithm schedules tasks according to the CPS scheduling algorithm, while
allowing preemptions at specific tmes. A task {2 node of the outin tree) are
decomposed into element tasks, each of which requires one unit of execution time
{see Figure 2b). Preemptions can occur between two ¢lement tasks. The PCPS
algorithm has been proved to minimize the completion time of scheduling an
“outin ee [53].

General Scheduling (GS) Algorithm. GS algorithm [63] is a variation of
preemptive scheduling algorithms in which each processor in the system is con-
sidered 10 have a certain amount of computing capacity rather than as a discrete
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Figore 2. Outin tree and CPS scheduling.

unit, and this computing capacity can be assigned 1o tasks in any amount between
zero and the equivalence of one processor. That is, processors are shared equally
among all executable tasks,

For example, if half of a processor is assigned to task P; with execution time
1, then it will take 2-; units of time to complete P;.

In the GS discipline, one processor is assigned to each of the k element tasks
farthest from the exit nede of the outin tree to be evaluated. If there is a tie in the
lengths among u element tasks for the last v, u>v, processors, then v/u of a pro-
cessor is assigned to each of these u element tasks. Processors are reassigned
according to the CPS principle whenever a point is rearched such that, if the
present assignment is continued, some element tasks will be computed at a rate
faster than other element tasks that are farther from the exit node. The GS discip-
line is illustrated in Figure 2(c) in which the task graph in Figure 2(a) is
scheduled.

Muntz and Coffman have proved the equivalence between the GS and PCPS
algorithms [63]. That is, if preemptions were permitted, then the *“processor-
sharing” capability is not needed for optimal scheduling. To illustrate this
equivalence, Figure 2(d) shows the preemptive schedule for the correspanding
outin tree in Figure 2(a). Note that in the scheduling algorithms discussed in this

_chapter, all idle processors, if any, must be used to compute an available execut-

able task,



112

At any time, a task is said to be active if either a processor or part of a pro-
cessor is assigned to it. The total number of active tasks may be greater than the
number of processors since some tasks may share processors. All active tasks
form-a wave-front in the outin-tree evaluation. Two particular times of the
wave-fronts are of special interest when k processors are used: t,,(k) and tac (k).
The computation enters the all-busy phase at t,(k) and enters the combining
phase at t,.(k). In both times, the wave-fronts serve as phase-boundaries. We
cail the former phase-boundary B, (k) and the latter B, (k).

For the task graph in Figure 2(a), if the PCPS algorithm is employed, then

tsp{2)=1 and . (2)=8.5 (see Figures 2{c) and 2(d)). The corresponding phase-
boundartes Bg, (2) and B,.(2) are indicated in Figure 2(b).

In practice, preemptions are usually restricted at the beginning of a time
unit, so the overhead of a practical PCPS algorithm is equal to that of Hu’s algo-
rithm, which assumes that tasks have unit execution times. From Eq. (3) and the
tesults in reference [63], we have

Tp(k) = Tgs (k) < Ta (k) < [Ty () + 1] = [Ty (k) + 1] )

where Tp(k) and Tg,(k) are the times required by Hu’s and GS algorithms, respec-
tively. Eq. (4) shows that the behavior of GS is very close to that of any PCPS
algorithm that only allows preemptions at the beginning of a time unit.

The GS algorithm is useful as a model for analyzing the properties of the
PCPS algorithm in which preemptions are allowed at specific times. The granu-
larities derived under the GS algorithm is the same as those of the PCPS algo-
rithm in which task times are always integral.

Non-preemptive Critical Path Scheduling Algorithm. Nonpreemptive
CPS algorithms are similar to the PCPS algorithm except that preemptions are not
allowed. In the nonpreemptive CPS algorithm, one processor is assigned to each
of the k nodes farthest from the exit node. If there is a tie in lengths among more
than one node, then a left-to-right tie-breaking rule is used to assign a processor to
one of these riodes. When a task of the outin tree is completed, the free processor
is assigned to the node farthest from the root in the remaining outin tree to be
evaluated. Figure 2(e) illustrates an example of nonpreemptive CPS scheduling,

If a preemptive (resp. nonpreemptive) CPS algorithm is applied, then the
computational times required by k processors to complete the splitting, all-busy
and combining phases are denoted by Tps(k), Tpa(k) and Tpetk) (resp. Tops (k)
Topa(k) and Tygc (k). The longest path from a task to the exit node is selected as
the execution-path through this task. For a task, if more than one such longest
path exist, then a left-to-right orientation or any tie-breaking rule is applied.

For example, in Figure 2(b), the execution-path from task A; is (A, C;, Fy,
Pz, F3, I1, I, Ji, Ip) and task By is the head of the execution-path (By, Py, Dy,
Ds, Hy, Ji, J2). Note that when k processors are used, only the topmost k-1
path-heads are active in the splitting phase. Other path-heads are active in the
all-busy phase.

In general, nonmpreemptive scheduling is more useful when the task-
switching overheads are high; however, it is more difficult to predict its perfor-
mance and determine the optimal grain in parallel processing,

2.2, Bounds on Optimat Granularity of Scheduling Outin Trees
The criteria generatly used to define the optimal granularity are the proces-

sor utilization (PLI), 5&, and AT?, where k is the number of processors, T is the
computational time, and A is the area of a VLSI implementation. The complexity
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of divide-and-conquer algorithms in a $IMD model and the conditions 1o assure
the optimal processor utilization have been studied [31]. However, processor
utilization increases monotonically with decreasing number of processors, which
means that PU achieves the maximum when one processor is used. Hence, PU is
not an adequate measure for the effects of parallel processing. A more appropri-
ate measure is the kT? criterion, which considers both PU and computatonal
time, since-

20 _ T(YT(k) _ speedup T
kT(k) PU where PU . and T(k) specdup (3)

Minimizing XT? means reducing the computational time and maximizing the
processor utilization. KT s linearly related to AT? if the ama of connection
wires is proportional 0 the area of processing elements, as in systolic arrays.
Both computational time and processor utilization are important in many applica-
tions, hence, kT? is 2 good criterion to optimize. In other applications, such as
real-time processing, the completion time may be more critical and the PU is a
secondary consideration. In this case, a different optimization criterion tnay have
to be used.

In this chapter, we adopt kT2 as a criterion of measuring processor-time
efficiency; that is, given an outin-tree, we need to either choose k to minimize
XTZ, or given a fixed k, determine the type of outin trees {their shapes, complexi-
ties, etc.) and its proper size that can be solved most efficiently by this system.

It is difficult to find the optimal granularity with respect to kT* directly
because the optimal granularity depends on the execution tiine of each task and
the shape of the outin tree. It is necessary o find parameters such that tight
bounds on optimal granularities can be derived.

An important parameter in characterizing the optimal granularity is the tatal
idle time. Let @p(k) (resp. @pp(k)) be the total amount of idle times when a
preemptive (resp. nonpreemptive) scheduling alporithm with k processors is used.
Dy (k) takes into account the idle times in both the splitting and combining
phases. Clearly, @,(k)= [Dps (k)P (k)] and

kT(k)=T(1)+ (k) (6)

Eq. (6) holds for both preemptive and nonpreemptive scheduling algorithms, The

total idle time @, (k) is related to both k and KT :

Due to space limitation, the following results on the bounds of optimal
granularities are stated without proofs. Their proofs can be found in the refer-
ences {53].

(a) When an outin tree is evaluated by the PCPS algorithm, w,_.wca is a concave

- function of k, that is, kT?(k) achieves the minimuom when k=k, mnm,_&.m k)
is monotonically decreasing (resp. increasing) with k when k<k (resp.
k>k).

(b) When an outin wee is evaluated by the PCPS algorithm and k>1, then the
lower and vpper bounds of k that minimizes wﬂwﬁwv are, respectively,
{Tp(1)A(2hpnae)—1} 2nd 2T (1)/(bmax ) + 1}, where hy,, is the length of the
critical path in the outin tree to be evaluated. No assumption has been made
about the distribution of task times in these bounds.

(c) When an outin tree is scheduled by a nonprecmptive CPS algorithm, and
>t if task i is a predecessor (resp. successor) of task j in the cuttree (resp.
intree) part, then k, the number of processors that minimizes E.mGAE. is
bounded between [Trp{ Dty 1(8hmay) and 3Tp(1) Ad(sy) + Licyy —
2tupa(k)], where t., is the task time of the entry node, t,, is the task time of
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the exit node, d{sc) is the shortest path from the entry node 1o s, the

maximum-all-busy level, L(cy) s the shortest length from Cy, the minimum

all-busy level, to the exit node, and tyg,(k) is the longest task-time among all
tasks in the all-busy phase when k processors are used.

Results (a) and (b} show that optimal granularity can be found easily c.«nm
binary search, which can be completed within about logz(Tp(1)/npax) steps.
Each step in the binary search tests whether EE,WAEV is positive. If itis, thena
smaller value of k will be checked in the next step, otherwise, a larger k will be
tested. .

For instance, suppose that N items need to be sorted. It is well-known that
T(1) = N-log N if a merge-sort algorithm is vsed. In this case, the overhead in the
intree part dominates that of the outree part. For the intree par,
hyax = N+N/2+ - -+ +1=2N-1, so the lower and upper bounds of the search
region can be determined from Result (b), which are close to (log N)/4 and logN,
respectively. Since there are only (3-logN)/4 candidate values in this search
region, loglog N steps of a binary search can guarantee to find the optimal grain
of parallel merge sorting. For problems such as evaluating numerical or logic
expressions and finding the maximum (or minimum) value, all task times are
identical. Result (b) predicts that the optimal grain is between N/(2-logN) and
2N/log N.

To illustrate Result (¢), we can determine the region for the optimal granu-
larity of solving the parallel merge-sort of N elements. In this problem, the com-
putational overhead in the intree is dominant, 50 only the part of the intree has to
be considered in the scheduling. The lower bound of the search region is
(log N)/16, since Tpp(1)=NlogN and hax<ZN. If N is large enough, then
[d{si HL(cy) — 2tapa(k)] will be larger than 1.5N, hence, the upper bound of the
search region is 2-log N.

The bounds on optimal granularity when the non-preemptive CPS algorithm
is used are usually weaker than those when the PCPS algorithm is used. Further,
since KTZ is not monotonically decreasing or increasing with k in nonpreemptive
scheduling, an exhaustive search is required to find the optimal grain.

2.3. Asymptotic Optimal Granularity of Nonpreemptive Seheduling Outin
Trees

To predict the optimal order-of-magnitude granularity in general, we briefly
discuss the asymptotically optimal granularity of parallel outin-tree evaluations
when they are scheduled using the nonpreemptive CPS algorithm.

Let C{n) be the overhead of a node in the intree, which. has n leaves rooted
by this node. C(n) represents the overhead of combining the results from its
immediate predecessor nodes in the intree. Likewise, let D{n) be the overhead of
a node in the outtree, which has n leaves rooted by this node. D(n) represents the
overhead of decomposing the given node into its immediate successor nodes in
the outtree. For an outin tree with N leaves, CN) and D(N) represent the over-
heads of the exit and entry nodes, respectively. Let @ be the set of functions of
the same order.

For problems such as summing a set of numbers, finding the maximum of N
numbers, and returning logical values to the main goal in evaluating logic

sxxx All logarithms used in this chapter have base 2. The base is not specificd explicity
in the rest of this chapter.
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programs, C(n) =@(1). In quicksort and merge sort, C{n)+D(n)=6(n).

The asymptotically optimal grain depends on the complexities of C(n) and
D(n). The higher the order-of-magnitude complexity of C(n) and D(n) are, the
Jarger the granularity is. When the order-of magnitude complexity of C{n)
(and/or D(n)) is large, the time spent in the combining (and/or splitting) phase is
dominating the time in the all-busy phase, and the performance gain in the all-
pusy phase with finer grains is negligible. In other words, a small granularity
may result in under-utilization of processors.

To isolate the impact of the complexities C(n) and D(n) on the optimal
granularity from the shape of the outin tree, we discuss the complete binary outin
wwee, and assume that, for 21l nodes in a level of the intree (resp. outtree) part, the
order-of-magnitude complexities of C(n) (resp. D(n)} are identical. This assump-
tion enables us to estimate T(1). The following result is stated without
proof [33].

(d) Suppose that a nonpreemptive CPS algorithm is applied to evaluate an outin
tree of N leaves by k processors. Assume that, for all nodes in a level of
outin tree, the order-of-magnimde complexities of C(n) (and Di{n)) are the
same and that t;>4;, if task i is a predecessor (resp. successor) of task j in the
part of the outtree (resp. intree). Then the order-of-magnitade E,mﬁzu is the
minimum if m.X.H.svaWthU = @qﬁ.ﬁuﬁwﬁzu@&.ﬂ:vﬂﬁwﬁzvvu.

The above result shows that if the number of leaves of an outin tree is very
large, then, to achieve the minimurn E.wcc_ the number of processors should be
chosen such that the imes required by the all-busy phase and the total times
required by the other two phases are approximately equal.

) Result (d) also shows the relationship between the processor utilization and
K1?. Let N, be the amount of task-time in the splitting and combining phases,
and Tpp, (k) = [Trps )+ Tape (1. Then, for arbitrary outin tree computations, an
asymptotically optimal granularity is achieved when
r.._.um.w (k) + Nye

KT ypu ) ?

Since Typq(k) < Ngo <{k—1)Tppa(k), it can be concluded that the corresponding
processor utilization is between 0.5 and 1. In other words, when a problem is
solved vw a parailel divide-and-conquer aigorithm and there are a large number of
_mmﬁwm in its outin-tree representation, to pursue more than 50% processor uiiliza-
tion will reduce the utilization-time efficiency.

) Using Result (d), the asymptotically optimal granularities with respect to
various C{n)+X{n) are sunmarized in Table 2. The results in Table 2 show that if
n@tu@ is ©(nP) for p>1, and that a large number of processors are used, then
w.m.. must be poor regardless of the capacity of the interconnection network. In
this case, the time needed to evaluate a subproblem will be increased quickly dur-
ing the decomposition process in the outtree and the composition process in the
intree. Hence, the root and exit nodes of the tree are obvious bottlenecks.

In contrast, if C(n) and D{n) are ©(1), then the time needed to evaluate any
subproblem is bounded by a constant, and the root and exit nodes will not be
bottienecks. Examples of this kind of problems include finding the maximum and
evaluating an arithmetic expression. Here, a fine-grain architecture is appropri-
ate, and a large speedup will be obtained by using a large number of processors.
Tree-structured computer architectures [29,59] and virtual-tree computers {8]
are good candidates in these applications.

In cases when C(n) equals either &(n) or B(log®n), s20, the time needed to
evaluate a subproblem is increased slowly during the decomposition process in

PUK) =
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load balancing mechanism is necessary. Here, process communications may not
be well overlapped with computations, and the corresponding task-times should
include the communication overhead. As a result, the optimal number of proces-
sors may be less than the theoretical bounds predicted in this section.

3. MULTIPROCESSING OF BRANCH-AND-BOUND ALGORITHMS

A branch-and-bound (B&B) algorithm is a systematic search of an OR
tree [47]. Tt is characterized by four constituents: a branching rule, a selection
rule, an elimination rule, and a termination condition,

The selection rule examines the list of active subproblems {nodes) and
selects one for expansion based on the heuristic value. For a serial search, the
minimum number of nodes are expanded under a best-first strategy provided that
all lower bounds are distinct [47]. However, this is achieved at the expense of
increased memory space, as there are a large number of concurrently active sub-
problemns. The algorithm is terminated when all active subproblems have been
either expanded or eliminated.

The elimination rule prunes unnecessary expansions by lower-bound and
dominance tests. For lower-bound tests, the incombent, z, holds the value of the
best solution that has been found so far in the search. In minimization problems,
a lower bound is calculated for each subproblem when it is created. A subprob-
lem cannot lead to the optimal solution if its lower bound exceeds the incumbent,
and may be eliminated from further consideration.

The way in which Py, the initial problem, is repeatedly decomposed into
smaller subproblems can be represented as a finite rooted wee B = (P, E), where P
is a set of disjunctive subproblems, and E is a set of edges. The root of the tree is
Py. If a subproblem P; is obtained from P; by direct decomposition, then (P;, P;)
e E. The level number of 2 node is the number of edges leading from the root to
this node (the root is at Leve! 0). Let f(P;) be the value of the best soluton
obained by evaluating all subproblems decomposable from P;, P; be the j’th sub-
problem directly decomposable from P;, and k; be the total number of such sub-
problems (k; = | [{P;,x): (P;,x)e E] 1). Thea f satisfies:

f(P;) = min [{(F;)} : (8)
FlLowk

The lower-bound test can be relaxed by defining an allowance function,
&(z). Subproblems with lower bounds greater than z—¢(z) are eliminated result-
ing in a suboptimal solution that will deviate from the optimal solution by at most
£(zg), where zg is the value of the optimal sotution {33]. An example of an
allowance function s the relative error deviation, and a subproblem is terminated
if its lower bound is greater than z/{l+€}. The use of an allowance function is
very effective in reducing the computational complexity of B&B aigorithms., We
have found that, for some NP-hard problems under best-first searches, a linear
reduction in accuracy of the solution results in an exponential reduction in the
computational overhead {74,77]. : .

Each of the four constituents of 2 serial B&B algorithm can be implemented
by paralle! processing: (i) parallel selection of subproblems: multiple subprob-
lems with the smallest heuristic values can be selected for expansion; (i) paraliel
expansion of subproblems; (iii) paraile] termination tests and update of the

incumbent; (iv) parallel elimination tests: these include the lower-bound and



dominance tests. -

We have studied the performance bounds of parallel B&B
search [49,54,55] assuming (i) that only lower-bound tests are active, (ii) that
there is a single shared memory, (iii) that no approximations are allowed, (iv) that
the subproblems are expanded synchronously, (v) that the heuristic function is
unambiguous, meaning

B(P)#h(P)  if PwP;, P;,Pje P ©)
and (vi) thar the heuristic function is monotone, meaning
h(P;)<h(P;) if P; is a descendant of P; (10

Let Ty(k) (resp. Ta(k) and T;(k)) be the number of iterations required to
obtain the optimal solution under a best-first (resp. depth-first and breadth-first)
search with k processors. The following bounds have been derived:

(2) For a paralle] best-first search, if the value of optimal-solution nodes is dif-
ferent from the lower bounds of other nodes, then
Tp(1)-1 To(l) k-1

——+1| sTp(Kyg] ——+—h 11

K b(¥) m . 1y

where k is the maximmm number of levels in the B&B tree.

(b) For a parallel depth-first search, if all solution nodes exist at level h, then

Ty(D)-1 [ T | @1)(erl)
] STyl g | S+ EE

where ¢ is the number of distinct incumbents obtained during the search. A
stmilar equation can be also derived for parallel breadth-first searches.
(¢} For a parallel breadth-first search,
TAD-1 T | ko1

+1 <T ()< +
X r(k) K X

Eq’s (11), (12) and (13) show that there is almost a k-time reduction in the
number of ierations when parallel processing is applied on the same scarch stra-
tegy and when T,(1)/Kk is large.

The best search strategy depends on the accuracy of the problem-dependent
lower-bound function. Very inaccurate lower bounds are not useful in guiding
the search, while very accurate lower bounds will prune most unaecessary expan-
sions. In both cases, the number of subproblems expanded by depth-first and
best-first searches will not differ greatly, and a depth-first search is better as it
requires less memory space (proportional to the height of the search tree). When
the accuracy of the lower-bound function is moderate, a best-first search gives a
better performance. In this case, 2 good memory managemeni system is neces-
sary to support the memory space required.

Several architectures based on implicit enumeration have been proposed for
parallel processing of B&B algorithms. A subproblem is delegated to each pro-
cessor, which reports to its parent processor when the evaluation is com-
pleted {18} The limited degree of communication causes some processors (o
work on tasks that would be eliminated if a better interconnection network was
designed. Moreover, implicit enumeration is wasteful. Imat et al. {34] and E!-
Dessouki and Huen [20] have investigated parallel B&B algorithms based on 2
general-purpose network architecture with limited memory space and slow inter-
processor communication. Depth-first search was used due to memory

(12}

(c+h) (13)

limitations.

For probiems that are more efficiently evaluated by a parallel best-first
search, the architecture required is more complex. The problems here are the
selection of subproblems with the minimym lower bounds and the management of
the large memory space required. A number of search algorithms exist for per-
forming tradeoff between space and time in order to obtain better search
efficiency. These algorithms include Korf’s Iterative Deepening Search Algo-
rithm [38] and Real-Time A* Algorithm [39], which are sequential search algo-
rithms. In the following section, we discuss the architecture of MANIP, which
represents a design when search algorithms are executed in a multiprocessing sys-
tem with memory limitation.

3.1. MANIP--Multiprocessor for Parallel Best-First Search with Lower-
Bound Tests oniy

Two difficul: issues must be solved in & parallel best-first search. First, the k
subproblems with the smallest lower bounds must be selected from the N active
subproblems in the system. Selection by software requires a time overhead of
O(N) in each ireration. A practical multi-stage selection network for selecting k
clements from N elements requires O(logN-logk) time complexity and
O(Nlogk) hardware complexity [75]. A single-stage selection metwork may
also be used. One or more subproblems with the minimum lower bounds in each
processor are sent to the neighboring processors and inserted into their local Hists.
A maximum of (k-1) shift-and-insert operations are needed to ensure that each
processor has one of the k subproblems with the smallest lower bounds [74].
Assuming that insertion is implemented in software, the time overhead in each
iteration is C{lclog N). In all these cases, selection represents a significant over-
head of the system.

In addition to the high overhead of selection, it is known that the selection
rule is based on a fallible lower-bound heuristic. These suggest that it may be
more efficient not to follow the selection rule strictly. A No-Wait Policy is pro-
posed here. Instead of waiting for one of the k subproblems with the smallest
lower bounds, each processor should expand the “most promising’ subproblem in
its local memory and initiate a fetch of the ‘most promising” subproblem from its
neighbors. In this case, the ‘most promising’ subproblem is the one with the
minimum lower bound.

When the k ‘most promising” subproblems are randomly distributed among
the processors, the average fraction of processors containing one or more of the
‘most promising’ subproblems is at least .63 [74), resulting in a speedup propor-

- dondl to 0.63k. However, as expansion proceeds, the distribution may become

non-random, and an interconnection network is needed to randomize the distribu-
tions and balance the workload in the system. Experimental results on vertex-
cover and knapsack problems have shown that the number of subproblems
expanded increases by about 10% when the above scheme is used in place of a
complete selection. The performance is almost as good as that of a complete
selection when the processors expand subproblems synchronously and perform
one shift-and-insert operation for each subproblem expanded. The shift-and-
insert operation can be overlapped with subproblem expansions and supported by
a undirectional ring network.

A second issue in implementing a best-first search lies in the management of
the large memory space required. The multiprocessing model used to study this
problem comprises of a CPU, a main memory, a slower secondary memory, and a
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secondary-memory controller. The expected completion fime of the B&B algo-
rithm on this model is taken as the performance measure. GLOBAL DATA REGISTER

A direct implementation involving an ordered list of pointers to the subprob- =~ \ ’

lems results in a poor locality of access because the subproblems are not ordered
by lower bounds in the virtual space. A beuter alternative is a special virtual
memory that tailors its control strategies according to the locality of access [801.
However, this approach is inflexible as the parameters of the control strategies are
problem dependent. The inadequacies of these approaches are again due to the .
strict adherence to the selection rule. The No-Wait Policy may also be applied 1
here. This has resulted in the design of a modified B&B algorithm [81-83]. i
In this modified algorithm, the range of possible lower bounds is partitioned “

into b disjoint regions (Figure 3). The subproblems in each region are maintained I
in a separate list. The top portion of each list resides in the main memory while !
the rest resides in the secondary memory. Due to the high overhead of “
secondary-storage accesses, subproblems in a list are expanded in a depth-first 1
manner. To implement the No-Wait Policy, the modified selection rule chooses "
|

|
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the subproblem in the main memory with the smallest lower bound for expansion.
Since subproblems within a list are not sorted, the lower-bound elimination rule
has to be modified. Suppose that the current incumbent lies in the range of List L,
then all lists with indices greater than L are eliminated. Subproblems in List L
with lower bounds greater than the incumbent are eliminated only when they are
moved to the main memory during the expansion of List L. As a result, it is
necessary to carry out the lower-bound test on each selected subproblem before it
is expanded.

The modified algorithm is identical to a depth-first search when one list i I
used, and a best-frst search when infinitely many lists are used. In general, as the {
number of lists increases, the number of subproblems expanded decreases while “
the overhead of the secondary-memory accesses increases. The number of lists {
should be chosen to maximize the overlap between computations and secondary- “
memory accesses. This, in turn, depends upon the accoracy of the lower-bound i
function and the access times of the main and secondary memories. The accuracy |
of the lower-bound function is problem dependent and can be estimated from “
sample problems of the same type. . i
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Experimental results on integer-programming and vertex-cover problems
verify that the modified B&B algorith is very useful. For vertex-cover prob-
lems, the lower-bound function is very accurate, so a depth-first search results in
the best performance. For integer-programming problems, the lower-bound func-
tion is less accurate. As a result, more stacks {two to three) are needed for the
best performance. The improvement in paging overhead over a direct implemen-
tation of the best-first search can exceed one hundred times.

The architecture of MANIP as depicted in Figure 3 reflects an implementa-
tion of the solutions to the above two issues {74,76,78]. It consists of five major -
components: selection and redistribution network, secondary storage, processors, - _H_
global data register, and subproblem memory controllers.

The selection network selects subproblems with the minimum lower bounds
for expansion in each iteration, and connects the memory contrellers for load
balancing. A ring network is adequate, although the selection process can be
mapped onto any existing interconnected multi-computer system. Excess sub-
problemns that cannot be stored in the memory controllers are stored in the secon-
dary storage. The memory controllers manage the local list of subproblems,
maintain the sécondary storage, and communicate with other controllers through
the selection and redistribution network. The processors are general-purpose

stack b1

virtual memory
management
system

stack 1

i o v in i e et A S e o o ot AL T o e e

empty slot

subproblem in main memory

subproblem in secondary memory

Figure 3. Architecture and Logical Structure of MANIP
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computers for partitioning subproblems and evaluating lower bounds. The globa]

data register is a register accessible to all memory controllers and contains the .

value of the incumbent. To avoid contention during updates, this register can he
implemented by a broadcast bus or a sequential associative memory. In the later
case, the minimum is found when the values of the feasible solutions are shifted
out bit-serially and synchronously from all processors. .
Experience on MANIP and other previous studies [44,62,73] has shown
that the functional requirements for efficient evaluation of B&B algorithms with
lower-bound tests only are a loosely coupled interconnection of Pprocessors with

foad balancing capability, and a method of concurrent update and broadcast of the
incumbent,

3.2. Parallel Dominance Tests

When general dominance tests are used, it is necessary to keep the set of
current dominating nodes (denoted by Ng) in memory, These are nodes that
have been generated but have not been dominated so far. For the special case in
which only lower-bound tests are used, Ny contains only one undominated soly-
tion node--the incumbent, In general, Ny could be larger than the set of active
nodes. A newly generated node, P;, has to be compared with all nodes in Ny to
see if P; or any nodes in Ny are dominated.

Ny can be stored in a bank of global data registers, if its size is small. How-
ever, centralized comparisons are inefficient when the size of Ny is large. Ny
should then be partitioned into k subsets, Zm, rees Zm:_, and distributed among the
local memories of the k processors. A subproblem, P, ;, generated in Processor i
is first compared with Nj, and any subproblems in ZW_ dontinated by P, ; are
removed. If P, ; is not dominated by a subproblem in N, it is sent to a z&m_ﬁuoﬂ.
ing processor, and the process repeats. P;; will eventually return to Processor i if
it has not been dominated by any node in Ny and will be inserted into Ni,.

The functional requirements for implementing parallel dominance tests
depends on the size of Ny and the structure of the dominance relation. When Ngl
is small, unstructured dominance tests, in which a dominance relation can exist
between any pair of nodes, can be implemented by broadcast busses or global
registers. For structured dominance tests, it may be possible to partition the
search wee and localize the dominance tests. This poses additional complexity on
the system architecture and is investigated in Section 5. On the other hand, when
Ngl is large, it is necessary to partition Ny into subsets and to perform the domi-
nance tests in parallel. This results in tight coupling of the processors because the
transfer of newly generated nodes between processors has to be synchronized and
overlapped with computations.

3.3. Anomalies of Parallelism in B&B Algorithms

Since it is possible to overlap the communication overheads with computa-
tions for the various search strategies, the speedup of B&B algorithms can be
measured by the ratio of the number of iterations of the best serial algorithm to
that of the parallel algorithm under synchronous operations.

A k-fold speedup is expected when k processors are used. However, simula-
tions have shown that the number of iterations for a parallel B&B algorithm using
k processors can be: (a} more than the number of iterations of the best serial
algorithm.-* detrimental anomaly,” (b) less than one-k’th of the number of itera-
tions of the best serfal algorithm--*acceleration anomaly,” or (c) less than the
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iterati i i han one-k'th of the
mber of iterations of the best serial algerithm, UE. more t < °
”“Bce. of iterations of the best seral algorithm--**deceleration ano
aly.”” [43,46,49,50,52, 54, 55, 66, 67 . )
" wroﬂ T(k,e) be the number of iterations required for expanding a m@w tree to
find the first optimal (or suboptimal) solution, s:.ﬂ.o kis m._o a.zawﬂ. of proces-
sors and £ is the allowance function. Once the optimal solution is found, am time
1o drain the remaining subproblems from the active list is not accounted for here.

Py
g=78 g=85

m £=91
infeasible
g=f=91
Py

optimal solution
(serial case)

a feasible
solution

lower-bound
g=f=85
suboptimal — tests

solution in
parailel case

Figure 4. An example of a detrimental anomaly under a depth-first search with
approximations (=0.1).

Figure 4 shows an example of a detrimental uuo:.ﬁq g&o: approximations
are m:omcna. In a serial depth-first search, Subtree T; is terminated owing _Mo m&w
lower-bound test of P {(P; W(1+€) < g(Py), srn_.n.mno;. Ina vﬁmﬁwﬁmnnw -mm@
search with two processors, a feasible solution Py is found first, and mowﬁ Mn n
P} are terminated owing to the lower-bound test of P,. Consequently, Subtree Ty
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has to be expanded, which will eventually prune Subtree Ts. If the size of T is
much larger than that of Tj, the time taken to expand T using two processors
will be longer than that taken to expand Ta using one processor. Strategies to
handle these anomalies will be discussed in Section 3.5.

a feasible
solution

£=90

lower-bound
—= tests

Figure 5. An example of an acceleration anomaly under a depth-first or best-first
search with approximations {(e=0.1).

Figure 5 shows an example of an acceleration anomaly when 2 depth-first e &

search with approximations is used. When a single processor is used, m:cnan.._.
has to be expanded. However, when two processors are used, Pz is expanded in
the second iteration, and the feasible solution P is found. Therefore, Node w.u
and Subtree T will be eliminated by lower-bound tests with Py. If Subtree T 18
large, then the speedup of using two processors over one processor will be rauch
greater than two. Acceleration anomalies will be discussed in Section 3.6. .

Many examples to illustrate anomalies can be created for the various combi-
nations of search strategies and allowance functions. However, the important
consideration here is not in knowing that anomalies exist, but in understand-
ing why these anomalies occur, Furthermore, it is desirable to preserve the
acceleration anomalies and to avoid the detrimental anomalies. An important
objective is to find the sufficient conditions to ensure that T(k,€) <T(1,g), as well
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as the necessary conditions for T(k,&)<T(1,e)k. The necessary conditions to
eliminate detrimental anomalies and the sufficient conditions to preserve
acceleration anomalies are not evaluated because they depend on the sequence of
nodes expanded and the size of the resulting subtrees. Besides being impossible
to enumeraie due o the large number of possible combinations, these conditions
are problem dependent and cannot be generalized to all problems.

1.4, Generalized Heuristic Function for Branch-and-Bound Search

Recall from Section I that the selection function uses heuristic values to
define the order of node expansions. It was mentioned that breadth-first, depth-
first, and best-first searches are special cases of heuristic searches. These
searches are potentially anomalous when parallel expansions are allowed.

Consider the serial depth-first search. The subproblems are maintained in a
last-in-first-out list, and the subproblem with the maximum level number is
expanded first. When muliiple subproblems have identical level numbers (or
heuristic values), the node chosen by the selection function depends on the order
of insertion into the stack. If the rightmost child of a parent nede is inserted first,
then the leftmost child wiil be the node inserted last and expanded first in the next
terat1on.

level 0
level 1

fevel 2

level 3

level 4 01010 01110 04}l

Figure 6. The path numbers of a tree.

In a parallel depth-first search, the mere extension of the serial algorithm
may cause an anomalous behavior. For example, the order of expansion in a
serial depth-first search for the tree in Figure 6 is A, B, D, 1, 1, E, etc. When two
Processors are used, Nodes B and C are decomposed to Nodes D, E, F, G, and H
In the second iteration. Since these nodes have identical level numnbers, the selec-
tion function' can choose any two of these nodes in the next iteration. Suppose
that they are inserted in the order E, D, H, G, and F. Then Nodes F and G will be
u&nnﬁn and expanded in the third iteration. This may cause an unexpected
behavior ag compared to the serial case. A similar example can also be developed

for the best-first search when the lower bounds of nodes are identical.
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The ambiguous selection of nodes for expansion is exactly the reason for
anomalies reported by Lai and Sahnj [46]. In their proof of Theorem 1, which
states that detrimental anomalies can always exist when a larger number of pro-
cessors are used, the nodes selected for expansion are different when a different
number of processors are used. This change of selection order in their Theorem I
(and almost all their other theorems) is based on the implicit assumption that
nodes have identical lower bounds. In this case, the lower bounds are not usefyl
in guiding the selection of subproblems. To have an accurate comparison when
different number of processors are used, a consistent selection strategy must be
used. :

To resolve the ambiguity of the selection of subproblems, distinct heuristic
values must be defined for the nodes, In this chapter, a path number is proposed
to uniquely identify a node. The path number of a node in a tree js a sequence
of d+1 integers representing the path from the root to this node, where d is the
maximum number of levels of the tee. The path number E = gyerey, ey is
defined recursively as follows. The root Py exists at Level 0 and has a path
number of E; =000...0. A node P; on Level L, which is the J’th child (counting
from the left} of P, with path number Ej=ege;..e;_;000_, has paih number
m,_. =¢epe1..e11J00.... Asan example, the path numbers of all nodes in the tree of
Figure 6 are shown outside the nodes.

Honoanma %Ew ::Bcna.gaﬁmmo:m.v_mnn.n.acm”cnaomm&.> path
number E;=elel . is less than another path number mu.uomam... (Ey <Ey) if
there exists omm.ma such that e} =e?, 0<i<j, and ej <e?. The path numbers are
cqual if e =¢f for 0si<d. For example, the path number 01000 is less than
01010. According to our definition of path numbers, nodes can have equal path
numbers if they have the ancestor-descendant relationship. Since these nodes
never coexist simultaneously in the active list of subproblems of a B&B algo-
rithm, the subproblems in the active Hst always have unique path numbers.

The path number is now included in the heuristic function. The primary key
is still the lower-bound value or the level number. The secondary or ternary key
is the path number and is used to break ties in the primary key.

(level number, path number) breadth—first search
(path number) . depth—first search
(lower bound, leve] number, path number) or (14)
(lower bound, path number)

h(P;) =
best—first search

where the level number, path number, and lower bound are defined for P,. Fora
best-first search, nodes with identical lower bounds can be searched in a breadth-
first or depth-first fashion.

The definition of the path number dictates that a partial order exists among
successors of any given node in the search tree, and such an order is used con-
sistently by both the sequential and parallel algorithms, Such a partial order
implies that the same algorithm for decomposing a given nede into successors is
consistently used in both the sequential and parallel search. An atwribute for
defining this partial order may be needed if successors of a given node are gen-
erated in any random order. The lower-bound values can serve to defing this par-
tial order.

The heuristic functions defined above belong to a general class of heuristic
functions satisfying Eq’s (9) and (10). In general, an unambigous and monotonic
heuristic function is not restricted to using path numbers, For example, the lower
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bound can be used as the secondary key and the path number as the termary key in
a breadth-first search.

3.5. Sufficient Conditions to Eliminate Detrimental Anomalies
3.5.1 Parallel B&B Algorithms with Lower-Bound Tests Only

In this section, we show that any heurigtic search with an unambiguous
heuristic function can guarantee that T(k,£)<T(1,€) when only Es.nvguna tests
with e=0 are used. Assume that each subproblem is characterized Em a _oéom,
bound value, which is computed from a lower-bound function g. % baste ﬁonm is
the node with the smallest heuristic value in each iteration. Let @' and @ ﬂa the
sets of nodes expanded in the B&B wee using one and k processors, respectively.
To show that T(k,0)<T(1,0), it is necessary to prove (a) that at least one node
belonging to ®' is expanded in each iteration of the parallel search; and (b) that
once all the nodes in ® are expanded or terminated, the Eﬁm:a_. heuristic search
must terminate. The proof requires the following property on basic nodes.

Lemma 1: Let P; be a basic node, then for any node P; such that h(P;)<h{P;), P;
must be either expanded or terminated when P; is expanded.

Proof. Suppose that in the current active list, [J, P;c U is a basic node. Assume
that there exists a node P; such that h(P;)<h(P;) and that _u__. w.mm not been Q.Gmnaoa
or terminated when P; is expanded. Since P; has the minimum wnanm.ao value
among the active nodes in U, Py must not be active at that time. That is, Pjisa
descendant of some node m_c Peel, and h{P)<h(Py). By Eq. (10),
h(P;)<h(Py)<h(P}), which contradicts the assumption that h(P;)<h(P;). O

The following theorem proves that any c:mBEmp._ocm heuristic .?snnoz
satisfying Eq's (9) and (10} are sufficient 1o eliminate detrimental anomalies.

Theorem 1: Let e=0, ie., an exact optimal solution is sought. A_e.remﬁcve
holds for any paralle! heuristic search with a heuristic function satisfying Eq’s (9)
and (10).
Proof: The proof is by contradiction. Suppose there exists a basic E.an P;, inthe
parallel search such that P, ¢ @' and that P; e &* (see Figure 7). This means that
either Py orits an ancestor is terminated by a lower-bound test in the serial case.
Hence there must exist a feasible solation Nmme_ such that »,%rvmm%m_u.m”:m m.;:
P;, has not been obtained when P;, is expanded in the v.&.&._ﬁ case. It implies
that a proper ancestor P, e®! of Py exists in the serial case such that
Kmbécur ) and that P, is obtained before P; and terminates P;. Since Py isa
basic node in the paraliel search, h(P;, )<h(P; ), and P;, has not been n%.gaoa
when F_ is expanded in the parallel case, P;, must be terminated m_nnoaSm ~m
Lemma 1. For the paralle]l search, there must exist a feasible solution Wrmﬁ
such that f(Py, )<g(P;, ), and that P;, has not been obtained when Py, is expanded in
the serial case. Two cases are possible: ) .
First, P, is not generated when Py, is expanded in .aﬁ serial case, ie., a
proper ancestor P; e * of P;, exists when Py is active “.Ea h(P;, )>h(Py, ).
According to the properties of _oio?.co:nn functions, we Nmuo
Euim g(P; )= (P;,) sHP,) < g(Py, ). Moreover, in the parallel case, P;, should be
obtained before P; is expanded (otherwise P would not be terminated by P,

iy
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ey

©  afeasible solution

— parent-child relationship
..... * lower-bound test -

* sequence of node expansions
and terminations

Figure 7. Proof of Theorem 1.

Hence P; has 1o be terminated by P;, in the parallel algorithm, which contradicts

the assumption that P;, e @,

Second, h(Py )<h(P,), and P, , as well as its descendant P; , have been ter-
minated in the serial case and not in the parallel case. We nmm then apply the
above argument again to P, and eventually obtain a sequence of nodes
Fi. Py, ... Pi_ as depicted in Figure 7, in which P;_ is not terminated by any
lower-bound test. There are three possibilities:

{a) The first node P;_oecurs in the serial case (Figure 7a). Since P, isa feasi-
ble solution, we have: g(P, )<EP)<g(®;_)<EP, )<g(Py )< -+
<f(P; )=g(P; ). Further, since h{P; )<h(P; ) (otherwise, H.um_, non_%uoﬁ have
been terminated by Py, in the serial case) and since h(P; ,)<h(P; ,) (by the
same argument as h(P;, )<h(P,, ), we have h(P;,)<h(P; ). Repeating this, we
get h(P;_)<h(P; ). By Lemma 1, P;_ must be expanded in the parallel case
and terminates P; , which contradicts that P; & @,

(b) The first node P;_ occurs in the parallel case (Figure 7b). Similar to the
argument for Pj, discussed before, we can explain that P; , has been

obtained when Pj is selected. Therefore, Py must be terminated in the
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parallel case, which contradicts that P; € ok,

(c) There is a cycle of cutoffs such that B LP;_,, P LBy ... Py LP.
and Py LP; where L denotes 2 lower-bound-cutoff test (Figure 7c). By
gansitivity, we have f(P_)<f(Py )sK(P;_)<f(P;), which implies that
f(p;, =Py, =£(P,, ). The heuristic value of all nodes of the cycle are less
than h(P; ), s0 a feasible solution has been obtained before P, is selected.
Thus P;, must be terminated in the parailel case, which contradicts that
m_mer.

So far, we have proved that at least one node in ! is expanded in each
iteration of a parallel heuristic search. Since approximation is not allowed, the
pptimal-solution node cannot be eliminated c« lower-bound tests. Hence during a
paralle] heuristic search, once all nodes in @' are either expanded or terminated,
the optimal-solution node must be found. The remaining unexpanded nodes do
not belong to @' because their lower bounds are greater than the optimal solution.
The parallel heuristic search is thus completed at this time. O

The above theorem shows that demrimental anomalies can be avoided for
depth-first, breadth-first, and best-first searches with e=0 by augmenting the
heoristic function with an unambiguous function. As a special case, for a best-
first search in which all nodes have distinct lower bounds, the node with the stmal-
lest lower bound can always be selected from the priorizy queve. In this case, the
path numbers do not have to be wsed, and no detrimental anomaly will occur.

35.2 Parallel B&B Algorithms with Approximations

When parallel approximate B&B algorithms are considered, Theorems 1 i§
no longer valid {see the example in Figure 4). The reason for the detrimental ano-
maly is that L, the lower-bound tests under approximation, are not transitive.
That is, P;LP; and P;LPy do not imply P; L Py, since f(P (e sgPy) and
f(P;)/(1+e) < g(Py) implies f(P)/(1+e)* < g(Py) rather than f(P;)A(1+e) < g(Py).
Somewhat surprisingly, it is possible that &! and &* are zlmost disjoiat, and most
of the nodes in ®! are not expanded in the paralle] case. The following theorem
shows that detrimental anomalies can be avoided for a best-first search.

Theéorem 2: T(k,£)<T(1,€), &0, holds for best-first searches if the heuristic
function satisfies Eq. (9) and (10).

Proof: The key idea of this proof is to show that a detrimental anomaly cannot
occur although transitivity of lower-bound tests is not valid here. Suppose that
there exists a basic node P, in @ and not in ®'. There are two cases a3
described in the proof of Theorem 1 (see Figure 7).

First, assume that h(P;,)>h(P;,). Since the relations P, LP; and Py, LP;
cxist, and P; is selected before Py in the serial case (for a best-first search), it is
e that g(P; }<g(P;). This implies that f(P; }/(14+€}<g(Py ). Py, can be shown
to be available before P; is expanded by the same argument as in the proof of
Theorem 1. Hence P; must be eliminated by Py, in the parallel case, a contradic-
ton! (Note that only a best-first search has the unique property that maintains the
transitivity of lower-bound tests under approximations.)

Second, assume that h(P;,) <h(P;,). The argument here is similar to the
proof of Theorem 1 except that the lower-bound test to be used is
f(P;)/(1+€) < g(P;) and not f(P;) < g(Fy). O
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First, h(P;,) > h({P;, ). This means that P;, has not been generated when Py is
selected in the serial case. Since P; LP;, thus w%ﬂmn%:vma._.nvm%m_.v. which
implies that h is not completely consistent with g. Second, h(Py) <h(P;). In
order for P; 10 exist in the serial case, P, € ! must exist such that P;, LP; and
that h(Py ) <h(P;,). By the transitivity of tower-bound tests, Py, LP; . This con-
wradict the assumption that P, e ®'. O

The significance of Theorems 1 and 3 is in showing that acceleration
anomalies may exist and that detrimental anomalies can be prevented for depth-
first searches when no approximation is allowed and an unambiguous heuristic
selection function is used. For a best-first search without approximation, detri-
mental anomalies can be prevented by using an unambiguous heuristic selection
function; however, acceleration anomalies may exist when there are non-solution
nodes of the B&B tree with lower bounds equal to the optimal solution value,
since these nodes have heuristic values that are not completely consistent with
their lower-bound values. For a breadth-first search without approximation, no
acceleration anomaly occurs because at least one node belonging to ¢! must be
expanded in each iteration of a parallel breadth-first search.

It is important to note that the conditions in Theorem 3 are not necessary
when approximate solutions are sought. An example in Figure 5 shows the
existence of an acceleration anomaly when £=0.1 and h is competely consistent
with g (since a best-first search is used and all lower bounds are distinct). In this
case, the additional necessary condition is that the lower-bound test with approxi-
mation is inconsistent with h; that is, there exist P; and Pj such that (P} > h(P;)
and that P; L P;. Clearly, this condition is weak and can be satisfied easily.

In summary, acceleration anomalies may occur when one of the following
conditions is true: (a) a depth-first search is used; (b) a best-first search is used,
and some non-solution nodes have lower bounds equal to the optimal solution
value, or (c) a suboptimal solution is sought.

Although our results have been proved with respect to a system in which all
subproblems are maintained in a single list, they apply to a system in which mul-
tiple subproblem lists are used. When there are multiple lists, one for each pro-
cessor, a subproblem with the minimum heuristic value is selected from each
local list for decomposition.  This subproblem may not belong to the global set of
active subproblems with the minimum heuristic values, but the subproblem with
the minimum heurstic value will always be expanded by one of the processors.
Further, when multiple lists are used, it is not difficult to maintain.a global incum-
bent in a global data register {74,76]. Hence the behavior of using multiple lists
is analogous to that of a centralized list.

Due to space limitation, deceleration enomalies, anomalies due to domi-
nance relations, and anomalies when ky and ko, 1€k; <k, , processors are used are
not discussed here. These results can be found elsewhere [49,51,55].

4, MULTIPROCESSING OF AND/OR-TREE SEARCH

Searching an AND/OR tree is more complex than that of an AND tree or an
OR tree. An AND/OR-tree is searched in two phases. The first phase is @ top-
down expansion as in searching an OR tree, while the second phase is a bottom-
up evaluation as in searching an AND tree. Due to the existence of both AND
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and OR nodes, a good parallel algorithm should combine the features of AND-
and OR-tree searches. A good selection strategy must be developed for selecting
alternate OR nodes. The granularity of parallelism, similar to that of parailel
divide-and-conquer aigorithms, is an important fssue o be solved. Specific res-
trictions on a given problem, such as pruning rules, must be considered. These
rules are usually more complicated, 2s more information is involved in the pro-
Ccess. .

When two AND/OR subtrees are searched concurrently, more work than
necessary may be performed if Pruning information obtained from one processor
is unavailable to the other processor. The extra work that must be carried out due
to a lack of pruning information is defined as the information-deficiency over-
head. Pruning information can be exchanged by messages or through a common
memory. This increased communication overhead needed for pruning is defined
as the information-transfer overhead. In general, a radeoff exists between the
mumoasmmo:-anmnmo:nw and information-transfer overheads. A good parallel
AND/OR-tree search should consider the tradeoffs between the merits of parallei
processing and the communication overhead of obtaining the necessary pruning
information. These tradeoffs will be discussed in this section.

4.1. Parallel a-p Search

A two-person game between players MAX and MIN can be represented in a
game tree in which the moves of MAX and MIN are put in alternate levels of the
tree. In the corresponding AND/OR tree, board positions resulting from MAX's
moves are represented by OR nodes, while positions resulting from MIN’s moves
arc represented by AND nodes. All nonterminal MAX nodes take the maximuem
score of their children, while ali nonterminal MIN nodes take the minimum score.
This minimax procedure is used to find the best move for the MIN player
represenied as the root [4].

A well known technique to improve the efficiency of a minimax search is
the o-B pruning [64], This technique uses two parameters, o and B, to define the
search window. « carries the lower bound of the MAX nodes, while f represents
the upper bound of the MIN nodes, The game wree has solution valyes defined for
the terminal nodes only and is searched in & depth-first fashion. In expanding a
MIN node, if the value returned by any of its children is less than o, then this
node can be pruned without further expansion. In this case, the value returned by
this node to its parent (which is a MAX node) is less than o, and there already
exists another MAX node with value equal 10 o (according to the definition of o).
B is updated when a MIN node with a smaller value is found. On the other hand,
in expanding a MAX node, if the value returned by any of its children is greater
than B, then this node can also be pruned. a is updated when a MAX node with a
larger value is found. The search is terminated when all nodes have been either
pruned or expanded. o-B search performs better when the initial search window
1s small.

The cost of searching a game tree depends on the distribution of values of
the terminal nodes. The tree is said to have a best-case ordering if the first {or
leftmost) branch from each node leads to the best value, and a worst-case order-
ing if the rightmost branch from each node leads to the best value.

A number of parallel game-tree-search  fechniques have been
developed [60]. In the parallel aspiration search, the o-f} window is divided
into non-overlapped sub-intervals, which are independently searched by multiple
processors {5]. Baudet reported that the maximum expected speedup is around 3
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or 6 Rmummﬁmm of the number of processors. The speedup is limited because at
least W +wld nodes must be evaluated for a uniform tree of depth h
and constant width W, even when « and B ere chosen to be the optimal minimax
values [37]. Acceleration anomalies may also occur when the number of proces-
sors is small, say 2 or 3,

Finkel and Fishburn have proposed a tree-splitting algorithm that maps a
fook-ahead tree onto a processor tree with the same interconnection struc-
ture [21]. The information-transfer overhead is small due to the close match
between the communication requirements and the interconnections, However,
this is 2 brute-force search algorithm, and pruning is not considered in process
assignments. The speedup drops to VK under the best-case ordering, where k is
the number of processors.

In the mandatory-work-first scheme [2], the minimum tree searched in a
serial algorithm is searched in parallel during the first phase. The resulting o-f
window is used in the second phase, during which the rest of the tree is searched,
Comparing this scheme with the tree-splitting scheme, it has better performance
under the best-case ordering, but may be worse in the worst-case ordering, In the
latter case, many nodes that are pruned in the tree-splitting scheme may be visited
in the second phase. )

Another approach is to use a best-first search, such as the SSS algo-
rithm [70]. 888" is effective in searching a randomly or poorly ordered tree, but
requires more space and is not significantly better than an Q.m_ search on strongly
ordered wrees. Kumar and Kanal have shown that the SSS algorithm can be
muﬁaz.mﬁm as 2 B&B procedure and have presented two parallel implementations
of 88§ [42]. .

The previous approaches to parallel game-tree search have emphasized on
the reduction of the information-transfer overhead, but have paid little attention to
the information-deficiency overhead. In the next section, we will consider the
information-deficiency overhead as iltustrated by the scheduling of parallel logic
programs.

4.2. Parallel Logic Programs

Logic programming is a programming methodology based on Horn-clause
resolution [40]. An example of a high-level language for logic programming is
PROLOG. Executing a logic program can be considered as the search of an
AND/OR tree {13,40L. The root represents the initial problem queried, the OR
nodes represent (sub)goals, and the AND nodes represent clauses. All subgoals in
the same body of a clause are children of an AND node. A (sub)goal (OR node)
and its children display the choices of clauses with the same head. The terminal
nodes denote clauses or subgoals that cannot be decomposed. More restricted
processing models can be imposed such that the search can be considered as an
AND-tree search {15, 16, 56] or as an OR-tree search.

Searching an AND/OR tree for a logic program is guite different from
searching other types of search trees. First, in contrast to extremum searches that
find the best solution, solving a logic program corresponds to finding any (or all)
solution(s) that satisfies the given conditions, the implicative Horn clauses, and
the consistent binding of variables for the AND nodes, Second, the value of a
node in the AND/OR tree for a logic program is either true (success) or false
{failure). The selection of a node for evaluation is usually based on a fixed order
such as the depth-first search. Lastly, a variable in a logic program can be bound
10 several values, and some subgoals may share 2 common variable.
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An efficient search method must involve pruning. Two kinds of Pruning :

exist here, In an >ZU.E:E=@ if one of the children of an AND node is found

to be false, then all remaining children of this AND node can be pruned. Like.-

wise, in an OR-pruning, if one of the children of 2n OR node is found to be true,
then all remaining children of this OR node can be pruned. 1t should be noted
that OR-pruning is applicable only if the OR node does not share any variable
with its siblings.

Much research strives for the parallel execution of logic programs. Conery
and Kibler have classified four kinds of parallelism of logic programs: AND.
paralielism, OR-parallelism, stream-parallelism, and search parallelism, and have
investigated AND-parallelism [13]. Furukawa ot al [22]. and Ciepielewski et
al [9). has discussed OR-parallelism, while Lindstrom et al. have addressed

stream-parallelism and pipelined PROLOG processors [57]. However, very few |

studies have addressed the problem of processor assignment to reduce the
mnmo:ﬂmmoz-aomﬁn:o% overhead. Below, we present a scheduling algorithm that
schedules the nodes to be searched according 1o the estimated probabilities of a
terminal node being true, and does not distinguish between AND and OR parallel-
ism,

Consider the case in which ail terminal nodes have the value ‘true.’ For a
binary AND/OR tree of height h (h is even and the root is at Level 0), the salution
tree is found after 22 torminal nodes have been visited, An example is iilus-
trated in Figure 9a. Once nodes 1, 3, 9, and 11 have heen visited, the root ig
determined to be true. In contrast, if all terminal nodes are talse, one can deter-
mine that the root is false by visiting 202 torminal node (nodes 1, 2, 5, and 6 in
Figure 9a). These observations imply that when most of the terminal nodes in a
subtree are true, searching the subtree by assuming that its root is true is more
efficient; otherwise, the subtree should be searched by assuming that its root is
false.

For the AND/OR tee in Figure 9a, we see that, in a sequential search, if
Node 1 fails, then Node 2 will be examined, otherwise Node 3 will be examined
next. That is, whether Node 2 or Node 3 is examined depends on the result of
searching Node 1. Similarly, the traversal of Node 5 depends on the results of
traversing Nodes 1, 2, 3, and 4. According to this dependence information, a
fail-token-fiow graph, Gy, as depicted in Figure 9b for the tree in Figure 9a, can
be drawn. A node (circle) in the graph will be active only if it receives a Fail-
token from an incidens edge. When a terminal node in the search tree is found to
be false, a fail-token is sent along the direction of the correspondinig edge. The
coordinator (shaded box) in the graph represents a control mechanism that coordi-
nates the activities of the connected blocks. When a fail-token is received from
any of the incident edges of a coordinator, fail-tokens are sent to ail directly con-
nected nodes. At the same time, any node searched in the block directly con-
nected to this coordinator can be terminated because it does not belong to the
solution mee. For example, when Node 1 is found to be false, then a fail-token is
sent to Node 2. If Node 2 is found to be false, then a fail-token is sent to Coordi-
nator Xp. At this time, any node concurrently searched in Block D can be ter-
ninated,

A simple parallel search strategy can be derived with the aid of Gy To
effectively search the tree, no more than 21V processors are needed. A parallel
depth-first search is applied in the first h steps by generating all children of a
selected AND node, but only the leftmost child of a selected OR node. As an
example, Nodes 1, 3, 9, and 11 in the search tree are assigned to four processors
in the fourth step. This corresponds to generating fail-tokens to activate these
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Figure 9. Example illustrating AND/OR tree and fail-token-flow graph.
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nodes in Gy (Figure 9b). Ifa node, say 3, is found to be false, then a fail-token is
generated, and the idle processor is assigned to evaluate Node 4, By examining
Figure 9b closely, it is found that, for each column of Gy, there must be at least
one node with the value “true’ if a solution tree exists, When a node is found to
belong to the solution tree, all nodes on the path from the initial start node to this
node in Gy must have failed. The scheduling of processors for searching the
AND/OR tree can be done according to the state of execution in Gy at any time.

When the AND/OR tree is complete, and Pr(h), the probability that a termi-
nal node is true, is constant, Pr(0), the probability for a solution tree to be found
from the root (assumed to be an OR node}, can be shown to be close to one for
Pr(h)>>0.618, The threshold is 0.382 (=1-0.618) if the root is an AND node. In
both cases, & node with the value ‘Tue’ can be found quickly in each column of
Gr. Asaresult, the speedup is close o one,

On the other hand, if Pr(h) is small, then the probability for a solution tree to
exist at the root is close to zero. The above strategy is no longer suitable because
& large number of nodes have o be evaluated in each column of Gr. In this case,
the scheduling should be done according to the success-token-flow graph, G,.
G; is the dual of Gy in the sense that a fail-token is replaced by a success-token,
and the colurnns in Gy are transposed to become the rows in G,. Since searching
for failure from an AND node is equivalent to searching for success from an OR
node, the above scheduling algorithm can be extended with respect to G,

The token-flow graph obtained for the root of an AND/OR tree is modular
and can be decomposed into modular token-Aow subgraphs corresponding to all
non-terminal nodes in the tree. If the probability of Ieading to a solution tree for a
non-terminal node can be refined as the search progresses, the corresponding
token-flow subgraph can be re-derived. An idle processor can be scheduled
according to the token-fow subgraph derived for the root of the given subtree,

In summary, the important issues in parallel AND/OR-tree search are the
granularity of paralielism, the parallel selection of nodes for evaluation, and the
intelligent pruning of unnecessary nodes, Processors should know the global state
of search to select the nodes for expansion, and be able to inform other processors
10 prematurely terminate their tasks when necessary. The architecture designed
should support the dissemination of this information,

5. MULTIPROCESSING OF DYNAMIC PROGRAMMING ALGO-
RITHMS

Dynamic Programming (DP) is a powerful optimization methodology that is
applicable to a large number of areas including optimal control, industrial
engineering and economics [6]. In genefal, DP is an approach that yields a
transformation of the problem into a suitable form for optimization; but is not an
algorithm for optimizing the objective function. A problem solvable by DP can
be represented as a multistage problem, a divide-and-conquer problem, or an acy-
clic AND/OR-graph-search problem. Different computational approaches may be
used depending on the formulation and representation. DP problems are dis-
cussed separately here because they iliustrate the effects of representation on the

design of the supporting maltiprocessing system.
. A DP formulation is characterized by a recursive equation whose left-hand
side identifies a function name and whose right-hand side is an expression con-
taining the maximization {or minimizaton) of values of some monotone
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functions. According (o the form of the functional equation, a DP mondama.g
can be classified into four types: monadic-serial, polyadic-serial, monadic-
nonserial, and polyadic-nonserial. Monadic and polyadic DP formulations are
distinct approaches to represent various optimization problems, while wonm_. and
nonserial optimization problems are problems moszo by the DP mo:.nEm:o:.m.
Serial optimization problems can be decomposed into stages, and vaniables in
one stage depend on variables in adjacent stages only. Problems such as sequen-
tial control, resource allocation, fluid-flow, circuit-design, Ea.mnrnaasm belong
to this class. If variables in one stage are related to variables in other stages, the
problem is said to be a nomserial optimization problem. Examples include
finding the optimal binary search wee and computing the minimum-cost order of
ltiplying a string of matrices. .
™ ”m.w zm_mqﬁo %ﬁ concept of serial problems, consider the example of finding
the shortest path in a multistage graph, as depicted in Emﬁw 10a. Let ¢;j be the
cost of edge (i, ). The cost of a path from source, S, to sink, T, is the sam ow.
costs on the edges of the path. Define f; (i) as the minimum cost of a path md:.:
to T. The cost of getting from i to T via a neighbor j is ¢+ (). To find £, @),
paths through all possible neighbors must be compared. Hence, the problem can
be represented as

f; (1) = min fc; ; +£; ()] (15)
i

‘This equation is termed a forward functional equation, The formulation is
monadic, that is, the cost function involves one recursive term only.
From Eq. (15), f(C;), the minimum cost from C; to T, is

f(Cr)y=min {cg 1y, 1, € 2+dy 1, €1 343 ) (16)

Eq. (16) can be interprered as an inner-product operation with respect to ma&no.:
and minimization. If we define matrix multiplication in terms of a closed semi-
ring (R, MIN, +, +oo, (), in which ‘MIN’ nonm%o:am o .mna:E: and ‘+
corresponds to multiplication in conventional matrix multiplications [1], mp (16)
becomes f{C) = C-D, where C is a cost matrix and D is a cost Vector. It is easy
to see that the search of the shortest path in a multistage graph with a mo:z.ma
monadic DP formulation is equivalent to multiplying a string of matrices, ie.,
A(B{(CD). . _

The same problem can be generalized to find the optimal path from any ver-
tex i to any other vertex j. The functional equation is

f2(1L.) = Emu [R2(L,k) +fa(k.j)] an

where £,(1,7) is the minimum cost of getting from i t0 J- This cost m.:mnncm is
polyadic because it involves more than one recursive term. A divide-and-
conquer formulation is a special case of polyadic-serial mc.nuamnoa. .

 AND/OR graphs can also be used to represent serial DP problems. Basic
operations in comparisons of partial solutions over all mroBmmEn.m are represented
as OR nodes. Operations involving computations of a cost function, such as sum-
mations, are represented as AND nodes. An >2U\Ow graph m.: reducing the
search of the shortest path in a three-stage graph with two nodes in each stage is
shown in Figure 10b. Gensi and Montanari :m<n.mro€.= that mo_.aamzﬁ a DP
problem in terms of a polyadic functional equation is equivalent to searching for a
minimal-cost solution tree in an AND/OR graph with monotone cost func-
tion [26).



(a) A graph with five stages and three nodes in each intermediate
stage.

(b) An AND/OR~graph representation of the reduction in finding an
optimal path in a three~stage graph. AND nodes are represented
as squared nodes and indicate summations; OR nodes are repre-
sented as circular nodes and indicated comparisons,

Figure 10. Example illustrating the transformation of a dynamic
programming problem into an AND/OR-tree search. The problem

i i i i+bjl.
is to find i {aij+ bk}
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A nonserial DP problem can be represented in a monadic or polyadic
form [7]. A monadic-nonserial formulation is an extension of Eq. (15) in which
the dependence of the functional term involves variables in more than one adja-
cent stage. A polyadic-nonserial formulation is usually represented in the form of
an acyclic AND/OR graph in which edges can extend between any two arbitrary
levels of the graph.

Parallel processing has been applied 1o solve DP problems. Guibas, Kung
and Thompson have proposed a VLSI algorithm for solving the optimal
parenthesization problem [28]. Linear pipelines for this problem have been pro-
posed recenily [72). Clarke and Dyer have designed a systolic array for curve
and line detection in terms of a nonserial formulation [10]. However, these
designs were directed towards the implementation of & few special cases of DP
formulations.

Architectures to support serial DP problems depend on the formulation.
First, if the problem is represented in a polyadic form and considered as 2 divide-
and-conquer problem, the architecture discussed in Section 2 can be applied. For
example, the problem of finding the shortest path in a multistage graph can be
considered as the multiplication of a string of matrices, which can be decomposed
into the multiplication of two or more substrings of matrices and can be evaluated
efficiently by a systolic array [79]. Second, equivalence between polyadic
representations and AND/OR graphs allows various graph-search techniques to
be translated into techniques for solving DP problems. Sometimes, when the
AND/OR graph is regular, it can be mapped directly into a systolic array [79].
Lastly, the problem may be represented in a monadic form and solved by a pipe-
lining approach. This approach is suitable when many alternative partial solu-
tions have to be compared.

There are not many architectures for solving nonserial DP problems directly.
In an AND/OR-graph representation of ronserial problems, edges may connect
nodes in any two arbitrary levels. These graphs may have to be searched by an
architecture with a flexible interconnection such as a dataflow computer. Another
approach is to transform the nonserial problem into a serial one and to solve it by
approaches developed for serial problems [79]. For problems in monadic-
nonserial formulations, the dependence of variables can be removed by using one
variable to represent the Cartesian product of several dependent variables. For
problems in a polyadic-serial representation as an AND/OR graph, the depen-
dence can be removed by replacing each edge that connects nodes not in adjacent
levels by multiple edges that connect nodes in adjacent levels. This approach has
been used in designing a systolic array for finding the optimal binary search wree.

6. CONCLUSION

Research in problem solving is usually aimed at developing better algo-
rithms. Unnccessary combinatorial searches should be avoided as much as possi-
ble because they do not contribute to the quality of the solutions. This is seen in
the efforts in designing optimal algorithms and in understanding the reasoning
process in artificial inielligence. However, searching becomes inevitable when a
good algorithm has been developed, and is an essential part in many applications.

In this chapter, the limitations of multiprocéssing in solving combinatorial
Searches have been investigated. The suitability of multiprocessing depends on
the problem complexity, ‘the problem representation, and the corresponding
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scarch algorithms. The problem complexity should be low enough, so the prob-
lem is solvable by a serial computer, The problem representations are very
tmportant because they are related to the search algorithms. However, the ques-
tion of deciding the representation leading to an efficient search is still open for
many problems. Moreover, efficient architectures fo evaluate various scarch
algorithms are different. Functional requirements for a given search algorithm
are, therefore, developed in this chapter., These allow efficient mapping of &

mnmn.& algorithm on a general-purpose multiprocessor and the development of
special-purpose processors for searching.

Table 3.  Functional requirements of different paradigms of search algorithms,
Eoﬁ The magnitudes of large and small granularities in different
algorithms are different, Special interconnections include the tree

architecture.)
FUNCTIONAL
ALGORITHM REQUIREMENTS TASKS
o Large
Divide- granularity Loosely coupled Balance load
and-
Conguer Small Tightly coupled; Transfer control
granuiarity Special interconnections and data
Lower-bound Loosely coupled; Balance load;
Branch- tests only Broadcast capability Share incumbent
and-
Bound Dominance Tightly coupled; Balance load;
tests Shared memory Share dominating
nodes
mamwm_ Large Loosely coupled; Balance load;
Acyclic granularity " Broadcast capability Share state
AND/OR- of evaluation
Graph
Search Small Tightly coupled; Transfer control
granularity Special interconnections and data
Zo_._mﬂ..mm_ Large Dataflow Share resources;
Acyclic granularity processing Coordinate tasks
AND/OR-
Graph Small Map to serial Transfer control
Search granularity AND/OR-graph search and data

Three paradigms of problem representations are
search algorithm in each class are studied. Fun
algorithms in each class are shown in Table 3. These requirements are very gen-
eral and must be tailored to the special features of a given problem. We have not
atiempted to enumerate all possible cases in this chapter, but have illustrated the

presented, and the parallel
ctional requirements of search
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different approaches generously with examples. These guidelines m:n_.naw_:m_ow
can aid the designers to select the appropriate multiprocessing system in solving
combinatorial search problems.
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