Algorithm-Specific Parallel Processing
with Linear Processing Arrays

bl

JOSE A. B. FORTES

School of Electrical Engineering
FPurdue University
West Lafayette, Indiana

BENJAMIN W. WAH

Coordinated Science Laboratory
University of lilinois

Urbana, Mllinois

WEIJIA SHANG

Center for Advanced Computer Studies

University of Southwestern Louisiana
Lafayette, Louisiana

KUMAR N. GANAPATHY

Coordinated Science Laboratory
University of Illinois
Urbana, Hlinois

Introduction . . . . & & o o e e e e e e e e e e e e e s s 198
1.} General Notation . . . . . - « « ¢ v v v v v o o e e e e s 199
1.2 Algorithm Model . . . . . . . . . . - .o 199
1.3 Relation to Nested-Loop Programs . . . . . . . . . . « « « « « v o 202
The Mapping Problem . . . . . . . . . . . . . ..o 204
Computation-Conflict-Free Mappings . . . . . . .« .« -« .« « o 267
Time-Optimal Mappings without Computational Conflicts. . . . . . . . . .. 211
Parameter-Based Methods . . . . . - . . . . . - . . oo e e e 217
5.1 Parameters . . . . . . . 4 e e e e e e e e e e e e e e e 219
5.2 CONStrainis . . . - = « « + 4 4w e e e e e e e e e e e e 222
53 Design Method . . . . . . . . . . . .o e oo e e 226
Applications of the General Parameter Method . . . . . . . . . . . . - .. 1230
COonClUSIONS - « - « « & v v v e e e e e e e e e e e e e e e e 241
ReferefiCes . . . . v v o o e e e e e e e e e e e e e e e e e e e 243

e e e e bR U AT T ED I TN A 197 Oanvricht © 1994 by Acadernic Press. Inc.



198 JOSE A. B. FORTES et al.

1. Introduction

Many applications of digital signal processing, scientific computing,
digital communications, and control are characterized by repeated execution
of a small number of computationally intensive operations. In order to
meet performance requirements it is often necessary to dedicate hard-
ware with parallel processing capabilities to these specialized operations.
Processor arrays, due to their structural regularity and consequent suit-
ability for VLSI implementation, are frequently used for this purpose.
Regardless of whether their structures are fixed or designed to match
algorithm characteristics, it is important to understand how to map these
algorithms into processor arrays. This article discusses systematic ways
of deriving such mappings. The techniques are illustrated by examples
involving linear arrays of processors {one-dimensional processor arrays);
however, unless otherwise stated, the results can be extended to arrays of
arbitrary dimension.

Several linear arrays have been implemented for specific applications
as well as for ‘“‘wide-purpose’” computing (Valero ef al., 1991; Fortes
et al., 1992). They are easier to build and program than arrays of higher
dimensions. In particular, the connections among neighboring processors
can be made very fast and, therefore, provide large communication
bandwidths. For example, physical links in Warp (Annaratone et a/., 1987;
Menzilcioglu et af., 1989; Baxter ef al., 1990) can serve several virtual
channels capable of communication among neighboring cells. This is also
the case for algorithm-specific linear arrays but, for design simplicity, each
link may be used to transfer only a data item instead of being multiplexed
among several of them, In this paper, we present two methods of
systematically mapping recurrent computations on such linearly connected
processor arrays. The first method guarantees that no more than one
computation is assigned to execute in any processor at any given time but
assumes encugh data channels between processors for the necessary data
communication. The second method considers, in addition to computa-
tional conflicts, the possibility of communication conflicts and guarantees
that individual links are not required to pass more than one data item
at a time.

The techniques discussed here apply to algorithms described as recur-
rences, either by mathematical expressions or by high-level language
programs. Section 1.2 provides a precise characterization of the class of
algorithms for which our results are strictly valid. However, more general
classes of algorithms and programs can also be mapped using similar
techniques either in a piecewise manner or as heuristics to guide the search
for good designs.



ALGORITHM-SPECIFIC PARALLEL PROCESSING 199

Once algorithms are characterized as sets of computations ordered by
data dependences, the problem of mapping algorithms to processor arrays
becomes equivalent to that of finding a function that assigns a processor
and an instant of time to each computation of that algorithm. This function
must have certain properties that guarantee computational correctness and
efficient usage of processing resources. The techniques described in this
paper include techniques and methods of mapping parameterized repre-
sentations of the algorithms to linearly connected architectures of interest.
Sections 2, 3, and 4 discuss the dependence-based method (DM) and
techniques of selecting linear mappings. Sections 5 and 6 present an alterna-
tive approach, called the generalized parameter-based method (GPM),
and show how it relates to the dependence-based method. Optimization
procedures used with both approaches are described along with examples.
Sections 2-4 are partially based on the work of Shang and Fortes (1992),
and Sections 5 and 6, on that of Ganapathy and Wah (1992a,b).

1.1 General Notation

Arrows are used to denote vectors, while the transpose of a vector V or of
amatrix M are denoted ¥Tand M7, respectively. The notation V' = # means
every component of vV is s_greater than or equal to the corresponding com-
ponent of iZ. The vector 0 denotes a Tow or column vector whose entries are
ail zeros. The dimensions of vector 0 and whether it denotes row or column
vectors are implied by the context in which the vector is used. The rank and
determinant of a matrix 4 are denoted rank(4) and det(A), respectively.
The set of integers is denoted by Z, the empty set by 7, the cardinality of
a set C by |C|, and the absolute values of a scalar o by |af.

1.2  Algorithm Model

Uniform dependence algorithms {(or uniform recurrence equations—
URESs) are formally defined as follows.

Definition 1.1 {Uniform Dependence Algorithm). A wuniform
dependence algorithm is an algorithm that can be described by an equation
of the form

W) = grold — dy, v — dy), ..., vd - d), (1.5

where

1. IT= [Fys es in]T € J C Z" is an index point (a column vector); J is the
index set of the algorithm; and » is the number of components of /;



200 JOSE A. B. FORTES et al.

2. gy is a computation indexed by I, ie., a single-valued function
co_rpputed ““at index point I’ in a ls:ingle unit of time;

3. w{{) is the value computed ‘‘at [1,’’ i.e., the result of computing
the right-hand side of (1.1); output variables correspond to values
at particular index points I; ; if I is not in J, then v(f ) is an input
\iariable; .

4. d;,j = 1, ..., r are constant vectors (i.e., independent of I € J) called

dependences; the matrix D = [d,,...,d,] is called a dependence

matrix. [ ]

A well-known simple example of an URE is

oy, iy, 83) = cliy, by iy — 1) + @y, 1by;, 1 =i, b, <N, (L2)
which describes the computation of an (N X N) matrix C as the product of
two (N x N) matrices A and B. This algorithm will be used as a running
example throughout the description of the dependence-based method. The
index set consists of all the integer points within a cube with sides of length
N. At each point I = [i}, i, #]¥ a distinct one-variable function specified
by the operator ‘“‘+g; ;. b, ;" is computed (other representations where
a;,,;, and b;, , are treated as variables and the operator is simply ““+*’ are
discussed below). There is a single dependence [0, 0, 137, and the product
mairix corresponds to the values of ¢(i;, I, N).

Uniform dependence algorithms can be found in many scientific com-
putations, digital signal processing applications, and other fields. However,
a much larger class of algorithms, called affine dependence algorithms (or
affine recurrence equations—ARES), can also benefit from the techniques

proposed for UREs. For AREs, (1.1) is replaced by:
v(r(D) = gr(AD), WHDD, ... VLD, 1.3)

where the indices & and_)]}, j=1,...,r, are affine functions of f, i.e.,
functions of the form FI + &, where F is a matrix with n columns and ¢
is a constant vector with as many elements as the number of rows in F.
There exist techniques to transform AREs to UREs (that is, to uniformize
AREs) but they are outside the scope of this article. The basic idea there is
to select a few integral basis vectors such that all affine dependence vectors
of the ARE can be expressed as nonnegative integer linear combinations of
the basis vectors. These vectors correspond to uniform dependences follow-
ing the uniformization. For example, in the URE shown in (1.2) for matrix
multiplication, a; ; and b, ;, are inputs that are used in several computa-
tions (e.g., @, ; is used in computations to generate c(1, i, 1) for all values
of i;). This can be shown explicitly as follows:



ALGORITHM-SPECIFIC PARALLEL PROCESSING 201

a(iliiZai:i):a(il»O’ia) lﬁfi,iz,i35N
by, by ) = b0, iz, 13) 1=i,b, =N
c{i11i21i3)=c(ilsi2si3_ 1)+a(il’i2,i3)b(ilsi29i3) 1 5'!'191.2953“—:1\1

(1.4

where a(i,, 0, i3) = a;, ;, and b0, iy, 73) = by, ;,. The dependences for the
first two statements are affine, i.e., they are [0,4,0]” and [i,,0, 017,
respectively. Reusing or ‘‘pipelining’’ of these data among different
computations can be done as follows (yielding a decomposition of the affine
dependences in terms of the basis vectors [0, 1, 0] and [1,0, 0]” that are
also uniform dependences resulting from the uniformization).

aliy, iy, i3) = aliy, iy — 1, iy) | < i, b,is <N
Bliy, iy, 1) = bli; — 1,1y, i3) =i, iy, s <N
iy, by, Bs) = i,y bay by — 1) + aliyy by, iUy, 1 3) 1< by, b, 0y <N

(1.5)

This simple example illustrates also another advantage of uniformization in
which we can eliminate broadcasts of data to many processing clements. In
the above uniformizing algorithm, distinct variables (which may have
identical values) are used to compute distinct ¢(i;, i, {3). Procedures for
uniformization and broadcast removal share many similarities and are dis-
cussed in Chen and Shang (1992), Quinton and Van Dongen (1989), Tzen
and Ni (1992), Wong and Delosme (1992), and Yaacoby and Cappello (1988).

The matrix multiplication example also illustrates the fact that in a single
algorithm there may be more than one recurrence equation of the form of
(1.1). For the purpose of this articie, we view any system of recurrence
equations as a single recurrence that computes a tuple whose elements are
variables on the left-hand sides of the individual recurrences of the system.
For example, the transformed UREs in (1.5) can be described by a single
recurrence:

fa, b, €l(i1, 1, i3)
= g(la, b, Ay, iy — 1, 53), [a, b, €l(iy — 1, by, i3), [@, b, c}(iy, b2, 55 — 1))
= [a(iy, iy — 1,83, bliy — 1,83, 03), (s, ba, B3 — 1)
+ aliy, iy, i3)b(i, iy, B)]. (1L.6)

Note that we have used an ordered set notation to represent all the variables
used in a system of recurrences (instead of representing each variable
separately).



202 JOSE A. B. FORTES et al.

1.3 Relation to Nested-Loop Programs

Affine dependence algorithms are common in image processing, digital
signal processing, and other scientific applications where regular compu-
tation-intensive operations are required {Fortes and Wah, 1987; Tucker and
Robertson, 1988; Almasi and Gottlieb, 1989). In practice many of
the algorithms that are executed by processor arrays are described in a
procedural high-level language such as Fortran. Nested loops are often the
most time-consuming kernels of these programs and are, therefore, targets
of hardware accelerators based on processor arrays. It turns out that a large
number of Fortran-like nested loops can be modeled as affine recurrences.
For instance, it is relatively easy to relate the following generic nested loop
to a corresponding system of affine recurrences.

DO il = ll TON]
DO, = L TON,

DO, = {,TON,
S
Sz(l)

(1.7)

S (I )
END
END
END
where Sj(f ) contains an assignment of the form of (1.3), i.e.,

vy (D) = g0 10N, s v D). (1.8)

It is possible that variable v;, 1 = j < p, appears more than once with
different indexing functions such as v,(i,jy = vi(i + j, i — j) + v{(2i + j, 3i).
Each appearance of a variable on the right-hand side may cause a
dependence (Banerjee, 1988; Xing and Shang, 1993). If all the loop bounds
4 and N;, j=1,...,n, are linear functions of the index variables
iy, ..., §;_y, the set of all the iteration vectors Tof the loop can be described
by a convex polyhedron. Affine recurrences can be used to model the
program in {1.7) when (1) the indexing functions #; (I) and f; ,(I),
Js{=1,..., p, are affine; (2) the bounds /; and NV;, j = 1, ..., n, are affine
functions of the index variables i, ...,ij_,; ancl 3) branch statements
are allowed as long as all branches cause the same dependences, the



ALGORITHM-SPECIFIC PARALLEL PROCESSING 203

computation times for different branches are the same, and branches do
not go outside the loop.

For example, it is easy to see that the following nested-loop program
corresponds to the pipelined version of the matrix multiplication algorithm
described in (1.5).

DO, = ITON
DO, = 1TON
DO, = 1TON

aliy, iy, i3) = a(iy, i, — 1,13)

bliy, iy, i) = bliy — 1,55, 1) 1.9
Cliy, by, ) = iy, by, B3 — 1) + aliy, b, B)bUy, b, )
END
END

END

Intuitively, datum g; , is pipelined along the #, axis from index point
Ly, 1, 57 to iy, 2, i), ..., and to [f;, N, ix)7. Similarly, b;_;, is pipelined
along the #; axis. Initially, a(i,, 0, i3} = &;, ;, and (0, iy, 1) = by, 4, -

In short, we focus in this article on algorithms that can be modeled as
uniform recurrences and affine recurrences that can be uniformized. For
the purpose of this paper, only structural information of the algorithm, i.e.,
the index set J and dependence matrix D, is needed. However, when
addressing the problem of avoiding data-link conflicts, we use information
about input/output data distributions derived from the desired mapping.
Note that all computations are identical in the processor array when
uniform recuirences are mapped. When inputs/outputs occur at the
peripheral boundary of the processor array we need only consider a very
limited number of possible data distributions of inputs/outputs. A uniform
dependence algorithm with dependence matrix D and index J is, therefore,
described by a pair (J, D). For the matrix-multiplication algorithm in (1.5
or (1.9), we have

b a ¢
i 1 0 ©
J = Ll:1si,b,is<N,i,L,LheZy and D=[0 1 0
i3 0 0 1
(1.10)

The symbol on the top of each column in D indicates the variable that
causes the dependence.



204 JOSE A. B. FORTES et al.

2. The Mapping Problem

The central problem addressed in this paper is that of mapping an
n-dimensional algorithm into an m-dimensional processor array where
m < n — 1. While the examples of this paper emphasize the case of linear
arrays (i.e., m = 1), the technical discussions are valid for larger values of
m, i.e., our techniques are applicable to processor arrays of arbitrary
dimension. The mappings of interest are /inear in nature and characterized
by a mapping matrix of the following form:

T= [ ;] g Zmthxn 2.1

such that the computation indexed by 7 is executed at time TIT by processor
SI. The vector TT is called the time schedule vector, and S, the allocation
matrix. Valid mappings must satisfy the following conditions:

1. Causality—I1D > 0.
This condition ensures the correct ordering of computations so that a
computatlon at index I is never executed before a computation at

d j=1,...,r ie., a computation never takes place before its

operands are avaliable.

2. Routability—SD = PK.
P € Z™*¥ is the matrix of interconnection primitives of the processor
array and K & Z¥*™ is defined in such a way that

E ki ;=Td, j=1,..,r 2.2)
i=1
The matrix P describes the array connectivity. For example, an array
in which each processor is connected to the four nearest east, south,
west, and north neighbors has

0 0 1 -1
p= [ 1 -1 0 0] '
A linear array where each processor has connections to its left and
right neighbors has P = [1, —1]. The term Y., %; ; represents the
number of times the primitives must be used to route the datum
associated with the dependence d This sum must be less than or equal
to the interval of time between generation and consumption of the

datum in order for the processor array to be able to implement the
time schedule vector TT.



ALGORITHM-SPECIFIC PARALLEL PROCESSING 205

3. Conflict-free computations—for all f;, f; e J,if f; = f;, then Tf; # TI;.
This condition guarantees that no processor has to execute more than
one computation at any given time.

4. Rank compatibility—rank(T) = m + 1.

This ensures that the algorithm is mapped into an array of m dimen-
sions, since rank(T) — 1 is the dimension of the array derived from T.

Additional constraints are possible but are not considered here. They
depend on implementation requirements. For instance, Lee and Kedem
(1988, 1990), Ganapathy and Wah (1992a,b) (to be discussed in Sections 5
and 6), and Xue (1993) have introduced constraints that guarantee that data
collisions do not occur in communication links.

The execution time that results from using mapping matrix 7 is given by

t = maxilI(J, - B): L, Led} + 1, (2.3)

which reduces to

t=1+ Y |mlev, - 1) (2.4)

i=1
when index set J is constant bounded; that is, J is of the form
J={lit, eenrif s b= Nj eZ, j=1,...,n, 2.5

where /; and N; correspond to the constant lower and upper bounds of the
jth loop, respectively. An important property of (2.4) is that the total
execution time is a monotonically increasing function of Inj Lji=1,...,n
(O’Keefe and Fortes, 1986; O’Keefe et al., 1991; Li and Wah, 1985). This
fact implies that it is not possible to reduce the absolute value of any of the
entries of the optimal time schedule vector IT without obtaining an invalid
mapping.

When rank(T) = n, computation conflicts can be avoided by ensuring
that T is nonsingular because the mapping described by T is then injective.
However, when rank(T)=m + 1<n, it is always possil_)}e to have
T1I, = TL, for two different points I, and 7, (or equivalently T¢I, — 1) = 0),
and if these points belong to the index set, a conflict occurs in the corre-
sponding computations. To ag’oid conflicts, it is desirable to use a mapping
matrix T such that for any 7 € J and any nonzero integer solution ¥ of
T = 0, the point / + ¥ does not belong to J. It is easy to show that we need
to consider only those solutions of 7Y = 0 whose entries are relatively
prime, i.e., gcd(Py, -2y Vo) = 1.! These solutions are called conflict veciors.
For a given conflict vector ¥ and any arbitrary index point £, if I+ ¥ ¢ J,

ped{a, , ..., a,) denotes the greatest common divisor of integers @, ..., &,-



206 JOSE A. B. FORTES et al.

1 2] .
Y2
3 & / e o o o o)
o o 1) b
o o o o)
Y1
3
o 1= = o &
6

Fic. 1. Nonfeasible and feasible conflict vectors 7, and 7.

the vector ¥ is a feasible conflict vector; otherwise, it is nonfeasible. If all
conflict vectors of a mapping matrix T are feasible, the mapping is
computation conflict free.

This concept is iflustrated in Fig. 1, which shows a two-dimensional index
set J = {[11, iL1T:0 =< i = 6,0 = :] = 3, i;, i € Z}. For the conflict vector
¥, =[2,11%, both 7 =0 and 7 + 7, = 2,117 be]ong to index set J, and
computations indexed by [0, 017, {2, 117, [4, 2], and [6, 3]7 are mapped to
the same processor and the same execution time. Therefore, there is at least
one conflict. However, for conflict vector yz = 12, 517, there will be no
conflict at all because for any arbitrary T'e J, we have I+ J’z ¢J
Intuitively, if the vector [2, 5]7 is drawn with one end at [0, 0)7 (or at any
other index point of the index set), the other end is outside the index set,
and the vector [2, 5]7 does not meet any integer points in the index set.
Therefore, the mapping with this ¥ is conflict free.

As another example, consider a four-dimensional algorithm (J, D),
where

{IIEZ 0=i=<7,/j=1,....4} (2.6)

Assuming that this algorithm is to be mapped to a one-dimensional (linear)
processor array, one possible mapping matrix is

1 1 8 1
TﬁlﬁO | 8 1]. 2.7

Consider the following solutions of Ty = 0: ¥, = 10,8, -1,007, ¥, =
[0,0, 1, —8]7, and 7, = [0, 1,0, —117. Clearly, T, = T#, = T¥; = 0, and
the greatest common divisor of their entries is unity. So ¥, ¥;, and 7,
are the conflict vectors of the mapping matrix 7. However, the vector
[0, 2,0, —217 is also a solution of the equation Ty = 0 but is not a conflict



ALGORITHM-SPECIFIC PARALLEL PROCESSING 207

vector of the mapping matrix T because the greatest common divisor of its
entries is not unity. The conflict vectors ¥y and 7, are feasible because for
any arbitrary index point I € J, we have { + 7 & SLi=1 2. The conflict
vectorﬂ]"f3 is not feasible because for index point = [0,0,0, 117 e J, we
have I + 75 = [0, 1,0, 0]" e J. Therefore, T has computational conflicts.

It is not practical to check that every conflict vector ¥ of a mapping
matrix T is feasible (this involves checking that I + ¥ is not in J for
every computation 7 of the algorithm). Therefore, conditions under which T
is conflict free are discussed in the next section. In Section 4 the problem
of finding optimal conflict-free mappings given an allocation matrix is
addressed.

3. Computation-Conflict-Free Mappings

For constant-bounded algorithms of size N; — I; (see (2.5)), it is simple to
show that a mapping matrix 7 is conflict free if and only if every conflict
vector 7 has at least one entry y; such that y; > N; — /; {Shang and Fortes,
1992). However, it is desirable to express these conditions in terms of the
time mapping vector IT so that it is possible to use the conditions in order
to select the optimal schedule. To understand this concept, we first discuss
the easiest case of m = n — 2.

LetIT e Z'*", 8§ € Z# %" and rank(S) = n — 2. Consider the following
equation

L= S|, =
Ty =20 or [H]yﬂo. (3.1)
We first assume that rank(7) = n — 1. Later in this section, we give
conditions on I1 that guarantee rank(7T) = n — 1. Clearly, there is only
one linearly independent solution of (3.1). Without loss of generality,
let T =I[8B, 5], where_' B contains the first n» — 1 columns of 7,
rank(B) = n — 1, and b is the last column of T. Also, let B* and det(B) be
the adjugate matrix and determinant of matrix B, respectively (Strang,
1980, p. 170). Then all the solutions of (3.1) can be expressed as

fl(nl"":nn)

— *B*E _ fz(ﬂls -'-aﬂn)

7= }.[ det(B)} =i , (3.2)
fn(n}s---s ﬂ:n)

where A is a constant.



208 JOSE A. B. FORTES et al.

If the first nonzero entry of a conflict vector is assumed to be positive
(which does not entail any loss of generality), then for the mapping matrix
T e Z@ D*"_there is only one unique conflict vector (otherwise, —y would
also be a conflict vector). This unique conflict vector ¥ is expressed by (3.2),
where 1 is such that ¥ is integral, its entries are relatively prime, and the first
nonzero entry is positive. If this unique conflict vector is feasible, the corre-
sponding mapping is conflict free. In addition, if IT is such that there exists
a nonzero entry fi(7,,....7,), 1l =j=<n, rank(T)=n —1 because
JSi(my, ..., m,) is the determinant of the submatrix of 7 consisting of all but
the jth columns of T (Strang, 1980).

Ideally, the functions f; in (3.2) would be linear, and the feasibility
constraints mentioned above (|y;| > N; — {; for some j) would allow the
identification of an optimal mapping by solving an integer linear program-
ming problem. It turns out that if the allocation matrix S is known, f;,
j=1,...,n, are indeed lnear functions of =, /=1,...,n This is
illustraied by the following example.

Example 3.1. Consider the matrix-multiplication algorithm. If the
space allocation matrix S is chosen as [1, —1, 0], the mapping matrix T and
its conflict vector ¥ are

1 1 0 i

T=[ B ] y=41 5 . (3.3)
Ty My 73

—(m + m)

It is clear that Ty = 0. If I1 is chosen such that 7y # O or m, + 7, # 0, then
rank(T)=n —1 =12, [

Consider now conditions for the general case where m = n — 2. In these

hY .

mappings, T € Z¢**", T = [ 1'[] , T eZ™", and S e Z™". Consider
again (3.1). If rank(T) = m + 1, there are n — (m + 1) linearly indepen-
dent solutions of (3.1). Let ¥y, ..., ¥y-gu+1y b€ the linearly independent
integral solutions of (3.1) whose entries are relatively prime. All solutions ¥
of (3.1) can be represented as the following linear combinations:

J_;= ’11‘}71 + -t An—(m+l)3?n—(m+l)' 3.4

Clearly, ¥, .-+, ¥n_qms » are conflict vectors of 7. In general, the mapping
matrix 7" has more than »n — (m + 1) conflict vectors when m < n — 2
because a linear combination of these » — (m + 1) conflict vectors may
represent a different integral vector, whose entries are relatively prime, and,
therefore, is another conflict vector of 7. This new conflict vector may
or may not be feasible. Thus, unlike the mapping matrix 7 € Z# D**



ALGORITHM-SPECIFIC PARALLEL PROCESSING 209

described earlier in this section, we cannot guarantee that all conflict vectors
of T are feasible even if the n — {m + 1) linearly_'independent solutions ¥;,
j=1,...,n— (m+ 1), of the equation Ty = 0 are all feasible. This is
illustrated by the following example.

Example 3.2. Consider the algorithm with the four-dimensional
index set in (2.6) and mapping matrix 7 in (2.7). Let ¥, = [0,8, -1, 0}" and
¥, = [0,0, 1, —8]%. Clearly, Ty, = T#, = 0, and 7; and 7, are linearly
independent and are feasible conflict vectors of T. Let ¥=9,/8+ 9¥,/8=
[0, 1,0, —1]7. The vector ¥ is also a solution of the equation T¥ = 0 whose
entries are relatively prime and, therefore, is a conflict vector of 7. Because
none of the absolute values of the entries of ¥ is greater than the corre-
sponding dimension size N; — [; = 7, ¥ is not feasible in the sense discussed
at the beginning of the present section. Therefore, as already mentioned,
for a given mapping matrix T e Z™*D*" with m < n — 2, there are
possibly more than n — (m + 1) conflict vectors, and 7 may not be conflict
free even if there are 7 — (m + 1) lnearly independent feasible conflict
vectors of 7. ]

Example 3.2 brings out the difficulties involved in making all the conflict
vectors of a mapping matrix T feasible. Nonfeasible conflict vectors can
result from rational linear combinations of the n — (m + 1) linearly inde-
pendent feasible conflict vectors ¥y, ..., Vu-m+n (as is illustrated by ¥ =
71/8 + ¥,/8 in Example 3.2). However, there is another way of selecting
the n — (m + 1) linearly independent conflict vectors of T such that the
constants A;, j = 1,...,n — (m + 1), in (3.4) must be integral in order for
¥ to be integral. As we now explain, the Hermite normal form (Schrijver,
1986, p. 45) of the mapping matrix 7 can be used to achieve this.

For any matrix T e Z™*P*" with rank(T) = m + 1, there exists a
unimodular® matrix U € Z™" such that TU = H = [L, 0}, where 0 denotes
a zero-entry matrix, and L € Z"*P*¢™*D s a nonsingular and lower
triangular matrix whose diagonal elements are positive and each of whose
diagonal elements is the maximum of all the absolute values of the elements
in that same row (Schrijver, 1986, p. 45). The matrix H is called the
Hermite normal form of T. For the purpose of this paper it is enough to
know that 7 can be transformed into a lower triangular matrix [L, 0] by
right multiplication of a unimodular matrix U. It is not required that each
diagonal element of L be positive or be the maximum of all the absolute
values of the elements in that same row.

2 A matrix is unimodular if and only if it is integral and the absolute value of its determinant
is unity.



210 JOSE A. B, FORTES et al.

For a given mapping matrix T, let H be the corresponding Hermite
normal form and 7 = HYV, where V = U™, U= [#, ..., #,], and V =
[V, ..., ¥,). Equation (3.1) can be rewritten as HVY=0.Let B =V¥y =
By, 8,17 and ¥ = UB. Then the following theorem is true (Shang and
Fortes, 1992).

Theorem 3.1.

1. HE = O if and only if By, ..., Bm+1 are all zero.
2. The vector ¥ is integral if and only if B is integral.
3. The vector 7 is a conflict vector of the mapping matrix T if and only if

ﬁm+2
Y = [tpaas res gl 0 s (3.5)
8.

where B;,j = m + 2,...,n, are arbitrary integers that are relatively
prime and not all zero.

What Theorem 3.1 implies is that all the conflict vectors of the mapping
matrix T can be represented by (3.5), where B2, ..., B, are arbitrary
integers that are relatively prime and not all zero. Notice that a nonintegral
value of any one of the B,.5,..., 8, results in a nonintegral vector ¥
according to Theorem 3.1. Hence, in this representation, we can avoid the
case where a new conflict vector of T is obtained by a nonintegral linear
combination of the # — (m + 1) linearly independent solutions of (3.1).

Example 3.3. The Hermite normal form of the mapping matrix T in
(2.7 is

1 0 0 0
TU_H_[O 1 0 o]‘
where

1 -1 0 0 1 1 1
0 0 -8 -1 0 1 1

U= and V=U"'=
0 0 1 0 o 0O 0
0 1 ) 1 0 -1 -8 0

All the conflict vectors of T are integral combinations of the third and
fourth columns of the matrix U as follows:



ALGORITHM-SPECIFIC PARALLEL PROCESSING 211

0 0
- ol el
1 0 Ba
0 1

where 8, and S, are integers that are relatively prime and are not both zero.
[ ]

The Hermite normal form of 7 provides a convenient representation of
all conflict vectors. The following two theorems provide necessary con-
ditions for conflict-free computations based on the entries of the matrix U.
This matrix can be computed in polynomial time (Kannan and Bachem,
1979) and when the allocation matrix S is known, it is possible to express
the entries of &/ as functions of the time schedule IT.

Theorem 3.2. Lefv; ; be the entry of a matrix V at the ith row and the
Jjth column. If the mapping matrix T is conflict free, at least one of its first
m + 1 entries of each and every column of V must be nonzero; that is, the
following conditions hold:

(vl,l # OVVz,l #= OV"‘VV,,,H,I,] = 0)/\

V2 F OV, ZOV -V, #Z DA (3.6)

(Vl’n # OVVZ,,, # Ov .- va+1’n # 0).

Theorem 3.3. If the mapping matrix T is feasible, tip, s, ..., U, are
feasible conflict vectors.

It is also possible to derive sufficient conditions for conflict-free
computations based on the Hermite normal form of T (Shang and Fortes,
1992). However, necessary and sufficient conditions for conflict-free
mappings are much harder to derive and remain an open problem when
m < n — 2. Instead, a procedure reported in our previous work (Yang ef al.,
1992) can be used to test for computational conflicts. This procedure is
based on the fact that it is possible to reduce the problem of conflict detec-
tion to that of checking if a convex polyhedron contains integral points.

4. Time-Optimal Mappings without Computational Conflicts
We now present two different approaches for selecting optimal time

mappings IT given a space allocation matrix §. In other words, we show how
to schedule the computations of an algorithm after they have been allocated



212 JOSE A. B. FORTES et al.

to processors. One approach employs a method we have developed earlier
(Li and Wah, 1985; O’Keefe et al., 1991; O’Keefe and Fortes, 1986)
to intelligently search a solution space in an efficient manner. A second
method uses integer linear programming augmented with heuristics, which
we illustrate in this section using as an example the matrix-multiplication
algorithm. We now briefly discuss the first approach and explain in more
detail in Sections 5 and 6 when we present the parameter method.

The fact that the execution time of a schedule I'T is a monotonic function
of the absolute values of the entries of IT can be used to devise an efficient
search of the solution space. The basic idea is to enumerate all the possible
values of TI in increasing order of the sum of the absclute values of its
entries (this assumes the index-set bounds are the same for every dimension;
simple modifications can be made to deal with the general case [Shang and
Fortes, 1992]). This search method gnarantees that the first feasible solution
is optimal because of the monotonic increase in execution time with increas-
ing absolute values of the entries of I1. By feasible, we mean that 7 satisfies
the conditions of causality, routability, freedom of computational conflicts,
and rank compatibility. As discussed in the previous subsection, freedom of
computational conflicts can be easily tested when T is (7 — 1) x nin O(n)
time. In the general case this method has complexity ®@((2N + 1)), where
N = min{N; — ;:j = 1, ..., n}. More efficient search methods may make
use of the necessary conditions provided in the theorems in the last subsec-
tion. We have studied several techniques of reducing the search complexity
(Yang et al., 1992). Examples include starting the search at the lower bound
of the sum of the absolute values of IT instead of when the sum is one.

The problem of selecting an optimal schedule for the case T e Z¢~*"
can be formulated as an integer programming problem as follows.

min/ = ¥ im0V, - (4.1)

(1) 1D >0

w
(2 SD=PKand Y} k; ;=Ild;, j=1,...,r

subject to i=1 {4.2)
(3) existingj € {1, ..., n}, | fi(y, .on ) > Ny —

@ MeZ™"

where



ALGORITHM-SPECIFIC PARALLEL PROCESSING 213

S and P are given, and f;,j = 1, ..., n, are as defined in (3.2). As discussed
previously, constraint 3 guarantees freedom of computational conflicts
and implies that renk(T) = m + 1. Constraint 2 is not required if a new
processor array is specially designed for the algorithm, or yields linear
constraints if P is known. Constraint 3 in (4.2) is linear because
T e Z® D> je., the dimension of the algorithm is reduced by one. The
formulation in (4.1) and (4.2) is, therefore, an integer piecewise linear
programming problem if, as is in the next example (4.1), constraint 1 in
(4.2) requires 7; > 0, j = 1, ..., n. This relaxes the absolute-value require-
ment in the objective function in (4.1). Further, this integer piecewise linear
programming problem can be converted to a piecewise linear programming
problem for some applications, as illustrated in Example 4.1.

We can add one more constraint, that ged(f;, ..., fs) = 1, where f;,
j=1,...,n, as defined in (3.2), to the formulation in (4.1} and (4.2) to
guarantee that the greatest common divisor of the resulting conflict vector
will be unity. However, this makes the problem more difficult to solve.
Hence, we ignore this constraint and check the feasibility of the conflict
vector of the resulting solution after the solution has been found. In other
words, the conflict vector may not be feasible after the common factor of
its entries is removed {Shang and Fortes, 1992).

In general, integer programming problems are NP-complete (Schrijver,
1986, p. 245). However, there are two approaches in which this optimiza-
tion problem may be solved efficiently. First, for each fixed natural number
n, there exists a polynomial-time algorithm that solves the optimization
problem in time that is a polynomial function of the number of constraints
and a logarithmic function of the problem-size variables N; —/,
j =1, ..., n(Schrijver, 1986, p. 259). Since in our case, », the dimension of
the recurrence equation, and the number of constraints are relatively small,
the optimization problem formulated in (4.1) and (4.2) can be solved
efficiently. Second, given that the objective function is convex, the optimal
solution to the integer linear programming problem of (4.1) and (4.2) is
the same as that of the corresponding linear programming problem (with
integrality constraints removed) if the solution at the extreme points are
integral. This is the method we have used in finding the optimal solution in
the following example.

Example 4.1. Consider the matrix-multiplication algorithm and
space allocation matrix § = [1,—1,0]. Its dependency matrix D and
index set J are shown in (1.10). To satisfy constraint 1 in (4.2), each entry
of the linear schedule vector IT must be positive, i.e., 7; = 1,/ =1,...,3.
Therefore, the problem of finding an optimal linear schedule vector for the
matrix-multiplication algorithm is formulated as an integer piecewise linear



214 JOSE A. B. FORTES et al.

programming problem:
min f = N(m, + 7 + 73)
MHnm=l,j=1,273
(2) SD = PK and ) ki <Tdyj=1,..,3 &3
(3) my = N, orm, i-:ln2 =N
(4 IMeZ™

subject to

where the inequalities in constraint 3 are derived in Example 3.1 and shown
in (3.3).

A linear systolic array is to be designed specially for the matrix-
multiplication algorithm. Thus, constraint 2 in (4.3) can be ignored.
Actually, if one insists on having near-neighbor connections, constraint 2
yields the constraints 7; = 1, 7, = 1, and 73 = 0. This is true because if P
and K are chosen as [1, —1, 0] and 7 (the identity matrix), respectively,
SD = SI=[1,-1,0] = PK = [1, —1,0]I. In fact, these constraints are
subsumed by constraint 1. For an integer linear programming problem with
convex solution set, if all its extreme points are integral, one of the extreme
points is the optimal solution of that problem (Schrijver, 1986, p. 232]. The
solution set of the integer programming problem in (4.3) is not convex
because of constraint 3, although all the extreme points are integral. One
way of solving this problem is to partition the solution set into two disjoint
convex subsets and find all the local optimal solutions for all the disjoint
solution subsets. If the local optimal solution with the smallest value of the
objective function is satisfactory, it is the optimal solution of the integer
programming problem in (4.3). ]

The integer piecewise linear programming problem in (4.3) can be decom-
posed into two integer linear programming subproblems as follows:

(I) min f = N(r, + 7y + 73) {4.4a)
OHm=1,j=1273
. Q) iz = N
subject to G) 7wy + <N
(4) M e 2"
(I min f = N(7; + m, + 73) (4.4b)

Mrz=lj= 1,2,3
subject to y(2) T, + I, = N
(3) M eZ™



ALGORITHM-SPECIFIC PARALLEL PROCESSING 215

Each of these problems is an integer linear programming problem with
convex solution set. We can check that every extreme point of these convex
sets is integral. Each extreme point is the solution of three of the following
five equations: n; =1, m, =1, A; =1, my =N, and 7, + 7, = N,
There are five such solutions from these five equations that satisfy ILD > 0
as follows: TI,=[1,1,N], TI,=[l,N—-1,1], II; =[1,N - 1,N],
M, = [N - 1,1, 1], and II; = [N — 1, 1, N]. The extreme points with the
shortest execution time are IT, and Il, . The conflict vectors for I, and T1,
are, according to (3.3), [, 1, —N]7, which is feasible because the absolute
value of the third entry of the conflict vector is greater than the corre-
sponding size N — 1. So both TI, and I, are feasible and optimal because
their conflict vectors are feasible, and they have the shortest execution time.
If we choose IT,, the total execution timeis f = (N — D1 + N) + 1 =N 2
according to (2.4), and N — 2 buffers are needed between the two PEs on
the link of data A induced by the dependency dz, since

3
szz— EkazN—l"l=N—2.

Jji=1

Figure 2 shows the block diagram of the linear array for multiplying two
4 x 4 matrices (N = 4). Figure 3 shows the execution of the matrix-
multiplication algorithm for the corresponding mapping matrix

1 -1 0
T=[1 3 1]'

The computation ¢ ;, = ¢, ;, + @i, " bi,, 5, indexed by f = [iy, b, 55]7 is
executed at processor [I, —l 0)/ and at time [1, 3, l]I By inspecting
Fig. 2, we can confirm that there are no computational conflicts. Two
buffers are needed_.between the two PEs on the link for data A, or for
dependency vector d,. The total execution time is 16, and the total number
of PEs is 7. As shown in Fig. 2, two data links are used, one for data A
traveling from left to right and one for data B traveling from right to left.
Data C are stationary and PE;, —3 =< i =< 3, computes ¢; ; such that
i, — i, = i. (For example, PE, computes ¢;,1, ¢33, C3,3, and ¢4 4.)

[ A : D D
’ PE C PE C
B
—t

Fic. 2. Block diagram of the linear array for matrix multiplication.



216

10

11

12

13

14

15

16

17

18

19

Ti
mne 20

PE-3

JOSE A. B. FORTES et al.

PE-2

PE-1

PEO

owN OTR ook
okt RO et it
N P e I

Dot Db Dbkt kbt b
ooR 0

e

—

PE1

PE2

PE3

Frc. 3. Execution of multiplication of two 4 %X 4 matrices C = A x B. The small block

with leftmost column [i,, iy, i3]7 corresponds to the computation ¢;, ;, = €, i,

which is executed at PE i, — i, and at time iy + 34, + &.

+a

i

) bi,,iz 1



ALGORITHM-SPECIFIC PARALLEL PROCESSING 217

The method discussed here does not guarantee absence of conflicts in
data communication over the same link at the same time. We assume that
there is enough bandwidth (through hardware links or virtual channels)
between the communicating processors to support all the necessary data
transfers. Alternatively, if data conflicts must be avoided, one must check
the resulting designs for their occurrence. The designs obtained above have
no data collisions if data can start to flow at any processor (or data do not
have to enter the array solely from the lefemost or the rightmost processor),
and data stop flowing as soon as they are no longer needed. This is true
because in every column and every row of the matrix X there is only one
nonzero entry k; ; = 1, j = 1, ..., 3. This means that when data pass from
the source to the destination, they use the data link just once (one hop
between source and destination).

Data-link collisions may occur if the data use links more than once
when passing from the source to the destination. For example, if the space
allocation matrix S’ = [1, 1, N] and P’ = [1, 1, 1], to satisfy the condition
SD = PK, one possible set of valuesfor K isk, ; = k» 5 = 1, k3,3 = N, and
k, ;= 0, i # j. Thus, the distance between the source and destination for
data € is N PEs and data C will take N hops over the third link in the
processor array, or the link for C to reach the destination. Suppose PE;,
j=1,..., N, are sending data x; ; (corresponding to ¢; ; of matrix C) to
PE;, yat time £;, i = 1,..., N. Then at time ¢, xy,, is on the link between
PE, and PE,. At time #,, two pieces of data x, ; and x; , are on the link
between PE, and PE,, and so on. At time ¢y — 1, N ~ 1 pieces of data
X1,1» X2,35 -++» Xn_1,n—1 are on the link between PEy_, and PE,. So link
collisions exist after time 7,. This is caused by k;; = N. As shown in
Fig. 3, there is no link collision for the particular case N = 4 illustrated
above.

5. Parameter-Based Methods

In the previous section, we described a dependency-based approach (DM)
for mapping algorithms to processor arrays. The approach is general and
can synthesize processor arrays for algorithms with uniform as well as
nonuniform recurrences. In this approach, a desired mapping can be found
by determining the elements of a transformation matrix 7. Since these
elements have to be integers, finding an optimal design requires, in the
general case, solving at least an integer linear programming problem. To
reduce the complexity, the allocation matrix § can first be chosen
heuristically, after which an optimal schedule vector IT is found. For
instance, an allocation matrix that uses a small number of processing



218 JOSE A. B. FORTES et al.

elements can be used, and a design that minimizes the completion time can
then be obtained on the basis of the matrix.

A more efficient design can be found if the designs are restricted to
the case of recurrences with uniform indexing functions. In the next two
sections, we present a parameter-based approach for mapping such
recurrences. The thinking behind this method is as follows. It is known that
the semantics of systolic arrays can be formally described by uniform
recurrence equations, i.e., systolic arrays are isomorphic to uniform
recurrences. This implies that as long as the computations defined by the
uniform recurrences are well-formed, there is a direct mapping from the
recurrence to the systolic array. In fact, this mapping is equivalent to a
linear transformation of the index set. Hence, for a linear mapping, the
time (rgspectiggly, the distance) is constant between execution of any two
points f, and I, in the index set separated by a dependence vector d, where
I, = I, + d. This constant is equal to I1d (respectively, Sd) independent of
the index points I, and 7, . For recurrences with uniform indexing functions
(i.e., uniform recurrences and uniformized linear recurrences), the depend-
ences are constant vectors and homogeneous (i.¢., the set of dependency
vectors at any one point in the index set is the same as at any other point in
the index set). Thus, the computation of the recurrence on the processor
array is periodic in time and space along the dependency directions in the
index space. This periodicity is succinctly captured and exploited in the
parameter-based approach that we shall discuss in the balance of this paper.
In other words, parameter-based methods employ a different representation
that captures the above periodicity, making it possible to find the optimal
target array in an efficient manner.

Work on parameter-based methods was first done by Li and Wah (1985)
for a restricted set of uniform recurrences. They considered, in particular,
three- and two-dimensional recurrences and mapped them to two- and one-
dimensional arrays, respectively. The structure of the recurrence was such
that the dependency vectors were unit vectors and the dependency matrix an
identity matrix. This was an important initial step in obtaining optimal
processor arrays efficiently.

This array-synthesis technique using parameters was considerably
extended and generalized subsequently into a general parameter method
(GPM) (Ganapathy and Wah, 1992a,b). Here the recurrence model was
a general n-dimensional recurrence instead of a specific three-dimensional
recurrence. The target arrays are also permitted to be of any lower dimen-
sion m (where m < n). It is assumed that the processing clements are
equally spaced in m dimensions with unit distance between directly
connected processing elements; buffers between directly connected proces-
sing elements, if any, are assumed to be equally spaced along the link.



ALGORITHM-SPECIFIC PARALLEL PROCESSING 219

5.1. Parameters

In GPM, the characterization of the behavior, correctness, and perform-
ance of a systolic array is defined in terms of a set of scalar and vector
parameters, The crux of GPM is the characterization of the behavior,
correctness, and performance of a systolic array by a set of vector and
scalar parameters. When a uniform recurrence is executed on a systolic
array, the compuiations are periodic and equally spaced in the systolic
array. GPM captures this periodicity by a minimal set of parameters, which
is defined as follows.

Parameter 1: Periods. The periods capture the time between execution
of the source and sink index points_'of a dependency vector. Suppose that
the time at which an index point I' (defined for the uniform recurrence
equation) is executed is given by a function rc(I ), and let the period of
computation ¢; along the dependency direction d be defined as follows:

L= rc(1+dj) - rc(I), J=12,...,r 5.1)
The number of periods defined is equal to r, the number of dependencies in
the algorithm. In terms of DM, period #; satisfies the following equation:

4 = d;, (5.2)

where IT is the schedule vector in DM.

Parameter 2: Velocity. The velocity of a datum is defined as the
directional distance traversed in a single clock cycle; it is denoted V. Since
each PE is at unit distance from each neighbor, and buffers (if present) must
be equally spaced between pairs of PEs, the magnitude of the velocity vector
must be a rational number of the form {/j where i, j are integers and /i <
(to prevent broadcasting).? This implies that in j clock cycles, x propagates
through i PEs and j — i buffers. All tokens of the same variable have the
same velocity (both speed and direction), which is constant during execution
in the systolic array. The total number of velocity parameters is r {one for
each dependency vector) and each velocity is an m-element vector, where m
is the dimension of the processor array. Hence, the velocity ¥; is given by

—

=, Ji=1,2,...,r 3.3
L

o
G

where l?;:, is the (vector) distance between the executiog locations of the
source and sink index points of the dependency vector d;. In the notation

3 A vector is characterized by its magnitude and a unit directionat vector.



220 JOSE A. B. FORTES et al.

of DM, S, the allocation matrix, is related to !Q:, and c_z':, as follows:
£ =sd. (5.4)

Parameter 3: Spacing or data distribution. Consider a variable £,
pipelined along the dependence vector d;, 1 = i< r. The token Q;(/ — d;)
is used at the index points  + td;, f=..., —2,—-1,0,1,2,...,1in computing
the recurrence. In other words, the token moves through processors that
use the variable Q; at the index points (I + td;). Consider another token
Q,(I — d;) of the same variable £, used at index points (I - d; + tdy), J # i.
The directional distance in the processor space from token Q. —d)to
token Q;{(J — d;) is defined as a spacing parameter* §; ;. Since there are r
dependency vectors d;, 1 =<i<r, there are r — 1 nontrivial _:spacirLg
parameters for each variable and a single trivial spacin_g parameter 8 i, i =_’0.
These denote the r distances for variable /: Q;( — dj) = QI — d),
i,j = 1,2, ..., r. Each spacing parameter §;;is an m-dimensional vector,
where  is the dimension of the processor array. The notation 8; ; denotes
that it is the jth spacing parameter of the /th variable. A total of r(r — 1)
nontrivial spacing parameters are defined. To compute §; ;, corLside_g the
movement of token Q;(f — d;) of variable Q; from index point (/ — d;) to
index point / with velocity ¥;. In the notation of DM (based on (5.3) and
(5.4) and Theorem 5.1),

T T - - 04 5
Sihj:I/jl‘j—V}tj:Rj—I/;t_i:de”‘t—TIj:de—H—a{.Sdi. (55)

The total number of parameters defined is r x (r + 2), of which r are
periods (scalars); the remaining r* + r parameters are m-dimensional
vectors, of which r are velocities and r? are spacings (and r of these spacings
are trivially zero).

Example 5.1. Consider a three-dimensional recurrence with n = 3,
r=35,

2Kk, i,§) = Xk, DY, k) + Tk — Li+ 1L,j+ 1)
+ 2k - 1,i+ 1,j)+ 2k — 1, Lj+ 1). (5.6)
After pipelining, (5.6) becomes '
Ik, i, /) = Xk, i,j — DYk, i — 1,j) + Tk — 1,1 + 1,j+ 1)
+ 2k — 1,i+ L,j) + Zk — 1, i,j + D. (5.7)

4 Spacing parameters in GPM are denoted by §, whereas the processor-allocation matrix in
DM is denoted by 8.



ALGORITHM-SPECIFIC PARALLEL PROCESSING 221

Let
I'=@J. 07 dy = 0,0, 1,
d, = (0,1,07, dy = (1, -1, =17,
dy=(1,-1,07,  ds=(1,0,-D"
Rewriting the recurrence in the functionally equivalent form,
2y = 00 — dyx YT - dp + 20 — &), @I - dy), @S ~ dy),
(5.8a)

we obtain
&, =2d), i=4,5, (5.8b)

where @; are dummy variables. Each dependence is now associated with one
variable. The dependence vectors, collected into a matrix, are

c 0 1 1 1
6c 1 -1-1 0

D 1 0-1 0 -1 5.9
T X ¥y 2 Z Z 5.9

The parameters defined are as follows. The variables X, Y, ‘2.1, Gi, a_qd
@ have periods ¢, &, 3, t;, and fs, respectively, and velocities ¥y, ¥, V3,
V,, and V;, respectively, where

ek, ) — Tk, 6,0 — 1)

= 1.k, i,j) — Tk, P = 1, /)

ty = Tk, i, j) — Ttk — L,i+ 1,j+ D (5.10)
1.0k, 1, J) — Ttk — Li+ 1))

= 1k, i, j) — Tk — 1,5, ] + 1).

~
—_
I

by
W
I

i
Il

ot
l

There are 25 spacing parameters S,-, g Bi=12, 3,4, 5,_‘with_§§,-, i= 0.
For instance, consider the spacings of the first variable X: 8y 5, 81,3, $1,45
and §, 5. These are defined as the distances
(X, i,j — 1) = Xk, i = 1,7
Xk, i,j— )= Xtk — 1,i+ 1,j+ 1)
(X(k, i, — 1) = Xtk — L,i+ 1L,j),
Xk, i, j— D= Xk — Lij+ 1)



222 JOSE A. B. FORTES et al.

respectively. Using the indexing function of X, gl,z, gm, §,'4, and 51,5
correspond to the distances

(X(k, i) > X(k, 1 — 1)),
Xk, i) Xk — 1,i + 1)),
(X(k, i) = X(k—1,i + 1)),
(X(k, i) = X(k ~ 1,80
respectively, | |

5.2 Constraints

In Section 5.1, a set of r* + r parameters was introduced to define a
target systolic array. The assignment of values to these parameters defines
a specific systolic array with a particular number of processors, buffers, and
data-input patterns. It is also easy to see that all systolic arrays that solve a
given algorithm (or uniform recurrence) correspond to some assignment of
values to the parameters. Hence, choosing different values for these param-
eters leads to different array configurations with different performances.
As a result, the problem of array design has been reduced te that of
choosing appropriate parameter values.

The choice of a value for one of the r* + r parameters is not independent
of the choice of values for the other parameters. In this section, constraint
equations relating the parameters are given such that the set of values for
the parameters are meaningful and define a valid systolic array. Theorems
5.1 and 5.2 provide fundamental space-time relationships that must be
satisfied by the parameters to ensure correct systolic processing. The
avoidance of computational and data-link conflicts is enforced by the
condition in Theorem 5.3. The theorems are provided without proofs due
to space limitations.

The foilowmg notation is introduced to simplify the presentation of the
theorems. Let T= {t;, &, ..., t,] be a vector composed of periods, and let

[ﬁl , ﬂ,z s eers ,] bea matrlx (of size m X r, where m is the dimension of
the systolic array) composed of displacements &; = V;i;. Both 7 and B. are
rx1 column vectors. The displacement ﬂ is synonymous with the velocity
V;, because the choice of one immediately determines the other. In searching
for parameter values, we choose to consider £; and not ¥;.

Theorem 5.1. The parameters velocities, spacings, and periods must
satisfy the following constraint equations for correct systolic processing:

Vt,=Vit;+ 8, Lji=12..,r (5.11)



ALGORITHM-SPECIFIC PARALLEL PROCESSING 223

These constraints ensure that in computing an index point I at any
processor in the array, all the participating data tokens must be present at
the processor at the same time after moving from their respective processors
where they had been used earlier. A total of #* constraints are obtained
from Theorem 5.1.

Let$ =[8,,1.4=1,2,...,r,beanrxr “matrix”’ (actually, a matrix
of vectors) of spacings such that the (i, j)th element of the matrix is §; ;.
Note that, by definition, 8; ; = 0. Let 8, be the ith “‘row”” of this ‘‘matrix’’
8, ie., 8 = [8:1,8;2> .. 8$;,1 (where §; is an mXxr matrix). Since
§,;,=Vt;, — Vit; = #; — Vt; from Theorem 5.1, it can be written in matrix
form as

$; =% -V,® T (5.12)

where & is the outer or tensor product, i.e.,  ® b=ab"= [a,b;).
The next theorem characterizes the constraints on the periods and displace-
ments if the dependencies in the recurrence are not linearly independent.
Let g be the rank of the dependency matrix D. Therefore, 9T, the null
space of D, has r — g columns (since D has r columns). Let

fﬁ = [&'1 &2 teey &r?g]

be an rX {r — g) matrix, where a;, i =1,2,...,(r — g), are the basis
vectors of the null space of D. Hence,

D-a=01=i<(-2pg. (5.13)

Theorem 5.2. The periods t; and the displacements £; are related
as follows:

T-: =0, (5.14)
KN = 0, (5.15)

where U is @ matrix consisting of the basis vectors of the null space of D.

The implication of Theorem 5.2 is as follows. If the dependency matrix
D is not full rank, i.e., some of the column vectors, say d; of D, can be
written as linear combinations of other column (dependency) vectors, the
periods of computation ¢; (respectively, displacements &;) along the linearly
dependent column vectors can be expressed by the same linear combinations
of the other periods (respectively, displacements).

Thus, the conditions provided by Theorem 5.2 are additional constraints
from the definition of parameters and the dependency vectors in the
algorithm. Theorem 5.2 provides a total of 2(r — g) constraints.



224 JOSE A. B. FORTES et al.

The following corollary can be easily derived from Theorem 5.2. The
implication of this corollary is that only g — 1 of the r spacing parameters
for each variable are independent, one of them is zero, and the rest can be
obtained as linear combinations of the g — 1 independent ones.

Corollary 5.1. The spacing parameters 8; = [5,—,, é‘_;,-_,] are con-
strained by the equations

89 =0, i=1,2,...,r
where JU is a matrix consisting of the basis vectors of the Null Space of D.

Example 5.2. From Theorem 5.1, the constraint equations for the
recurrence in (5.6) (excluding the trivial constraint V¢, = Vi #, + 8, ,) are

Vitp=Vyty + 85 = Vaty + 85, = Vat, + 8, , = Vst; + 854, (5.16)

Similarly, there are 16 additional equations related to Vit,, V3i3, Vil4,

and V;/4s.
D defined in (5.9) has rank 3. Hence, 91 comprises two basis vectors.
1 0
0 1
N = 1 1 (5.17)
-1 0
0 -1

From Theorem 5.2, the additional constraints are
t4=tl+t3 t5=t2+f3

W e o o s o (5.18)
&4=ﬁ1+ﬂ3 E,s=“/2+“-3
In this example, there are a total of 27 vector constraints and two scalar

constraints, m

To summarize, a total of #* + r vector parameters and 7 scalar parameters
have been defined whose values have to be determined. Theorems 5.1 and 5.2
give a total of 72 + (r — g) vector constraints and (» — g) scalar constraints.
Hence, g of the scalar parameters (periods) and g of the vector parameters
have to be chosen such that the other r — g scalar parameters and the other
r* + (r — g) vector parameter values can be determined from the chosen
scatar and vector constraints. Since the performance of the design can be
naturally expressed in terms of periods and displacements, our strategy is to
choose the g periods and g displacements and determine the remaining r — g
periods and r ~ g displacements from Theorem 5.2 and all the r? spacings



ALGORITHM-SPECIFIC PARALLEL PROCESSING 225

using Theorem 5.1. Corollary 5.1 further states that only g — 1 of the r
spacings are independent for each variable. All the vector parameters are
m-dimensional (with m elements).

The validity of the space-time mapping is governed by the following
fundamental necessary and sufficient conditions.

1. Precedence constraints. An index point should be executed only after
all the index points on which this depends have been executed. In
DM, 11D > 0.

2. Computational conflicts. No two index points may be gxecuted at the
same processor at the same time. In DM, II(Z,) = II(%;) implies that
S(I,) # S(I3).

3, Data-link conflicts. No two data tokens may contend for a given link
at the same time.

Having established the parameters and the two basic relationships among
them, we show how the fundamental conditions for validity are satisfied
in GPM.

By definition, periods denote the time difference between the source and
sink of the dependencies. Hence, the precedence constraints are satisfied by
simply enforcing t; = 1, i = 1, ..., r. In the array model, all tokens of the
same variable move with the same velocity. Hence, data-link conflicts can
exist if and only if two tokens of a variable are input at the same time into
the same processor and travel together contending for links. This condition
is called a data-input conflict in GPM, as two data tokens may be in the
same physical location and may conflict with each other as they move
through the processors together.

It is important to note that in GPM, computational conflicts can exist if
and only if data-input conflicts occur. This can be seen by the foliowing
simple argument. If two index points are evaluated in the same processor at
the same time, then, for each variable, at least two distinct tokens exist
together in the same processor. Hence, if there is at least one nonstationary
variable, there will be data-input conflict for the tokens of that variable.
Otherwise, all the variables are stationary and the entire computation is
executed on one processor, i.e., there is no systolic array. Hence, by
enforcing a rule that no data-input conflicts exist, both computational and
data-link conflicts are avoided. Theorem 5.3 below presents conditions
under which data-input conflicts can be eliminated.

Consider the spacings of variable /. Let §; be an m X (g — 1) matrix:

8 = [gi,15§i,2!“-3 gi,g—l]s (5.19)

where §; ,, 8,2, ..., 81,1 are g — 1 consistent spacings. Let a, B, and y



226 JOSE A. B, FORTES et af.

be vectors with g — 1 integral elements. Let L, , U,, k=1,2,...,g — 1, be
defined such that the position of all the tokens of the input matrix can be
represented by T4} gi, B, where L, = f, = U,. L, and U, are functions
of the size of the input matrix.

Theorem 5.3. Data-input conflicts occur in the mput matrix of a
nonstationary input i if and only if 8id = 0 and & # 0, where & =
[y, 0y ooy 0g 41 and ;€ [(L; — U, ..., (L; + UL, for all i such that
l=i=<g-1.

Proqf. The position of any element of input / can be described as §; E,
where § = [B), ..., B,—1] and L; = §; = U;. Therefore,

Data-input conflicts
8 f=8/7F=7 and Li<7¥, 8= U
“8{(f-7) =0
o8d=0,d=F-Vaeclli-U)...;i+U)),a#0 m

Note that in Theorem 5.3, we have defined conservative bounds on «;.
Better estimates can be obtained (Xue, 1993) and will result in iess overhead
when the conditions in Theorem 5.3 are checked in the design process.

Example 5.3. For the recurrence in (5.6), if the array sought is one-
dimensional, the spacing parameters are all one-dimensional scalars. Let
8,2 and §, s be the two independent spacings for input X. We set the values
of L, and L, to be 1, and the values of U, and U, to be N. Therefore,
according to Theorem 5.3, data-input conflicts occur in input X if and
only if

[$J$3[2}=0, (5.20)

where ~IN-1)=oa, oy =(N—-1) and o, # 0. For instance, if

= 5 and Sl 2, = 6and S, s = 4, we find that @; = 2 and «, = —3 satisfies
(5 20). (In one dlmensmn, the vector spacings are positive or negative
numbers.) Hence, there are data-input conflicts in input X [ |

5.3. Design Method

The design of a feasible processor array is equivalent to choosing an
appropriate set of parameters that satisfy the constraints imposed by the
dependency and application requirements, The search for the “*best” design
can be represented by the following optimization problem:



ALGORITHM-SPECIFIC PARALLEL PROCESSING 227

Minimize BNV, 21, -oes brs fis oees Br) (5.21)

1 = ti,i= 1,...,!‘,

) 0= Bl =<t,i=1,..r
Subject to: . . .
constraints defined in Theorems 5.1, 5.2, and 5.3,

#PE < #PEY® and T, < T,"%.

The objective function b defined in (5.21) is expressed in terms of
attributes such as T,,,,,, the computation time of the algorithm; T;,,4, the
load time for the initial inputs; Ty, . the drain time for the final results;
and #PE, the number of processing elements in the design. Note that the
completion time for evaluating the recurrence is

T = 7l-am,p + Tioaa + Lirain- (5.22)

All the attributes are then expressed in terms of parameters defined in
GPM.

The first two constraints in (5.21) follow directly from the definition of
the parameters in GPM. Since the target array is systolic, the displacements
|&;] should not exceed the periods ¢ in order to prevent data broadcasting
(velocities should not exceed one). In addition, the constraints #; = 1,
i=1,2,...,r ensure that the precedence constraints are satisfied.

The third constraint indicates that the recurrence is evaluated correctly by
the processor array satisfying the dependency requirements (Theorems 5.1
and 5.2), and is free of data-link and computational conflicts (Theorem 5.3).

The fourth constraint indicates what bounds on T, and #PE that are
imposed on the design are to be obtained. For instance, the following are
two possible formulations of the optimization problem:

(2) Minimize 7, for a design with a maximum bound on #PE and PEYE,;
(b) Minimize #PE for a design with a maximum bound on 7, and T.V2.

Both of these formulations represent trade-offs between T and #PE. This is
a unique advantage to using GPM as a way of synthesizing systolic arrays.
Both optimization problems and trade-offs are illustrated in detail in
Section 6. Another unique feature of GPM is that the formulation in (5.21)
is defined with respect to a specific recurrence and a specific problem size N.
This allows a truly application-specific and problem-size-specific systolic
array to be designed to suit specific application requirements.

In addition to the constraints we have discussed, there are other con-
straints that may be defined in the search process. Since, in general, the
objective function is nonlinear, involving functions such as ceiling, floor,
and the maximum/minimum of a set of terms, it is difficult to describe a



228 JOSE A. B. FORTES et al.

comprehensive algorithm that covers all possible cases. In the following, we
first describe our general search strategy, after which we discuss searches
with objectives that are functions of T, T.omp, Tirain, and #PE. We then
present the search algorithm and show its application to special cases of
optimizing 7, and #PE.

Our general search strategy takes the objective function b (assumed to be
minimized) and decomposes it into two functions b, and b, related by f as
follows:

BN, £y, ooy tyikyy s B)
= f(Biltys eer b By ceis By Ballys oo st Ry B, (5.23)

where N is not represented explicitly since it is a constant in the optimiza-
tion. The decomposition is done in such a way that b, is a monotonic
function of its variables (which are enumerated), and b, is a function
in which a lower-bound estimate on its value can be obtained easily.
In addition, f is assumed to be a monotonically increasing function with
increasing values of b, so that a lower-bound estimate on b, can be used
to get an upper bound on b;. The search proceeds by systematically
enumerating all combinations of a selected set of parameters defined in by,
and solving for the rest of the parameters by the constraints defined in
(5.21) or by computing their values when the lower bound of b, is
evaluated. Every time a combination of parameters in b, is searched, a
lower-bound estimate on b, is computed. This lower-bound estimate,
together with Bc“mbent  the objective value of the current incumbent
design, defines an upper bound on the value of b; to be enumerated further
in the search process. That is,

pincumbent _ fRUB(1 ot Ry BEB(t, ey by Ry e K. (5.29)

Note that this equation only defines an upper bound on the value of 5, to
be enumerated; it does not define the combinations of parameter values of
b, that can be pruned. Pruning of combinations of parameter values of b,
is possible only if b, is monotonic with respect to the combination of
parameter values chosen in the enumeration process.

To illustrate our search strategy, consider an objective that is a function
of Toomps Tioads Tirain» and #PE as follows:

B = bl(j::omps T;oad! Tdnzin , #PE) X bz(T;:omp’ ﬂaad’ Tirains iffPE‘) (5.25)

Assume that a lower-bound estimate of b, can be obtained by setting
Tiozd = Tarain = O Toomp = Tc'j,‘,‘,',‘p, and #PE = #PE'““‘ Consider a case in
which #PE is expressed as a function of Iﬂll ., |&|. #PE is minimal when
exactly one |&] is I, and the rest of them |ﬂ l, J # i, are 0. Similarly a crude



ALGORITHM-SPECIFIC PARALLEL PROCESSING 229

TMn can be obtained by letting all £ = 1. Hence, given Bincumbent
we have

Bincumbenr = byB(namps T;oads Train» #PEl Tioaa = Tirain = 0, #PE = #P. min)
X bIZ‘B(T::,omp’ Tioads Tirains #PE ‘ T;"omp = 71-'3;:;»

Tiosd = Tarain = 0, #PE = #PEmin)’ (5.26)
or, equivalently,
B Bincumbent
Tore = br! » (5.27)

b{!‘B(T:amps and’ 7“drﬂi", #PEI 7::'10mp = n’:};llp’ .
Troed = Tarain = 0, #PE = #PE™")
where b7 is the inverse function of b,, and T, is the dummy parameter

Tomp used in b,.
For example, let the objective function be

B= (‘I::omp + T;aad + ?:i'min)z X #PE = bl(nomp + T;oauzi + Emin) X bz(#PE)-

(5.28)
According to (5.27), we have
TYE = NBmewmben [y PE™", (5.29)

TY2, is refined continuously as new incumbent designs are found in the
search, and the search stops when there is no combination of ¢,
i=1,...,r that satisfies Toomp < Teomp-

In the following, we describe the search procedure for an objective

function of the form in (5.25).

Search procedure for minimizing b(#PE, T.) = (Teomp s Troaa » Train» #PE),
where T,y is @ fugction of ty,...,t,s Tigga and Typiy arC functions of
Ty eensbrs |&y], ..o, R4, and #PE is a function of &1, ... |&l-

1. Choose g periods and g displacements to be unconstrained
parameters. Without loss of generality, we may let these periods and
displacements be ; and &;, 1 s i =g, respectively.

2. Initialize TY2, to be Tjsd,, the computation time required to
evaluate the recurrence sequentially.

3. Set the values of all the g unconstrained periods ;, i = 1, ..., g, to be
unity.

4. Choose the magnitude of g unconstrained displacements \&l,
i=1,...,8, to be zero.

5. Compute the values of the other dependent r — g periods and
displacements using the conditions of Theorem 5.2,



230 JOSE A. B. FORTES et al.

6. Compute Tiar, using the periods and displacements found, where
Tiw, is the computation time (without load and drain times)
required for processing the recurrence by substituting the current
values of ¢;, i = 1, ..., r. (Note that the design may not be feasible at
this time.) If 754, > T.op,, €xit with the incumbent design.
Solve for the spacing parameters from (5.11) defined in Theorem 5.1.
8. Check for data-input conflicts using Theorem 5.3 on the spacing
parameters; also, check whether the constraints on T, and #PE are
violated (constraint 4 in (5.21)). .
9. If the solution is not feasible, increment one |&;] and repeat Steps 5,
6,7, and 8 until |&;] are all equal to #;, i = 1, ..., r. If all the |&; equal
t; and no feasible design is found, go to Step 10. If a feasible design
is found, go to Step 11.
10. Increment one of the periods such that Ty, increases by the lowest
possible value. Go io Step 4.
11. Compute B, the objective value achieved by the current design
found. If B « Bincumbent  sey gincumbent _ peur and compute Toomp
for the current design using (5.27). Increment one |&;| and goto Step 5.

=

The worst-case complexity of the search procedure above is (Tc’,f,‘f,p)zg,
where Toomp is the time needed to process the recurrence sequentially. This
bound is true because we iterate in the worst case all combinations of ¢;
and |&]| = #,i=1,...,r.

A special case of the optimization is to find a design with minimum
computation time (not including load and drain times). This is discussed in
Section 4 of this paper as well as in our earlier work (Ganapathy and Wabh,
1992a,b). In this case, b, is a constant function, and b, a linear function of
fys ..., t,. Hence, the first feasible design found sets Toom,, equal to 7o, of
the feasible design obtained, and the first feasible design becomes the
optimal design that minimizes Tiopmp -

For a design that minimizes #PE, the search procedure described above
ngeds to be changed. In this case, b, should be defined as a function of
|&,, ..., |&!. The search should start iterating with the smallest combina-
tions of these variables.

6. Applications of the General Parameter Method

Path-finding problems belong to an important class of optimization
problems. Typical examples include computing the transitive closure and
the shortest paths of a graph. Two-dimensional systolic arrays for finding
transitive closures have been studied extensively in the literature (Kung et al.,



ALGORITHM-SPECIFIC PARALLEL PROCESSING 231

1987; Guibas ef a/., 1979; Rote, 1985). In this section we synthesize a one-
pass linear systolic array for the Warshall-Floyd path-finding algorithm.
The discussion below is with respect to the transitive closure problem.
The transitive closure problem is defined as follows. Compute the
transitive closure C*[i,j] of an m-node directed graph with an nxn
Boolean adjacency matrix C[i, j], where C[i,j] = 1if there is an edge from
vertex { to vertexjor i = j, and C[i, j/] = 0 otherwise. Since the dependency
structure is irregular and difficult to map, S. Y. Kung ef a/. (1987) converted
the transitive closure algorithm into a reindexed form and mapped it to 2-D
spiral and orthogonal arrays. Based on their algorithm we obtain the
following five dependency vectors after pipelining the variables:

dy = 0,0, ) for (k, i, /)T = (k,i,j — 1), 2 =<j =< N,

dy, = (0,1,07 for (k,i, )T = (k,i— 1,/)T,2<i=N,

dy = (1, -1, 1) for (k, i, /)" = (k= 1,i + 1,/ + 17,
2<k=N1=<ij<N-1 (6.1

d, = (1, =1, 0 for (k, i, )T = (k — 1,i + 1), N)7,
2<k=N1<isN-1,

ds = (1,0, =D for (k, N,j)" = (k = 1, N,j + 1),
2=k=N,1=j=N-1,

where f; - f; means that the data at point f; is used at point f; . For nodes
on the boundary of dependency graph G where i = N (respectively, j = N),
dependency d4 (respectively, ds) is present instead of dependency d3 For
other interior points, only the three dependencies a’I R dz, and d3 exist.

The running example discussed in Section 5 is a recurrence with the five
dependencies listed above. The dependency graph of the recurrence used in
example [(5.6}] is regular and homogeneous with five dependencies at each
point. However, for transitive closure the dependency graph is not
completely regular. Hence, control bits are used to modify the flow (or
velocity) of the tokens in order to execute the dependency graph on the
processor array correctly. ‘

The key observation is as follows. Matrix C (whose transitive closure is
to be found) is input along dependency direction d,. Inputs along other
dependency directions d,, d,, d4,, ds are nonexistent, i.e., they are never
sent into the array from the external host. Hence, there are no data-input
conflicts along these dependency directions as the generated outputs are
sent at most once on each link in every cycle of the array. As a result, we
need to consider only data-input conflicts along direction d;. Since
dependencies d;, d,, and ds never coexist, there are only two spacings for
data along direction d;, namely, 8; ; and 8, ,.



232 JOSE A. B. FORTES et al.

A total of eight relevant parameters are defined for the tr_gnsitive Elosure
problem: three periods 4, &, 3, three displacements £,, £;, and £,, and
two spacings 8, ; and 8; ,. For a linear array all the parameters are scalars.
Applying Theorem 5.2 and in the same way as in the derivation of (5.18),
the periods along directions dy and ds are given as f, = + [ and
ts = t, + t;. Similarly, the displacements &, = £; + &, and & = By + £4.
From Theorem 5.1 and (5.3), we get

5. = Lk — ks 5., = 13y — tRs
3,1 t Y 3,2 = — t_""'.
3 3

We illustrate in the rest of this section five formulations of the optimiza-
tion of systolic arrays: (a) T,omp-Optimal designs without bound on #PE; (b)
7.-optimal designs without bound on #PE; (c) #PFE-optimal designs without
bound on 7, or T,,p,; (d) optimal designs with specific bounds on T, or
#PE: and (e) optimal designs with specific bounds on 7 or #PE. Recall
from Section 5 that 7, = Tjoyq + Teomp + Tarain» and that we need to express
Thouas Teomps Tarain» and #PE in terms of the parameters defined in GPM.
For this example, T, and #PE ar¢ stated below without proof
(Ganapathy and Wah, 1992b).

Lemma 6.1. T.,.,, the computation time (without load and drain
times), and #PE, the number of processing elements, for computing an
N x N transitive closure in a linear systolic array satisfying the dependencies
defined in (6.1) are given by

Toomp = (N — D28 + 26, + 85) + 1, {6.2)
#PE = (N — (& | + B + 18 + & + KD + L. (6.3)

Due to space limitations, we state below without proof the equations for
Tioad and Ty, . The idea behind the proof is to enumerate all the cight
possible directions of &, &, and &, and compute the load and drain times
for each.

Lemma 6.2. Tipa the load time, and Ty, , the drain time, for compu-
ting an N X N transitive closure in a flinear systolic array satisfying the
dependencies defined in (6.1) are given by

gt &) + g ) + 91K, + By + B, @1}] ol
I4s) ‘
+ (N — 1)[3(;3,1 - £3)|£|9(£,2— Es)]

Tioaa = Tdrain =N - 1)[

(6.4)

where

. |x] if ¥ and y are in opposite directions
5 = 6.5
g(x, ¥) {0 otherwise (6.5)



ALGORITHM-SPECIFIC PARALLEL PROCESSING 233

For linear-array synthesis, since the spacings are scalars, let s, ; = |S3 N
and s; = [83 »|. The condition for data-input conflict (Theorem 5.3) can
be refined as given in Theorem 6.1, which we state without proof.

Theorem &.1. Data-input conflicts occur in an input matrix C if and
only if
S3,1 83,2
=== < N and == < N, (6.6)
i 4

where & = GCD(s,,,, 53 ,) and GCID{a, b) is the greatest common divisor of
a and b.

Table 1 shows the optimal linear designs found by the search procedure
of GPM in which the objective is to minimize either T_,,,, of T.. In finding
these designs, ¢, is incremented before ¢, or £, in Step 10 of the search
procedure presented in Section 5.3 (refer to (6.2)), since such a procedure
increases 7 comp by the least amount.

The designs in the left half of Table 1 are based on first optimizing T.,,p.
From the set of designs that have minimal T,,,,, we found designs that
require the minimal #PE, after which we found designs that require minimal
Tiona and Tppin . We list Trooqs Toomps Tarain» the #PEs needed, and the CPU
time used by the search procedure running on a Sun Sparcstation 10/30.
The designs found are identical to the designs we have published before
(Ganapathy and Wah, 1992a,b), except for the case N = 8. In our previous
design for N = 8 (Ganapathy and Wah, 1992a,b), we had (f1, 4, 1) =
(1,2,3) and (&1 s RZ ﬁ3) = (0, —2,1). This design was found without
considering T,y and T,.:.. As a result, it requires Tppg = Typosm = 64 time
units, which is the same as T, . In our current design for N = 8, we found
a better design that requires less T, and T,

The designs on the right half of Table 1 are based on optimizing 7.
As a result, they have less total completion time and more #PEs than those
on the left half of the table. For instance, for N = 300, the completion time
for the design optimizing 7, requires 7% less completion time and 35%
more PEs than the design optimizing T.,m,. Note that both designs were
developed without bounds on #PESs.

It is important to point out that the objective used (whether to minimize
T:.omp OF to minimize 7;) depends on the application, If the linear processor
array is used to evaluate the transitive closure of one matrix, then mini-
mizing 7, will be important. On the other hand, if the processor array is
used for pipelined evaluation of transitive closures of multiple matrices,
then minimizing T,,,, may be important. More precisely, we would like to
minimize the total completion time for evaluating a sequence of transitive



LST 2:89 (e667 €9fli‘e6eT)  (Z°t—'D  @CL'p 9 va0s (158 ‘cosTT'1s87)  (L1'6—‘0)  (81'6°D 00t
Is zeLe  (selig9so‘seIn  (61's—‘0)  (T's'D L (gi7 (ebLr'oLto‘eriD) @U'S—-D (E1'8°Dy 00T
L LEEL (96¥ ‘8LTT ‘961) @i'e—-17  EI%D I 768 {909 ‘8L7T ‘909) 6c—0 (r's'n oot
4 69 (£6Z ‘1921 “€52) (re—‘00  @'€'n - 6LE (695 “3611 ‘69€) 9s—0) s w9
- 8127 (r6 ‘99% ‘¥6) (L'7-'0 6N — 95 (€11 “Sep €11 sc-0 o¢c‘n e
— 9L (1€ "181 ‘18) GG1—0 9'z'n — 9t {15 ‘991 ‘15) €z-"0 720 9
- 44 (51 °p9 5T} E1-0 (S — £ (eI %9 €D €'1-'0 c'r'p 8
- 4 P8y ‘1o (1°¢‘D — tr 01 °7Z ‘o1} (11— ' v
— £ (£'s1°9) (1-"0 a7 - £ (Y] (11-0 @1 ) ¢
sas  sggh (PR L) Gty (09 oassgg (ML) ('t G N
DmU SOURISI(] spousd ndo saoueIsIg mvb_uum
0£/01SS sudseq I UIN 0E/01SS sudisaq ™% N
SIS ARIIV-Ieaury rundo-L NdD sudisa(] ABLry-129Ul] _mswno-nsau NID

XTSIV N X N NY 40 B¥0SOT) SALLISNVE], ONIANI HOd SAVIEY VNI TVALLAQ-)[ ANY TYRILAQ-

] A1V,

duwos

L



ALGORITHM-SPECIFIC PARALLEL PROCESSING 235

TABLE 2.

#PE-OpTIMAL LINEAR ARRAYS FOR FINDING THE TRANSITIVE CLOSURE OF AN N X N MATRIX
(parameters for #PE-optimal designs derived by GPM are shown in Theorem 6.2)

Lee and Kedem (1990) Shang and Fortes (1992)
Designs Designs Designs by GPM

N (Tioca> T;:omp! Totrain) #PEs (Trcaa- T:-ampl Tiraint #PEs (Fiouas T:‘omp! Ttrar) #PEs

3 (5,17, 5) 5 3,11, 3) 3 (5,13, 5) 3
4 (13, 31,13) 7 (7,19, 7) 4 (10, 22, 10) 4
8 {85, 127, 8%) 15 43,71, 43) 8 (50, 78, 50 8
16 (421, 511, 421) 31 (211,271, 211} 16 (226, 286, 226) 16
32 (1861, 2047, 1861) 63| (931, 1055,931) 32 (962, 1086, 962) 32
64 (7813, 8191, 7813) 127| (3907, 4159, 3907) 641 {(3970,4222,3970) 64

100 (19405, 19999, 19405) 199 | (9703, 10099, 9703) 100§ (9802, 10198, 9802) 100
200 (78805, 79999, 78805) 390 | (39403, 40199, 39403y 2001 (39602, 40398, 39602) 200
300 (178205, 179999, 178205) 599 | (89103, 90299, 89103y 300 ] (89402, 90598, 89402} 300

closures, which includes the total computation time of the set of matrices
and the times overlapped between draining the results of the previous
matrix and loading the inputs of the next matrix. Similar results on com-
puting a sequence of matrix products can be found in Ganapathy and Wah
(1993).

If the objective is to minimize #PE in the linear array, then Theorem 6.2,
which we state without proef (Ganapathy and Wah, 1992a,b), characterizes
the #PE-optimal design,

Theorem 6.2. The parameters
(bt =(L,LN-1)  and (R, &, &) = 0, £1, F1)

or (£1,0, F1) result in a linear array with a primary objective of mini-
mizing the number of PEs, and a secondary objective of minimizing the
computation time. )

Table 2 shows the #PE-optimal designs obtained by GPM as well as those
obtained by Lee and Kedem (LK) (1990) and Shang and Fortes (SF) (1992).
In this table, we show the load and drain times, computation time, and
#PFEs for designs derived by the three methods. IT (the schedule vector), S
(the PE allocation matrix), and the corresponding parameters in GPM are
summarized as follows:

Method 1 5 T ANA %o By
LK Ry -1,2, 17 [0, 1, 11% (1,2,2N — &) (,1,-2)
SF v, 1,17 0,0, 117 (1,1,N -2 (-1,0,1)

GPM v+ 1,1,17 16,0, —1]7 4,1,N=- B (-1,0,1)



236 JOSE A. B. FORTES &t al.

The GPM parameters are computed based on (5.2) and (5.4) assuming the
dependencies are d; = [0, 0, 117, dy = [0,1,0]7, and d; = [1, -1, -11%

Table 2 shows that both the SF and GPM designs require the minimum
number of PEs. The SF designs, however, were developed based on a
different set of parameters. According to Lemma 6.1, the SF designs have
a computation time Toop,, = (N — DIV + 2) + 1. 'This computation time is
lower than that of the GPM designs characterized by Theorem 6.2. This
difference is attributable to the fact that Shang and Fortes assumed that
conflict must be avoided only after a variable is first used and before its last
use or generation. This is a valid assumption for systems with fast [/O
(or where each PE has its own 1/0) or in cases where inputs are preloaded
and outputs need not be drained or are postdrained. In GPM, we consider
both conflicts in computation as well as in the data links. Excluding designs
that result in computational and data-link conflicts results in designs that
require slightly longer load, drain, and computation times. To illustrate this
point, consider the case for N =3 and N = 4. The periods and velocities
used in the SF design (Shang and Fortes, 1992) lead to spacings 8; =
(N — 1)/(N — 2) and §; ; = 1/(N — 2). These values of spacings result in
data-input conflicts between the tokens (C, ;, Cn-1,;-1) @0d (Cy ;5 Cn,j-1)s
j=2,3,..., N, of the input matrix C (Theorem 6.1).

The space-time diagrams of two linear arrays, one optimizing T,mp and
the other optimizing T, for N = 3 are shown in Figs. 4 and 5, respectively.
The design in Fig. 4 optimizes Toomp and has the parameters (¢, f2, 13) =
(1,1,2) and (&,, &, &) = (0, 1, —1). This design minimizes both T.omp
and #PE, and, therefore, minimizes any objective of the form #PE™ - Ty
for m, n = 1. Note that the load and drain times (Zppy = Torain = 3) aT€
not shown in the diagrams. Further, note that for correct execution of the
Floyd-Warshall algorithm, control signais are needed to govern the
index-dependent assignments performed by the PEs in the array. These
index-dependent assignments are given in Tables I and II in Lee and Kedem
(1988).

In Fig. 5, we show a new design that optimizes 7.. T his design uses less
load and drain times (three units each), but the computation time T, is
higher than in Fig. 4.

Comparing the results shown in Tables 1 and 2, we found, for instance,
that for a problem of size 200, the T-optimal design is 13.35 times faster
than the #PE-optimal design in terms of completion time, and uses 18.9
times more PEs than the #PFE-optimal design. (The T.-optimal design for
N = 200 requires 8,958 time units and 3,782 PEs, whereas the #PF-optimal
design requires 119,602 time units and 200 PEs.) It would be beneficial from
a design point of view to develop designs with values of #PF and T in
between these extreme values. This is important in practical situations



Time PE 1
1C11
1 1C11
10611
jciz
2 1011
2C12
1013
3 1CN
3C13
4
2C22
5 1Cc22
1022
2023
6 1Ce22
2023
2C21
7 1622
3C21
8
3033
9 {Ca3
1C33
feYoxc)]
10 1033
2C31
3L32
11 1033
3C32
12
13

ALGORITHM-SPECIFIC PARALLEL PROCESSING

PE ,

1C21
2G21
1C13

1022
2C21
2022

1C23
2¢C21
3C12

2C32
2032
1G22

2C33
2032
z20C23

2C31
2032
3ca

3C13
2013
1C33

ac1
2C13
2CAN

ac12
2013
3Cc32

PE ,

1031
3CH
1011

1032
2C12
1033

3Cc31
3C13

2C12
3c12
1G22

261
312
3021

3623
3C23
1Ca3

1C2
3C23
2C31

acaz
3c23
3032

Input Matrix on Link 3
Ct1 C12 €13 Ca1 C22 €23 €31 €32 ¢33

A e

¥ =-1r

2 —» = o
s<{l PE |3 |
s —TH .

Index {2,3,2) execules
with inputs €13, C12, C23

237

Fic. 4. Linear array to find the transitive closure of a 3 x 3 matrix. The array is optimal
with respect to minimizing computation time, YPE, or #PE”" x T, m,n = 1.

because a designer might be unwilling to settle for either the large number
of PEs required in the minimum-time design or the long completion time of
the minimum-processor design. In realistic design situations there may be
bounds on the number of processors or the completion time or both. Hence,
one possible objective is to have as few processors as possible, so long as the
time is within a preset upper limit, 77 (or T%%,), and another is to mini-
mize T, (0r T,omp) With #PE less than a given upper bound #PEYP.

In the following discussion, let T, and #PE™ be, respectively, the
computation time and #PE of the minimum-T,,,, design. Designs with



238 JOSE A. B. FORTES et al.

Input Matrix on Link 3

Time  PE 1 PE 5 PE 3 Ct1 Ci2 G13 C21 Oz2 C23 031 C32 C38
E 3
1G11
1611 v,=-1
1 1611 3
1612
2 1C11 :
2C12 |
118 1 Gt 1 1
3 1611 221 2 —a
3013 1¢11 : = =2
1C22 Po3 | PE =3
4 2ca1 P4 = — 4
322 i 5 .
2ca2 1023 1631 ! T I
5 122 2621 231
1022 3513 1C41 .
2Ge3 1caz
5} 1G22 R wet]
2823 2032
22t 2032 $033
7 1022 2c32 3CH
3C21 i c22 3C13
zcaa
8 acaz
2z
3633 2034 2¢12
9 1633 2GR 3612
1633 aca1 1C22

3 C31 Index (2,3,2) executes
10 1 C33 o
2633 with inputs €13, €12, C23
3C3 3C13 2c11
11 1C33 2¢13 3612
3032 + C33 3c21
3C1
12 2C13
. 2Cc3
Ic1z 3023
13 2013 3023
acaz +C33
1G21
14 3acas
2C3
3c22
15 3cz3
3C32

FiG. 5. Linear array to find the transitive closure of a 3 x 3 matrix. The array is optimal for
completion time, which includes load time, computation time, and drain time.

#PE > #PE™* would not be useful as their computation times have to be
at least 720 Let 7,22 and #PE™" be, respectively, the computation time
and the #PE of the minimum-processor design (from Theorem 6.2 and
Lemma 6.2, #PE™™ = N). Again, there is no benefit in obtaining designs
with T,omp > Toomp @s the number of PEs cannot be reduced below #PE™".



ALGORITHM-SPECIFIC PARALLEL PROCESSING 239

1
0.9
08 i
07|}
06 |
05 F
0.4t
03 |

Normalized #PE

0.2 -

0.1 .

1] 1 1 1 1 1 | 1 1

.1 0.2 0.3 04 05 0.6 07 08 09 1

Normalized Completion Time

Fic. 6, Performance tradeoffs: Variation in #PE with time bound Tc’j,ip and variation in

Toomp With processor bound #PE"?, The plots are given for the three problem sizes N = 100,
200, and 300.

We are interested in finding designs with computation time greater than
T, and #PE less than #PE max,

Figure 6 shows how #PE varies with T, for three different problem
sizes: N = 100, 200, and 300. The y-axis #PE is normalized by #PE™*, and
the x-axis T.omp is scaled by Tiomp- This lets us compare the different
problem sizes uniformly on the same scale. The stepped curves are obtained
by bounding T, and finding the #PE-optimal designs for specific
recurrence sizes. There the curves are stepped because there exist only a
small and finite number of systolic array configurations that can satisfy the
given time constraints. If the goalis to find the #PE-optimal designs, we will
have a small number of array configurations; for each configuration, we
select the one with the minimum computation time.

Given the bound 7.4, (respectively, #PE"P) the designer can use Fig. 6
to read off the minimum #PE (respectively, T.,mp) Tequired and decide
(possibly from a cost perspective) if it is acceptable. Again, the designer
could exploit the initial steep decline in the plots to choose an alternative
design that trades performance for cost. For instance, the minimum #PE
for N = 200 drops by 43% for only a 19% increase in computation time.

If both T.,n., and ¥PE are bounded from above, the design with
minimum #PE for the given time bound is determined using Fig. 6. First, a
horizontal line is drawn across the graph for the desired bound on #PE.



240 JOSE A. B. FORTES et al.

1
0.9
08 |
07| |
06 |
0s |

—

T T T T T F T T

N =100, T _comp ——
N =100, Tc-—-—-
N =200, T_comp
N = 200, T ¢ e

1

0.4 -

Normalized #PE

0.3
0.2 F

o1 f : ] 4

0 1 i I \ 1 ] 1 I 1
0 1 02 03 04 05 06 07 OB 09 1

Mormalized Completion Time

Fic. 7. Different tradeoffs obtained using T,,,, or 7, as the measure of performance.
The plots are given for two problem sizes ¥ = 100 and 200,

The intersection between this line and the stepped curve represents the
minimum 7,,,, needed for any feasible design. If this minimum 7oy, is less
than the desired T, a feasible design can be obtained by the procedure
discussed in Section 5. This now represents the best design under both time
and processor constraints.

Another observation from Fig. 6 is that the plots for larger N decrease
more rapidly than those for smaller N. Hence, for larger values of &V, there
is a substantial reduction in #PE (respectively, T,,,,,) for a relatively small
increase of the computation time (respectively, #PE) from the optimum.
Therefore, for large N, there are more attractive alternatives than the time-
optimal or #PFE-optimal designs.

Figure 7 shows a similar plot as in Fig. 6 except that here the difference
between tradeoffs obtained on 7, and #PE versus tradeoffs obtained on
Teomp and #PE is depicted. Two sets of curves are shown, one for designs
that minimize 7, and the other for designs that minimize 7, for N = 100
and N = 200, respectively. The y-axis of these curves is normalized with
respect to #PE when 7T, is minimum (since these designs require more PEs
and less T.), and the x-axis is normalized with respect to 7, when
Tomp = Teomy- The graphs show the difference between designs obtained by
different objectives. Given a bound T, we can see that the number of
processors obtained by minimizing 7 is less than or equal to the number of
processors obtained by minimizing T, -



ALGORITHM-SPECIFIC PARALLEL PROCESSING 241

7. Conclusions

Algorithm-specific parallel processing with linear processor arrays can be
systematically achieved with the help of the techniques discussed in this
paper. In particular, they are ideally suited to the algorithms that were
described as affine recurrences or loop nests in Section 1. They can be
conveniently modeled in terms of ordered multidimensional integer sets and
matrix algebra that supports the efficient representation and solution of
scheduling and processor allocation problems. Of particular importance
are the problems of avoiding computational conflicts in processing elements
and data communication conflicts in links.

Sections 2 through 4 discuss the dependency method (DM), which is based
on linear mappings. We provide conditions that guarantee their correctness,
including the absence of computational conflicts. We present closed-form
expressions for these conditions which can be used with optimization
techniques that use linear integer programming or intelligent searches. Both
optimization approaches were discussed along with examples.

In Sections 5 and 6, we describe a general parameter-based approach
(GPM) for mapping algorithms with uniform indexing functions to systolic
processor arrays. In this method, the behavior of the target array is
captured by a set of parameters, and the design problem is formulated as an
optimization problem with an objective and a set of constraints specified in
terms of the parameters. We show that the parameters in GPM can be
expressed in terms of the processor allocation matrix § and the time
schedule vector IT in DM, thereby establishing the equivalence between the
two representation methods. We present an efficient search procedure for
finding 7.-optimal or T, -optimal (respectively, #PE-optimal) designs
for specified bounds on #PE (respectively, 7, or Toomp), as well as optimal
designs with a certain monotonicity property on the objective function.
The distinct features of GPM lie in its ability to systematically search for
optimal designs with specific design requirements of T, {or T,omp) and #PE,
and its ability to include constraints on data-link and computational
conflicts in the optimization procedure. A similar search procedure that
finds T,,mp-optimal designs has been developed for dependency-based
methods (O’Keefe et al., 1991). We believe that a general search procedure
that allows tradeoffs between #PE and 7, in dependency-based methods
can be developed for synthesizing uniform recurrences.

In conclusion, we show in this paper two representation methods for
synthesizing recurrent computations for linear processor arrays. These
two methods differ in their representation power and search procedures.
The dependency-based method is more general in its representation power
and can be applied to find feasible designs for general (uniform as well



242

JOSE A. B. FORTES et al.

TABLE 3.

COMPARISON BETWEEN DEPENDENCY-BASED VERSUS PARAMETER-BASED METHODS

Feature

Dependency-Based Method
Presented in Sections 2-4

Generalized Parameter Method
Presented in Sections 5-6

Applicable
TeCurrences

Representation

Characteristics
of controls

in processor
array

Design
objective and
constraints

Search
methods for
finding
processor
array designs

Designs
obtained

Summary

General and applicable to uniform
as well as nonuniforn recurrences.

Schedule Vector and Allocation
Matrix: represented in Cartesian
coordinate system with unit vectors
as basis vectors; for the dimension-
reduction technigue discussed in
Sections 2-4, the mappings are
rank-deficient (i.e., IT and § yield
T where rank{T) > n).

Nonuniform in the general case by
specifying a general processor
allocation matrix; processor arrays
derived may, in the general case,
have arbitrary speed/direction
changes for data tokens and have
aperiodic computations.

Compute-time optimal designs or
processor-optimal designs with
linear objective function and linear
constraints.

Choose processor-allocation matrix
heuristically, and find schedule
vector satisfyving processor-
allocation constraints; methods of
finding designs are based on
linear/integer programming or
intelligent searches.

Designs found are optimal in terms
of computation time with respect
to a given choice of processor-
allocation matrix; possible
allocation matrices chosen are
those that minimize the number of
processing elements.

Homogeneous uniform recurrences
or uniformized affine recurrences.

Periods and Displacements:
represented in possibly non-
orthogonal coordinate system
with dependence vectors as basis
vectors; hence, for uniform
recurrences, the two representa-
tions are equivalent and derivable
from each other by a coordinate
(linear) transformation.

Uniform controls throughout the
processor array, resulting in
constant velocities and periodic
computations.

General nonlinear objective
function and constraints with
certain monotonicity properties on
the objective function; new
constraints have been developed
that capture data-link conflicts.

Search method is systematic
enumeration and pruning on a
search space polynomial in
complexity with respect to
problem size.

Tradeoffs between processor and
computation time (or completion
time, including load and drain
times) for a specific problem
instance can be obtained.

The two methods presented in this article are equivalent approaches
for mapping uniform recurrences. The formulation of the design
aptimization problem and the search techniques developed are equally

applicable in both representations.




ALGORITHM-SPECIFIC PARALLEL PROCESSING 243

as nonuniform) recurrences. Due to its generality in representation, the
search space for finding optimal designs is extremely large. Hence,
dependency-based methods find feasible designs heuristically by first speci-
fying how the data tokens should relate to each other. In contrast, the
general parameter method is restricted to synthesizing uniform recurrences
and affine recurrences that can be uniformized. For this class of recur-
rences, we can exploit uniformity in data traversal in the processor array.
We present an efficient search procedure for finding optimal designs with
user-specified requirements on the completion time and on the number of
processing elements. Table 3 summarizes the unique features of the two
methods.

ACKNOWLEDGMENTS

Research of 1. Fortes and W. Shang was supported by Louisiana Education Quality Support
Fund LEQSF(1991-93)-RD-A-42, National Science Foundation Grants DC1-8419745 and
MIP-9110940, and Innovative Science and Technology, Office of the Strategic Defense
Initiative Organization, administered through the Office of Naval Research under contracts
00014-85-K-0588, 00014-88-K-0723 and 00014-90-J-1483. Research of B. Wah and K.
Ganapathy was supported by Joint Services Electronics Program contract JSEP N00014-90-J-
1270, National Science Foundation grant NSF MIP 92-18715, and an TBM graduate fellowship.

References

Almasi, G. S. and Gottlieb, A. (1989). Highly Parallel Computing, Benjamin/Cummings
Publishing Company, Inc., Redwood City, CA.

Annaratone, M., Arnould, E., Gross, T., Kung, H. T., Lam, M. 5., Menzilcioglu, O., and
Webb, J. A. (1987). “The Warp Machine: Architecture, Implementation and Performance,””
IEEE Trans. Computers, C-36, 12, 1523-38,

Banerjee, U. (1988). Dependence Analysis for Supercomputing. Kluwer Academic Publisher,
Boston.

Baxter, B., Cox, G., Gross, T., Kung, H. T., O’Hallaron, D., Peterson, C., Webb, J., and
Wiley, P. (1990). *‘Building Blocks for a New Generation of Application-Specific
Computing Systems.”” Proc. Int’l Conf. on Application Specific Array Processors (ASAP),
pp. 190-201.

Chen, Z. and Shang, W. (1992). “On Uniformization of Affine Dependence Algorithms.”
Proc. IEEE Fourth Symposium on Parallel and Distributed Processing, Arlington, TX, Dec.
1992, pp. 128-37.

Fortes, J. A. B., Lee, E., and Meng, T. (1952). Proc. of 1992 Application Specific Array
Processors, IEEE Computer Society Press, Los Alamitos, California.

Fortes, J. A. B. and Wah, B. W. (1987). ‘“‘Systolic Array—From Concept to Implementa-
tion.” IEEE Computer, July 1987, pp. 12-17.

Ganapathy, K. and Wah, B, W. (1992a). “Optimal Design of Processor Arrays for Uniform
Recurrences.”” Proc. Int’f Conf. on Application-Specific Array Processors. 1EEE Computer
Society, Aug. 1992, pp. 636-48.

Ganapathy, K. and Wah, B. W. (1992b). “*Synthesizing Optimal Lower Dimensional Processor
Arrays.'” Proc. Int’l Conf. on Parailel Processing. CRC Press, Ang. 1992, Vol. 3, pp. 96-103.



244 JOSE A. B. FORTES et al.

Ganapathy, K. and Wah, B. W. (1993). *“Designing a Coprocessor for Recurrent Computa-
tions.” Proc. Fifth IEEE Symposium on Parallel and Distributed Processing (in press).
Guibas, L. I., Kung, H. T., and Thompson, C. D. (1979). “‘Direct VLSI Implementation of
Combinatorial Algorithms.”” Proc. Caltech Conf. on VLSI. Caltech, Pasadena, CA,

pp. 509-525.

Kannan, R. and Bachem, A. (1979). “‘Polynomiat Algorithms for Computing the Smith and
Hermite Normal Forms of an Integer Matrix.”’ SIAM J. Computing 8(4), 499-507.

Kung, H. T. and Lam, M. (1984), ‘“Wafer-Scale Integration and Two-Level Pipelined
Implementations of Systolic Arrays.” J. Parallel and Distributed Computing 11), 32-63.

Kung, S. Y., Lo, S. C., and Lewis, P. S. (1987). “‘Optimal Systolic Design for the Transitive
Closure and the Shortest Path Problems.” IEEE Trans. Computer C-36, 603-14.

Lee, P. and Kedem, Z. M. (1988). “‘Synthesizing Linear Array Algorithms from Nested For
Loop Algorithms.” IEEE Trans. Computers 37(12), 1578-98.

Lee, P. and Kedem, Z. M. (1990), “Mapping nested Loop Algorithms inte Multidimensional
Systolic Arrays.’’ JEEE Trans. Parallel and Distributed Systems 1(1), 64-76,

Li, G.-J. and Wah, B. W. (1985). “The Design of Optimal Systolic Arrays.”” IEEE Trans.
Computers C-34, 66-77.

Menzilciogly, O., Kung, H. T., and Song, 5. W. (1985). “Comprehensive Evaluation of a
Two-Dimensional Configurable Array.” Proc. I19th Int’l Symposium on Fault-tolerant
Computing, pp. 93-100.

O’Keefe, M. T. and Fortes, J. A, B. (1986). “A Comparative Study of Two Systematic
Design Methodologies for Systolic Arrays.” Proc. 1986 Int’l Conf. on Parallel Processing,
pp. 672-5.

O’Keefe, M. T., Fortes, J. A. B., and Wah, B. W. (1991}. “°On the Relationship Between
Systolic Array Design Methodologies.” IEEE Trans. Computers 41(12), 1589-93.

Quinton, P. (1989). ‘““‘Automatic Synthesis of Systolic Arrays from Uniform Recurrent
Equations.” Proc. I1th Annual Symposium on Computer Architecture, pp. 208-14.

Quinton, P. and Van Dongen, V. {1989). ““The Mapping of Linear Recurrence Equations on
Regular Arrays.”” J. VLSI Signal Processing 1(2), 95-115.

Rote, G. (1985). ‘A Systolic Array Algorithm for the Algebraic Path Problem (Shortest Paths,
Matrix Inversion).”” Computing 34, 192-219.

Schrijver, A. (1986). Theory of Linear and Integer Programming. John Wiley & Sons, New
York.

Shang, W. and Fortes, J. A. B. (1992). ‘On Mapping of Uniform Dependence Algorithms into
Lower Dimensional Processor Arrays.”’ [EEE Trans. Parallel and Disiributed Systems 3(3),
350-63.

Strang, G. (1980). Linear Algebra and its Applications, 2nd ed. Academic Press, Boston.

Tucker, L. W. and Robertson, G. G. (1988). ““Architecture and Applications of the
Connection Machine.” IEEE Computer, Aug. 1988, pp. 26-38.

Tzen, T. and Ni, L. (1992). “Data Dependence Analysis and Uniformization for Doubly
Nested Loops.” Proc. Int’l Conf. on Paralle! Processing. St. Charles, Illinois, pp. 91-99(1I).

Valero, M., Kung, S. Y., Lang, T., and Fortes, J. A. B. (1991). Proc. of 1991 Application
Specific Array Processors. IEEE Computer Society Press, Los Alamitos, California.

Valero-Garcia, M., Navarro, J. I., Llaberia, I. M., and Valero, M. (1989). “*Systematic Hard-
ware Adaptation of Systolic Algorithms.” Proc. Int'l Symposium on Computer
Architecture. ACM/IEEE, pp. 96-104.

Wong, Y. and Delosme, J.-M. (1992}. “‘Transformation of Broadcasts into Propagations in
Systolic Arrays.”” J. Parallel and Distributed Computing 14(2), 121-45.

Xing, Z. and Shang, W. (1993). ‘“An Algorithm for Accurate Data Dependence Test.”” Proc.
IEEE Int’l Conf. on Application Specific Array Processors, Oct. 1993, Italy (in press).



ALGORITHM-SPECIFIC PARALLEL PROCESSING 245

Xue, J. (1993). “A New Formulation of the Mapping Conditions for the Synthesis of Linear
Systolic Arrays.”” Proc. IEEE Int’l Conf. on Appflication-Specific Array Processors, Oct.
1993, Italy (in press).

Yaacoby, Y. and Cappello, P. R. (1988). “‘Scheduling a System of Affine Recurrence
Equations onto a Systolic Array.”” Proc. Int’l Conf. on Systolic Arrays, San Diego, CA,
May 1988, pp. 373-82.

Yang, Z., Shang, W., and Fortes, J. A, B. (1992). ““One-to-One Time Mappings of Nested
Algorithms into Lower Dimensional Processor Arrays.” Proc. of the Sixth IEEE Int’l
Parallel Processing Symposium, March 1992, Beverly Hills, CA, pp. 156-64.



