318 E. C. Koenig

References

1. E. C. Koenig, T. J. Frederick, "Formal Analysis for a General Automaton,”
Progress in Cybernetics, Vol. 3, J. Rose, Ed., (Gordon and Breach, New York,
1970) 613-640.

2. E. C. Koenig, T. J. Frederick, "A General System of Interactive Automata:
Analysis for Defining the Graph Model." Cybernetica, Belgium, Vol. 14, #2 (1971).
3. E.C. Koenig, " Analysis for a General Automaton with Distinguishable Receptors
and Effectors," IEEE Trans., SMC, Vol. 5, #1 (1975) 137-140.

4. D.B. Lenat, "CYC: A Large-Scale Investment in Knowledge Infrastructure,”
Communications of the ACM, Vol. 38, #11 (1995) 33-38.

5. B. Schott, T. Whalen, "Modus Ponens, Modus Tollens, and Fuzzy Relations in
Goal Directed Inferences.” Proceedings of the 1987 IEEE International Conference
on SMC, Vol. 1 (1987) 173-176.

6. E. C. Koenig, "Some Principles for Robotics Based on General Automata,”
Robotica, Vol. 4, Part 1 (1986).

7. E. C. Koenig, "A Model Knowledge Structure for Robots,” Proceedings of the
Annual Conference, 1987 IEEE, Systems, Man, and Cybernetics. Alexandria,
Virginia, U.S.A. (1987). .

8. E. C. Koenig, "Parallel Processing Considerations for Interactive Man-Robot
Systems,” Systems Analysis-Modeling-Simulation, Vol. 16, #2 (1994).

9. E. C. Koenig, "Analysis for Correct Reasoning by Robots: Modus Ponens,
Modus Tollens, " Proceedings of the 1989 IEEE International Phoenix Conference on
Computers and Communications (1989) 584-589.

10. E. C. Koenig, "Analysis for Correct Reasoning by Robots: Hypothetical
Syllogism with Modus Ponens, Modus Tollens,” Proceedings of the 8th International
Congress of Cybernetics and Systems, Hunter College, City University of New York,
New York City, NY, U.S.A. (1990).

11. E. C. Koenig, "Analysis for Correct Reasoning in Interactive Man-Robot
Systems: Disjunctive Syllogism with Modus Ponens and Modus Tollens,” Artificial
Intelligence in Industrial Decision Making, Control, and Automation, S. G. Tzafestas
and M. B. Verbruggen, eds., (Kluwer Academic Publishers, Netherlands, 1995).
12. L. A. Zadeh, "Fuzzy logic and approximate reasoning” (in memory of Grigore
Moisil), Synthese 30 (1975) 407-428.

13. L. A. Zadeh, "Fuzzy sets and information granularity," Advances in Fuzzy Set
Theory and Applications, R. Ragade and R. Yager, eds., (North-Hotland,
Amsterdam, 1979) 3-18.

14. D. E. Knuth, The Art of Computer Programming: Fundamental Algorithms,
(Addison-Wesley, Reading, Massachusetts, 1968) 1.

[ CHAPTER 11 |

Genetics-Based Learning and Statistical
Generalization

Benjamin W. Wah I Arthur Ieumwananonthachai ?
and Ting Yu !

| Coordinated Science Laboratory, University of linois
Urbana, IL 61801, US.A.

2 NonStop Networking Division, Tandem Computers Inc.
Cupertino, CA 95014, U.S.A.

1. Introduction

Heuristics are generally used in many real-world engineering applications rang-
ing from computer aided design, optimization, scheduling and computer com-
munications. Since the relationship between performance and conirol is un-
known in heuristics, some parameters, functions, and procedures are designed
either based on user experience or experimentally. These heuristics cai usu-
ally be improved by automaied tuning, machine learning, an alization.
In this chapter, we study the problem of performance generalization of the
heuristics learned.

1.1 Terminclogies

We define a problem solver as an algorithm, or more generally, a software
package used to solve a problem. A problem solver can be regarded as a
black box, with some heuristic components or heurisiics designed in an ad
hoc way, where a heuristic is “A process that may solve a problem but offers
no guarantees of doing so” 1 Heuristic elements may appear in the form of
numerical parameters, symbolic formulae, rules, and procedures.

The effectiveness of heuristics is evaluated in terms of their performance
measures. In this chapter, we are interested in problem solvers ‘with numeri-
cal performance measures; examples of which include the quality of solutions
found and the cost of getting them. Since the relationship between param-
eters controlling heuristic components and application performance measures
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Figure 1: Solving a test case by & problem solver,

is generally very complex, the performance of heuristics is assessed by testing
them on test cases.

Fig. 1 shows the application of a problem solver to find a solution using
a given test case (problem instance). Note that in many applications, the
number of test cases can be infinitely large.

For instance, consider TimberWolf (version 6) %3, a problem solver based
on simulated annealing for placing and routing a set of VLSI circuit com-
ponents. There are many heuristic components in TimberWolf, including a
temperature-control function, various cost functions, and several numerical
parameters. A test case in this application is a set of VLSI circuit components
to be mapped to a physical layout, where a layout is a solution in this case.
The placement of these components {cells and wires) must meet certain timing
requirements and the laws of physics. The quality of a solution is in terms of
the chip area of the final layout, and the cost of finding such a solution is in
terms of execution time to find the layout.

1.2 Generalizalion

In this chapter, we study statistical generalization for determining the perfor-
mance of a given set of heuristic methods (HMs) found in a heuristics-design
process over a problem domain. Generalization usually refers to the process of
making or choosing an element that is more general than other elements. In the
context of heuristics design, statisiical generalization is the process of finding
or estimating the performance of a given set of HMs over a problem domain
based an incomplete performance information found during the design process.
This generalization is necessary and important since only an incomplete subset
of test cases is used for performance evaluation in the process.

Figure 2 shows the concept of generalization. Suppose a subset of test
cases in Subdomain 1 are used in learning, and the performance of n heuristics
are evaluated statistically on these test cases. Siatistical generalization entails
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Figure 2: The concept of statistical generalization.

the extension and verification of the performance of these heuristics on unseen
test cases and subdomains (say Subdomain 2 in Figuare 2).

The primary objective of the generalization process is to find an HM that
performs the “best” over the entire problem domain among the given set of
HMs. When it is not possible to distinguish the “best” HM with Sm.vmnn to
an existing HM already in use, it is desirable to find HM(s) Pwn consistently
“sutperforms” this existing HM over the entire problem domain.

The generalization process is simplified when the performance of each HM
shares some common statistical characteristics, such as the independent na.m
identically distribuied (TID} property, for the entire problem moEE?.Hm_ this
case, the performance of an HM over a subset of test cases can be ﬂw:msow:w
generalized to represent the performance of the HM over the entire problem
domain. For example, the sample-mean performance from a subset of test cases
can be used to predict the population mean over the entire problem domain.

This IID condition may not be true in complex real-world applications. In
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Figure 3: Contour plot showing the distribution of normalized performance values (speedups)
of one HM on 15 test cases for solving the vertex-cover problem,

these applications, there may be many regions in the problem domain, each
with different performance behavior. To address this issme, we UHOﬁMUma to
divide the problem domain into smaller subsets called subdomains in such a
way that the performance of each HM within each subdomain is IID,

Example 1. Consider decomposition heuristics used in a branch-and-bound
search to solve vertex cover problems. In this application, the goal is to find
the minimum number of nodes of a graph so that each edge is emanating from
one of the covered nodes. A subproblem represents a set of nodes in the graph
to cover partially the edges in the graph, and the decomposition HM picks the
next node to be included in the covered set.

Figure 3 shows the distribution of speedups of an HM with respect to the
baseline HM for graphs of various degrees of connectivity. [t clearly illustrates
that the distributions of speedups are not IID across graphs of different degrees

of connectivity, and that speedups of this HM cannot be averaged across all
the graphs. |

The generalization of HMs across multiple subdomains is more difficult
?xmm.:mn the performance of these HMs may have different statistical charac-
teristics in different subdomains and cannot be combined or compared. Perfor-
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mance evaluation in one subdomain must, therefore, be dealt with separately
and independently from other subdomains. Note that generalization only re-
quires finding one HM that performs better than another across all subde-
mains. It is not necessary thai the performance of the HM found be of the
same statistical distribution across all subdomains.

Example 2. In testing two heuristic methods HM, and HM; on two sub-
domains of test cases TC; and TCq, we find the average performance for HM;
to be {10, 100} and for HM; to be {150, 5}. It will be difficult to say whether
H M is better than HM; and which HM should be used as a general HM for
other test cases. ||

In the most general case, there are more subdomains than what can be
evaluated experimentally. Since computational resources are limited, it will
not be possible to evaluate all these subdomains. Hence, generalization can
only be made in a weak sense in which related subdomains are clustered to-
gether by some other methods, and generalization is only defined on clusters
of subdomains.

Under multiple subdomains, our approach in generalization is to first eval-
nate and compare the performance of HMs in each subdomain. Next, we
evaluate the performance of each HM over the entire problem domain and
conclude whether the performance of the HM can be generalized. Finally, we
pick the HM that works best across all the subdomains.

In the next section, we first present a brief overview of the generalization
process commonly used in existing genetics-based machine-learning systems.
We then present cur extended strategy to handle generalization within one
subdomain and over multiple subdomains and onr learning system TEACHER.
Finally, we present some experimental results based on our statistical general-
ization procedure for TimberWolf.

2. Previous Work

Generalization has not been empl .sized in most existing genetics-based ma-
chine learning systems 5, In general, these systems implicitly assume that
performance values of HMs share some common statistical characteristics; 1.e.,
performance values during the design process are representative of all possible
performance values. In this case, the estimated performance level (i.e., the
fitness value) of each HM (usually in the form of the sample mean) can be
used as a statistical estimator of its true performance level (population mean}
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over the entire problem domain. These systems can then simply validate this
assumption by evaluating their learned HMs on a new set of test cases.

The uncertainty of the estimated performance is usually ignored by exist-
ing genetics-based machine-learning systems. This uncertainty is more acute
when performance evaluation is costly and HMs are not evaluated fully during
learning. In Section 3, we present a method to deal with this uncertainty.

This implicit statistical generalization is not adequate when there are mul-
tiple subdomains and when no single subset of test cases can be representative
of the entire problem domain. Implicit statistical generalization is still neces-
sary within each subdomain as shown in Section 3. However, it is necessary to
perform generalization across multiple subdomains when performance across
subdomains is not totally correlated. We explore this issue in Section 4.

Note that in this chapter we are dealing with statistical gencralization of
each HM’s performance to get some representative performance over the en-
tire problem domain. We do not modify an HM in order to make it applicable
to wider (and more general) conditions. The latter is the type of generaliza-
tion studied in artificial intelligence 7, which requires more domain knowledge
specific to a particular application and problem solver.

3. Performance Evaluation Within One Subdomain

In this section, we first present the performance evaluation of two HMs in
one subdomain ®%'°, We then explore potential problems in extending this
strategy to cases with more than two HMs. Finally, we present a strategy for
general performance evaluation within a single subdomain.

3.1 Strategies for evaluating two HMs

In this subsection, we review the strategy for evaluating the performance of
iwo HMs in one subdomain ®%2°, This strategy has been developed under the
following assumptions:

e The normalized performance values of an HM in a snbdomain are IID.
¢ The average performance of each HM is the objective metric to optimize.
The overall sirategy can be divided into three steps.
(1) Symmetric Normalization. To reduce the difference in magnitude of
performance values across test cases, it is necessary to normalize the perfor-

mance values of each test case in order to obtain relative performance measures.
In this process, one of the HMs is used as the baseline.
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One issue in normalization is the compression of certain range of perfor-
mance values. Consider the improvement ratio that divides the performance
of the baseline HM by the performance of the target HM. Here, performance
improvements are in the range between 1 and infinity, whereas degradations
are in the range between 0 and 1. Hence, when an average improvement ratio
is computed, performance improvements and degradations are weighted dif-
ferently. One immediate consequence is that the conclusion of which HM is
better may depend on the baseline HM used.

Example 3. To illustrate such an anomaly, consider the two HMs, HM;
and H M;, discussed in Example 2. It is easy to show that H M has a higher
average improvement ratio than HM; when H M; is used as the baseline. On
the other hand, H M; has a higher average improvement ratio than HM; when
H M; is used as the baseline. This is an obvious contradiction. ]

To avoid anomalies in inconsistent ordering due io the choice of the base-
line HM, we should avoid normalization methods that emphasize differently
in different ranges of the normalized performance values. One normalization
method we have developed earlier ® is the symmetric improvement ratio:

5§t -1 if S§t>1
Smt = 1 (N
: +
Hl.m.+ f 0<5 <1,

where S is the original improvement ratio. The symmetric improvement ratio
has the property that improvements are in the range between 0 and infinity,
and degradations are in the range between 0 and negative infinity. Further,
for two HMs, when we reverse the role of the baseline HM, their symmetnc
improvement ratios only change in sign. Hence, symmetric improvement ratios
avoid the anomaly when using the original improvement ratios.

(2) Multi-objective Learning. When there are multiple performance mea-
sures corresponding to multiple objectives, we constrain the average perfor-
mance of all but one objective measures. This modified goal helps find the
best HM among possible HMs that satisfies all of the constraints based on a
single unconstrained objective. With this approach, each performance measuze
is dealt with independently from other measures.

(3) Probability of Win. We evaluate the performance of an HIM in each of
a set of subdomains. Due to the IID property in each subdomain, the average
performance of an HM in a subdomain can be estimated by testing it on a
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subset of test cases. We use the sample-mean values as statistical estimations
of the population-mean values in deciding whether an HM satisfies or violates
a performance constraint or whether it performs better than a baseline HM.

To address uncertainties in nsing estimated sample means, we have studied
a concept called probability of win®, Pyiy, that compares two sample averages
and computes the probability that one sample average is larger than another,
This is similar to hypothesis testing in which we take random samples to test
whether a property of a population is likely to be true or false *. Obviously,
it may be difficult to test a hypothesis fully by testing the entire population of
test cases or by testing only a single random sample.

There are four steps in general hypothesis testing. (a) Specify a significance
level &, {b) Specify the testing hypotheses that include both null hypothesis Hg
and alternative hypothesis H;. (c) Find the corresponding acceptance region
using lookup tables. (d) Make decision on the sample value. If the sample falls
in the acceptance region, then accept hypothesis Hy and reject H;; otherwise,
reject Hy and accept H;.

The probability of win measures statistically how much better {or worse)
the sample mean of one HM is as compared to that of another. It resembles
the significance level in general hypothesis testing, but there are two major
differences. First, only one hypothesis H: u; > u; is specified, without the
alternative hypothesis. Further, in contrast to hypothesis testing, acceptance
confidence is not given in advance but is evaluated based on sample values.

One advantage of Py, is that it is between zero and one and is independent
of the actual performance difference across subdomains. Hence, it can be used
to compare HMs in a uniform way across subdomains,

Consider the performance of HM; in subdomain j. (For convenience of
formulation, subscript j is ignored in the following discussion.) Let y; and oy
be the true mean and true standard deviation of the symmetric improvement
ratio defined in (1) with respect to the baseline HM. When n; samples are
taken, we can calculate the sample mean f; and sample standard deviation ;.
By Central Limit Theorem,

of
buq.:wr _ta..b_.-.. :Ju ~ .\(ﬁ AE_ Nav
where, A is the normal distribution function with mean y; and standard de-

3
viation Mw Let ¢ be

_E-m

Fi/ni

t
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Table 1: Examples illustrating how FPuin changes with increases in number of samples

P,in for # of samples
HM; Iy a; 51 10 i 30
HM, | 0.338 | 1.231 [| 0.652 | 0.725 0.849
HM,; | -0.129 | 0.222 || 0.202 | 0.067 | 0.012
hgu 0.514 | 0.456 || 0.940 1 0.991 | 1.000

where  has a Student’s t-distribution with n; — 1 degrees of freedom s.rnn.ﬂ.:a
number of samples is Jess than 30 and the variance is unknown. The probability
that this HM is better than the baseline with mean value 0 is

Pr(H is true) = Pr Aﬁ e m-s%\lmvv @

p(t is t—distributed) dt 3)

(s o]

where the acceptance region of this hypothesis is Aloov Nwﬁﬂv Note that the
right bound of the acceptance region is a random variable that depends on
both the sample mean and sample variance.

Example 4. Table 1 illustrates the P,;. for three HMs. We see that Pyin
of HM, increases towards one when the number of samples increases. (H M,
is better than the baseline.) In contrast, Pyin of H M, reduces to zero when
the number of samples is increased. {H M, is worse than the baseline.) Last,
P, of HM; reaches the maximum value 1.0, which means H M3 is definitely
better than the baseline. (H Mj is better than the baseline but with larger
mean and smaller variance as compared to HM.) |

Note that Py, considers both the mean and variance. Hence, when Pyin
of an HM is close to 0.5, it is not clear whether the HM is better than or worse
than the baseline.

We now show Puin of HM; with respect to the average performance of
baseline H M. For performance measure Jo, in subdomain j, assume that the
symmetric improvement ratio of H M; has sample mean ji; ; m, sample variance
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~ M .
04 j,m> and n; ; test cases, Py, is defined as follows.

“

_ Hijm

N:.-..p?._q.uﬂ:.v = F 3...L.Iwu

(4)

&53 Fe(v, z) is the cumulative distribution function of Student’s {-distribution
with v degrees of freedom, and Pyin(%, j, m) is the probability that the true per-
mouu.amuna (population mean) of HM; in subdomain j for performance measure
Jom is better than that of baseline HM,. When n; — oo, we have

Puinliyjym) 5 & [ 2200 (5)

where & is the m”wﬁama cumulative normal disiribution function®®. Jj is used
to denote the single unconstrained optimization measure.

<<m....—nmuo P.i(i,j,m) as the probability that HM; satisfies a given set of
constraints (where constraint J;, m =1,..., k, is 8,5} in subdomain j:

Poa(i,jym) % mitn P (i m > ) (6)
where  P(pijm 2 6n) = Fi ?._H, -1, lﬁv (7)
i 5,md

P, measures the P,in of the worst-violated constraint.

_Hw allow uncertainty in sample means, an HM is considered in violation
of a given set of performance constraints when Py is less than 0.5+ A. The
<&zn. of A can be controlled based on the HMs desired. For instance m.:&sm
learning, when HMs that loosely satisfy the performance constraints m.ua, needed
g. compose new HMs, we can allow A to be as low as -0.25. This prevents
eliminating many potentially good HMs that can help generate better HMs. On
the other hand, when we try to generalize HMs learned to one that &nmz.#nw
performs better than the baseline HM, it is necessary to set A > 0. An mu.um
whose P,z > 0.5+ A with a large A has a high degree of certainty that it satisfy
the .no:.nmﬁoz&am performance constraint. Care must, however, be taken in
setting A becanse it is possible to eliminate an HM that is m.n»:m.:_w better than
the baseline HM when A is too high.

P,.. is a certainty measure that can be used to order HMs based on
the zb.nonmﬁwmﬂnn_ optimization objective Jo and baseline HMy. In this case
HM,; is considered to have better normalized performance than HM, irmL
Puin(4,7,0) > 0.5+ A for some A > 0.
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Table 2: Summary of raw performance values for four HMs in performance benchmarking of
computers. (An HM represents a computer tested, and b test case is & benchmark program.)

ﬂnmﬁ Case HM ID U

HMqps | HMzs | HMss | HMo
21 30.19 30.31 26.21 40.61
ta 43.12 43.34 34.09 24.65
iz 71.93 72.49 Eo%.mu 08.41

3.2 Sirategies for evelueting more than two HMs

There are two possible approaches to extend the above evaluation strategies for
two HMs to the general case with more than two HMs. First, we can perform
pair-wise comparison for every possible pair of HMs. This does not require
2 baseline HM as one of the HMs can be treated as the baseline HM in each
comparison. Second, we can select a baseline HM and compare all HMs with
respect to the baseline. In this subsection, we present potential problems that
can arise with these approaches. ‘

Performance anomalies in pair-wise evaluations

In this approach, each pair of HMs are compared using the strategy described
in Section 3.1. Although the ordering between each pair can be determined
without anomalies, the orderings of all the HMs are not transitive. In other
words, when H M, is better than HM, and HM; is better than H M3, there
is no guarantee that HM; is better than H M;. Consequently, there can be
cycles in ordering with HM; — HM; — HM; — HM,, where HM, —
H M, denotes that HM, is better than H My in a pair-wise comparison. This
anomaly is demonstrated in the following example.

Example 5. Table 2 shows the performance values of four HMs evaluated
on three test cases in the performance benchmarking of computers. In this
example, an HM represents a computer system, and a test case represenis a
benchmark program. Each performance value represents the time to execute
a benchmark program on a computer system.

Using symmetric improvements defined in (1), we compute the average
normalized performance of each HM using different HMs as baselines. Table 3
shows these average normalized performance values,

From this table, we observe that HMqs — HMsgs, HMos — HM7s, and
HMgs — HMgy where each of these orders is based their Puin and aver-
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Table 3: Summary of the average normalized symmetric improvements for four HMs with
different HMs ns the baseline.

HM Baseline HM ID
ID HMqs HMq; HMgg H Mgy
\w * .muE-.a b. _ Puin b _ Puin b _ Pyin
HM. || 0.000 - 0.006 | 0.981 ! 0.012 | 0,519 | -0.012 | 0.489
HMqe || -0.006 | 0.019 | 0.000 - 0.005 | 0.507 { -0.020 | 0.481
HMgg || -0.012 | 0.481 | -0.005 | 0.493 | 0.000 - 0.035 | 0.545
HMgy || 0.012 | 0.511 | 0.020 | 0.519 { -0.035 | 0.455 | 0.000 -

001250 0.035>0
HM H H
75 pwin=0519 Mge Pwin= 0,545 Mog

0.012>0
Pwin = 0.511

Figure 4: Example of a cycle in pair-wise ordering of HMs (based on the data in Table 3).

age symmetric improvement ratios. These lead to a cyele in which HM75 —
HMgyg — HMgg —+ HM7s as shown in Figure 4. Note that there is a high
degree of uncertainty for these ordered pairs as their P,;,’s are close to 0.5. l

Due to possible cycles in pair-wise orderings of HMs when each order is
evaluated by the average symmetric improvement ratie and P,;,, it is not

always possible to determine the best HM and the total ordering of HMs over
a subdomain for a given set of HMs.

Anomalies when the baseline HM is changed

A different approach to evaluate multiple HMs is to normalize the performance
of each HM with respect to a single baseline HM, All HMs can then be ordered
based on their average normalized performance. Unfortunately, the ordering
of these HMs can be dependent on the choice of the baseline HM; i.e., different
baseline HMs can lead to different orderings. This anomaly is illustrated in
the following example.

Example 6. Based on the data in Example 5, we show in Figure 5 the or-
derings of the four HMs when a different HM is used as the baseline each time.
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. I
Igoo mgqm mgqm Z—mo

HM,,

HM;s

1 1 ized performance, each with a different
Figure 5: Orderings of HMs based on aversge normalized p €2 :
mpm—cwum the baseline HM {based on the data in Table 3). The boxed HM is the baseline HM.

We observe that the ordering with H M5 as the baseline HM is &mn::.; from
the ordering when H Mg is the baseline. In fact, *rmno.wnn S.ﬁmm &mﬂnﬁ
orderings, depending on the choice of the baseline HM. Tt is obvious that ﬁr“
approach cannot determine the best HM among the four HMs.

Normalization methods without anomalies

We illustrate in this section two normalization methods that do not have the
anomalies in performance ordering presented above.

Given the performance values of HM;, i =1,...m, ona set of *..nm” cases
i, i =1,...n, the geometric mean of HM; with respect to the baseline H M,
is defined as follows.

(8)

Higeom|HM, —

After taking the logarithm of both sides, we obtain:
! S fog() gt ©)
log (s geomimrta) = 7. 3 o9k} = 109(ko.s)
i=1

The advantage of (9) is that a change in the baseline mg does not wﬁnn«
the ordering of HMs found under the original baseline HM. This can be derived
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easily as follows.

log (s =1 i Ly

_umgz._.m«a.a,u Oﬂﬁt_.hnq—ﬂ_mgov + m M TQQAE.P.L - ~Qhﬁto__q. : A“_.cw
i=1

u_qrmwom My is used as the baseline instead. Since the terms in the summations

HM (10} are noH_m#_wb_pm. that depend only on the baseline HMs, the ordering of

the set of HMs remain unchanged when the baseline HM is switched.

A . . .
:ognn.nxw.gv_n of a normalization function without anomalies in perfor-
mance ordering is as follows.

1
Hiraw|HM, = n M F...u. - té_u._ ﬁwuv
i=1

When the baseline HM is switched from H My to H My, we have

. - - H -
Hirow HM,y = Birew|HM, + m Mu Thc...__ - _t.o_._L A“_.Nv
.H”

.HNE.:EW 7. Using the data in Table 2 and applying {8), we get the follow-
ing ordering of HMs: HMgg —» HM7s — HM7s — HMgs. On the other

hand, applying (11) results in a tot i i
PP ) a totally different ordering: H Mgz — HMgo I.v

; .>:..r0ﬂmr the two Em;omm we ?..56 presented avoid anomalies in the or-
ering of HMs when the baseline BM is changed, they are not always desirable
Fach of »w.mmm methods places different emphasis on different performance PH.
ues, resulting in different orderings of HMs. For instance, the geometric EM -
Ewnnm less emphasis on large performance valnes Umnw_hmn it takes the I o
:_.rn.—w of performance values. In contrast, the method in (11) places EoHaOamnMH
phasis on raw performance values, resulting in an ordering that may be biased
_u.w a few large performance values. We are currently stndying other normaliza-
ﬁoa._ methods that can emphasize or deemphasize certain performance r .

while avoiding anomalies in the ordering of EMs. e

3.3 Proposed sirolegy based on o single beseline HM

W gﬁra previous subsection, we have presented anomalies in the ordering of
s Ewm some methods to cope with these anomalies. A method that avoids
anomalies may not always be desirable because it may emphasize certain parts
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of the performance range in computing an average measure. We conclude that
it may not always be possible to select the “hest” HM from a given set of
HMs, and our goal in learning and generalization may have to be relaxed to
find an HM that is “better” than the best existing AM. This objective can be
accomplished by using the best existing HM as the baseline, which can be used
consistently throughout learning, verification, and generalization. .

There are three advantages when using a single baseline HM.

First, using a common baseline HM allows us to compare all HMs consis-
tently with respect to it and to derive confidence levels Pyin whether an HM
is better than the baseline. This is illustrated in the following example.

Example 8. We continue to use the data in Example 5 as our running ex-
ample. We assume that H M e is the baseline HM to be improved upon. From
Table 3 and Figure 5, we observe that both HMqs and HMagg have better
average normalized performance values than H M7 (and Pyin > 0.5 28 well}.

If A = 0, then both HMs would be acceptable based on their Puin's. I
our comparison is based only on each HM’s sample-mean value, then HMos
will be considered a better AM. On the other hand, if the selection is based
on Pyin, then HM s is a better choice.

0.4 > A > 0.05, then only HMzs (with Pyin of 0.981) can be consid-
ered better than H Mg because Ppin of HMgs {0.519) is too low. In short,
H M s is the most robust choice among the given set of HMs that is better
than H M. n

Second, using a common baseline HM allows us to use it consistently across
all subdomains. Consequently, anomalies in orderings due to different baseline
HMs in different subdomains cannot happen.

Third, nsing a common baseline HM allows us to find HMs that are better
than the baseline HM. The exact ordering of these HMs may not be critical
as our goal in learning and generalization is to distinguish good HMs that
perform consistently better than the baseline HM across all subdomains from
poor HMs that may not perform well all the time.

3.4 Proposed sirategy without a baseline HM

In some applications, there may not be a single baseline HM for performance
to be compared. For example, the baseline HM may change under different
conditions or may improve as better HMs are found. In this case, it is not
feasible to pick a single HM in an ad hoc fashion as the baseline HM, as the
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Mwwh of HMs that are better than an incumbent HM with respect to one haseline
Muspw not vp. .:.5 same as the set when a different baseline HM is used
ol ne _uomm::r.@ in this case is to use the raw unnormalized performance
s _Mamw “u.noiv:S:m the w<2.wm.a performance measure. However, this is not ac-
nnM able in many cases as the n.rmﬁm_ui..r:_ of performance values across different
b cases may have large variations and unequal distributions, and averagin
ese non-IID performance values is not valid statistically _ s
y mw_oﬁrnn Ea»roa we have .m@&ov& is to normalize the performance values
o Fﬁw M”-ﬁ each test H.Mw_mmn with respect to a test case-specific constant that
as more s are evaluated. One possibility here i
median performance value of all HM ! Y s the buoding fo
: s on each test case as the baselin
normalization. Unlike usin i i ot omnerie
g a bascline HM that may ind i i
ne Unl . y induce a different orderin,
" m._ u\”ra vwm%:« is an.am&. the median performance is invariant with Homvanm
M an ﬁomﬁ.. cases in a subdomain. P,;, can then be computed based on
a vwn% .o ES with median performance in each test case.
s ”M__w “MH onEm,_EM.ao: method, the performance distributions of all test
er around zero. Further tests can t i
whether these distributions are [ID. o then be mads to determine
E&“uﬁ“ﬂ“ﬂ_ EoZM_E ﬁﬂw H,Mrmm approach is the unavailability of the true
ance value o s for each test case. Hence, th i
may have to be used instead. Unfortun i el i
. . ately, estimated sarnpl i
: . ple medians
inaccurate during learning because HMs may not be tested adequately mmh.M

sample medians are sensitive to the HM
: . . ..
Sl e o e 5 generated. Solutions to this issue are

4. Generalization Across Multiple Subdomains

W_ L&Mﬂ man.ﬁEP. Mﬂo mg_&w the problem of statistical generalization over a prob-
main with multiple subdomains. Because diff i

: wit . . erent subdomains ha

&mﬂ«ﬂ. statistical behavior, performance from different subdomains must Mn

treated independently and cannot be combined. ’

There are two assumptions on the strategies presented in this subsection

o We assume that the set of subdomains used in the design process are rep-
resentatives of all the subdomains in the application. These subdomains

_uﬂwmm.cﬂ in a mnN.ﬁ_.Mbm m.m._.w
I ngOHm to m.—»w.v
C- mEHHW M @OEE—HW _Hwn& m mﬂN.HH:.H—m

s We assume that the relative importance of one subdomain as compared
to another is unknown, and that the performance of HMs in subdomains
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may be dependent. Under these assumptions, we cannot aggregate per-
formance values of HMs across subdomains. Our strategy is to select
HMs so that their worst-case performance across all subdomains is bet-

ter than a minimum level.

The objective of generalization here is to select an HM that is better than
the incumbent HM over a problem domain. When there are multiple such

HMs, our procedure should attempt to maximize the likelihood of selecting

the best HM among the given set.

When there is a baseline HM, we apply the strategy in Section 3.3 to
normalize the performance of an HM in a subdomain with respect to the base-
line HM. We consider an HM to be better than the baseline when its Puin
is greater than 0.5+ A for that subdomain, while satisfying all other perfor-
mance consiraints (Poe > 0.5+ A). Hence, an HM is better than the baseline
for the entire domain when it is better than the baseline HM in all selected
subdomains. The following are four possible cutcomes when comparing the
performance of an HM to the baseline HM.

(a) One HM is better than the baseline in all subdomains. This HM can
then replace the baseline HM in the target problem solver.

(b) Multiple HMs are betler than the baseline in all subdomains. Here, we
should select one HM that maximizes the likelihood of being better than the
baseline over the entire domain. This likelihood (or degree of confidence) can
be adjusted by increasing A in computing Pox. Using a large & is equivalent
to placing tighter constraints on each performance measure, hence eliminating
some potential EMs that are found to be better than the baseline under looser
constraints.

(c) No HM is better ihan the baseline in all subdomains. This means that
we cannot find A > 0 such that Pox > 0.5+ A. Since no HM is superior to the
incumbent, the target problem solver should continue to use the baseline HM.

Alternatively, it is possible to find HMs such that Pu > 0.5 + A where
A < 0. Such HMs have less certainty in performing better than the baseline
across all the subdomains. However, since Pog is based on the worst-case Pyin
across all subdomains, HMs selected this way may still perform better the
baseline in some subdomains. Such HMs should be considered as alternatives
to the baseline HM.

(d) The incumbent HM violates some performance constraints. Since the
baseline HM cannot satisfy all the performance constraints, it is acceptable
to have HMs that violate some of the performance constraints as well. This
results in HMs that give different performance trade-offs. Of course, the HM
selected is expected to perform better than the baseline with respect to the
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unconsirained performance measure. We do not use Py, as the criterion in

this case since HM selecied may not always perform better than the baseline. .
When there is no baseline HM, performance generalization across subdo- _

mains is more difficult. We cannot use raw performance values for performance :

comparison across subdomains as they may depend on the size of test cases

used and application characteristics. Qur approach in this case is similar to

that in a single subdomain. We first normalize the performance of HMs for a

specific test case with respect to the median performance of all HMs for this

test case. Probabilities of mean with respect to a pseudo HM with the median

performance can then be calculated. Generalization across subdomains can be

carried out similar to that of applications with baseline HMs,

5. TEACHER - A Genetics-Based System

- - - - - ﬂ
for Learning Heuristics in One Subdomain HM fost cases To 5
. . . - "  Test-
In this section, we present the architecture of TEACHER (an acronym for Problem an case measured
Techniques for the Automated Creation of Heuristics), a prototype learning Solver ot caces anager performance

system we have developed to learn improved HMs under resource constraints
for a single subdomain '*4. Figure 6 shows the architecture of TEACHER.
Based on the genetics-based machine-learning paradigm, this population-based
learning system has five main components:

decision

Application Environment

(a) Resource Scheduler that determines the best way to use the available Figure 6: Architecture of population-based learning for one subdomain.

computational resources,

(b) Internal Critic that provides feedback, based on measured performance,
to indicate how well a particular HM has performed,

{c) Population-Based Learning Element that generates new HMs and main- Problem Soluer
tains a pool of existing ones and their past performance,

.

{d) Test-Case Manager that generates and maintains a database of test cases ; This component is simply the target v.novwaa solver whose heuristics we 4.3&
used in HM evaluation, and : to improve. The performance of applying a problem solver on a test case is in
_ terms of the quality of the solution found and the cost of the problem-sclving

{e) Problemn Solver that evaluates an HM using a test case. : process.
In our system, we assume that the application-specific Problem Solver and In our learning strategy, the vonmE solver accepts {a) the mvmwwmmmﬂu”_om
Test-Case Manager are user-supplied. The remaining three components are the HM to be used in problem solving, and (b) the test case to be wﬂ;« ec 1 .50
designed io deal with the three key issues in heuristics generation, performance i has a mechanism to return the measured performance of the problem-solving

evaluation, and resource scheduling. process as feedback to the learning system.
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Test-Case Manager

The purpose of the Tesi-Case Manager is to provide test cases to be used in
learning. These test cases are either generated randomly or retrieved from a
database.

In our current implementation, each HM is evaluated on a predefined se-
quence of user-specified test cases. When a test case is tequested for testing
a particular HM, the Test-Case Manager returns the first test case in the se-
quence that has not been evaluated by the chosen HM. This strategy allows
performance data of two HMs to be normalized against each other and is useful
when performance data have large variances.

Population-Based Learning Element

The Population-Based Learning Element maintains a pool of active HMs. At
the end of each generation, a new set of HMs are generated to replace existing
ones. Several top active HMs are usually reiained along with the new HMs
while other HMs are removed from the active pool.

The Population-Based Learning Element in TEACHER generates new
HMs using weak domain-independent operators, such as crossover, mutation,
and hill-cimbing. These are traditional operators used in genetic algorithms
for generating new HMs 116, The process for selecting existing HMs for re-
production is also the same as in traditional geneiics-based machine learning.

More advanced generation methods that require additioral domain knowl-
edge are left for future study. They are currently not necessary because our
application domains are knowledge lean.

Internal Crilic

In general, the Internal Critic performs credit assignment T that apportions
credit and blame on components of an HM using results obtained in testing.
Credit assignments can be classified into temporal credit assignment {TCA)
and structural credit assignment (SCA). TCA is the first stage in the assim-
ilation of feedback and precedes SCA during learning. TCA divides feedback
between the current and the past decisions. Methods for TCA depend on
whether the state space is Markovian: non-Markovian representations often
require more complex TCA procedures. The second stage is SCA that trans-
lates the (temporally local but structurally global) feedback associated with
a decision point into modifications associated with various parameters of the
decision process.

1
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Since the knowledge-lean applications considered in our research does not
have a world model that relates states, decisions, and feedback signals gener-
ated by the learning system or measnred in the environment, credit assignment
has a much weaker influence on performance improvement. Note that the lack
of a world model for credit assignment is the main reason for maintaining
competing HMs in our learning system.

In our current prototype, the Internal Critic normalizes the performance
value of an HM on a test case against the performance value of the same test
case evaluated by the baseline HM. It then updates the fitness value of the
candidate HM, which is a heuristic measure to differentiate good HMs from
poor ones. Recall that Pyin is computed for an HM in each subdomain. How-
ever, Pyins’s across subdomains cannot be averaged becanse they are generally
not [ID. Our approach is to check the Py, of an HM in each subdomain and
places penalty on the HM in that subdomain whenever its Py, is worse than
0.5+ A, where A < 0. On the other hand, if the HM performs better than the
baseline HM in all subdomains, then its fitness value will be computed using
symmetric speedups in all the subdomains. This is done mainly to differentiate
one HM from another that are both better than the baseline; in this case, we
cannot use Py, to differentiate these HMs as their Pyin's will all approach
one.

In short, the equation for computing the fitness value of H M; in subdomain
7 is:

1 If Pyin < 0.5+Ainat

win

H+MU:.1  cnnpallFta—Puin)  least one subdomain
1

fitness; = (13)

If Poin > 05+ A1
all subdomains

Resource Scheduler

This schedules tests of HMs based on the available computational resources. It
is critical when tests are computationally expensive. There are two problems
in scheduling during each learning phase.

The sample-allocation problem involves the scheduling of tests of HMs in
a generation, given a fixed number of tests in the generation and HMs to
be tested. This problem is known in statistics as the (sequential) allocation
problem 1319 and the scheduler, the local scheduler,

The duration-scheduling problem involves deciding when to terminate an
existing generation and to start a new one. The part of the resource scheduler
that deals with this problem is known as the global scheduler.
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These two problems, as well as the scheduling of tests under multiple
performance objectives, are presented elsewhere 20,9,13,21,22,23

6. Experimental Results

Tn this section, we present some results we have obtained in learning and gen-
eralizing new HMs for VLSI cell placement and routing. In this application,
logic components of a circuit are to be placed and routed on a two-dimensional
VLSI chip. Layout consists of three steps: gate assignment, placement, and
ronting. In this research, we apply learning to the placement problem alone.
The objective of placement is to minimize the chip arca while satisfying con-
straints such as wire-ability, while the design is within the maximum time
delay and number of poly-silicon layers and does not have severe heat source
concentration. This problem is NP-hard, and heuristics are generally used.

We use TimberWolf 6.0 as our problem solver. This is a software package
based on simulated annealing {SA) to place and route various cells {transistors,
resistors, capacitors, wires, eic.) on a piece of silicon 2 Its operations can
be divided into three stages: placement, global routing, and placement refine-
ment. SA is used in TimberWolf to randomly search for possible placements.
Although SA converges asymptotically in theory to the global optimum with
probability one, the results generated in finite time are usually suboptimal.
Hence, there are trade-offs between the size of a layout and the search time
in obtaining the layout. One of the control parameters is called fasin that
controls the search speed of SA: the larger fast_n is, the shorter time SA will
run, and, therefore, the worse the result will be.

TimberWolf has five major components: cost function, generation func-
tion, initial temperature, temperature decrement function, inner loop crite-
rion, and stopping criterion. Many parameters in these components are tuned
manually. To demonstrate the applicability of our learning system, we take
the cost function and temperature scheduling parameters as two HMs to learn
and to generalize.

The cost function is the objective of the SA search component in Timber-
Wolf. Recall that the goal in placement is to minimize the chip area. However,
the actual chip area can only be evaluated after global routing is done, based
on a placement generated by the SA search. Hence, the chip area after SA
has generated a placement is only estimated heuristically by a cost function in
TimberWolf. This cost function is as follows:

co8tpasetine = V1 -+ v2 * vd {14)

where, v1, v2 and v3 are horizontal wire length, vertical wire length, and
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Table 4; Benchmark circuit specifications

[ Cell Name || Cells | Nets | Pins | Implicit Feedthru |
fract 124 | 163 | 454 0 ]
5298 133 138 741 98
5420 211 233 14838 112

primaryl 766 | 1172 | 5534 0
struct 1888 | 1920 | 5407 0
primary2 | 3014 | 3817 | 12014 0

relative weight between horizontal and vertical wire lengths, with v3 set to
one. The baseline HM is, therefore, v1 + v2. In our experiments, we use the
above three variables v1, v2, 93 to construct new cost functions.

Table 4 shows the specifications of six benchmark circuits used to evaluate
the performance of HMs: s298, {20, primaryl, primary2, siruct, fract?®,

As the behavior of an HM can be quite different across different circuits,
we treat each circuit as a subdomain by itself. We set fast.n, the speed of
the annealing process, to 1, 5, and 10, respectively. We further used a fixed
sequence of random seeds as a program control parameter. These are needed
because whenever a new result is obtained in annealing, a random number is
needed to decide whether to keep that result or not. Different random seeds
will lead to randomness in the result of each test case.

In our simulations, we used circuits 5298, 5§20, and primaryl as our learn-
ing subdomains, and set fast.n to 10 in the learning process. The best cost
fanction we found is very similar to that in (14).

cOFtjearned = 1+ V2 % 2 (15)

We compare the performance of both HMs in Figure 7. We evaluate
three performance measures based on symmetric improvement ratios, where
improvements are measured by reductions in the area of the chip and the cost
of obtaining the placement. The average area represents the average chip area
after placement and global routing, based on ten runs of TimberWoll using
ten random seeds; the minimum area is the minimum chip area achieved; and
the average cost is the average execution time in CPU seconds. We see that
most of the points are below the horizontal = axis, representing improvements
in the area of the layout. However, half of the points are to the might of the y
axis, Tepresenting increases in execution costs to find the better layouts.

In another set of learning experiments, we learned numerical temperature
scheduling parameters in the temperature function. In simulated annealing,
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time is divided into four regions, with different cooling speeds. In the begin-
ning, temperature drops rather fast, and slows down when time increases. We
extracted nine parameters from the program, with default values shown in Ta-
ble 5. The new parameters learned (based on the default cost function (14))
are shown in Table 5 under the column labeled “Expt. 1.” Figure 8 shows the
area-cost improvements with respect to the original temperature parameters.
Although most of the points are below the z axis, many of them are to the
right of the y axis. These represent beiter areas of layout at higher execution
costs. These experiments show that tuning the temperature function alone
may not lead to significant iImprovements.

In our last learning experiments, we learned a collection of cost-function
and temperature scheduling parameters. The parameters learned are shown in
Table 5 under the column labeled “Expt. 2.” Note that in these experiments,
Py is the same as v3 in (14). Our learning experiments found a value of 0.2315
instead of 2 in (15}). Figure 9 shows the area-cost improvements. With respect
to the average area, most of the results show improved area and cost, while

there are less improvements when the minimum area is evaluated based on ten
runs of TimberWolf.

7. Conclusions

In this chapter, we have studied statisticel generalizaiion for determining the
performance of a given set of heuristic methods (HMs} found in a henristics-
design process over a problem domain. The objective of statistical general-
ization is to determine the “best® HM from among a given set of HMs over
test cases in a problem domain. Due to difficulties in finding an HM that is
superior all the time, the objective in learning and in generalization is relaxed
to finding a subset of HMs that are better than the incumbent HM.

One of the major problems in performance generalization is the dependence
of performance information on the size of test cases in an application domain.
Performance data obtained from test cases of different sizes do not belong to
a common statistical distribution and cannot be aggregated. We address this
problem by dividing test cases in a domain into subdomains and by normalizing
performance data in a subdomain so that normalized data in a subdomain are
independent and identically distributed. Performance data in a2 subdomain can
then be aggregated statistically into averages.

We have proposed a statistical method for comparing the performance of
HMs. Instead of using sample averages alone, which can be erroneous when
sample standard deviations are large, we evaluate a measure called probability
of win that depends on both the sample mean and the sample standard devia-

. , B
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tion. It measures the probability that the population mean performance of one
HM is better than the population mean of another. It can also be considered
as a normalized performance measure as it values is between 0 and 1.

We have shown anomalies in the ordering of HMs for some normalization
methods when the baseline for normalization is changed, and two normalization
methods that do not have anomalies. The best choice of a baseline HM is one
whose performance is invariant when new HMs are generated in learning. One
such HM is one whose performance on a test case is the median performance
of all HMs evaluated on this test case.

In evaluating performance of an HM across subdomains, it is difficult to
find an aggregate statistical measure as performance data across subdomains
can be dependent. Moreover, we do not know the weight that should be placed
on each subdomain in evaluating the aggregate measure. For this reason, we
have proposed to place a common performance constraint across all subdo-
mains and accept an HM if its performance satisfies the constraint across all
the subdomains.

Finally, we have described the architecture of TEACHER, our prototype
learning system, and experimental results in learning new HMs for Timber-
Wolf. Qur results show that automated learning and gererakzation will lead
to improved HMs.
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