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Abstract  In this chapter. we study methods for developing general heuaristies
in order to solve problems in knowledge-lean application domains with a large
and possibly inlinite problen space. Our approach is bused on genetic learning
that generates heuristics, tests cach to a limited extent, and prunes unpromising
ofies from further consideration. We summarize possible sources of anomalies In
performance evaluation of heuristics along w lth vur methaods tor coping with them.
Based on the heuristics learned, we propose and stuwdy methods for generalizing
heuristics to untearned problem domains, Gur methed uses wnew statistical mea-
sure called probability of win, which assesses the performance of heuristics in a
distribution-independent maener. To validate our approach, we show experimental
results on generalizing heeristics learned tor sequential cirenit testing, VLSI ¢ell
placement and routing, and branch-und-hound scarch, We show that generatization
can lead o new and robust heuristics that perfonn well across problem instances
of different characteristics in an application domain.

5.1 Introduction

The design of problem solving algorithms tor many applications generally relies
on the expertise of designers and the amount ot doman knowledge available. The
desipn is difticult when there 1s htle domain know ledge or when the environment
Under consideration is different from which the wlgorithmas applied. In designing
etficient algorithms for these knowledge-lean ap plications, there are two important

problemms o be considered: 11 automated design of problem solving heuristes,
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and (2) systematic generalization of the heuristics learned. In this chapter, we
focus on the second problem and present new methods for generalizing heuristics
learned.

A problem solver can be optimal or heuristic. An optimal problem solver is a
realization of an optimal algorithm that solves the problem for which it was de-
signed optimally with respect to certain objectives. In contrast, a heuristic problem
solver has components that were designed in an ad hoc fashion, leading to possibly
suboptimal solutions when applied. When there is no optimal algorithm, the de-
sign of effective heuristics is crucial. Without ambiguity, we simply use “problem
solvers” in this chapter to refer to “heuristic problem solvers”.

Heuristics, in general terms, are “rules of thumb™ or “common-sense knowl-
edge” used in attempting the solution of a problem [14]. Newell et al. defined
heuristics as “A process that may solve a given problem, but offers no guarantees
of doing so” [12]. Pearl defined heuristics as “Strategies using readily accessi-
ble though loosely applicable information to control problem-solving processes in
human being and machines” [14]. In this chapter, we define a heuristic method
{HM) to mean a problem-solving procedure in a problem solver. Without loss of
generality, a HM can be considered as a collection of interrelated heuristic deci-
sion elements {HDE) or heuristics decision rules. As illustrated in Figure 5.1, a
heuristic problem solver takes a problem instance (or test case) and generates a
possibly suboptimal solution.

Problem Subdomain Problem solving procedure in PS
= Heuristic Method (HM)}
Subaptimal
solution :
'
!
]
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/ 1. missing feedback _J
model in credit assignment
tesi-case Heuristic Decision Element (HDE}) el in eredt &
FIGURE 5.1

A heuristic method applied to a problem instance in a knowledge-lean appli-
cation.

Heuristics are usually designed by human experts with strong expertise in the
target application domain, or by automated systems using machine learning tech-
niques. Both approaches focus on explaining the relation between heuristics and
their performance, and on generating “good” heuristics based on observed infor-
mation or explained relations. Regardless of the acquisition methods, heuristics
in most cases are obtained by experimenting on a subset of test cases that cover a
small portion of the problem space. For many applications, the problem space to
be traversed is large, and there may be different regions that can best be solved by
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different heuristics. For this reason, we study in this chapter methods for general-
izing heuristics learned for a knowledge-lean application to regions of its problem
space not seen during learning.

Designing heuristics for knowledge-lean applications is usually based on a
generate-and-test paradigm. in the following, we present issues involved in this
process and our assumptions made in this chapler.

5.1.1 Generation of Heuristics

The way that heuristics are generated depends on domain knowledge available in
the application environment. An application environment can be knowledge-rich
or knowledge-lean with respect 1o the heuristics to be designed. In a knowledge-
rich domain, a world model helps explain the relationship among decision, states,
actions, and performance feedback generated by the learning system orf measured
:n the environment. This model is important in identifying good heuristics that oth-
erwise may be difficult to find. In contrast, such models do not exist in knowledge-
lean domains. In this case, the heuristics generator cannot rely on performance
feedback (or credit assignment as shown in Figure 5.1) to decide how new heuris-
tics should be generated or how existing heuristics should be modified. Operators
for composing new HMs for knowledge-lean domains are generally model-free,
domain-independent, and syntactic in nature. A popular learning method using
these operators is genetics-based learning.

Genetics-based learning is a generate-and-test paradigm that maintains a pool
of competing HMs, tests them to a limited extent, creates new Ones from those
that perform well in the past, and prunes poor ones from the pool. It involves ap-
plying genetic algorithms [15] to machine learning problems and is most suitable
for learning performance-related HMs. (Performance-related HMs aim to im-
prove the performance of solutions for an application problem, whose constraints
are trivially satisfied.) This is true because genetic operators do not rely on do-
main knowledge in generating heuristics and are not able to generate (correctness-
related) heuristics for applications whose constraints are hard to satisfy. Exam-
ples of genetics-based methods for learning performance-related heuristics include
population-based learning [23] and genetic programming [9).

As our focus in this chapter is on generalization, we assume that a set of “good”
heuristics for some subsets of the problem space of an application has been ob-
tained. Regardless of the learning method used, it is clear that learning can only
focus on a small portion of the problem space, and heuristics learned this way are
restricted to domains studied in learning.

5.1.2 Testing of Heuristics and Evaluating Their Performance

To evaluate HMs in a knowledge-lean application domain, they must be tested
on a set of problem instances (or test cases). Performance in this case is generally
assessed in a statistical sense, without requiring exhaustive tests of all test cases.
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In this chapter, we are interested in two types of problem domains: (1) those
with a large number of test cases and possibly an infinite number of deterministic
HMs for solving them, and (2) those with a small number of test cases but the HMs
concerned have a nondeterministic component, such as a random initialization
point, that allows different results to be generated for each test case. In both types,
the performance of a HM is nondeterministic, requiring multiple evaluations of the
HM on different test cases {type 1) or multiple evaluations of the HM on the same
test case (type 2). Consequently, we need to define valid statistical metrics for
comparing two HMs without exhaustively testing all test cases using these HMs.
This requires identifying subsets of test cases whose collective behavior on a HM
can be evaluated statistically. Moreover, we must also deal with conditions in
which performance values of HMs can have different ranges within a subset of test
cases and have entirely different distributions across multiple subsets. We present
in Section 5.2 issues on selecting appropriate methods for coping with anomalies'
in performance evaluation of heuristics.

5.1.3 Generalization of Heuristics Learned to
Unlearned Domains

Since the problem space is very large and learning can only cover a small subset,
itis necessary to generalize HMs developed to test cases not studied during learning.
Generalization is difficult when HMs do not perform consistently or have different
ranges of performance across different test cases. This issue has been somewhat
ignored in the literature on genetic algorithms and must be addressed 1n order to
find general and efficient HMs for solving a wide range of problem instances of an
application. This issue is the focus of this chapter and is presented in Section 5.3.

In short, we study in this chapter methods for generalizing performance-related
heuristics for knowledge-lean applications. We assume that performance of a HM
isrepresented by one or more statistical metrics and is based on multiple evaluations
of test cases (noisy evaluations). The major issues we study include methods to
cope with inconsistencies in performance evaluation of heuristics (Section 5.2.3),
and generalization of learned heuristics to unlearned domains (Section 5.3). Ex-
perimental results on several real-world applications are shown in Section 54.
Heuristics for these applications were learned using TEACHER, a genetics-based
learning system we had developed earlier [23].

TAn anomaly means that one HM is better than another using one evaluation method, but worse
using another evaluation method.
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5.2 Performance Evaluation and Anomalies

In problem solving, a problem solver applies a sequence of decisions defined
in HDEs of a HM, one after another, until an input test case is solved. These
decisions, initiated by the problem solver at decision points, change the state of the
application environment that is evaluated by a number of user-defined performance
measurables. The problem solver then uscs the performance measured to make
further decisions. A solution in this context is defined as a sequence of decisions
made by the HM on an input test case to reach the final state.

The performance of a HM on a test case depends on the quality of the solution
found by the HM for this test case as well as the cost (e.g., computation time)
in finding the solution. Here, we define quality (respectively, cost) of a solution
with respect to an input test case o be one or more measures of how good the
final state is (respectively, how expensive it is to reach the final state} when the
test case is solved, and be independent of intermediate states reached. Note that
cost and quality are in turn defined as functions of measurables in the application
environment. We call quality and cost examples of performance measures of the
application.

In this section we discuss issues related to performance evaluation of HMs. We
show that a HM can be found to be better or worse than another HM depending on
the evaluation criterion. Such inconsistencies are called anomalies in this chapter
and are attributed to different methods of evaluating performance and to different
behavior of HMs under different conditions. We propose methods to cope with
these anomalies. When such anomalies cannot be avoided, our system provides
users with alternative HMs so that users can pick the best HM(s) to satisfy their
requirements.

52.1 Example Applications

In problem solving, a problem solver applies some general domain-independent
algorithms, that rely on information provided by domain-dependent heuristics to
make decisions and to change the current state of the application environment. Ta-
ble 5.1 shows examples of a few practical applications and their domain-dependent
heuristics. We use the first three applications to test our generalization strategy
in this chapter. Results on the generalizing HMs in process mapping [23], load
balancing [11], and stereo vision [18] have been presented elsewhere.

The first application we have studied is based on two genetic-algorithm packages
(CRIS [17] and GATEST [16]) for generating test patterns in VLSI circuit testing.
Both packages usec a domain-independent genetic algorithm [15] that continuously
evolves test patterns by analyzing mutated vectors on their ability to identify (or
cover) more faults in a circuit. There are a lot of possible domain-dependent HMs;
however, in our experiments, we chose the domain-dependent HMs for CRIS as
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Table 5.1 Examples of Knowledge-Lean Applications and Their Learnable
Domain-Dependent Heuristics

Application Objective(s) Domain-dependent Heuristic Example(s)
parametric-heuristics element(s) of element
Genetic Maximize fault Controls used in the  Numeric values, (2, 3, 4,
search of the coverage genetic algo- fitness 3.2,
best VLSI test rithm: iteration, function 100;,
sequence [16, rejection ratio, se- H(e
17] quence  depth,
control factor, fre-
quency of usage
Simulated Minimize area of If ([acceptance Numencal 0.9, C(e),
anneal- layout with fixed ratio] > [thresh- threshold T(s)
ing: Timber maximum old]), then reduce value, cost
Wolf [19] number of layers temperature  to  function,
next lower value lemperature
function
Branch-and- Minimize cost of If a node has the Symbolic Lower
bound search tour, satisfy con- smallest formula bound
for finding a  straint on visiting ~ decomposition- + upper
minimum- each node exactly function value bound
cost tour in a once among all active of node
graph nodes, then ex-
pand this node
Process map- Minimize overall If (processor utiliza- Numeric thresh-  1.10
ping for plac-  completion time, tion/average uti-  old value

ing a set of
processes on
a multicom-
puter [6]

Load balancing
in distributed
systems [11]

Stereo  vision
for depth per-
ception [18]

Designing a
blind
equalizer

minimize time to
find such
mappings

Minimize comple-
tion time of an in-
coming job

Minimize error in
range estimation

Minimize con-
vergence time, ac-
cumulated errors
and cost, maxi-
mize S/N ratio

lization of all pro-

CESSOIs) >
(threshold), then
evict one process

If (average WL[e] >
[threshold]), then
migrate this
process

Marr and Poggio’s
iterative
algorithm

Objective  (error)
function for gra-
dient descent

Workioad func-
tion WL, nu-
meric thresh-
old value

(Channel width,
low edge-
detection
threshold,
high
threshold)

Symbolic
formula of the
error function

W?Eg).

(0.6, 2.0,
5.0)

E(e)
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a set of seven numeric parameters and for GATEST [16], one of the four fitness
functions for computing the performance of test patterns. Qur results here extend
the performance results we have found earlier for CRIS [23] and show the ability
of our learning and generalization procedures 1o result in higher fault coverages
than the original packages.

The second applicatton we consider is TimberWolf (Version 6), [19, 20] a soft-
ware package based on simuiated annealing for placing and routing a set of VLSI
circuit components. We iilustrate that, by tuning a set of six numeric parameters
in TimberWolf, we can reduce the area of the chip as well as the time needed
to find the layout. Results on extending our results on TimberWolf’s cost and
temperature-control functions will be shown in a future publication.

The last application is a software package WISE [21] that implements a branch-
and-bound search to find optimal solutions of three combinatorial optimization
problems (vertex cover, asymmetric traveling salesman, and knapsack packing).
In this case, the branch-and-bound search is domain-independent, and we chose as
domain-dependent heuristics the decomposition HM in the search algorithm. The
decomposition HM is used to pick an attribute to decompose a subproblem in a
search tree into descendants. For instance, in a vertex-cover problem, the goal is
to find the minimum number of nodes of a graph so that each edge is emanating
from one of the covered nodes. In this case, a subproblem represents a set of nodes
in the graph to cover partially the edges in the graph, and the decomposition HM
picks the next node to be included in the covered set. The HM is represented as a
symbolic formula of parameters that can be obtained in the search tree.

5.2.2 Problem Subspace and Subdomain

Within an application domain, different regions of the problem space may have
different characteristics, each of which can best be solved by a unique HM [15].
Since learning is difficult when test cases are of different behavior and it is necessary
to compare HMs quantitatively, we need to decompose the problem space into
smaller partitions before learning begins. In the following we define a problem
subspace and a problem subdomain.

A problem subspace is a user-defined partition of a problem space so that HMs
for one subspace are learned independently of HMs in other subspaces. Such
partitioning is generally guided by common-sense knowledge or by user experience
in solving similar application problems. It requires knowing one or more attributes
toclassify test cases and is driven by a set of decision rules that identify the subspace
to which a test case belongs. Such partitioning is important when test cases in an
application have vastly different behavior. However, in some cases, it may not be
possible to define the attributes needed for partitioning, or the number of attributes
is too large. When these happen, nonparametric clustering methods, such as those
based on neural networks, may have to be used. Another possibility is to always
apply multiple HMs for each test case, resulting in a higher computational cost for
a better solution.
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For instance, consider solving a vertex-cover problem described in the last sub-
section. In designinga decomposition HM to decide which vertex to be included in
the covered set, previous experience on other optimization problems indicates that
HMs for densely connected graphs are generally different from HMs for sparsely
connected ones. Consequently, the problem space of all graphs may be partitioned
(in an ad hoc fashion) into a small number of subspaces based on graph connec-
tivities and learned independently. As another example, in generating test patterns
for VLSI circuits, previous experience shows that sequential circuits require tesis
that are different from those of combinatorial circuits. As a result, we can parti-
tion the problem space into two subspaces. However, we are not able to partition
the subspace of sequential circuits into smaller subspaces as it is not clear which
attributes should be used in this partitioning.

Given a subspace of test cases, we next define a subdomain. A problem subdo-
main in this chapter is a partitioning of a problem subspace into smaller partitions
so that one or more HMs can be designed for each partition. The reason for this
partitioning is 1o allow quantitative comparison of performance of HMs in a subdo-
main, which may be difficult across subdomains. Recall that in our definition, test
cases belong to the same subspace when they can be solved by the same HM, but
this does not imply that their performance can be compared directly. In comparing
the performance of HMs, it is necessary to aggregate their performance values into
a small number of performance metrics (such as average or maximum). Compuling
these aggregate metrics is not meaningful when performance values are of differ-
ent ranges and distributions. Hence, a subdomain is a maximal partitioning of test
cases in a subspace so that different HMs can be compared quantitatively based on
their aggregate metrics. It is impotrtant to point out that performance values may
need to be normalized before aggregated statistically. We discuss issues related to
normalization in the next subsection.

In the same way that test cases are partitioned into subspaces, minimal domain
knowledge should be used in knowledge-lean applications to partition test cases
into subdomains. Further, the requirement of the statistical metric for quantitative
performance comparison must be satisfied. For instance, performance values need
to be independent and identically distributed (i.i.d.} when the average metric is
computed.

Continuing with the example on the vertex-cover problem, a problem subdo-
main can be defined as random graphs with a certain degree of connectivity. The
performance of a decomposition HM can be defined as the number of subprob-
lems expanded by a branch-and-bound search normalized with tespect to that of a
baseline HM, Proper normalization (to be discussed in the next subsection) allows
meaningful statistical comparison of HMs within a subdomain. A possible goal
in learning for a subdomain is, therefore, to develop a rank ordered set of HMs,
based on the average fraction of vertices to cover all the edges of random graphs
generated in this subdomain. As another example, i generating test patierns for
VLSI circuits, we may have to treat each circuit as an individual subdomain as we
do not know the best set of attributes to classify circuits.
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It should now be clear that, in general, there are infinitely many subdomains in
an application problem, and learning can only be performed on a small number
of them. Consequently, generalization of HMs learned for a small number of
subdomains to other subdomains in the same subspace is critical. Informally,
generalization entails finding a good HM for solving a randomly chosen test case
in a subspace so that this HM has a high probability of performing better than
other competing HMs for solving this test case. In some situations, multiple HMs
may have to be identified and applied together at a higher cost to find a solution of
higher quality. We discuss generalization in detail in Section 5.3.

To illustrate the concepts presented in this chapter, we show in Figure 5.2 the
average symmetric speedups of three decomposition HMs used in a branch-and-
bound search to solve vertex-cover problems. (The use of symmetric speedup is
defined in Equation 5.2 later.) We treat all test cases to belong to one subspace, and
graphs with the same average degree of connectivity are grouped into a subdomain.
We applied genetics-based learning to find the five best HMs for each of three sub-
domains with connectivities 0.1, 0.35, and 0.6. Figure 5.2 shows the performance
of the best HMs learned in each subdomain across all subdomains. We have also
identified a single generalized HM among the 15 HMs learned using the method
discussed in Section 5.3 and show its performance in Figure 5.2. We found that the
generalized HM is not the top HM learned in each subdomain, indicating that the
best HM in each subdomain may be too specialized to the subdomain. We have also
found that generalization is possible in terms of average performance. We need to
point out that the average performance should not be used as the sole indicator, as
the variances of performance may differ from one subdomain to another.
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FIGURE 5.2

Average speedups (over 15 test cases) of three decomposition HMs for the
vertex-cover problem, where subdomains are manually selected based on the
connectivity of a graph. The HM learned for 0.6 connectivity is the same as
the baseline HM. (Details of experiments are shown in Section 5.4.3)
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5.2.3 Anomalies in Performance Evaluation

» We must be abl pare the performance of HMs across

multiple subdomains. Accomplishing the first step is necessary before we can

deal with generalization in the second step. We have previously studied parts of

the problem of evaluating performance of HMs within a single problem subdo- F'
main {22]. In this section, we summarize

ssues involved in the first step before
presenting issues in the second slep,

5.2.3.1 Anomalies within a Subdomain

SUres (s ost and quality) that
are interrelated: higher quality is ge i
To compare performance of different HMs, it is necessary to combine perfor-
mance values before comparing them. This is, however, difficult, as the objectives
of a HM as well as their trade-offs may be unknown with respect to its performance
measures. A possible solution is to derive a sin i
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function so that HMs with the hest quality-cost trade-offs can be found.
We have seen similar difficulties in the goal attainment method [4].

Teroe

o Itisdifficult 1o compare the performance of two HMs when they are eval-
uated on test cases of different sizes or behavior,
L ]

Inconsistent conclusions (anomalies) about the performance of two HMs
may be reached when the HMs are compared using either different user-
defined objective functions or the same objective function with different
parameters.

We have proposed before [23] three solutions to cope with these difficulties:

¢ Identify a reference or bascline HM upon which all other HMs are com-
pared. A good choice of a reference method for a given application problem
is the best existing HM.

e Normalize each raw performance measure of a new HM with respect to
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the same measure of the reference HM (evaluated on either the same set of
test cases or test cases with the same distribution of performance) so that it
is meaningful to compare two HMs based on their normalized measures.

e Compare two HMs based on individual normalized performance measures,
not on a single parametric function of the measures.

In this section, we extend the anomalies found earlier [22] and classify all the
anomalies into three classes. Note that anomalies happen because there is more
than one dimension of performance variations.

a) Inconsistencies in Performance of HMs across Different Test Cases When
a HM is evaluated on a set of test cases, we must determine (1) the number of tests
to be made and (2) the evaluation method (or metric) for aggregating performance
values (such as mean, maximum, median, average rank). Inconsistent conclusions
may be reached when one HM is better than another on one set of test cases, but
worse on a different set of test cases.

For example, when performance is evaluated by the average metric, the ranking
of HMs may change as more tests are performed. Similar observations have been
found when HMs are evaluated by the average-rank metric.

In this chapter, we assume that all HMs are tested on the same set of test cases in
a subdomain when evaluating generalizability, that performance values of tests in a
subdomain are i.i.d., and that the average meltric is used as the primary method for
comparing HMs. In addition, we evaluate the actual distribution of performance
values to avoid HMs that have good average behavior but have large spread in
petformance. When none of the HMs is a clear winner, our system will propose
alternative HMs so that users can decide the appropriate HM(s) to use.

b) Multiple Objectives with Unknown Trade-Offs The performance of a HM
may be evaluated by multiple objectives (such as quality and cost). Of course, we
would like to find HMs with improved quality and reduced cost. However, this
may not always be possible, as improved quality is often associated with increased
cost. The problem, generally known as a multiobjective optimization problem [4],
involves trade-offs among all objectives of a design,

We have found betfore that anomalies may happen when HMs are optimized with
respect 10 a single parametric function of the objectives of an application [7, 22].
The performance of a HM (as defined by the parametric objective function) may
change drastically when miner changes are made on the parameters of the objective
function. In fact, it is possible to show that one HM is better than another by finding
a new parametric objective function of performance measures.

To avoid inconsistencies due to multiple objectives, we must evaluate HMs
based on individual performance measures and not combine multiple measures
into a single parametric function [22]. During learning, the learning system should
constrain all but one measure and optimize the single, unconstrained measure.
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A HM is pruned from further testing when one of its performance constraints is
violated [23]. If a good HM satisfying the constraints can be found, then the
constraints are further refined and learning is repeated. The difficulty with this
approach is on selting constraints. We have studied the case when there are two
performance measures [23]. However, the general case when there are more than
two performance measures is still open at this time.

The applications we have studied in this chapter have only one performance
measure to be optimized; hence, we do not need to deal with the issue of multiple
objectives. (For GATEST, CRIS, and TimberWolf, the performance measure (o be
optimized is the quality of the result; for branch-and-bound search, the measure to
be optimized is the cost of finding the optimal solution.)

c) Inconsistencies in Normalization Normalization involves choosing a base-
Jine HM and computing relative performance values of anew HM on a set of tests in
a subdomain by the corresponding performance values of the baseline HM. This is
necessary when performance is assessed by evaluating multiple test cases (type 1 as
discussed in Section 5.1) and is not needed when nondeterminism in performance
is due to randomness in the problem solver (type 2 as discussed in Section 5.1). In
the former case, performance vatues from different tests may be of different ranges
and distributions, and normalization establishes a reference point in performance
comparison. In the latter, raw performance values within the subdomain are from
one test case and presumably have the same distribution.

Normalization may lead to inconsistent conclusions about the performance of
HMSs when multiple normalization methods are combined or when normalization
compresses/decompresses the range of performance values. These anomalies are
explained as follows.

Inconsistencies in evaluation may occur when using multiple normalization
methods as compared to using one normalization method. To illustrate these in-
consistencies, consider with two HMs that have completion times {1473, 1665,
1381} for H M and {1269, 1513, 1988} for H M, (Example A). Using H M) as
the baseline for normalization, we can compute the average normalized speedup
of H M, using one of the following methods:

3 3

n Ny _ i n tl'j—1200_

4; = -zl?i_,- = 0986 0= s 1200~ 1.900 (5.1
i= '

=1

where £ ; is the completion time of HM i on test case j. Since the average
normalized speedup of H M) is one, HM is found to be worse using the first
methods and better using the second.

Inconsistencies may also occur when normalization overemphasizes or de-
emphasizes performance changes. For instance, the conventional speedup measure
is biased against slowdown (as slowdowns are intherange between Oand 1, whereas

oS
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speedups are in the range between | and infinity). As another example (Example
B), suppose the speedups of a HM on two tesl cases are 10 and G.1. Then the
average speedup is 5.05, and the average slowdown is also 3.05, where the average
slowdown is defined as the average of the reciprocals of speedup. In this case, both
the average speedups and average slowdowns are greater than one.

In general, when normalizing performance values, it is important to recognize
that the ordering of HMs may change when using a different normalization method,
and that the spread of {normalized) performance values may vary across subdo-
mains in an application. Here, we propose three methods to cope with anomalies
in normalization. First, we should use only one normalization method consis-
tently throughout learning and evaluation, thereby preserving the ordering of HMs
throughout the process. Second, we nced to evaluate the spread of normalized
performance values to detect bias. This can be done by detecting outlyers and
by examining higher-order moments of the performance values. Third, to avoid
placing unequal emphasis on normalized values, we need a normalization method
that gives equal emphasis to improvement as well as degradation. To simplify un-
derstanding, we describe this symmetric normalization method using the speedup
measure. We define symmetric speedup as

Speedup — 1 if Speedup > 1

i 5.2
I‘“m if 1 > Speedup =0 (5.2

Speedupsymmerric = |

where speedup is the ratio of the time of the original HM with respect to the time of
the new HM. Note that slowdown is the reciprocal of speedup, and that symmetric
speedup is computed for each pair of performance values. Equation 5.2 dictates
that speedups and slowdowns carry the same weight: speedups are in the range
from zero to infinity, and slowdowns are in the range from zero to negative infinity.

In a similar way, we can define symmetric slowdown as

Slowdown — 1 if Slowdown > 1
SIOWdow"symmetric =

1 - gl if 1> Slowdown >0

= —Speedupsymmerric (5.3)

It is also easy to prove that Speedupsymmetric = —Slowdownsymmerric, thereby
eliminating the anomalous condition in which average speedup and average slow-
down are both greater than one or both less than one.

In Example A discussed earlier, the average symmetric speedup is —0.059,
which shows that H M3 is worse than H M. (The average symmetric slowdown is
0.059.) In Example B, both the average symmetric speedup and average symmetric
slowdown are zero, hence avoiding the anomaly where the average speedup and
average slowdown are both greater than one.
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To illustrate the difference between speedups and symmetric speedups, we show
in Figure 5.3 the distributions of speedups as well as symmetric speedups of a HM
to solve the vertex-cover problem.

Table 5.2 Inconsistent Behavior of HMs in Different

Subdomains
Heuristic method
Circuit Random seeds used in HM  Fault coverages (%)
ID ID 61801 98052 15213  Maximum _Average
101 603 13.9 11.2 60.3 28.5
s444
535 B1.9 86.3 86.3 86.3 84.8
101 932 94.4 949 94.9 4.2
51196
535 93.2 92.5 93.6 93.6 93.1

§2.3.2 Anomalies across Subdomains

We now discuss the difficulty in comparing performance of HMs across multiple
subdomains. This comparison is difficult when there is a wide discrepancy in
performance across subdomains.

To illustrate this point, consider the three HMs shown in Figure 5.2. These HMs
behave differently in different subdomains: not only can the range and distribution
of performance values be different, but a good HM in one subdomain may not
perform well in another. As another example, consider the HMs learned for CRIS
(described in Section 5.2) [17]. A HM in this case is a vector of seven parameters
and a random seed; by varying the random seed, we get different performance of
the HM. Since it is difficult to characterize circuits with respect to their HMs, we
treat the subspace to be all possible circuits, and each circuit as a subdomain for
learning. The goal of generalization is to find one single set of parameters (HM)
that gives high fault coverages for all circuits. In Table 5.2, we show two HMs
and their fault coverages. With respect to circuit 5444, H Mg has worse fault
coverages and a wider distribution of coverage values than H Ms3s. On the other
hand, H Mo performs better for circuit s1196.

The major difficulty in handling multiple problem subdomains is that perfor-
mance values from different subdomains cannot be aggregated statistically. For
instance, it is not meaningful to find the average of two different distributions.
Scaling and normalization of performance values are possible ways to match the
difference in distributions, but will lead to new inconsistencies for reasons dis-
cussed in Section 5.2.3.1.c. Another way is to rank HMs by their performance
values across different subdomains, and use the average ranks of HMs for compar-
ing HMs. This does not work well because it does not account for actual differences
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in performance values, and two HMs with very close or very different performance
may differ only by one in their ranks. Further, the maximum rank of HMs depends
on the number of HMs evaluated, thereby biasing the average ranks of individual
HMs.

To address this problem, we propose in Section 5.3 a new metric called proba-
bility of win. Informally, the probability of winis a range-independent metric that
evaluates the probability that the true mean performance of a HM in one subdo-
imain is better than the true mean performance of another randomly selected HM in
the same subdomain. The advantage of using probabilities of win is that they are
in the range between zero and one, independent of the number of HMs evaluated
and the range and distribution of performance values,

e

5.3 Generalization of Heuristic Methods Learned

The ability to generalize a learned HM to test cases in new problem subdomains
is one of the key reasons for learning. Generalization is important because we
perform learning on a very small number of subdomains, and there may be infinitely
many subdomains in an application. Further, itis desirable to have one or very few
HMs to be used in an application rather than a new HM for each problem instance.

The goal of generalization is somewhat vague: we like to find one or more HMs
that perform well most of the time across multiple subdomains as compared to the
baseline HM (if it exists). To achieve this goal, four issues are apparent here.

1. How to compare the performance of HMs within a subdomain in a range-
independent and distribution-independent fashion

2. How to define the notion that one HM performs well across multiple sub-
domains

3. How to find the condition(s) under which a specific HM should be applied

4. What the trade-offs are between cost and quality in generalization

5.3.1 Probability of Win within a Subdomain

There are many ways to address issue (1) raised in this section, and the solutions
to the remaining problems depend on this solution. As discussed at the end of the
last section, ranking, scaling, and normalization do not work well. In this section,
we propose a metric called probability of win to select good HMs across multiple
subdomains.

Pyin, the pmbabi!iry-of-win of HM h; within a subdomain, is defined as the
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probability that the true mean of h; (with respect to one performance measure) is
better than the true mean of HM h; randomly selected from the pool. When A; is
applied on test cases in subdomain d,,, we have

1 A am A
Puin (hivd) = o 3 P [l > il |AT. 6% 7 47,877 | (5.8)
JFi

where |s| is the number of HMs under consideration, dp, is a subdomain, and nf?,
o™, a7, and u" are, respectively, the number of tests, sample standard deviation,
sample mean, and true mean of h; in dy,.

Since we are using the average performance metric, it is a good approximation to
use the normal distribution as a distribution of the sample average. The probability
that #&; is better than k; in d,y can now be computed as follows,

Am—m
P(up = wrlar.emonr apérar)=1-o *
&,.ml/n;u&jm’/n;'

5.5
where @ (x) is the cumulative distribution function for the N (0, 1) distribution.

Table 5.3 Probabilities of Win
of Four HMs
Ry i 8 np Pyin(hi)
1 432 135 10 0.4787
2 462 64 12 0.7976
3 49 25 10 0.6006
4 336 259 8 0.1231

To illustrate the concept, we show in Table 5.3 probabilities of win of four HMs
tested to various degrees. Note that the probability of win is not directly related to
sample mean, but rather depends on sample mean, sample variance, and number
of tests performed.

Pyin defined in Equation 5.4 is range-independent and distribution-independent
because all performance values are transformed into probabilities between 0 and
1. It assumes that all HMs are i.i.d. and takes into account uncertainty in their
sample averages (by using the variance values); hence, it is better than simple
scaling which only compresses all performance averages into a range between 0
and 1.

D M s i

Rt
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5.3.2 Probability of Win across Subdomains

The use of probability of win in a subdomain leads to two ways (o solve issue
(2) posted earlier in this section, namely, how to define the notion that one HM
performs better than another HM across multiple subdomains. We present below
two ways to define this notion.

First, we assume that when HM A is applied over multiple subdomains in partition
I1,, of subdomains, all subdomain are equally likely. Therefore, we compute the
probability of win of # over subdomains in 1, as the average probability of win
of h aver all subdomain in I1p.

Zdeﬂp Pwin (h- d)

(5.6)
1|

Puin (B, Mp) =

where T1, is the pth partition of subdomains in the subspace. The HM picked is
the one that maximizes Equation 5.6. HMs picked this way usually win with a
high probability across most of the subdomains in IT,, but occasionally may not
perform well in a few subdomains.

§ COBASE
< En168
%‘ £3130
5 @107
s

o 129

0.1 015 0.3 04 05 086 AVG
Connectivity

FIGURE 5.4

Histogram showing probabilities of win of four HMs generalized across six
subdomains and those of the baseline HM. (H M2 is picked if Equation 5.6
is used as the selection criterion; H M7 is selected if Equation 5.7 is used as

the criterion.}

Second, we consider the problem of finding a good HM across multiple subdo-
mains in I, as a multiobjective optimization problem itself. As is indicated in
Section 5.2.3, evaluating HMs based on a combined objective function (such as the
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average probability of win in Equation 5.6) may lead to inconsistent conclusions.
To alleviate such inconsistencies, we should treat each subdomain independently
and find a common HM across all subdomains in [T, satisfying some common
constraints. For example, let § be the allowable deviation of the probability of
win of any chosen HM from ¢7, . the maximum Py, in subdomain m. General-
ization, therefore, amounts to finding h that satisfies the following constraints for
every subdomain m € I1,.

Puin (h,m) = (qy;, —8) forevery m & 1, .7

In this formulation, § may need 10 be refined if there are too many or too few HMs
satisfying the constraints.

To illustrate the generalization procedure, consider the vertex-cover problem dis-
cussed in Section 5.2. Assume that learning had been performed on six subdomains
{using graphs with connectivities 0.1, 0.15, 0.3, 0.4, 0.5, and 0.6, respectively), and
that the five best decomposition HMs from each subdomain were reported. After
full evaluation of the 30 HMs across all six subdomains, we computed the proba-
bility of win of each HM in every subdomain. Figure 5.4 shows the probabilities
of win of several of these HMs. If we generalize HMs based on Equation 5.6, then
H M )29 will be picked since it has the highest average P,,;,. In contrast, if we gen-
eralize using Equation 5.7, then H M1g7 will be picked because it has the smallest
deviation from the maximum P,,;, in each subdomain. Note that either HM is a
reasonable generalized HM to be applied across all subdomains. To decide on the
single generalized HM to use, further evaluations on the spread of performance
values would be necessary (see Section 5.4).

Using probabilities of win to assess HMs across subdomains, we can now address
issues 3 and 4 raised earlier in this section, which deal with the selection of multiple
HMs. There are two ways that multiple HMs can be used: (1) usingeachHM ina
nonoverlapping subset of subdomains in the subspace (issue 3), and (2) applying
multiple HMs in solving any test case in the subspace (issue 4).

The issue on finding condition(s) under which a specific HM should be applied
is a difficult open problem at this time. Solving this problem amounts to design-
ing decision rules to partition the subspace of test cases into a finite number of
partitions, each of which can be solved by a unique HM. This is possible in some
applications that are characterized by a small number of well-defined attributes.
For instance, in the vertex-cover problem discussed in Sections 5.2 and 5.4, the
graph connectivity is a unique attribute that allows us to decompose the space of
all random graphs into partitions. This is, however, difficult for applications that
do not have a well-defined set of characteristic attributes. As a result, we cannot
partition the subspace and assign a good HM to each. This happens in the CRIS
test-pattern generation system [17] discussed in Sections 5.2 and 5.4.1 which does
not have a set of characteristic attributes to classify circuits {e.g., number of gates,
length of the longest path).
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Finally, issue (4) raised earlier in this section is on trade-offs between cost and
quality In generalization. Since it may be difficult in some cases to partition a
subspace or to find a single HM that performs well across all test cases in the sub-
space, we can pick multiple HMs, each of which works well for some subdomains
in the subspace, and apply all of them when a new test case is encountered. This is
practical only when the added cost of applying multiple HMs is compensated by
the improved quality of the solutions. In this approach, the cost reflects the total
computational cost of applying all the chosen HMs to solve a given test case.

The problem of selecting aset of HMs fora subspace amounts to picking multiple
HMs and assigning each to a subdomain in the subspace. Assuming that | H | such
HM:s are to be found, we need to decompose the subspace into | H| partitions of
subdomains and assign one HM to all subdomains in each partition. The overall
probability of win over the subspace is computed in a similar way as in Equation 5.6.
In mathematical form, let Q be the set of all HMs tested in the subspace and T1 be
the set of all subdomains in this subspace; we are interested to find H C € such
that | H| is constant and the average Pyin i8 maximized. That is,

max max Puin(h,d
HCR d)Z_:n heH win(h, )

| H |=constant
P (Q,T1) = T

(5.8)

where |T1j is the number of subdomains in subspace 1.

One way to find H in Equation 5.8 is to enumerate over all possible ways of
decomposing ITand assign the best HM to each partition. The problem is equivalent
to the minimum-cover problem [3): given aset I of subdomains and a set € of
HM:s (each of which covers one or more subdomains), find the minimum subset
H of § so that each element of Tl can be covered by one HM in H. The problem
is NP complete, in general, and is solvable in polynomial time only when {H| is
two,

Fortunately, by applying Equation 5.7, we can make the number of HMs arbi-
trarily small by choosing a proper 8. In this case, finding a fixed set of HMs that
can best cover all subdomains in the subspace can be obtained by enumeration.
Experimental results on such cost-quality trade-offs are presented in Section 5.4.1.

533 Generalization Procedure

The procedure to generalize HMs tearned for subdomains in a problem subspace
is summarized as follows:

1. Using the collective set of HMs obtained in the subdomains learned, find
the probability of win (using Equation 5.4) of each HM in every subdomain
learned or to be generalized.
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! 2. Apply Equation 5.8 to select the necessary number of HMs for evaluating
test cases in the subspace. Equation 5.7 can be used to restrict the set of
HMs considered in the selection process.

I —
' 5.4 Experimental Results
y To illustrate the generalization procedure described in Section 5.3.3, we present

in this section results on generalization for the three applications discussed in
Section 5.2.1.

5.4.1 Heuristics for Sequential Circuit Testing

The first application is based on CRIS [17] and GATEST [16], two genetic-
algorithm software packages for generating patterns to test sequential VLSI cir-
cuits. In our experiments, we used sequential circuits from the ISCAS89 bench-
marks [1] plus several other larger circuits. Since these circuits are from different
applications, it is difficult to classify them by some common features. Conse-
‘ quently, we treat each circuit as an individual subdomain. As we like to find one

common HM for all circuits, we assume that all circuits are from one subspace.

54.1.1 CRIS

\ CRIS [17] is based on continuous mutations of a given input test sequence and

on analyzing the mutated vectors for selecting a test set. Hierarchical simulation
techniques are used in the system to reduce memory requirement, thereby allowing
test generations for large VI.SIcircuits. The package has been applied successfully
to generate test patterns with high fault coverages for large combinatorial and
sequential circuits.

CRIS in our experiments is treated as a problem solver in a black box, as we
have minimal knowledge in its design. A HM targeted for improvement is a set of
eight parameters used in CRIS (see Table 5.4). Note that parameter Pg is a random
seed, implying that CRIS can be run multiple times using different random seeds
in order to obtain better fault coverages. (In our experiments, we used a fixed
sequence of ten random seeds.)

A major problem in using the onginal CRIS is that it is hard to find proper values
for the seven parameters (excluding the random seed) for a particular circuit. The
designer of CRIS manually tuned these parameters for each circuit, resulting in
HMs that are hard to generalize. This was done because the designer wanted to
obtain the highest possible fault coverage for each circuit, and computation cost
was only a secondary consideration. Note that the times for manual tuning were
exceedingly high and were not reported in the Reference [17].

—
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Table 5.4 Parameters in CRIS Treated as a HM in Learning and in

Generalization
Learned
Parameter  Type Range  Step Definition value

P Integer 1-10 1 Related to the number of I
stages in a flip-flop

P Integer 140 1 Related to the sensitivity of 12
changes of state of a flip-
flop (number of times a flip- !
flop changes its state in a test
sequence) '

P Integer 1-40 1 Selection criterion—related to 38
the survival rate of a candi-
date test sequence in the next
generation

Py Float 0.1-10.0 0.1 Related to the number of 7.06
tlest vectors concatenated to
form a new test sequence

Ps Integer  50-800 10 Related to the number of use- 623
less trials before quitting

FPg Integer 1-20 1 Number of generations i

Py Float 0.1-1.0 0.1 How genes are spliced in the 0.1
genetic algorithm

Py Integer Any 1 Seed for the random number —
generator

Note: The type, range, and step of each parameter were recommended to us by the
designer of CRIS. The default parameters were not given to us as they are circuit-
dependent.

Our goal is to develop one common HM that can be applied across all the
benchmark circuits and that has similar or better fault coverages as compared to
those of the original CRIS. The advantage of having one HM is that it can be
applied to new circuits without further manual tuning.

5.4.1.2 GATEST

GATEST [16] is another test-pattern generation package based on genetic al- !
gorithms. It augments existing techniques in order to reduce execution times and |
to improve fault coverages. The genetic-algorithm component evolves candidate
test vectors and sequences, using a fault simulator to compute the fitness of each
candidate test. To improve performance, the designers manually tuned various
genetic-algorithm parameters in the package (including alphabet size, fitness func-
tion, generation gap, population size, and mutation rate) as well as selection and
crossover schemes, High fault coverages were obtained for most of the ISCASR9

|
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sequential benchmark circuits [1], and execution times were significantly lower in
most cases than those obtained by HITEC [13], a deterministic test-pattern gener-
ator.

The entire GA process was divided into four phases, each with its own fitness
function that had been tuned by the designers manually. The designers also told
us that phase 2 has the largest impact on performance and recommended that we
improved it first. As a result, we treat GATEST as our problem solver, and the
fitness function (a symbolic formula) in phase 2 as our HM. The original form of
this fitness function is

#_faults_propagated_to_flip_flops

fitness; = #_faults_detected + # faults) (# fiip flops) (5.9)

In learning a new fitness function, we have used the following variables as
possible arguments of the function: # faults_detected, # faults_propagated.to
Aip_flops, # faults, # flip flops, #_circuit nodes, and sequence_length. The op-
erators allowed to compose new fitness functions include {4+, —, %, /}.

5.4.1.3 Experimental Results

In our experiments, we chose five circuits as our learning subdomains. In each of
these subdomains, we used TEACHER [23] to test CRIS 1000 times with different
HMs, each represented as the first seven parameters in Table 5.4. At the end of
learning, we picked the top 20 HMs and evaluated them fully by initializing CRIS
by ten different random seeds (Pg in Table 5.4). We then selected the top five HMs
from each subdomain, resulting in a total of 25 HMs supplied to the generalization
phase. We evaluated the 25 HMs fully (each with ten random seeds) on the five
subdomains used in learning and five new subdomains. We then selected one
generalized HM to be used across all the ten circuits (based on Equation 5.8). The
elements of the generalized HM found are shown in Table 5.4,

For GATEST, we applied learning to find good HMs for six circuits (s298, s386,
$526, s820, s1196, and s1488 in the ISCAS89 benchmark). We then generalized
the best 30 HMs (5 from each subdomain) by first evaluating them fully (each
with ten random seeds) on the six subdomains and by selecting one generalized
HM for all circuits (using Equation 5.8). The final fitness function we got after
generalization is

fitness, = 2 x #_faults_propagated_to_flip_flops — #_faults_detected.  (5.10)

Table 5.5 shows the results after generalization for CRIS and GATEST. For
each circuit, we present the average and maximum fault coverages (over ten ran-
dom seeds) and the corresponding computational costs. These fault coverages are
compared against the published fault coverages of CRIS [17] and GATEST [16] as
well as those of HITEC [13]. Note that the maximurm fault coverages reported in
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Table 5.5 were based on ten runs of the underlying problem solver, implying that
the computational cost is ten times of the average cost.

Table 5.6 summarizes the improvements of our learned and generalized HMs as
compared to the published results of CRIS, GATEST, and HITEC. Each entry of
the table shows the number of times our HM wins, ties, and loses in terms of fault
coverages with respect to the method(s) in the first column. Our results show that
our generalized HM based on CRIS as the problem solver is better than the original
CRIS in 16 out of 21 circuits in terms of the maximum fault coverage, and 11 out
of 21 circuits in terms of the average fault coverage. Further, our generalized HM
based on GATEST as the problem solver is better than the original GATEST in 7
out of 19 circuits in terms of both the average and maximum fault coverages. Our
results show that our generalization procedure can discover good HMs that work
better than the original HMs,

Finally, we plot the distributions of symmetric fault coverages of our generalized
HMs normalized with respect to average fault coverages of the original CRIS (Fig-
ure 5.5) and GATEST (Figure 5.6). These plots clearly demonstrate improvements
over the original systems.

5.4.2 Heuristics for VLSI Placement and Routing

In our second application, we take TimberWolf [20] as our problem solver, This
is a software package based on simulated annealing 8] to place and route various
components (transistors, resistors, capacitors, wires, ¢tc.) on a piece of silicon, Its
goal is to minimize the chip area needed while satisfying constraints such as the
number of layers of poly-siticon for routing and the maximum signal delay through
the paths. Its operations can be divided into three steps: placement, global routing,
and detailed routing.

The placement and routing problem is NP-hard; hence, heuristics are generally
used. Simulated annealing (SA) used in TimberWolf is an efficient method to ran-
domly search the space of possible placements. Although in theory SA converges
asymptotically to the global optimum with probability one, the results gencrated in
finite time are usually suboptimal. As a result, there is a trade-off between quality
of a result and cost (or computational time) of obtaining it. In TimberWolf version
6.0, the version we have studied in this subsection, there are two parameters to
control the running time (which indirectly control the quality of the result): fasi-n
and sfow-n. The larger the fast-n is, the shorter time SA will run. In contrast, the
larger the slow-n is, the longer time SA will run. Of course, only one of these
parameters can be used in a single experiment to control the running time.

TimberWolf has six major components: cost function, generate function, initial
temperature, temperature decrement, equilibrium condition, and stopping crite-
rion. Many parameters in these components have been tuned manually, However,
their settings are generally heuristic because we lack domain knowledge for set-
ting them optimaily. In Table 5.7 we list the parameters we have focused in this
subsection. Our goal is to illustrate the power of our learning and generaliza-
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Table 5.7 Parameters in TimberWolf (Version 6) Used in Our BM for
Learning and Generalization

Parameter Range Step Meaning Default  Learned

P 0.1-2.5 0.1  Vertical path weight for esti- 1.0 0.1954624
mating the cost function

Py 0.33-2.0 0.1 Range limiter window change 1.0 1.004637
ratio

Py 18.0-280 1.0 High temperature finishing  23.0 24.88345
point

Py 71.0-91.0 1.0 Intermediate temperature fin- 81.0 71.0
ishing point

Ps 0.29-0.59 0.01 Critical ratio that determines 0.44 0.29
acceptance probability

Pg 0.01-0.12 001 Temperature for controller 0.06 0.01
turnoff

Table 5.8 Benchmark Circuits Used in Our Experiments

Cell name Cells Nets Pins Implicit feedthru

fract 124 163 454 0

§298 133 138 741 98

5420 21l 233 1,488 112
primaryl 766 1,172 5,534 0

struct 1,888 1,920 5407 0
primary2 3,014 3,817 12,014 0

industriall 2,271 2,597 — —
From LayoutSynth92, Int. Workshop on Layout Synthesis, ftp
site: menc.menc.org under /pub/benchmark, 1992,

tion procedures and to show improved quality and reduced cost for the placement
and routing of large circuits, despite the fact that only small circuits were used in
learning and in generalization.

In our experiments, we used seven benchmark circuits [10] whose specifications
are shown in Table 5.8. Here, we have only studied the application of TimberWolf
to standard-cell placement, though other kinds of placement (such as gate-array
placement and macro/custom-cell placement) can be studied in a similar fashion.
In our experiments, we used fast-n values of 1, 5, and 10, respectively. We first
applied TEACHER to learn good HMs for circuits s298 with fast-n of 1, s420 with
fast-n of 5, and primary! with fast-n of 10, each of which was taken as a learning
subdomain. Each learning experiment involved 1000 applications of TimberWolf.
Based on the best 30 HMs (10 from each subdomain), we applied our generalization
procedure to obtain one generalized HM.

The default and generalized HMs are shown in Table 5.7. Table 5.9 compares
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FIGURE 5.7

Comparison of average performance between the default and the generalized
HMs.

the quality (average/maximum area of chip) and cost (average execution time)
between the generalized HM and the default HM on all seven circuits with fast-n
of 1, 5, and 10, respectively. {The cost for finding the minimum area is ten times
the average cost.) These results are also plotted in Figure 5.7, where each arrow
points from the average performance of the default HM to the average performance
of the generalized HM.,

Among the 21 test cases, the generalized HM has worse quality than that of the
default in only one instance, and has worse cost in 5 out of 21 cases. Similarly, we
see in Figure 5.7 that most of the arrows point in a left-upward direction, implying
improved quality and reduced cost. Since we have only addressed a few parameters
in TimberWolf, we expect to see more improvement as we learn other functions
and parameters in TimberWolf.

5.4.3 Branch-and-Bound Search

A branch-and-bound search algorithm is a systematic method for traversing
a search tree or search graph in order to find a solution that optimizes a given
objective while satisfying the given constraints. It decomposes a problem into
smaller subproblems and repeatedly decomposes them until a solution is found or
infeasibility is proved. Each subproblem is represented by a node in the search
tree/graph. The algorithm has four sets of HMs: (1) selection HM for selecting
a search node for expansion based on a sequence of selection keys for ordering
search nodes; (2) decomposition HM (or branching mechanism) for expanding a
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Table 5.10 Generation of Test Cases for Learning and Generalization of
Decomposition HMs in a Branch-and-Bound Search (Each Has 12
Subdomains)
Application Subdomain attnbutes
Connectivity of vertices is {0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 04,
0.45,0.5,0.55, or 0.6)
vC Number of vertices is between 16 and 45

Distoibutions of 818 cities (uniformly distributed between 0-100 on
both X and Y axes, uniformly distributed on one axis and normally
distributed on another, or normally distributed on both axes)

TSP Graph connectivity of cities is (0.1, 0.2,0.3,0r 1.O)

Range of both profits and weights is [(100-1000), (100-200), (100-
105)}
KS Variance of profivweight ratio is (1.05, 1.5, 10, 100)
13-60 objects in the knapsack

search node into descendants using operators to expand (or transform) a search
node into child nodes; (3) pruning HM for pruning inferior nodes in order to trim
potentially poor subtrees; and (4) termination HM for determining when to stop.

In this subsection, we apply learning to find only new decomposition HMs,
preliminary results on learning of selection and pruning HMs can be found in
Reference [2]. We consider optimization search, which involves finding the optimal
solution and proving its optimality.

We illustrate our method on three applications: traveling salesman problems
on incompletely connected graphs mapped on a two-dimensional plane (TSP),
vertex-cover problems (VC), and knapsack problems (KS). The second problem
can be solved by a polynomial-time approximation algorithm with guaranteed per-
formance deviations from optimal solutions, and the lastcan be solved by a pseudo-
polynomiai-time approximation algorithm. Hence, we expect that improvements
due to learning are likely for the first two problems and not likely for the last.
Table 5.10 shows the parameters used in generating a test case in each application.
We further assume that all subdomains belong to one problem subspace.

The problem solver here is a branch-and-bound algorithm, and a test case is
considered solved when its optimal solution is found. Note that the decomposition
HM studied is only a component of the branch-and-bound algorithm. We use well-
known decomposition HMs developed for these applications as our baseline HMs
(see Table 5.12). The normalized cost of a candidate decomposition HM is defined
in terms of its average symmetric speedup (see Equation 5.2), which is related to
the number of nodes expanded by a branch-and-bound search using the baseline
HM and that using the new HM. Note that we do not need to measure quality as
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both the new and existing HMs when applied in a branch-and-bound search look
for the optimal solution.

In our experiments, we selected six subdomains in each application for learning.
We performed learning in each of these subdormains using 1600 tests, selected the
top five HMs in each subdomain, fully verified them on all the learned subdomains,
and selected one final HM to be used across all the subdomains. Table 5.11 sum-
marizes the learning, generalization, and validation results. In the learning results,
we show the average symmetric speedup of the top HM learned in each subdomain
and the normalized cost of learning, where the latter was computed as the ratio of
the total CPU time for learning and the harmonic mean of the CPU times required
by the baseline HM on test cases used in learning. The results show that a new
HM learned specifically for a subdomain has around | to 35% improvement in its
average symmetric speedups and 3000 to 16,000 times in learning costs.

Table 5.11 also shows the average symmetric speedups of the generalized HMs,
We picked six subdomains randomly for learning. After learning and full verifica-
tion of the five top HMs in each subdomain, we applied Equation 5.8 to identify
one top HM to be used across all the 12 subdomains. Our results show that we have
between O and 8% improvement in average symmetric speedups using the gener-
alized HMs. Note that these results are worse than those obtained by learning, and
that the baseline HM is the best HM for solving the knapsack problem.

The third part of Table 5.11 shows the average symmetric speedups when we
validate the generalized HMs on larger test cases. These test cases generally
require 10 to 50 times more nodes expanded than those used earlier. Surprisingly,
our results show better improvement (9 to 23%). It is interesting to point out
that 6 of the 12 subdomains with high degree of connectivity in the vertex-cover
problem have slowdowns. This is a clear indication that these subdomains should
be grouped in a different subspace and learned separately.

Table 5.12 shows the new decomposition HMs learned for the three applications.
We list the variables that we fed to the learning system. In addition to these vari-
ables, we have also included constants that can be used by the heuristics generator.
An example of such a constant is shown in the HM learned for the vertex-cover
problem. This formula can be interpreted as using [ as the primary key for deciding
which node to include in the covered set. If the {s of two alternatives are different,
then the remaining terms in the formula (n — Al) are insignificant. In contrast,
when the Is are the same, then we use n — Al as a tie breaker.

Finally, Figure 5.8 plots the distribution of symmetric speedups of the general-
ized HM for VC with respect to the original HM using test cases in our general-
ization database. It shows the performance improvement of each individual test
case with respect to that of the original HM. It further shows that performance
is fairly evenly distributed above and below the average value without unnatural
compression of ranges. This observation confirms that symmetric speedup is a
proper normalization measure in this case. This plot also shows the difference in
performance distribution across different subdomains, indicating the need to use a
range-independent measure such as the probability of win.
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Table 5.12 Original and Generalized Decomposition HMs Used in a
Branch-and-Bound Search

Application  Variables used in constructing HMs _ Original HM Generalized HM
vC I = live degree of vertex (uncov- { 10000/ +n — Al (lis
ered edges) the primary key,
d = dead degree of vertex (cov- n — Al is the sec-
ered edges) ondary key)
n = average live degree of all

neighbors of vertex
Al = difference between { from
parent node to current node
TSP ¢ = length of current partial tour ¢ mxx¢
m = min length to complete cur-
rent partial tour
a = avg length to complete cur-
rent partial tour
{ = number of neighbor cities not
yet visited
d = number of neighbor already
visited
KS p, w = profittweight of object pfw plw
s = weight slack = weight limit
— current weight
Pmax» Pmin = max/min profit of
unselected objects
Wmax, Wmin = max/min weight
of unselected objects

In short, our results show that reasonable improvements can be obtained by
generalization of learned HMs. We anticipate further improvements by (1) learning
and generalizing new pruning HMs in a depth-first search, (2) partitioning the
problem space into a number of subspaces and learning a new HM for each, and
(3) identifying attributes that help explain why one HM performs well in one
subdomain but not in others.

5.5 Conclusions

In this chapter, we have studied automated generalization of performance-related
heuristics for knowledge-lean applications. To summarize, we have derived the
following results:
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| We have found inconsistencies in performance evaluation of heuristics due
‘ to multiple tests, multiple learning objectives, normalization, and changing
behavior of heuristics across problem subdomains. We have proposed

' methods to cope with some of these anomalies.

} 2 We have studied methods to generalize learned heuristics to unlearned do-
mains. To this end, we have proposed and evaluated a range-independent
measure called probability of win for ranking heuristics in a problem sub-
‘ domain. This allows heuristics across problem subdomains to be compared
? in a uniform manner. In case that there are trade-offs between cost and
« quality, our learning system will propose alternative heuristics showing
| such trade-offs.

i 3. We have found better heuristics for generating patterns in circuit testing,
} placement and routing of VLSI components, and branch-and-bound search.

Due to space limitation, new heuristics for process mapping [7] and blind
equalization in communication are not shown.

There are still several areas that we plan to study in the future.

1. One of the open problems that has not been studied is the identification of
problem subdomains for learning and subspaces for generalization. Since
such demarcation is generally vague and imprecise, we plan to apply fuzzy
sets to help define subdomains and subspaces. Fuzzy logic can also help
identify heuristics that can be generalized, especially when there are mul-
tiple objectives in the application.

2. We plan to study metrics for performance evaluation besides the average
metric studied in this chapter. One such metric is the maximum metric
that is useful when a heuristic method can be applied multiple times in
order to generate better results at higher costs. This is also related to better
generalization procedures that trade between improved quality and higher
cost.

3. Finally, we plan to carry out learning and generalization on more applica-
tions. The merits of our system, of course, lie in finding better heuristics
for real-world applications, which may involve many contradicting objec-
tives. Our generalization procedure needs to be extended in order to cope
with applications with multiple objectives.

T I
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