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In this chapter, we present the design of Teacher (an acronym for
TEchnigues for the Automated Creation of HEuRistics}), a system
for learning and for generalizing heuristics used in problem solving.
Our system learns knowledge-lean heuristics whose performance
is measured statistically. The objective of the design process is
to find, under resource constraints, improved heuristic methods
(HMs) as compared to existing ones. Teacher addresses five gen-
eral issues in learning heuristics: (1) decomposition of a problem
solver into smaller components and integration of HMs designed
for each together; (2) classification of an application domain into
subdomains so that performance can be evaluated statistically for
each; (3) generation of new and improved HMs based on past
performance information and heuristics generated; (4) evaluation
of each HM's performance; and (5) performance generslization to
find HMs that perform well across the entire application domain.
Teacher employs a genetics-based machine learning approach and
divides the design process into four phases. In the classification
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phase, the application domain is divided into subspaces (based on
user requirements) and problem subdomains (based on the perfor-
mance behavior of HMs). In the learning phase, HMs are gener-
ated and evaluated under resource constraints with a goal of dis-
covering improved HMs. In the performance-verification phase,
good HMs from the learning phase are further evaluated to ac-
quire more accurate and more complete performance information.
Finally, in the performance-generalization phase, HMs most likely
to provide the best performance over the entire application do-
main are selected. We conclude the chapter by showing some
experimental results on heuristics learned for two problems used
in circuit testing.

4.1 Process of Designing Heuristics

A heuristics-design process is a process for learning improved heuristic
methods (HMs) for a problem solver. These HMs, when used to solve
an application problem, can provide better and/or less costly solutions.
The design of heuristics is an important issue in machine learning.
Today, many application problems are too complex for us to find op-
timal algorithms analytically. Rather, we rely on heuristics designed
by experts to find high quality solutions. The effectiveness of these
heuristics, however, depends on the domain knowledge and past ex-
perience of these experts. When little domain knowledge is available,
as in the applications we study in this chapter, it is important to de-
velop automated learning methods for generating improved heuristics
systematically, evaluating their performance on realistic test cases, and
generalizing their performance to test cases not seen in learning.

The goal of this chapter is to present, for a given application domain,
a system that can find improved HMs over ezisting HMs with respect to
some average objective measures. The applications we are interested in
have the following characteristics:

e a large number, and possibly infinitely many, test cases;

¢ a knowledge-lean application domain with little domain knowledge
to relate the controls of HMs to their performance;
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e performance-related HMs whose performance can be evaluated by
the cost of applying %m,B 8& gm aﬁb@ om §m moEsoE moﬁa

o HMs that are too Sma% to vo emmnma axgbm:a? mbm
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There are five major issues in %ﬁ&ovEm mgm moﬁ aﬁmm applications

as outlined in Figure 4.1.

(1) Decomposition and Enmmgﬁos om vonmE.mo?ma coms-
ponents. For a complex problem mo?w with multiple heuristic compo-
nents, there are many combinations of heuristics that can be developed.
Oftentimes, it is not possible to: mba E%uoc& wmﬁasnm mOu mz the

components simultaneously.
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‘A feasible approach is to improve these heuristics in a piecewise
hion. This involves decomposing the problem solver into a number
maoémé#w a smaller number of components in each, designing im-
wed -heuristics for each group, and. SemmnmaEm Evnoéa woﬁ_mﬁa v
each group into the problem solver.. s
“There are several difficulties with this wv?.o@ov m,:mﬂ z is-hard
find the best way to group heuristics components in-order to have
best overall performance. Second, heuristics in a problem solver
y interact with each other, and the design of heuristics for one group,
may depend on the heuristics designed for others. Without the domain
knowledge on the effects of heuristics in one group on others, it is g&
design heuristics for these groups independently.
“One simple approach that minimizes the interactions is to momﬁb
euristics for different groups sequentially. In this approach, we first
esign an improved HM 4 for group A. This is followed by the design of
HM p for Group B after HM 4 is in place. The process is then vaﬁ&
til HMs for all groups have been designed. 0
(2) Classification of application domain. 4555 ﬁrm vaa.o?
mance of an HM is nondeterministic and the cost for evaluating it on
a test case is expensive, we can only afford to evaluate each HM on a
small number of test cases. In general, it is valid to estimate the true
performance of an HM based on a subset of tests when the performance
values are independent and identically distributed (IID).
.. We have found that HMs can behave differently on different subsets
of test cases of an application [29]. When this happens, it i3 necessary
to partition the application domain into smaller subsets (called subdo-
mains) so that each can be evaluated independently.
In this chapter, we define a problem subdomain as a subset of the
application domain so that performance values of HMs, when evaluated
on test cases in the subdomain, satisfy the IID property.
Sometimes, it may be more efficient to have different groups of sub-
domains solved by different HMs. In this case, subdomains may need to
be partitioned into groups and an HM be learned for each. We refer to
this partitioning of the application domain as the classification problem.
(3) Generation of heuristics. This refers to the generation of
improved HMs based on HMs generated already. This issue has been
studied extensively in machine learning. Section 4.2 overviews the pre-
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vious work in this area.

The generation of improved mgm is difficult for knowledge-lean prob-
lem solvers as there are no models that relate the specifications of an
HM to its performance. In this case, the problem solver must be treated
as a black box, and heuristics generation have to rely on weak (domain-

sition/integration process to be performed manually by designers, who
develop improved heuristics for each group sequentially. This is neces-
sary because decomposition and integration cannot be studied until all
the other issues have been addressed and a good system for designing
improved heuristics for each component has been developed. We plan
to address this issue in our future work.

independent) methods.

(4) Evaluation of Heuristics. To obtain improved HMs, we must
be able to compare their performance. The performance of HMs is
generally obtained by evaluating them on one or more test cases. When™
the performance of an HM is nondeterministic, this process may need

to be repeated multiple times.
The key issue is to be able to compare the performance of different

heuristics using a small number of tests. This is especially important in -
our research since we are dealing with heuristics that are expensive to _

evaluate.

(5) Generalization of Performance on Heuristics Learned

When the performance of an HM is nondeterministic and varies across
different test cases, only a subset of test cases are usually used in eval-
uating its performance. However, we expect the HM selected to be
generalizable; that is, it must perform well not only on test cases tested
during learning but alsc on test cases not seen in learning. We call this
the performance-generalization problem in this chapter.
. Performance generalization is difficult when the application domain
is large, and HMs have different (and possibly inconsistent) performance
wmwmﬁg across different regions (or subdomains) in the application do-
main.

The next section presents an overview of the work in automated
learning of heuristics, which has been studied extensively in artificial
intelligence. There has also been some work on the evaluation and
generalization of heuristics in genetics-based learning [31,33,71]. The
remaining issues on decomposition/integration and classification have
been mostly ignored in the literature since they exist only in complicated
application problems. Unfortunately, many real-world applications may
fit in this category, and it is Emgw mmmnmzm to have some mowcﬁog to
address these issues.

The approach presented in %5 &538 ma%mmmg all these issues ex-
cept decomposition and integration. We currently require the decompo-

We present in Section 4.4 the design of Teacher, a system that im-
plements our heuristics-design process. Our system has four phases of
operation, each of which is isolated to deal with a unique design is-
sue. The first phase dealing with the classification issue is discussed in
Section 4.5. Section 4.6 presents the second phase that addresses the
generation of good heuristics for a subdomain and their evaluation. The
operation in this phase is the one referred to by most researches as the
learning process. Our approach in this phase is based on the genetics-
based machine learning paradigm presented in Section 4.3. Section 4.7
discusses the third phase that deals with the verification of performance
of heuristics. Section 4.8 presents the final phase that deals with the
performance-generalization issue. In Section 4.9, we report our experi-
ence on learning HMs for two problems used in circuit testing.

4.2 Background on Heuristics Learning

In this section, we present a brief survey on the automated learning of
heuristics. We first present a classification of the approaches in heuris-
tics learning, This is followed by examples on the strengths and weak-
nesses of various learning methods. Finally, we summarize how our work
is related to previous approaches and the type of application problems
we have studied.

4.2.1 Classification of heuristics-learning methods

Learning is carried out for application domains that are either knowledge-
rich or knowledge-lean. In a knowledge-rich domain, there is domain
knowledge on a world model that relates the controls/inputs of an HM
to its performance. Such a model can reduce learning time tremen-
dously because new HMs can be derived with very little or no testing of
previous HMs. In contrast, when the domain is knowledge-lean, there
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Figure 4.2: Classification of methods for learning heuristics.

is no world model, and heuristics derived must be tested to find their

performance. These are the domains that we study in this chapter.

Figure 4.2 shows a classification of the methods for learning heuris- :
tics. We classify these metheds based on the number of heuristics main-

tained by each during the design process—whether it is point based or
population based [1,69].

Point-Based Learning Paradigm. In this paradigm, a learning
system maintains one incumbent HM that is modified in place by the
learning system. Since each modification of the HM destroys the original
HM, there must be high confidence that the new HM is better than the
old one. This learning paradigm works well for learning knowledge-rich
heuristics because the world model can be used to guide the generation
of improved HMs [41,45].

There are three models in traditional machine-learning studies that
fit in this paradigm. Fundamental work in this area was addressed by
Mitchell [46, 59], Minsky [42], and Dietterich and Buchanan [19]. The
basic principle is based on a generate-and-test paradigm that generates
plausible HMs, performs limited tests, and modifies the HMs according
to the feedback signals obtained. Each of these models are described
briefly in this section. Many existing machine-learning systems fit in
one of these models. ,

A general point-based learning paradigm used by the three point-
based models is shown in Figure 4.3 [69]. The general model includes
the Learning Performance Database and Preprocessor, Credit Assign-
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Figure 4.3: A general point-based learning model.

ment unit, and Learning Element. The problem solver and its initial
conditions are shown as components outside the learning system.

~ The Learning Performance Database and Preprocessor captures the
effects of decisions made by the problem solver on the application en-
vironment. The preprocessed data are used for credit assignments that
include both temporal and structural credit assignments. The Learning
‘Element then modifies the HM based on recommended actions from the
Credit Assignment unit.

Population-Based Learning Paradigm. In contrast to the point-
based approach, a population-based paradigm maintains multiple com-
peting HMs and tries to find the best HM within the pool. During
learning, new HMs are added to the pool and poor ones removed. This
paradigm is useful for learning knowledge-lean heuristics, as the weak
methods used in generating new HMs do not have to depend on a good
world model [12,26]. Moreover, it is not necessary for every new HM to
perform well since a number of alternative HMs are generated.

One important characteristic of the population-based approach is
the potential need for scheduling the available computational resources
among competing HMs. Related issues on scheduling are presented in
Sections 4.3 and 4.6.
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4.2.2 Learning knowledge-rich heuristics _An evaluative feedback carries only implicit information about the

esired behavior but explicit evaluation of the observed behavior. Such
havior is a posteriori, being measured or generated after the behavior
1as occurred. It requires a critic {73] that has some prior knowledge
the objective function and can assess the goodness of external states
or sequences thereof. Scalar evaluative feedback signals are called rein-
L forcements [42] and learning from such signals, reinforcement learning.
" In order to simplify temporal credit assignment, the Markovian prop-
ty has to be satisfied, namely, the current state of the system depends
only on the last action performed by the HM and not on the sequence
f actions before it. This property is generally hard to satisfy in com-
ex applications. Examples of systems in this class include Klopf’s
| drive reinforcement model [35] and Sutton and wﬁao 8 Sﬁmonomﬁma
model [64].
" Hybrid Learning Model. This point-based learning model m&
mbines aspects of Dietterich and Buchanan’s model and Minsky’s
model. It uses an approximate temporal model instead of the Marko-
vian model. It is intended for dealing with a knowledge-lean learning
environment with an ill-defined objective, evaluative feedback, and a
non-Markovian temporal scope.
Examples of this type of learning systems include EURISKO [38],
Samuel’s Checker Player [56,57], Williams’ REINFORCEMENT model
Hﬂm classifier system (the Michigan approach) [28], and the truck-
backer-upper problem of Widrow et al. [48]. This type of learning does
n% address the lack of domain knowledge for structural credit assign-

Several general methods have been proposed for learning knowledg
rich heuristics. These include analytic methods, learning by example
and explanation-based learning. Learning by examples and explanatio.
based learning are examples of C_maoﬁor and Buchanan’s model
learning,.

Analytic Method. An analytic method is based on ooEE.owgm_ﬁ
analysis on the problem solver with respect to its particular represent. :
tion {18,20]. This approach is knowledge-intensive and very pvvrnmso :
specific.

Dietterich and Buchanan’s Model. This point-based learning
model [8,19,69] and similar models proposed by Smith et al. [60] and
Langley [37] belong to a class of models for learning HMs of target
problems with well-defined objectives. They learn by supervised learn-
ing with prescriptive feedback that carries explicit information to guide
the modification of the HM tested. This learning model fits within the
framework of the general point-based model shown in Figure 4.3.

Learning by ezamples narrows the scope of possible heuristics by
specialization and generalization [45]. Egplanation-based learning exer-
cises domain knowledge to explain the relationship between an HM and
its performance [43,44].

In learning knowledge-rich heuristics, extensive domain knowledge
must be available. As our focus is on learning heuristics without such

knowledge, methods developed mOn me.Ebm knowledge-rich heuristics
cannot be used.

Genetics-Based Machine Learning. This is a population-based
approach based on generate-and-test and the application of genetic al-
gorithms [22, 23] to machine-learning problems. In generate-and-test
methods, new heuristics to be tested are generated by applying oper-
ators to existing heuristics that perform well [12,26]. The new heuris-
tics are potentially better as they were generated from heuristics that
perform well. The reproduction operators applied include crossover and
mutation. More details about this approach are presented in Section 4.3.
‘Examples of genetics-based machine learning include genetic pro-
gramming [36] and the Pittsburgh approach to classifier systems [26].

Statistical Competition. One form of statistical competition uses

4.2.3 Learning knowledge-lean heuristics

Several general methods have been proposed for learning wuoiommo.mmmb
heuristics. These include Minsky’s learning ‘model, hybrid vosﬁ,dm%m
learning model, genetics-based wmﬁ...pﬁm, and statistical methods.

Minsky’s Model. This model [42,69] is an older and perhap:
less restricted model of point-based learning systems. . It applies well
for learning HMs of target applications with undefined objectives in
knowledge-lean environments, which tend to produce evaluative an
possibly delayed feedback signals.
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statistics to translate data into concepts so that concept learning can
applied [52]. Another form uses statistics to decide which heuristi
test more, given a pool of candidate heuristics [14,30]. This meth
especially useful for learning heuristics whose exact um&ongom
be determined by a limited number of tests. - .

This approach is limited in its: :mmgb@mm as ; oE% $m8 aa:
pool of heuristics and excludes Sa introduction om new heuristics
on past evaluations.

ving strategies. They are based on the means of natural selection,
urvival of the fittest and the theories of evolution [27]. They pro-
he evolution of individual structures through the processes of se-
ion, mutation, and reproduction.” These processes depend on the
ceived vmnmogmuoa of the E&S&E structures as defined by an en-
nment [62]. o

In this section, we first present a brief overview om genetic algorithm
) before proceeding to genetics-based machine ?mHEbm, an exten-
 of mmbmso &moﬁagw to E§?~§ vnoim i

4.2.4 Summary

In learning knowledge-lean heuristics, genetics-based machine learni  Genetic m.mmoamgnzm
is the most suitable approach. The two point-based learning mode
for learning knowledge-lean heuristics are too restricted and cannot,
applied for the type of applications we address in our research. HSS
sky’s model requires a Markovian temporal model that is hard to satis]
in general, and the hybrid model requires some domain knowledge fo
structural credit assignment. The statistical competition. .mﬁvnogw
only handle a fixed pool of wmﬁmsom and does not aliow EonoBm
improvements through mutations and Crossovers.

We have adopted a genetics-based learning m@cnom% %& can ovﬁ.
ate in a knowledge-lean environment and can generate new and P!
tially improved heuristics based on vmmﬁ vmumoaﬁgoa E».S.Bmﬂob. Si
tests are expensive, we have Eoowvonmﬂmm some mwﬁmonm Om 2353 :
competition to improve resource. m%&sgm B our Eababm w.mgoéo
In the next section, we examine the mmaaﬁom&mm& approach in
details and identify some key issues to be studied. mmoscm 4, m vnmwg
the architecture of a U%Emﬁou&mm&, Ham.gnm m%ng. B

netic algorithms (GAs) are adaptive methods that may vo cmma 8
search and optimization problems. Since the development 0m GA
Holland [28], GAs have been extensively studied [15,22,25]. They
based on the mmnmﬂo processes of biological organisms described first
Og&mm Darwin in nsm Origin of Species. Populations of competing
,.<Ec,w_m evolve over ‘many generations according to the principle of
ural selection and “survival of the fittest.”
Genetic algorithms v work §m~ a w%&n:o: of “individuals” and a set
f gowom_o%% d@w& o_uoamnoa Amznr as Eﬁgsg and nao%o,\oa Each
acm._ ep! amobﬂm a vo%&_o moEﬂo: to m mzou E.oEmB. Based on
,?woa% of mqo?ﬁob, oEw the most mEga &oaab«m E a vochﬂoc
likely to survive and mmnmumg ommvnsmm mmmu
In Q.Pm each B&Sacﬁ is Svmamgﬂma as a string of binary values 8
). Hgm wEmgB 8@385»98 is mvvrnmﬂos.&%vmv%g wmoﬁ:pm
ious studies to focus on the general approach.
A gmgmaa level is pmm&uoa to each individual wmwmm on 2 how moom awo
blem has been solved. Those with high fitness levels will reproduce
noou&ncnm s,:& oﬁrﬁ 5&5&5& in the vov&auou. New offsprings
nerated share some features taken from each parent. Those with low
Genetics-based machine learning; the m.gno@ow we rmé m&mﬁ.& for our tness Fé&m “are Hamm Eﬁ@ to vm m&@ogm for 8@3%33 and so die
heuristics-design ﬁnoammm, isa @B& ow. a gmmmw w&a 8.:& ¢<owc€o§ ut. ;
computing [27,62]. - A new generation s, nvﬁmmono“ produced by selecting the best indi-
Evolutionary 83@&5@ ( m@ E&z% genetic ,&%3;3« « Qb,i, ev iduals from the current generation and mating them to produce a new
lutionary programming (EP), evolution strategies (ES), classifier sys- t of offsprings. Over many generations, good characteristics are spread
tems (CFSs), genetic programming (GP), and several other problem- hroughout the population. This process allows the most promising ar-

4.3 wmowmnocsm on H<°_zﬁosmu% Oogﬁzﬁww
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Population  Individual Fitness values oter to cover applications of the idea behind genetic algorithms in
"1-------”\\ ":-Es.::v_\\ P ler to develop HMs used in a problem-solving process.
m — M m p— M _ m enetics-based machine learning is cmmma Qw the same E.mm of evo-’
" __ , P === [ selection& " jon and natural selection as in genetic algorithms (see Figure 4.4).
! m " Braluaton : m 1\ Reproduction " m ch a system maintains a population of F&&mc&ﬁ méaﬁo& gmw.
L= | | o= Fn m ess values, and generates a new population by selecting existing in-

iduals for reproduction based on their fitness values. However, the
resentation of HMs is generally more complex [22,36]. Some exam-
le representations of an individual include an if-then rule [22}, a set of
es [34], a Lisp expression [36], and a vector of numbers [70].

Genetics-based learning applied to learn improved HMs are more
mplex computationally as compared to genetic algorithms. First, be-
cause the structure of each individual can be complex, reproduction
perators, such as mutation and crossover, can also be more complex.

/, addition, more domain knowledge may be needed in order to create
- knowledge-intensive reproduction [10,22], such as those used in GIL [34].
Second, since the evaluation of an HM on a test case is non-deterministic
or noisy), evolutionary computing applied to learn improved HMs must
also deal with “noisy” conditions. This means that the fitness of each
ndividual may not be exact, and that multiple evaluations of each in-
lividual may be necessary.

Existing work in genetics-based machine learning can be divided
into two approaches: (a) treating the entire population as the HM to
e learned and (b) treating each individual as a complete HM.

(A) Population as HM. This approach, known as the Michigan ap-
sroach in the genetic algorithm community [15,75)], treats each individ-
ual in the current population as a component contributing to the entire
population. It requires all components of a solution to be homogeneous
across the population. To m&:ﬁa better vm&ow.ﬁmboo for nwm mwnﬁm pop-

Figure 4.4: General model of the evolution process in a genetics-based
approach.

eas of the search space represented by the population to be explored [9

Figure 4.4 shows the overall process within GAs. The process can b
viewed as iterating over two different steps: (1) evaluation of individua
of a population in the current generation, and assigning fitness Hme.a
to each individual, and (2) generation of a new population for a ne
generation by selecting existing individuals based on their fitness valug
and by using selected individuals to reproduce.

In most traditional GAs, the fitness of each individual is exact an
can be computed with negligible costs. However, there are cases in
which there are “noises” in the evaluation process, resulting in multiple
evaluations and in uncertainties over the fitness of each individual
21,24]. This condition can significantly increase the amount of fitnes
evaluations performed during each generation. Such is the case in th
applications we have studied. Here, the performance of an HM on a test
case is governed by a statistical distribution, and testing the HM once
is equivalent to drawing a random value from the distribution.

There are many issues in genetic algorithms that have been and
continue to be studied, including issues on representation, population
size, fitness evaluation, selection of E&ﬁmz&m for reproduction, E&
reproduction methods [9,10,16,62].

e

credit assignments to apportion credits or debits to various contributing
ndividuals in an episode. The most common credit assignment strategy
is the bucket brigade algorithm [22].

Examples of this approach include most classifier systems such as
Genetics-based machine learning is an extension of genetic algorithms Om-u.. [22] mﬂ& CFS-C [53]. This wvvu.omg can be wvvrﬁ.w in online
(GAs) to solve machine-learning problems [22], The term is used in this learning to improve a problem solver during the problem-solving process.

4.3.2 Genetics-based machine learning
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(B) Individual as HM. This approach, known as the Pittsburgh a
proach in the genetic algorithm community [15,75], treats each individ
ual as a solution that competes with other individuals in the populatio
In this case, each individual can be entirely different from one anoth
leading to more complex systems as compared to the Michigan approach

This approach does not require credit assignments to apportion cred:
its or debits, since each performance feedback is directed to only o
individual. However, feedbacks usually come less often to each individ
ual, leading to more evaluations in order to reach a final result.

Examples of this type of approach include the Pittsburgh approach
[15,75] to classifier system (such as LS-1 [61], GABIL [17], and GIL [34]
and genetic programming (GP) [36].

This approach is more suitable for our system because HMs in our
applications are usually nonuniform with different structures and di
not have good models of interactions among their components to allow
credit assignments. ,

There are some systems that use a hybrid of the Michigan and th
Pittsburgh approaches. In this case, each individual is treated as
potential solution with components that can contribute to the problem:
solving process. It is also necessary to use credit assignment within each
individual to assign credits/debits to each component. An example of
this hybrid approach is SAMUEL [26].

In summary, genetics-based learning can be used to learn knowledge-
lean HMs in the applications that we study in this chapter. A popula~
tion of HMs can be maintained, each will be tested, evaluated, mutated
and crossed over with other HMs to form new HMs in the next gener
ation. Existing genetics-based methods, however, do not address th
issues when performance data of HMs do not belong to one commo
statistical distribution and when tests are expensive to conduct. Whe;
HMs behave differently across different subsets of test cases of an ap-
plication, it is possible for an HM to perform well in one subset bu
poorly in another. Hence, the generalization of test results to test cases
not evaluated must be considered. The problem is further complicated
when tests are expensive to carry out. In this case, the learning system
must decide how many HMSs to be tested and the amount of testing t

,oaowz.mmaoa«osogv.memawm:%ﬁmma&gm&gegﬁa&oav,
in the next section. ERCn ke

4 The Teacher System

this section, we discuss Teacher, a genetics-based learning system we
have developed in the last six years [69]. Its objective is to Sm.ms, un-
r limited computational resources, good HMs for solving mvv_swﬁ.won
problems and to generalize the HMs learned to unlearned subdomains.
We choose to use the average metric for comparing HMs, and exam-

e the spread of performance values when HMs have mma&m.m. average
performance. When there are multiple objectives in comparing HMs,
we constrain all but one objectives during learning and optimize the
unconstrained objective. Our learning system is capable of proposing
more than one HMs, showing trade-offs among these objectives.

4.4.1 Key characteristics of Teacher

ur present prototype is unique as compared to other genetics-based
earning studies because it combines the following three features.

o Our learning environment is noisy so that the performance of each
HM may have to be evaluated using multiple tests.

s We consider applications in which HMs behave differently in differ-
ent subdomains (Section 4.1). Existing methods generally ignore
this problem and focus on only one set of statistically related test
cases.

e We assume that the cost of evaluating an HM on a test case is
expensive. In the applications presented in Section 4.9, a fast
workstation takes a few days to perform one to two thousand tests.
Hence, it is not feasible to perform millions of tests as assumed
in other genetics-based learning systems [36]. For simplicity, we
consider logical time in this chapter in which one unit of time is
needed for each test of an HM.

These conditions are more realistic for complicated real-world applica-
ons for which we want to design improved heuristics. HE
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! Domata e sure that performance values from test cases used in learning are

- Application _gnowtedge GO @ Table & Concept ~ eamed HMs 75 presentative and can be used for statistical estimation of the true
Domain , _— *lb BN erformance of unseen test cases.
......................... There are two steps in this phase.
vmﬂﬂu%mwmmwwo (a) Subspace classification. Within an application domain, differ-
Define application Performance _ ent regions may have different characteristics, each of which can best
space to traverse - Generalization be solved by a unique HM [51]. Hence, regions should be identified
whenever possible so that unique HMs can be developed. This involves
Subdomains .ﬂm”g artitioning the application domain into a small number of distinct sub-
A spaces so that improved HMs are learned for each.
Leamni HMs and Verification - We define an application subspace as a user-defined partition of an
earning Phase .. . .
Performance | (Full Evaluation) pplication domain so that HMs for one subspace can be learned inde-
endently of HMs in other subspaces. Subspace partitioning is impor-

4
ant when test cases in an application have vastly different behavior.

(b) Subdomain classification. A problem subdomain in this chapter is
efined as a subset of the application domain (or application subspace)

that the performance of HMs in each subdomain can be estimated
tatistically based on a subset of test cases in this subdomain. In other
ords, the performance values of an HM in a subdomain are independent
nd identically distributed (IID), but may not be IID across subdomains.
Since the performance distribution of an HM may be different across
ifferent subdomains, the performance of HMs cannot be compared or
_combined across subdomains in a learning experiment.

HM Pool
and Subdomains

Figure 4.5: Organization of the heuristics-design process in Teacher
4.4.2 Four phases of Teacher

The operations of Teacher are divided into four phases: classification
learning, performance verification, and performance generalization. Fach |
phase is designed to independently deal with a separate issue discusse
in Section 4.1. -
Currently, the classification phase is performed manually while th
other three phases are automated [32]. We have plans to incorpora
strategies for automated classification, decomposition and integratio
of HMs in Teacher in the future. Figure 4.5 shows the overall design
process in Teacher. We describe the objectives and the key issues of each

phase in this section and our solutions to these issues in the following
sections. , ,

Learning phase

‘The goal in this phase is to find effective HMs for each of a limited
set of subdomains. Besides being the most complicated phase in the
_design process, it is the only phase in which new HMs are introduced
“and tested under resource constraints. Figure 4.6 shows the tasks in
the learning, performance-verification, and performance-generalization
~phases.

- To perform learning, the system first selects a subdomain, generates
good HMs (or uses existing HMs from users or previous learning exper-
iments) for this subdomain, and schedules tests of the HMs based on
the available computational resources. When learning is completed, the
 resulting HMs need to be fully verified, as HMs found during learning

Classification phase

This first phase of the design process partitions test cases in an appli
cation into distinct subsets. Its goal is to partition a target applicati
domain into smaller subsets in order to (a) identify different regions
within the application domain that may require different HMs, and (b)
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Figure 4.6: The process and actions in each phase in Teacher.
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may not be tested adequately. Note that learning is performed on one
subdomain at a time,

There are three key issues in this phase.

(a) Heuristics generation. This entails the generation of good HMs,
given the performance information of “empirically good” HMs. As dis-
cussed in Section 4.2, we use weak genetics-based operators here [12,36].
(b) Performance evaluation. This is related to the performance eval-
uation of HMs during learning, given that there may be multiple perfor-
mance measures, that there is no defined relationship among them, and
that HMs may have different performance across different subdomains.

(c) Resource scheduling. Given the performance information of HMs

‘under consideration, resource scheduling entails the selection of HMs for

further testing, the termination of the current generation, and the initia-
tion of the next generation. These problems are important when limited
computational resources are available and tests of HMs are expensive
and noisy. We schedule computational resources rationally by choosing
(i) the number of tests on each HM, (ii) the number of competing HMs
to be maintained at any time, and (iii) the number of problem subdo-
mains to be used for learning and for generalization. We have studied
two related issues in resource scheduling in genetics-based learning al-

gorithms: sample allocation and duration scheduling [2,4,6,30,70].

Performance-verification phase

The goal of this phase is to fully evaluate the set of HMs with good
performance found at the end of previous learning phases. As mentioned
previously, the performance of HMs evaluated during learning is only
estimated based on incomplete and possibly inadequate performance
data. In order to select HMs that can be generalized to unlearned
subdomains, we need to carry out full evaluation of each HM selected
at the end of a learning phase. This involves evaluating each selected
HM fully on all subdomains from all learning phases and any additional
subdomains provided by users. The main potential issue in this phase
is the scheduling of limited computational resources to test a given set
of HMs.
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Performance-generalization phase. minimum number of nodes to cover all the edges in a graph. In

ing a decomposition HM to decide which vertex to be included

The goal of the last phase is determine which HMs found in prev
he covered set, previous experience on other optimization problems

learning phases perform consistently well on all subdomains, includi 3 i
those not studied in learning. This notion of performance generalizatio dicates that HMs for densely connected graphs are generally cHferent

is slightly different from that in point-based learning, as we genera : m those for sparsely oogao”&. ones. O.onmanamuz% the wvvmmmaon
the performance of HMs found to unseen test cases rather than gen main of all graphs can be partitioned (in an ad Vom fashion) into a
alizing the HMs found to better HMs. There are two wm% issues to number of subspaces based on graph connectivities. c
studied here, Example 2. As another example, in generating test patterns for
(a) Performance of HMs across different subdomains. As disc sting VLSI circuits, previous experience shows that sequential cir-
in Section 4.1, HMs may have different performance behavior in differ its require tests that are different from those of combinatorial circuits.
subdomains; hence, performance values of an HM from different subdi ence, we can partition the application domain into two subspaces, one
mains cannot be combined directly. Oftentimes, an HM may vmmmo,, : sequential circuits and another for combinatorial circuits. However,
well in some subdomains but worse in others. One approach we ha e are not able to partition the subspace of sequential circuits into
studied is to find HMs that are consistently better than others with smaller subspaces as it is not clear which attributes (like the length of
high probability across all the subdomains [33,71]. k ¢ the longest path, the number of flip flops, etc.) should be used in this
(b) Cost-quality trade-offs. This involves determining mmwn_wa HMs partitioning. O
that perform well in an application. Should there be multiple HMs to be : In our current implementation, subspace partitioning is guided by
applied (at a higher total cost and better quality of results), or should mmon-sense knowledge or by user experience in solving similar appli-
there be one HM that is costly to run but generates high-quality results? tion problems. It requires knowing one or more attributes to classify
Some results on these trade-offs are shown in Section 4.9. test cases and is driven by a set of decision rules that identify the sub-
space to which a test case belongs. When such attributes cannot be
| identified, we simply assume that the entire application domain is in
one subspace.
© In classifying test cases in a subspace into subdomains, some do-
main knowledge, such as previous experience on similar problems, may
be required. After subdomains have been classified, it is important to
test the HMs in each subdomain to make sure that their performance
ata are IID. Examples of methods for testing for identical distributions
are Kolmogorov-Smirnov two-sample test [29, 47, 50], Mann-Whitney
test [68] and Wald-Wolfowitz two-sarple runs test [47]. On the other
hand, testing for independence is difficult, if not impossible [68]. Cur-
rently, there do not exist methods to guarantee that all performance
,4&58 are independent. However, it is possible to evaluate the random-
ness of a given sequence of test cases, which is a necessary condition for
‘data to be independent. For instance, test of randomness can be found
by computing the total number of runs up and down [47,72], the total
‘number of runs above and below the median [68,72], and the total num-

4.5 Strategies in the Classification Phase

Recall from the last section that quantitative comparison of performancy
is difficult when test cases are of different behavior. Hence, before lear
ing begins, the application aOBm.E should be broken into smaller mﬁvu
spaces and subdomains, ,

In subspace partitioning, the attributes wmma& for partitioning Eww.
not be defined, or the number of attributes may be too large. When
this happens, non-parametric clustering methods, such as those based
on neural networks, may have to be used. Another possibility is to
always apply multiple HMs for each test case, resulting in a Emroa.
computational cost for a better solution, -

We show two examples to demonstrate the idea of mvvzowaoz sub-
spaces. ;

Example 1. Consider mo_Sbm a vertex-cover problem that finds
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4.6 Learning Heuristics in One Subdomain

In this section, we present our approach to learn improved HMs un-
der resource constraints for a single subdomain. Figure 4.7 shows the
‘architecture of our resource-constrained learning system for one sub-
‘domain [69]. This population-based learning system is based on the
genetics-based machine-learning paradigm. There are five main compo-
‘nents in the system:

(a) Resource Scheduler that determines the best way to use the avail-
able computational resources,

(b) Internal Critic that provides feedback, based on measured perfor-
mance, to indicate how well a particular HM has performed,
Problem
Solver 4o Manager (c) Population-Based Learning Element that generates new HMs and
decision maintains a pool of existing ones and their past performance,
M Application Environment ) (d) Test-Case Manager that generates and maintains a database of
J test cases used in HM evaluation, and

Figure 4.7: Architecture of population-based learning for one subdo-

.

main.

(e) Problem Solver that evaluates an HM using a test case.

In this research, we assume that the application-specific Problem
‘Solver and Test-Case Manager are user-supplied. The remaining three
components are designed to deal with the three key issues in Section 4.4:

heuristics generation, performance evaluation, and resource scheduling.
ber of runs above and below the mean [47]. Other randomness tests

include Kendall’s Rank Correlation Coefficient Test [72] and Circular
Serial Correlation Coefficient Test {72]. Results on applying these tests
are discussed in the references [29].

Problem Solver

This component is simply the target problem solver whose heuristics we
want to improve. The performance of applying a problem solver on a
test case is in terms of the quality of the solution found and the cost of
the problem-solving process.

In our learning strategy, the problem solver accepts (a) the specifi-
cation of the HM to be used in problem solving, and (b) the test case to
be solved. It also has a mechanism to return the measured performance

of the problem-solving process as feedback to the learning system.

Continuing with Example 1 on the vertex-cover problem, a prob-
lem subdomain can be defined as a collection of random graphs with
a certain degree of connectivity. As another example, in generating
test patterns for testing VLSI circuits (Example 2}, each circuit may be
treated as an individual subdomain, as we do not know the best set of
attributes to group different circuits into subdomains.
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ond stage is SCA that translates the (temporally local but structurally
global) feedback associated with a decision point into modifications as-
sociated with various parameters of the decision process.
- Since the knowledge-lean applications considered here does not have
a world model that relates states, decisions, and feedback signals gen-
_erated by the learning system or measured in the environment, credit
~ assignment has a much weaker influence on performance improvement.
Note that the lack of a world model for credit assignment is the main
_reason for maintaining competing HMs in our learning system.
In our current prototype, the Internal Critic normalizes the perfor-
- mance value of an HM on a test case against the performance value
of the same test case evaluated by the baseline HM. It then updates
~ the performance metrics of the candidate HM. This step is similar to
- updating fitness values in classifier-system learning.
We have chosen to use a fixed baseline HM during each learning
~ phase and compare different HMs based on their estimated average nor-
- malized performance. This baseline HM is usually the best existing HM
before learning begins.
Our approach in normalization may cause performance anomalies.
For instance, different ways of normalization may lead to different or-
- dering of HMs by their performance data. Anomalies in ordering may
- also happen when baselines are changed. Strategies to address some of
" these anomalies have been presented elsewhere [28,69, 70].
: Although anomalies may happen, it is not critical to have perfect or-
dering of HMs during learning, as the HMs will eventually be evaluated
fully in the Performance Verification Phase.

Test-Case Manager

This provides test cases to be used in learning. These test cases are
either generated randomly or retrieved from a database. ,
In our current implementation, each HM is evaluated on a predefined -
sequence of user-specified test cases. When a test case is requested for
testing a particular HM, the Test-Case Manager returns the first test
case in the sequence that has not been evaluated by the chosen HM. This
strategy allows performance data of two HMs to be normalized against
each other and is useful when performance data have large variances.

Population-Based Learning Element

The Population-Based Learning Element maintains a pool of active
HMs. At the end of each generation, a new set of HMs are generated
to replace existing HMs. Several top active HMs are usually retained
along with the new HMs while other HMs are removed from the active
pool.

The Population-Based Learning Element in Teacher generates new
HMs using weak domain-independent operators, such as crossover, mu-
tation, and hill-climbing. These are traditional operators used in genetic
algorithms for generating new HMs [12,25]. The process for selecting
existing HMs for reproduction is also the same as in traditional genetics-
based machine learning.

More advanced generation methods that require additional domain
knowledge are left for future study. They are currently not necessary
because our application domains are knowledge lean.

Internal Critic Resource Scheduler

This schedules tests of HMs based on the available computational re-
sources. It is critical when tests are computationally expensive. There
are two problems in scheduling during each learning phase.

The sampie-allocation problem involves the scheduling of tests of
HMs in a generation, given a fixed number of tests in the generation and
HM:s to be tested. This problem is known in statistics as the (sequential)
- allocation problem [11,67] and the scheduler, the local scheduler.

The duration-scheduling problem involves deciding when to termi-

In general, this performs credit assignment {63] that apportions credit
and blame on components of an HM using results obtained in testing (see
Figure 4.3). Credit assignments can be classified into temporal credit
assignment (TCA) and structural credit assignment (SCA). TCA is the
first stage in the assimilation of feedback and precedes SCA. TCA di-
vides feedback between the current and the past decisions. Methods for
TCA depend on whether the state space is Markovian: non-Markovian -
representations often require more complex TCA procedures. The sec-
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nate an existing generation and to start a new one. The part of ﬂ VERIFICATION
resource scheduler that deals with this vaoEoB is wbogB as apm &.
scheduler. ,

These two problems, as 20: as era mow&EBm om tests E&Q EEEV
performance oEmoaém, are E@%ﬁmm amosr@d 13,5,7,30,69, 70}

4.7 Strategies in Performance Verification

In this phase, we like to find more complete performance informatio:
about the HMs we have generated during the learning phase(s). This i

necessary for two reasons. First, the performance information obtaine test cases to Use
during each learning phase pertains to only one subdomain and is usu: ~ X
ally incomplete due to resource constraints. Second, the performance- Problem . Test-case measured
generalization phase (to be described in the next section) requires per Solver rost cases Manager performance
formance information of each HM on every subdomain. Hence, we n .
to evaluate thoroughly the HMs selected at the end of learning. decision
The operations in this vwmmm (see m,_mE.m 4.8) are very 98:2..8 th , ﬁ Appli cation Environment w
in the learning phase except for the following differences. (a) A fix

pool of HMs is maintained in this phase and no new HMs are generated
(b) More than one subdomains of test cases can be maintained by th
Test-Case Manager. (c) The performance of HMs from different subd
mains is evaluated separately and S%vmb%umw by the Internal Cri
(d) Resource scheduling in this phase has a different goal of minimiz:
uncertainties in the vm&oﬂm@bo@ of all HMs across all subdomains. ﬁ
Only temporal credit assignment is done in the Internal Critic since w
do not use structural credit assignment to modify the HMs tested.

Currently, our prototype does not address the issue on resource
scheduling in this phase. It evaluates each HM fully on all test cases in
each problem subdomain. Such a strategy may be inefficient because it
tests good HMs as well as poor HMs to the same extent. We plan to
study resource scheduling in the ?38.. o

mﬁa 4.8: General model for performance verification of HMs Hmﬁ.wma

ifferent subdomains. As a result, it is possible for an HM to perform
well across all the subdomains, but its performance data from different
subdomains cannot be aggregated statistically. Our objective in gener-
alization is, therefore, to find one or more HMs in a given application
domain that has a high probability of performing better than other
competing HMs on a randomly chosen test case in the problem domain.

The performance-generalization process is difficult because (a) per-
formance data from different subdomains must be treated separately
and independently, and (b) there are usually many more subdomains
than the ones we can test. Since we may not be able to characterize
the subdomains we test to be representatives of the entire application
domain, the process is heuristic in nature.

4.8 mﬁwmammwmm E,mvmwmou.gmbnm ,Qmﬁmw&wmmﬁo

As discussed in Section Pp.m_, an' wvvromsoa aoEm.E Aoﬁ. mvvmamaow

subspace) can have many subdomains, and HMs may behave differently Example 3. To illustrate the difficulties in performance general-
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Figure 4.9: Average symmetric speedups (over 15 test cases) of three de-
composition HMs to solve the vertex-cover problem, where subdomains
are manually selected based on graph connectivity. The HM learned for
0.6 connectivity is the same as the baseline HM.

ization, we show in Figure 4.9 the average symmetric speedups’ of four
decomposition HMs used in a branch-and-bound search to solve vertex-
cover problems. We treat all test cases as belonging to one subspace,
and graphs with the same degree of connectivity are grouped into a
subdomain. We apply genetics-based learning to find the five best HMs
for each of three subdomains with connectivities 0.1, 0.35, and 0.6.
Figure 4.9 shows the performance of the best HMs learned in each
subdomain across all the subdomains. We have also identified a single

'The symmetric-improvement measure, §*v™+ s defined as follows [29,869,70}):

St -1 if St>1
'mie-sluﬁ u
Tm|+ if 0<St«1

where ST is the improvement ratio of the new HM with respect to the original
baseline HM. Symmetric improvement ratios have the properties that they range
from negative infinity to positive infinity, and that the baseline has a value of zero.
On the other hand, improvement ratios range from zero to positive infinity, and the
baseline HM has a value of one.
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generalized HM among the fifteen HMs learned and show its perfor-
mance in Figure 4.9. We find that the generalized HM is not the top
~HM learned in each subdomain, indicating that the best HM in each
gsubdomain may be too specialized. We have also found that perfor-
mance generalization is possible in terms of average performance. We
must point out that the average performance should not be used as the
sole indicator, as performance variances may differ from one subdomain
to another. o

Our current work on generalization is to ensure that HMs generated
in learning perform well across multiple subdomains. This is done by
testing each HM on multiple subdomains in a generation and by select-
ing those that perform well across all the subdomains to be candidates
for reproduction in the next generation. Our preliminary results in-
dicate the need of a better fitness function to measure the merits of
HMs that do not perform well across all the subdomains. Our current
fitness function, based on the minimum average performance across all
the tested subdomains, is too weak and may prune all the candidate
HMs in a generation.

4.9 Experimental Results

Teacher has been applied in learning improved process-placement strate-
gies on a network of workstations [40], more efficient process-placement
strategies on distributed-memory multicomputers {30}, more robust pa-
rameters in a stereo-vision algorithm [58], smaller feed-forward neural
networks [65,66], improved heuristics for a branch-and-bound search {39,
76], better and less costly strategies in circuit testing [33,70,71] and cell
placement and routing [33,70,71], and improved parameters in channel
equalization {31,33].

In this section, we report our experience in applying Teacher to learn
improved HMs in two problem solvers, CRIS [55] and GATEST ([54], for
circuit testing. These are two genetic-algorithm software packages for
generating patterns to test sequential VLSI circuits. In our experi-
ments, we used sequential circuits from the ISCAS89 benchmarks [13]
plus several other larger circuits. Since these circuits are from different
applications, it is difficult to classify them by some common features.
Consequently, we treat each circuit as an individual subdomain. As we
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like to find one common HM for all circuits, we assume that all circuits
are from one subspace.

49.1 CRIS:

CRIS [55] is based on continuous mutations of a given input test se-
quence and on analyzing the mutated vectors to select a new test se-
quence. Hierarchical simulation techniques are used in the system to
reduce memory requirements, thereby allowing its application to large
VLSI circuits. The package has been applied successfully to generate
test patterns that can detect nearly all the detectable faults (high fault
coverage) for large combinatorial and sequential circuits.

CRIS in our experiments is treated as a problem solver in a black
box, as we have minimal knowledge in its design. An HM targeted for
improvement is a set of eight parameters used in CRIS (see Table 4.1).
Note that parameter Pg is a random seed, implying that CRIS can be
run multiple times using different random seeds in order to obtain better
fault coverages. (In our experiments, we used a fixed sequence of ten
random seeds from Table 4.2.)

A major problem in using the original CRIS is that it is hard to find
proper values for the seven parameters (excluding the random seed)
for a particular circuit. The designer of CRIS manually tuned these
parameters for each circuit, resulting in HMs that are hard to generalize.
This tuning was done because the designer wanted to obtain the highest
possible fault coverage for each circuit, and computation cost was only
a secondary consideration. Note that the times for manual tuning were
exceedingly high and were not reported in the reference [35].

Our goal is to develop one common HM that works across all the
benchmark circuits and that has similar or better fault coverages as
compared to those of the original CRIS. The advantage of having one
HM is that it can be applied to new circuits without further tuning.

4.9.2 GATEST

GATEST [54] is another test-pattern generator based on genetic al-
gorithms. It augments existing techniques in order to reduce execution
times and to improve fault coverages. The genetic-algorithm component
evolves candidate test vectors and sequences, using a fault simulator to
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Table 4.1: Parameters in CRIS treated as an HM in learning and in
generalization. (The type, range, and step of each parameter were rec-

" ommended to us by the designer of CRIS. The default parameters were

not given to us as they are circuit dependent.)

Parameter || Type | Range |Step Definition Learned
Value
P integer| 1-10 1 [related to the number of| 1

stages in a flip-flop
Py integer| 1-40 1 |related to the sensitivity of| 12
changes of state of a flip-flop
(number of times a flip-flop
changes its state in a test
sequence)

Py integer| 1-40 1 |selection criterion — related| 38
to the survival rate of a candi-
date test sequence in the next
generation

P, foat 10.1-10.0] 0.1 [related to the number of test| 7.06
vectors concatenated to form
a new test sequence

P integer| 50-800 | 10 |related to the number of use-| 623
less trials before quitting

Py integer| 1-20 1 |number of generations 1

Py float | 0.1-1.0 | 0.1 |how genes are spliced in the| 0.1
genetic algorithm

Py integer| any 1 |seed for the random number -
generator

Table 4.2: Sequence of random seeds used in learning experiments for
CRIS, GATEST, and TimberWolf.
| Sequence of Random Seeds

61801 | 98052 | 15213 | 48823 | 55414
60203 | 43212 | 08540 | 94702 | 92715
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compute the fitness of each candidate test. To improve performance, the
designers manually tuned various genetic-algorithm parameters in the
package, including alphabet size, fitness function, generation gap, popu-
lation size, and mutation rate as well as selection and crossover schemes.
High fault coverages were obtained for most of the ISCAS89 sequential
benchmark circuits [13], and execution times were significantly lower in
most cases than those obtained by HITEC [49], a deterministic test-
pattern generator.

The entire genetic-algorithm process was divided into four phases,
each with its own fitness function that had been manually tuned by the
designers. The designers also told us that Phase 2 of their package had
the largest impact on performance and recommended that we improved
it first. As a result, we treated GATEST as our problem solver, and
the fitness function (a symbolic formula) in Phase 2 as our HM. The
original form of this fitness function is

fitnessy #._faults_detected

#.faults.propagated_to_flip_flops
(#-Jaults)(#-flip-flops)

In learning a new fitness function, we have used the following vari-
ables as possible arguments of the function: #_foults, #_faults_detected,
#_circust_nodes, #_flip-flops, #.foults.propagated_to_flip_flops, and se-
quence_length. The operators allowed to compose new fitness functions
include +, —, *, and /.

(4.1)

+.

4.9.3 Experimental results

In our experiments, we chose five circuits as our learning subdomains.
In each of these subdomains, we used Teacher to test CRIS 1000 times
with different HMs, each represented as the first seven parameters in
Table 4.1. At the end of learning, we picked the top 20 HMs and evalu-
ated them fully by initializing CRIS by ten different random seeds (P
in Table 4.1 with values from Table 4.2). We then selected the top five
HMs from each subdomain, resulting in a total of 25 HMs supplied to
the generalization phase. We evaluated the 25 HMs fully (each with
ten random seeds) on the five subdomains used in learning and five new
subdomains. We then selected one generalized HM to be used across all
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en circuits. Since there is no incumbent HM, we use the median perfor-
mance value of each test case as the baseline performance for that test
case. The elements of the generalized HM found are shown in Table 4.1.
For GATEST, we applied learning to find good HMs for six circuits
$298, 5386, 526, 5820, s1196, and 51488 in the ISCAS89 benchmark).
We then generalized the best 30 HMs (five from each subdomain) by first
valuating them fully (each with ten random seeds from Table 4.2) on
he six subdomains and by selecting one generalized HM for all circuits.
ince there is an incumbent HM, we use the performance of the incum-
ent HM as our baseline for improvement. The final fitness function we
ot after generalization is

fitnessy 2 x #_faults_propagated_to_flip_flops  (4.2)

— #._faults_detected

Table 4.3 shows the results after generalization for CRIS and GAT-
EST. For each circuit, we present the average and maximum fault cov-
erages (over ten random seeds) and the corresponding computational
~costs. These fault coverages are compared against the published fault
_ coverages of CRIS [55] and GATEST [54] as well as those of HITEC [49].
Note that the maximum fault coverages reported in Table 4.3 were based
on ten runs of the underlying problem solver, implying that the compu-
tational cost is ten times the average cost.

Table 4.4 summarizes the improvements of our learned and general-
ized HMs as compared to the published results of CRIS, GATEST, and
HITEC. Each entry of the table shows the number of times our HM wins,
ties, and loses in terms of fault coverages with respect to the method(s)
in the first column. Our results show that our generalized HM based on
CRIS as the problem solver is better than the original CRIS in 16 out of
21 circuits in terms of the maximum fault coverage and better than 11
out of 21 circuits in terms of the average fault coverage. Furthermore,
our generalized HM based on GATEST as the problem solver is better
than the original GATEST in 7 out of 19 circuits in terms of both the
average and the maximum fault coverages. Note that the average fault
coverages of our generalized HM are better than or equal to the original
GATEST in all subdomains used in the heuristics-design process. Our
results show that our generalization procedure can discover good HMs
‘that work better than the original HMs.
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igure 4.11: Distribution of the normalized symmetric fault coverages of our
eneralized HM with respect to the average fault coverages of the original
ATEST on 19 benchmark circuits (5298, 344, 5349, s382, 5386, 5400, s444,
mwa_ 641, s713, s820, s832, 51196, 51238, 51488, 51494, 51423, s5378, and
35932 in that order).

Figure 4.10: Distribution of the normalized symmetric fault coverages of o
generalized HM with respect to the average fault coverages of the original CRIS
on 20 benchmark circuits (s298, 5344, 3382, s386, s400, s444, s526, s641, s713
$820, s832, 51196, 1238, mu&m mrmk mzww mm.w.ww waSo &&m pum 85
in that order). :

learned into the ?,oEmB mo?mﬁ

o Partitioning of test cases in an application moBBb into subd,
mains so that wmamgggoa data of gczmsom §§5 ombr mcv@
main are E%vmwmmg ga &mbﬂo&_% aﬁﬂvﬁ&

earning nuvnoﬁm heuristics for one subdomain at a time under re-
source constraints, (c) verification of performance of heuristics learned
o augment partial evaluation results obtained during learning, and (d)
finding heuristics whose performance behavior can be generalized to

e Generation of new woﬁmaom gm& on vmnmoanbom Om @awﬁam.
, ubdomains not studied in learning.

heuristics evaluated in the @mma

e Full evaluation of heuristics 8 verify their performance,
| Finally, we have shown improved heuristics for two genetic algorithm
packages used in VLSI test-pattern generation and have demonstrated
hat improved heuristics learned can be generalized to mew circuits.
Our approach allows designers to apply circuit-independent heuristics
in these systems, eliminating the time-consuming process to find good
heuristics for each circuit.

¢ Generalization of vm&oaggnm of heuristics to find woﬁums% gmn
perform well across the auﬁaa mwvwomsob domain. - B

To address these issues, we ge.m %«iov& _H,mmhgﬁ a mmboao?wmmma
system for learning wuoi&m?umg heuristics. gﬁ. has four phases
in its operation: (a) classification of test cases into subdomains, (b)
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