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Chapter 10

CONSTRAINED GENETIC ALGORITHMS
AND THEIR APPLICATIONS IN

NONLINEAR CONSTRAINED
OPTIMIZATION *

Benjamin W. Wah and
Yi-Xin Chen

Abstract  This chapter presents a framework that unifies various search mecha-
nisms for solving constrained nonlinear programming (NLP) problems.
These problems are characterized by functions that are not necessarily
differentiable and continuous. Our proposed framework is based on the
first-order necessary and sufficient condition developed for constrained
local minimization in discrete space that shows the equivalence between
discrete-neighborhood saddle points and constrained local minima. To
look for discrete-neighborhood saddle points, we formulate a discrete
constrained NLP in an augmented Lagrangian function and study var-
lous mechanisms for performing ascents of the augmented function in
the original-variable subspace and descents in the Lagrange-multiplier
subspace. Our results show that CSAGA, a combined constrained
simulated annealing and genetic algorithm, performs well when using
crossovers, mutations, and annealing to generate trial points. Finally,
we apply iterative deepening to determine the optimal number of gener-
ations in CSAGA and show that its performance is robust with respect
to changes in population size.

1. Introduction

Many engineering applications can be formulated as constrained non-
linear programming problems (NLPs). Examples include production
planning, computer integrated manufacturing, chemical control process-

*Research supported by National Aeronautics and Space Administration Contract NAS2-
37143,
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ing, and structure optimization. These applications can be solved by :
existing methods if they are specified in well-defined formulae that are
differentiable and continuous. However, only special cases can be solveqd
when they do not satisfy the required assumptions. For instance, sequen-
tial quadratic programming cannot handle problems whose objective and
constraint functions are not differentiable or whose variables are discrete
or mixed. Since many applications involving optimization may be for-
mulated by non-differentiable functions with discrete or mixed-integer
variables, it is important to develop new methods for handling these -
optimization problems. inxxconstrained nonlinear programming ‘
The study of algorithms for solving a disparity of constrained opti-
mization problems is difficult unless the problems can be represented
in a unified way. In this chapter we assume that continuous variables
are first discretized into discrete variables in such a way that the values
of functions using discretized variables approach those of the original
continuous variables. Such an assumption is valid when continuous vari-
ables are represented as floating-point numbers and when the range of
variables is small (say between 105 and 10%). Intuitively, if discretiza-
tion is fine enough, then solutions found in discretized space are fairly
good approximations to the original solutions. The accuracy of solutions
found in discretized problems has been studied elsewhere (W, 2000).
Based on discretization, continuous and mixed-integer constrained
NLPs can be represented as discrete constrained NLPs as follows:!

minimize f(z) (10.1)
subject to g(z) <0 =z =[z1,...,7,)7 is a vector
h(z) =0  of bounded discrete variables.

Here, f(z) is a lower-bounded objective function, 9(z) = [g1(z),-- -,
gk(z)]7 is a vector of k inequality constraints, h(z) = [h1(z), - , hm(z)]F
Is a vector of m equality constraints. Functions f(z), g(z), and h(z)
are not necessarily differentiable and can be either linear or nonlinear,
continuous or discrete, and analytic' or procedural. Without loss of gen-
erality, we consider only minimization problems.

Solutions to (10.1) cannot be characterized in ways similar to those
of problems with differentiable functions and continuous variables. In’
the latter class of problems, solutions are defined with respect to neigh-
borhoods of open spheres with radius approaching zero asymptoticall
Such a concept does not exist in problems with discrete variables.

¥For two vectors v and w of the same number of elements, v < w means that each eleme
of v is not less than the corresponding element of w. v > w can be defined similarly. 0, wh
compared to a vector, stands for a null vector.
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Nonlinear Constrained Optimization

Let X be the Cartesian product of the discrete domains of all vari-
ables in z. To characterize solutions sought in discrete space, we define
the following concepts on neighborhoods and constrained solutions in

discrete space:

Definition 1. Ngn(z), the discrete neighborhood (Aarts and Korst,
1989) of point z € X is a finite user-defined set of pomts {1: € X} such
that =’ € Ny (z) <> z € Nyo(z'), and that for any y! ,y € X, it is
ossible to find a finite sequence of points in X, y!,--- ,4*, such that
Yyt € Ngp(y') fori=1,---k—1.
Definition 2. Point z € X is called a constrained local minimum
in discrete neighborhood (CLMy,) if it satisfies two conditions: a) z is
feasible, and b) f(z) < f(z), for all feasible 2’ € Ny, (x).

Definition 3. Point z € X is called a constrained global minimum
in discrete neighborhood (CGMyy,) iff a) z is feasible, and b) for every
feasible point ' € X, f(z') > f(z). The set of all CGMgy, is Xopt-
~ According to our definitions, a CGMg, must also be a CLMy,.

. In a similar way, there are definitions on continuous-neighborhood con-
- strained local minima (CLM,,) and constrained global minima (CGMc,).
" We have shown earlier (Wah and Wu, 1999) that the necessary and
sufficient condition for a point to be a CLMy, is that it satisfies the
discrete-neighborhood saddle-point condition (Section 2.1). We have
~ also extended simulated annealing (SA) (Wah and Wang, 1999) and
. greedy search (Wah and Wu, 1999) to look for discrete-neighborhood
- saddle points SP;, (Section 2.2). At the same time, new problem-
dependent constraint-handling heuristics have been developed in the
GA community to handle nonlinear constraints (Michalewicz and Schoe-
nauer, 1996) (Section 2.3). Up to now, there is no clear understanding
on how to unify these algorithms into one that can be applied to find
CGMy, for a wide range of problems.

Based on our previous work, our goal in this chapter is to develop an
effective framework that unifies SA, GA, and greedy search for finding
CGMy,. In particular, we propose constrained genetic algorithm (CGA)
and combined constrained SA and GA (CSAGA) that look for SPy,.
We also study algorithms with the optimal average completion time for
finding a CGMyy,.

The algorithms studied in this chapter are all stochastic searches that
probe a search space in a random order, where a probe is a neighboring
point examined by an algorithm, independent of whether it is accepted
or not. Assuming p; to be the probability that an algorithm finds a
CGMj, in its j** probe and a simplistic assumption that all probes are
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Figure 10.1. An example showing the application of CSAGA with P = 3 to solve a
discretized version of G1 (Michalewicz and Schoenauer, 1996) (Nop: P = 2000).

independent, the performance of one run of such an algorithm can be -
characterized by N, the number of probes made (or CPU time taken), -
and Pgr(N), the reachability probability that a CGMj, is hit in any of
the N probes: :

N
Pr(N)=1- H(l —pj), where N >0.
j=1

Reachability can be maintained by reporting the best solution found by
the algorithm when it stops.

As an example, Figure 10.1a plots Pr(N,P) when CSAGA (see Sec-
tion 3.2) was run under various number of generations Ny and fixed pop-
ulation size P = 3 (where N = N, P). The graph shows that Pg(N,P)
approaches one asymptotically as NyP is increased.
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— Although it is hard to estimate the value of Pg(N) when a test prob-
lem is solved by an algorithm, we can always improve the chance of
- finding a solution by running the same algorithm multiple times, each
with IV probes, from random starting points. Given Pg(N) for one run
- of the algorithm and that all runs are independent, the expected total
number of probes to find a CGMy, is:

> Pr(N)(1— Pr(N))"IN x j =
i=1

N
m. (10-3)

Figure 10.1b plots (10.3) based on Pg(Ny4P) in Figure 10.1a. In
general, there exists Nyy that minimizes (10.3) because PRI$O) = 0,
- limpy, oo Pr(Ng) =1, ﬁvm is bounded below by zero, and Pa(N) — ©

as N — oo. The curve in Figure 10.1b illustrates this behavior.
- Based on the existence of Ny, we present in Section 3.3 search strate-
- gies in CGA and in CSAGA that minimize (10.3) in finding a CGMy,.
Finally, Section 4 compares the performance of our algorithms.

] 2. Previous Work

5000 In this section, we first summarize the theory of Lagrange multipliers
applied to solve (10.1) and two algorithms developed based on the theory.

%’v‘:—p) . . We then describe existing work in GA for solving constrained NLPs.

with P =3 to solvea 4 L 2.1 Theory of Lagrange multipliers for solving

(NoptP ~ 2000). b L

discrete constrained NLPs

Define a discrete equality-constrained NLP as follows (Wah and Wu,
1999; Wu, 2000):

algorithm can be
CPU time taken),
dn is hit in any of

n;in f(z) z is a vector of bounded (10.4)

subject to h(z) =0 discrete variables,

A generalized discrete augmented Lagrangian function of (10.4) is de-
fined as follows (Wah and Wu, 1999):

(10.2)

La(@, ) = f(@) + XTH (h(z)) + 3K, (105)
solution found by

where H is a non-negative continuous transformation function satisfying
H(y) >0, Hly) =0iff y = 0, and A = A1, -«- s Am]T is a vector of
Lagrange multipliers.
Function H is easy to design; examples include H (h(z)) = [|h1()], -,
lhn(z)|]T and H(h(z)) = [max(hi1(x),0), -+ ,max(hm(z),0)]T. Note

CSAGA (see Sec-
Ny and fixed pop-
ws that Pp(N,P)
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that these transformations are not used in Lagrange-multiplier methods
in continuous space because they are not differentiable at H (h(z)) =0.
However, they do not pose problems here because we do not require their
differentiability.

Similar transformations can be used to transform inequality constraint
9j(z) < 0 into equivalent equality constraint max(g;(x),0) = 0. Hence,
we only consider problems with equality constraints from here on.

We define a discrete-neighborhood saddle point SPyn(z*, \*) with the
following property:

Ld(iB*, )\) < Ld(fL‘*, /\*) < Ld(xs )‘*) (106)

for all z € Nyn(z*) and all A, X' € R™. Note that although we use similar
terminologies as in continuous space, SPy, is different from SP.y, (sad-
dle point in continuous space) because they are defined using different
neighborhoods.

The concept of SPy, is very important in discrete problems because,
starting from them, we can derive first-order necessary and sufficient
condition for CL My, that leads to global minimization procedures. This
is stated formally in the following theorem (Wah and Wu, 1999):

Theorem 1 First-order necessary and sufficient condition lon CLMy,
(Wah and Wu, 1999). A point in the discrete search space of (10.4) is
a CLMy, iff it satisfies (10.6) for any X > \*.

Theorem 1 is stronger than its continuous counterparts. The first-
order necessary conditions in continuous Lagrange-multiplier theory (Lu-
enberger, 1984) require CLM,, to be regular points and functions to be
differentiable. In contrast, there are no such requirements for CLMj,.
Further, the first-order conditions in continuous theory (Luenberger,
1984) are only necessary, and second-order sufficient condition must be
checked in order to ensure that a point is actually a CLM,,, (CLM in
continuous space). In contrast, the condition in Theorem 1 is necessary
as well as sufficient.

2.2 Existing algorithms for finding SP;,

Since there is a one-to-one correspondence between CGMj,, and SPyn,
it implies that a strategy looking for SPy, with the minimum objective
value will result in CGMy,. We review two methods to look for SPyy,.

The first algorithm is the discrete Lagrangian method (DLM) (Wu,
1998). It is an iterative local search that looks for SP;, by updating
the variables in z in order to perform descents of Ly in the = subspace,
while occasionally updating the A variables of unsatisfied constraints in
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. procedure CSA (o, Ny)
set initial x « [z1,-+- ,Zn, A1, -
with random z, A « 0;
while stopping condition is not satisfied do
generate x' € Nyn(x) using G(x,x');
accept x’ with probability Ar(x,x")
reduce temperature by 7'+ oT;
end_while
end_procedure

g

PL

R NS oW

a) CSA called with schedule N, and rate a
procedure CSA1p
set initial cooling rate a « ag and Ny — Ng,;
set K « number of CSA runs at fixed o;
repeat
for i «- 1 to K do call CSA(a, N,); end_for;
increase cooling schedule Ny «— pN,;
until feasible solution has been found and no
better solution in two successive increases of N;
end.procedure

Nege W

o

b) CSArp: CSA with iterative deepening

Figure 10.2. Constrained simulated annealing algorithm (CSA) and its iterative-
deepening extension

S [ — . R - e

—

order to perform ascents in ispace and to force the violated
constraints into satisfaction. When no new probes can be generated in
both the z and A subspaces, the algorithm has additional mechanisms
to escape from such local traps. It can be shown that the point where
DLM stops is a CLMg, when the number of neighborhood points is
small enough to be enumerated in each descent in the z subspace (Wah
and Wu, 1999; Wu, 2000). However, when the number of neighborhood
points is very large and hill-climbing is used to find the first point with
an improved Lg in each descent, then the point where DLM stops may
be a feasible point but not necessarily a SPy;,.

The second algorithm is the constrained simulated annealing (CSA)
(Wah and Wang, 1999) algorithm shown in Figure 10.2a. It looks for
SPy, by probabilistic descents in the x subspace and by probabilistic
ascents in the A subspace, with an acceptance probability governed by
the Metropolis probability. Similar to DLM, if the neighborhood of every
point is very large and cannot be enumerated, then the point where CSA
stops may only be a feasible point but not necessarily a SPy,.

Using G(x, x’) for generating trial point x’ in Ny (x), Ar(x,x’) as the
Metropolis acceptance probability, and a logarithmic cooling schedule,
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CSA has been proven to have asymptotic convergence with probability
one to CGMy, (Wah and Wang, 1999). This property is stated in the
following theorem:

Theorem 2 Asymptotic convergence of CSA. The Markov chain mod-
eling CSA converges to a CGMy, with probability one. »

Theorem 2 extends a similar theorem for SA that proves its asymp-
totic convergence to unconstrained global minima of unconstrained op-
timization problems. By looking for SP;, in the Lagrangian-function
space, Theorem 2 shows the asymptotic convergence of CSA to CGMy,
in constrained optimization problems.

Theorem 2 implies that CSA is not a practical algorithm when used
to find CGMyy, in one run with certainty because C'SA will take infinite
time.

In practice, when CS4 is run once using a a finite cooling schedule
Na, it finds a CGMy, with reachability probability Pr(N,) < 1. To
increase its success probability, C'SA with a finite N, can be run multiple
times from random starting points. Assuming that all the runs are
independent, a CGMjyy, can be found in finite average time defined by
(10.3).

We have verified experimentally that the expected time defined in
(10.3) has an absolute minimum at N,y. (Figure 10.1b illustrates the
existence of Nyy for CSAGA.) It follows that, in order to minimize
(10.3), CSA should be run multiple times from random starting points
using schedule Nypy;.

To find Nyp; at Tun time without using problem-dependent informa-
tion, we have proposed to use iterative deepening (Korf, 1985) by start-
ing CSA with a short schedule and by doubling the schedule each time
the current run fails to find a CGMg, (Wah and Chen, 2000). Since the
total overhead in iterative deepening is dominated by that of the last
run, CSA;p (CSA with iterative deepening in Figure 10.2b) has a com-
pletion time of the same order of magnitude as that using Nopt when the
last schedule that C'SA is run is close to N,p; and that this run succeeds.
Figure 10.3 illustrates that the total time incurred by CSA;p is of the
same order as the expected overhead at Nopt.

Note that Pr(Nypt) < 1 for one run of CSA at Nopt. When CSA
is run with a schedule close to Nop: and fails to find a solution, its
cooling schedule will be doubled and overshoots beyond Nopt. To reduce
the chance of overshooting into exceedingly long cooling schedules and
to increase the success probability before its schedule reaches Nopt, we
have proposed to run CSA multiple times from random starting points
at each schedule in CSA;p. Figure 10.2b shows CSA that is run K = 3
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—No
Pp(Na,Q)

1 Total time for iterative
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' Optimal time = 12¢
16t loga(Ny)

t 2t 4t 8t

Figure 10.8. An application of iterative deepening in CSA;p.

times at each schedule before the schedule is doubled. Our results show
that such a strategy generally requires twice the average completion
time with respect to multiple runs of CSA using N,y before it finds a
CGMy, (Wah and Chen, 2000).

2.3

Genetic algorithms for solving constrained
NLP problems :

Genetic algorithm (GA) is a general stochastic optimization algorithm
that maintains a population of alternative candidates and that probes
a search space using genetic operators, such as crossovers and muta-
tions, in order to find better candidates. The original GA was devel-
oped for solving unconstrained problems, using a single fitness function
to rank candidates. Recently, many variants of GA have been developed
for solving constrained NLPs. Most of these methods were based on
penalty formulations that use GA to minimize an unconstrained penalty
function F(z), consisting of a sum of the objective and the constraints
weighted by penalties. Similar to CSA, these methods do not require
the differentiability or continuity of functions.

One penalty formulation is the static-penalty formulation in which all
penalties are fixed (Bertsekas, 1982):

Folz,7) = f(=) + D _ wilha(@)IP, (10.7)

i=1

where p > 0, and penalty vector v = {71,72,"** ,Ym} is fired and chosen

to be large enough so that

Folz*,y) < Fo(z,7) Yz € X — Xopt and z* € Xop.

(10.8)
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Based on (10.8), an unconstrained global minimum of (10.7) over z is a
CG My to (10.4); hence, it suffices to minimize (10.7) in solving (10.4).
Since both f(z) and |h;(z)| are lower bounded and z takes finite discrete
values, v always exists and is finite, thereby ensuring the correctness of
the approach. Note that other forms of penalty formulations have also
been studied in the literature.

The major issue of static-penalty methods lies in the difficulty of se-
lecting a suitable +y. If 7 is much larger than necessary, then the terrain
will be too rugged to be searched effectively by local-search methods. If
it is too small, then feasible solutions to (10.7) may be difficult to find.

Dynamic-penalty methods (Joines and Houck, 1994), on the other
hand, address the difficulties of static-penalty methods by increasing
penalties gradually in the following fitness function:

m

Flz) = f(@) +(C x )% |hi(x)I?, (10.9)

Jj=1

where ¢ is the generation number, and C, «, and 3 are constants. In
contrast to static-penalty methods, (C x t)®, the penalty on infeasible
points, is increased during evolution.

Dynamic-penalty methods do not always guarantee convergence to
CLMg, or CGMy,,. For example, consider a problem with two con-
straints hj(z) = 0 and hg(z) = 0. Assuming that a search is stuck at an
infeasible point z’ and that for all z € Ny, (z'), 0 < |h1(z')] < |hi ()],
ha(a’)] > |ha(z)] > 0, and [ha(2")|P + |ha(z)|P < |m1(2)]P + |ha(z)[?,
then the search can never escape from z' no matter how large (C x t)*
grows.

One way to ensure the convergence of dynamic-penalty methods is to
use a different penalty for each constraint, as in Lagrangian formulation
(10.5). In the previous example, the search can escape from z’ after
assigning a much larger penalty to hp(z’) than that to hi(z').

There are many other variants of penalty methods, such as annealing
penalties, adaptive penalties (Michalewicz and Schoenauer, 1996) and
self-adapting weights (Eiben and Ruttkay, 1996). In addition, problem-
dependent operators have been studied in the GA community for han-
dling constraints. These include methods based on preserving feasibility

with specialized genetic operators, methods searching along boundaries
of feasible regions, methods based on decoders, repair of infeasible so- -

lutions, co-evolutionary methods, and strategic oscillation. However,

most methods require domain-specific knowledge or problem-dependent -

genetic operators, and have difficulties in finding feasible regions or in
maintaining feasibility for nonlinear constraints.
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Generate random Insert candidate(s) into list Search in y | Generate new candidate(s)
initial candidate based on sorting criterion X subspace? in the A subsubace
with initial A (annealing or deterministic) (probabilistic or greedy)
I z loop N A loop '
start - -
Generate new candidates| N Stopping Update Lagrangian values
in the z subspace (genetic, conditions of all candidates in list

probabilistic, or greedy) met? (annealing or determinisic)

Y
stop

Figure 10.4. An iterative stochastic procedural framework to look for SPyy,.

In general, local minima of penalty functions are only necessary but
not sufficient to be constrained local minima of the original constrained
optimization problems, unless the penalties are chosen properly. Hence,
finding local minima. of a penalty function does not necessarily solve the
original constrained optimization problem.

3. A General Framework to look for SP,,

Although there are many methods for solving constrained NLPs, our
survey in the last section shows a lack of a general framework that unifies
these mechanisms. Without such a framework, it is difficult to know
whether different algorithms are actually variations of each other. In
this section we present a framework for solving constrained NLPs that
unifies SA, GA, and greedy searches. ‘

Based on the necessary and sufficient condition in Theorem 1, Figure
10.4 depicts a stochastic procedure to look for SPy,. The procedure
consists of two loops: the z loop that updates the variables in z in order
to perform descents of Lg in the = subspace, and the A loop that updates
the A variables of unsatisfied constraints for any candidate in the list in
order to perform ascents in the A subspace. The procedure quits when
no new probes can be generated in both the z and A subspaces.

The procedure will not stop until it finds a feasible point because it
will generate new probes in the A subspace when there are unsatisfied
constraints. Further, if the procedure always finds a descent direction
at z by enumerating all points in Ny,(z), then the point where the
procedure stops must be a feasible local minimum in the z subspace of
L4(z, \), or equivalently, a CLMyj,.

Both DLM and CSA discussed in Section 2.2 fit into this frame-
- work, each maintaining a list of one candidate at any time. DLM entails
greedy searches in the z and A subspaces, deterministic insertions into
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procedure CGA(P, N,)
set generation number ¢ «— 0 and A(t) « 0;
initialize population P(t);
repeat /* over multiple generations */
evaluate Lq(z, A(t)) for all candidates in P(t);
repeat /* over probes in z subspace */
y — GA(select(P(t)));
evaluate Lq(y, M) and insert into P(t)
until sufficient probes in x subspace;
10. At) — A(t) & cH(h, P(t)); /* update X */
11. t—t+1;
12.  until (t > N)
13. end_procedure

S R Rl ol ol

a) CGA called with population size P
and number of generations Nj.

. procedure CGAp
set initial number of generations Ny = Ng;
set K = number of CGA runs at fixed Ng;
repeat /* iterative deepening to find CGMy, */
for i + 1 to K do call CGA(P, N,) end_for
set Ny — pN, (typically p = 2);
until N, exceeds maximum allowed or
(no better solution has been found in two
successive increases of Ny and Ny > p® Ny
and a feasible solution has been found);
. end_procedure

b) CGArp: CGA with iterative deepening

Figure 10.5. Constrained GA and its iterative deepening version.

the list of candidates, and deterministic acceptance of candidates until
all constraints are satisfied. On the other hand, CSA generates new
probes randomly in one of the x or A variables, accepts them based on
the Metropolis probability if Ly increases along the z dimension and de-
creases along the A dimension, and stops updating A when all constraints
are satisfied.

In this section, we use genetic operators to generate probes and present
in Section 3.1 CG A and in Section 3.2 CSAGA. Finally, we propose in
Section 3.3 iterative-deepening versions of these algorithms.

3.1 Constrained genetic algorithm (CGA)

CGA in Figure 10.5a was developed based on the general framework
in Figure 10.4. Similar to traditional GA, it organizes a search into a
number of generations, each involving a population of candidate points
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in a search space. However, it searches in the Lg space using genetic op-
erators to generate probes in the z subspace, either greedy or probabilis-
tic mechanisms to generate probes in the A subspace, and deterministic

organization of candidates according to their Lg values. ’

Lines 2-3 initialize to zero the generation number ¢ and the vector
of Lagrange multipliers A. The initial population P(t) can be either
randomly generated or user provided.

Lines 4 and 12 terminate CG A when the maximum number of allowed
generations is exceeded.

Line 5 evaluates in generation ¢ all candidates in P(t) using La(x, A(t)
as the fitness function. :

Lines 6-9 explore the z subspace by selecting from P(t) candidates to
reproduce using genetic operators and by inserting the new candidates
generated into P(t) according to their fitness values.

After a number of descents in the x subspace (defined by the number of
probes in Line 9 and the decision box “search in A subspace?” in Figure
10.4), the algorithm switches to searching in the A subspace. Line 10
updates )\ according to the vector of maximum violations H(h(z), P(t)),
where the maximum violation of a constraint is evaluated over all the
candidates in P(t). That is,

TMM@JWD=£§yﬂmwﬁi=L~wm,. (10.10)

where h;(z) is the i*® constraint function, H is the non-negative trans-
formation defined in (10.5), and c is a step-wise constant controlling how
fast A changes.

Operator @ in Figure 10.5a can be implemented in two ways in order
to generate a new \. A new )\ can be generated probabilistically based
a uniform distribution in (‘;H, %], or in a greedy fashion based on a
uniform distribution in (0,cH]. In addition, we can accept new probes
deterministically by rejecting negative ones, or probabilistically using an
annealing rule. In all cases, a Lagrange multiplier will not be changed if
its corresponding constraint is satisfied.

3.2 Combined Constrained SA and GA
(CSAGA)

Based on the general framework in Figure 10.4, we design CSAGA by
integrating CSA in Figure 10.2a and CGA in Figure 10.5a into a com-
bined procedure. The new procedure differs from the original CSA in
two respects. First, by maintaining multiple candidates in a population,
we need to decide how CSA should be applied to the multiple candi-
dates in a population. Our evaluations show that, instead of running
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procedure CSAGA(P, Ny)
set t — 0, To, 0 < & < 1, and P(2);
repeat /* over multiple generations */
for i < 1 to g do /* SA in Lines 5-10 */
for j «— 1to P do
generate x; from Nan(x;) using G(x;, x3);
accept X; with probability A7 (x5, xj)
end_for
set T «— oT’; /* set T for the SA part */
10. end_for
11. repeat /* by GA over probes in z subspace * /
12. y «— GA(select(P(t)));
13. evaluate La(y, ) and insert y into P(t);
14. until sufficient number of probes in x subspace;
15. t «—t + ¢; /* update generation number * /
16.  until (t > N,)
17. end_procedure

©CPNDOA LN

Figure 10.6. CSAGA: Combined CSA and CGA called with population size P and
N, generations.

CSA corresponding to a candidate from a random starting point, it is
best to run C'SA sequentially, using the best solution point found in one
run as the starting point of the next run. Second, we need to determine
the duration of each run of CSA. This is controlled by parameter q that
was set to be 1—:1 after experimental evaluations. The new algorithm

shown in Figure 10.6 uses both S4 and GA to generate new probes in
the = subspace.

Line 2 initializes P(0). Unlike CGA, any candidate x = [Z1,* , Zn, A1,
++, A)7T in P(t) is defined in the joint z and X subspaces. Initially, z
can be user-provided or randomly generated, and ) is set to zero.

Lines 4-10 perform CSA using g probes on every candidate in the
population. In each probe, we generate probabilistically x_’i and accept
it based on the Metropolis probability. Experimentally, we set ¢ to be
—1%-"-. As discussed earlier, we use the best point of one run as the starting
point of the next run.

Lines 11-15 start a GA search after the SA part has been completed.
The algorithm searches in the z subspace by generating probes using GA
operators, sorting all candidates according to their fitness values L4 after
each probe is generated. In ordering candidates, since each candidate
has its own vector of Lagrange multipliers, the algorithm first computes
the average value of Lagrange multipliers for each constraint over all
candidates in P(t) and then calculates L, for each candidate using the
average Lagrange multipliers.
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Note that CSAGA has difficulties similar to those of CGA in deter-
mining a proper number of candidates to use in its population and the
duration of each run. We address these two issues in the CSAGA;p in
the next subsection.

3.3 CGA and CSAGA with iterative deepening

In this section we present a method to determine the optimal number
of generations in one run of CGA and CSAGA in order to find a CGMy,.
The method is based on the use of iterative deepening (Korf, 1985) that
determines an upper bound on N, in order to minimize the expected
total overhead in (10.3), where Ny is the number of generations in one
run of CGA.

The number of probes expended in one run of CGA or CSAGA is
N = NgP, where P is the population size. For a fixed P, let Pr(Ny) =
Pg(PN,) be the reachability probability of finding CGMy,. From (10.3),
the expected total number of probes using multiple runs of either CGA
or CSAGA and fixed P is:

N NP __ N,
Pr(N)  Pr(NgP) = Pg(N,)

(10.11)

In order to have an optimal number of generations N,,,. that mini-

. N,
mizes (10.11), —LPR(Ng)

condition is true since PR(Ng) of CGA has similar behavior as Pg(N,)
of CSA. Tt has been verified based on statistics collected .on PR(Ng)
and Ny at various P when CGA and CSAGA are used to solve ten
discretized benchmark problems G1-G10 (Michalewicz and Schoenauer,
1996). Figure 10.1b illustrates the existence of such an absolute mini-
mum when CSAGA with P = 3 was applied to solve G1.

Similar to the design of CSA;p, we apply iterative deepening to esti-
mate N, CGAp in Figure 10.5b uses a set of geometrically increasing

Jopt *

Ny to find a CGMy,:

must have an absolute minimum in (0,00). This

Ny =p'No, i=0,1,... (10.12)

where N is the (small) initial number of generations.

Under each Ny, CGA is run for a maximum of K times but stops
immediately when a feasible solution has been found, when no better
solution has been found in two successive generations, and after the
number of iterations has been increased geometrically at least five times.
These conditions are used to ensure that iterative deepening has been
applied adequately. For iterative deepening to work, p > 1.
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Let PR(Ng,.) be the reachability probability of one run of CGA under
Ny, generations, Boy(f) be the expected total number of probes taken
by CGA with N, , to find a CGM,,, and Brp(f') be the expected total
number of probes taken by CGA;p in Figure 10.5b to find a solution of
quality f’ starting from Ny generations. According to (10.11),

N,

Jopt

‘PR (Ngopt)

The following theorem shows the sufficient conditions in order for
Brp(f') = O(Bop(f)).
Theorem 3 Optimality of CGA;p and CSAGA;p.
Bip(f') = O(Bopt(f)) if

a) Pr(0) = 0; PR(N_,,) is monotonically non-decreasing for Ny in
(0,00); and limy, 0o Pr(Ng) < 1;

b) (1~ Ba(N,,.))5p < 1.

Bopt(f ') =P

(10.13)

The proof is not shown due to space limitations.

Typically, p = 2, and Pg(Ny,,,) > 0.25 in all the benchmarks tested.
Substituting these values into condition (b) in Theorem 3 yields K > 2.4.
In our experiments, we have used K = 3. Since CGA is run a maximum
of three times under each N, By,:(f’) is of the same order of magnitude
as one run of CGA with N,,,.

The only remaining issue left in the design of CGA 1p and CSAGAp
is in choosing a suitable population size P in each generation.

In designing CGA;p, we found that the optimal P ranges from 4 to
40 and is difficult to determine a priori. Although it is possible to choose
a suitable P dynamically, we do not present the algorithm here due to
space limitations and because it performs worse than CSAGA|p.

In selecting P for CSAGA;p, we note in the design of CSA;p in
Figure 10.2b that K = 3 parallel runs are made at each cooling schedule
in order to increase the success probability of finding a solution. For this
reason, we set P = K = 3 in our experiments. Qur experimental results
in the next section show that, although the optimal P may be slightly
different from 3, the corresponding expected overhead to find a CGMy,
differs very little from that when a constant P is used.

4. Experimental Results

We present our experimental results in evaluating CSA;p, CGArp
and CSAGA;p on discrete constrained NLPs. Based on the framework
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in Figure 10.4, we first determine the best combination of strategies to
use in generating probes and in organizing candidates. Using the best
combination of strategies, we then show experimental results on some
constrained NLPs.

Due to a lack of large-scale discrete benchmarks, we derive our bench-
marks from two sets of continuous benchmarks: Problem G1-G10 (Micha-
lewicz and Schoenauer, 1996; Koziel and Michalewicz, 1999) and Floudas
and Pardalos’ Problems (Floudas and Pardalos, 1990).

4.1 Implementat_ion Details

In theory, algorithms derived from the framework, such as CSA,
CGA, and CSAGA, will look for SPy,. In practice, however, it is im-
portant to choose appropriate neighborhoods and generate proper trial
points in z and A subspaces in order to solve constrained NLPs efficiently.

An important component of these methods is the frequency at which
A is updated. Like in C'SA (Wah and Wang, 1999), we have set exper-
imentally in CGA and CSAGA the ratio of generating trial points in
z and A subspaces from the current point to be 20n to m, where n is
the number of variables and m is the number of constraints. This ratio
means that z is updated more often than .

In generating trial points in the z subspace, we have used a dynam-
ically controlled neighborhood size in the SA part (Wah and Wang,
1999) based on the 1:1 ratio rule (Corana et al., 1987), whereas in the

GA part, we have used the seven operators in Genocop III (Michalewicz

and Nazhiyath, 1995) and L4 as our fitness function. In implementing
CSArp, CGArp and CSAGA[p, we have used the default parameters
of CSA (Wah and Wang, 1999) in the SA part and those of Genocop

' ~ III (Michalewicz and Nazhiyath, 1995) in the GA part.

The generation of trial point A in the A subspace is done by the
following rule:

/\"7 = )\j + 71 ¢j where j =1,--- ,m. (1014)

¢~ Here, r) is randomly generated in [—1/2, +1/2] if we choose to generate
t ) probabilistically, and is randomly generated in [0, 1] if we choose to
L generate probes in A in a greedy fashion.

We adjust ¢ adaptively according to the degree of constraint viola-
tions, where

¢ =w® H(z) = [wiHi(z), waHz(z), -+ , wmHm ()], (10.15)

® represents vector product, and H is the vector of maximum violations
defined in (10.10). When H;(z) is satisfied, \; does not need to be
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Table 10.1. Timing results on evaluating various combinations of strategies in
CSArp, CGArp and CSAGAp with P = 3 to find solutions that deviate by 1%
and 10% from the best-known solution of a discretized version of G2. All CPU times
in seconds were averaged over 10 runs and were collected on a Pentinum I1I 500-MHz

computer with Solaris 7. '— means that no solution with desired quality can be
found.

Probe Generation Strategy|

Insertion

A subspace |

z subspace

Sol. 1% off CGMy,

Sol. 10% off CGMy,)

Strategy

CSACGACSAGA

CSACGA CSAGA

probabilistic
probabilistic
[probabilistic
[probabilistic]

probabilistic
probabilistic
deterministic
deterministic
probabilistic
probabilistic

annealing
deterministic

annealing
deterministic|
annealing
deterministic]

6.91 23.99 4.89
9.02 6.93
- 187 -
- 16.73
7.02
7.02

7.75
7.75

1.35 1.03
1.35 2.78 1.03
89.21 2.40 -

2.18

1.36
1.36

0.90
0.90

— 25.50
— 25.50

82.24 1.90
82.24 1.90

deterministic
deterministic

annealing
deterministic|

updated; hence, ¢; = 0. In contrast, when a constraint is not satisfied,
we adjust ¢; by modifying w; according to how fast H;(x) is changing:

if Hi(z) > T
if Hi(z) <nT

o W;

™ w; (10.16)

w; = {
where T' is the temperature, and 79 = 1.25, m1=0.8, 7p = 1.0, and
71 = 0.01 were chosen experimentally. When H;(z) is reduced too
quickly (i.e., Hi(z) < 1T), Hi(z) is over-weighted, leading to possi-
bly poor objective values or difficulty in satisfying other under-weighted
constraints. Hence, we reduce A;’s neighborhood. In contrast, if H;(z) is
reduced too slowly (i.e., Hi(x) > 70T'), we enlarge \;’s neighborhood in
order to improve its chance of satisfaction. Note that w; is adjusted using
T as a reference because constraint violations are expected to decrease
when T decreases.

In addition, for iterative deepening to work, we have set the following
parameters: p =2, K = 3, Ng = 10-n,, and Np,qz = 1.0 x 108n,,, where
Ny is the number of variables, and Ny and Np,,; are, respectively, initial
and maximum number of probes.

4.2 Evaluation Results

Due to a lack of large-scale discrete benchmarks, we derive our bench-
marks from two sets of continuous benchmarks: Problem G1-G10 (Micha-
lewicz and Schoenauer, 1996; Koziel and Michalewicz, 1999) and Floudas
and Pardalos’ Problems (Floudas and Pardalos, 1990).

In generating a discrete constrained NLP, we discretize continuous
variables in the original continuous constrained NLP into discrete vari-
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ables as follows. In discretizing continuous variable z; in range [l;, u;],
where l; and u; are lower and upper bounds of z;, respectively, we force
z; to take values from the set:

{ai_l_QL;ﬁj,j:O,l,---,s} ifb;—a; <1

(10.17)
{ai+ 35, 5=0,1,-, (b —ai)s]} ifbj—a;>1,
where s = 1.0 x 107.

Table 10.1 shows the results of evaluating various combinations of
strategies in CSArp, CGA;p, and CSAGA;p on a discretized version of
G2 (Michalewicz and Schoenauer, 1996; Koziel and Michalewicz, 1999).
We show the average time of 10 runs for each combination in order to
reach two solution quality levels (1% or 10% worse than CGMyy,, as-
suming the value of CGMy, is known). Evaluation results on other
benchmark problems are similar and are not shown due to space limita-
tions.

Our results show that CGAp is usually less efficient than CSA;p
or CSAGAp. Further, CSA;p or CSAGA|p has better performance
when probes generated in the x subspace are accepted by annealing
rather than by deterministic rules (the former prevents a search from
getting stuck in local minima or infeasible points). On the other hand,
there is little difference in performance when new probes generated in the
A subspace are accepted by probabilistic or by greedy rules and when new
candidates are inserted according to annealing or deterministic rules. In
short, generating probes in the z and A subspaces probabilistically and
inserting candidates in both the z and ) subspaces by annealing rules
leads to good and stable performance. For this reason, we use this
combination of strategies in our experiments.

We next test our algorithms on ten constrained NLPs G1-G10 (Micha-
lewicz and Schoenauer, 1996; Koziel and Michalewicz, 1999). These
problems have objective functions of various types (linear, quadratic,
cubic, polynomial, and nonlinear) and constraints of linear inequalities,
nonlinear equalities, and nonlinear inequalities. The number of variables
is up to 20, and that of constraints, including simple bounds, is up to
42. The ratio of feasible space with respect to the whole search space
varies from 0% to almost 100%, and the topologies of feasible regions are
quite different. These problems were originally designed to be solved by
evolutionary algorithms (EAs) in which constraint handling techniques
were tuned for each problem in order to get good results. Examples
of such techniques include keeping a search within feasible regions with
specific genetic operators and dynamic and adaptive penalty methods.

i
|
|
&
|
|
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Table 10.2. Results on CSArp, CGArp and CSAGA,p in finding the best-known
solution f* for 10 discretized constrained NLPs and their corresponding results found
by EA. (S.T. stands for strategic oscillation, H.M. for homomorphous mappings, and
" D.P. for dynamic penalty. Brp(f*), the CPU time in seconds to find the best-known
solution f*, were averaged over 10 runs and were collected on a Pentinum IIT 500-MHz
computer with Solaris 7. The best Brp(f”) for each problem is boxed.)

Prob.] Best EAs CSAip CGAIp CSAGA[p
ID | Sol. f* || Best f Method|B;p(f*)|Papt Bio(J*)|P Brp (f* [ Popt Brp(f*)]
Gi| 15 -15 Genocop| 1.65 | 40 549 |3 .1.64 | 2 |1.31
G2 [-0.80362([0.803553 S.T. | 7.28 |30 31198 [3 [5.18 5.18
G3| 10 1.0 ST. | 107 |30 1417 |3 [0.89 0.89
G4 |-30665.5||-30664.5 H.M. 5 395 (3 095 0.95
G5 | 4221.9 ||5126.498 D.P. | 2588 [30 689 [3 276 2.08
G6 |-6961.81]|-6961.81 Genocop| 099 | 4 7.62 |3 0.1 0.73
3
3
3
3

G7 |24.3062| 2462 HM. | 651 |30 3160 4.60 4.07
G8 [0.095825//0.095825 H.M. | 0.1 |30 0.31 0.13 0.10
[0.57 | 0.57
3.36 3.36

G9 | 680.63 || 680.64 Genocop| 0.74 | 30 5.67
7049.33 || 71479 H.M. |3.29| 30 8232

W WA BN DWW W

Table 10.2 compares the performance of CSArp, CGArp, and CSAGA;p
with respect to Brp(f*), the expected total CPU time of multiple runs
until a solution of value f* is found. The first two columns show the prob-
lem IDs and the corresponding known f*. The next two columns show
the best solutions obtained by EAs and the specific constraint handling
techniques used to generate the solutions. Since all CSArp, CGArp
and CSAGA[p can find a CGMy, in all 10 runs, we compare their per-
formance with respect to 7', the average total overhead of multiple runs
until a CGMyp, is found. The fifth and sixth columns show, respectively,
the average time and number of Ly(z, A) function evaluations C'SA;p
takes to find f*. The next two columns show the performance of CGA D
with respect to Py, the optimal population size found by enumeration,
and the average time to find f*. These results show that CGArp is
not competitive as compared to CSA;p, even when Pyt is used. The
results on including additional steps in CGAjp to select a suitable P at
run time are worse and are not shown due to space limitations. Finally,
the last five columns show the performance of CSAGA;p. The first
three present the average times and number of Ly(z, ) evaluations us-
ing a constant P, whereas the last two show the average times using Pop:
found by enumeration. These results show little improvements in using
Popt. Further, CSAGA;p has between 9% and 38% in improvement in
Bip(f*), when compared to that of CSA;p, for the 10 problems except
for G4 and G10.
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Table 10.3. Results on CSA;p and CSAGA;p with P = 3 in solving selected
Floudas and Pardalos’ discretized constrained NLP benchmarks (with more than
1y = 10 variables). Since Problem 5.x and 7. are especially large and difficult and
a search can rarely reach their true CGMy,, we consider a CG My, found when the
solution quality is within 10% of the true CGMy,,. All CPU times in seconds were
averaged over 10 runs and were collected on a Pentium-III 500-MHz computer with
Solaris 7.

Problem f(z) CSArp CSAGA[p
1D Best f*| n, Brp(f*) Bip(f*)
2.7.1(min) -394.75 | 20 || 35.11 sec. | |14.86 sec.
2.7.2(min) -884.75| 20 53.92 sec. 15.54 sec.
2.7.3(min) -8695.0 | 20 34.22 sec. 22.52 sec.
2.7.4(min) -754.75 | 20 36.70 sec. 16.20 sec.
2.7.5(min) -4150.4 | 20 89.15 sec. 23.46 sec.
5.2(min) 1567 | 46 || 3168.29 sec. | [408.69 sec.
5.4(min) 1.86 32 || 2629.52 sec. | | 100.66 sec.
7.2(min) 1.0 16 || 824.45 sec. | | 368.72 sec.
7.3(min) 1.0 27 | 2323.44 sec. I 1785.14 sec. |

7.4(min) 1.0 38 || 951.33 sec. | {487.13 sec.

Comparing CGArp and CSAGA;p with EA, we see that EA was only
able to find f* in three of the ten problems, despite extensive tuning and
using problem-specific heuristics, whereas both CGA;p and CSAGA;p
can find f* for all these problems without any problem-dependent strate-
gies. It is not possible to report the timing results of EA because the
results are the best among many runs after extensive tuning.

Finally, Table 10.3 shows the results on selected discretized Floudas
and Pardalos’ benchmarks (Floudas and Pardalos, 1990) that have more
than 10 variables and that have many equality or inequality constraints.
The first three columns show the problem IDs, the known f*, and the
number of variables (n,) in each. The last two columns compare Brp(f*)
of CSA;p and CSAGA[p with fixed P = 3. They show that CSAGA;p
is consistently faster than CSA;p (between 1.3 and 26.3 times), espe-
cially for large problems. This is attributed to the fact that GA main-
tains more diversity of candidates by keeping a population, thereby al-
lowing competition among the candidates and leading SA to explore
more promising regions.

5.

Conclusions

In this chapter we have presented new algorithms to look for discrete-
neighborhood saddle points in discrete Lagrangian space of constrained
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optimization probléms. Our results show that genetic algorithms, when

combined with simulated annealing, are effective in locating saddle points,

Future developments will focus on better ways to select appropriate
heuristics in probe generation, 1nclud1ng search direction control and
neighborhood size control, at run time.
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