
17. Constraint-Based Neural Network Learning
for Time Series Predictions

Benjamin W. Wah and Minglun Qian

University of Illinois, Urbana-Champaign, USA

Abstract

In this chapter, we have briefly surveyed previous work in predicting
noise-free piecewise chaotic time series and noisy time series with high
frequency random noise. For noise-free time series, we have proposed a
constrained formulation for neural network learning that incorporates the
error of each learning pattern as a constraint, a new cross-validation scheme
that allows multiple validations sets to be considered in learning, a recur-
rent FIR neural network architecture that combines a recurrent structure
and a memory-based FIR structure, and a violation-guided back propaga-
tion algorithm for searching in the constrained space of the formulation.
For noisy time series, we have studied systematically the edge effect due
to low-pass filtering of noisy time series and have developed an approach
that incorporates constraints on predicting low-pass data in the lag period.
The new constraints enable active training in the lag period that greatly
improves the prediction accuracy in the lag period. Finally, experimental
results show significant improvements in prediction accuracy on standard
benchmarks and stock price time series.

17.1 Introduction

A time series is an ordered sequence of observations made through time,
whereas a time series prediction problem is the prediction of future data
R(t0 + h) at horizon h > 0, given historical data R(t), t = 1, · · · , t0, in the
form of a vector or a scalar. Time series predictions have been used in many
areas of science, industry, and commercial and financial activities, such as
financial forecasts on stock prices and currency exchange rates, product sale
and demand forecasting, population growth, and earthquake activities.

In general, a time series may exhibit nonlinearity, non-stationarity, and
possibly periodic behavior such as seasonality. More often than not, observa-
tions were contaminated by noise that makes a time series noisy. Figure 17.1
illustrates a noisy nonstationary periodic time series. These four characteris-
tics are described as follows.

1. Linearity. A time series is linear if R(t + h) can be expressed as a lin-
ear function of some or all of its historical values f(R(t), R(t − 1), · · ·);
otherwise, it is nonlinear. In this chapter, we are interested in developing
general models that can represent nonlinear time series with a continuous
function f .

404 B.W. Wah and M.L. Qian

periodicity

nonstationarity

noise

4

6

8

10

12

14

16

0 10 20 30 40 50 60 70 80 90 100

2

0

−2

Fig. 17.1. An example of a nonstationary, periodic and noisy time series

2. Stationarity. A time series is stationary if it has constant mean and vari-
ance; otherwise, it is nonstationary. Nonstationarity is hard to model, as
its future behavior may be unpredictable. In this chapter, we are inter-
ested in stationary time series as well as a special class of nonstationary
time series called piecewise chaotic time series. A time series is piecewise
chaotic if it consists of several regimes in which each regime corresponds
to a chaotic process, and the overall time series is a collection of multiple
chaotic regimes.

3. Periodicity. A time series with dominant periodic components will exhibit
regular periodic variations. Such behavior is displayed, for example, in
annual electricity consumption and merchandise sales. Since periodicity
is a well studied property and can be eliminated effectively by differencing
techniques [17.7], we do not consider it in this chapter.

4. Random noise can be present in the entire or some parts of the frequency
spectrum of a time series. Since random noise cannot be predicted, we
only study time series with high frequency noise and the prediction of
their low frequency components.

In the next section, we survey briefly existing work for handling nonlinear-
ity, piecewise chaos and noise in time series. Section 17.3 discusses our newly
proposed constrained formulations, along with our violation-guided back-
propagation developed to solve the constrained formulations. Section 17.4
presents methods to handle noisy time series using constrained formulations,
and illustrates them on the prediction of the low-frequency components of
stock prices. Finally, conclusions are drawn in Sect. 17.5.

17.2 Previous Work in Time Series Modeling

A variety of time series models have been proposed and studied in the last
four decades. In this section, we review briefly some existing models and
present their potential problems when applied to handle nonlinear piecewise
chaotic time series with and without noise.

17. Constraint-Based Neural Network Learning 405

Decision

clustering

& variants models
state−space

Statistic

TAR

parameter models

ARMA (Machine learning)
nonlinearity

General

Nonlinear Models

Q−learning

kNN
tree learning

SupervisedUnsupervised

Time Series Models

bilinear AR

neural network

Reinforcement
time−varying

nonlinearity
Pre−defined

Linear Models

[17.40]

[17.19]

[17.24]

[17.53]

[17.11]

[17.43]

[17.39]

[17.16]

[17.1][17.4]

Fig. 17.2. A classification of time-series models for handling nonlinearity

17.2.1 Linearity

Figure 17.2 classifies existing time-series models into linear and nonlin-
ear [17.8].

Linear models work well for linear time series but may fail otherwise.
There are three types of linear models.

1. Box-Jenkins ARIMA [17.4] and its variations, such as autoregression
(AR), moving average (MA), and autoregressive moving average (ARMA),
describe future data as a linear combination of historical data and some
random processes.

2. Exponential smoothing [17.6] models smoothed data S(t) as a function of
raw data R(t) by

S(t + 1) = αR(t) + (1− α)S(t), 0 < α ≤ 1, (17.1)

where α is the only parameter in the model.
3. State-space models [17.1] represent inputs as a linear combination of a

set of state vectors that evolve over time according to some linear equa-
tions. Such vectors and their dimensions are usually hard to choose in
practice [17.8].

Nonlinear models can be classified into models with predefined nonlinear-
ity assumptions and general models. The first class includes bilinear autore-
gression [17.16], time-varying parameter models [17.39], and threshold autore-
gressive models [17.43]. They are not effective for modeling time series with
unknown nonlinear behavior.

Machine learning can handle nonlinear time series because it learns a
model without nonlinearity assumptions. Specific methods that can model
temporal sequences include statistic learning (such as k-nearest-neighbors
(kNN) [17.11]), reinforcement learning (such as Q-learning [17.53]), unsuper-
vised learning (such as clustering methods [17.24]), and supervised learning
(such as decision trees [17.40] and artificial neural networks (ANNs) [17.19]).

406 B.W. Wah and M.L. Qian

In general, these methods learn using a single nonlinear objective on a train-
ing set. As a result, they do not use individual patterns to help escape from
local optima, especially when gradient-based methods are used [17.42, 17.45].
In this chapter, we propose constrained formulations for ANN learning that
add constraints on individual patterns and that use violated constraints to
help guide learning. Such formulations are general and can be applied to
other learning methods.

17.2.2 Piecewise Chaos

Time series with piecewise chaotic regimes have been studied extensively.
One approach is to identify local regimes first, before performing learn-
ing/predictions on each identified regime. Models using this approach in-
clude regime switching models [17.10] and hidden Markov Models [17.26,
17.27]. These approaches are limited because they do not work well un-
less the changeover points can be correctly identified, and the prediction
of changeover points may be as hard as the prediction problem itself.

Without separating the process into two steps, machine learning can learn
regime changes by reserving patterns in each regime change to be verified
in a cross-validation set. However, traditional learning approaches using a
single objective may have difficulties in handling cross validations for multiple
regime changes because the single objective containing the sum of the errors
in all the cross-validation sets does not provide guidance for refinements when
it exceeds a preset threshold. To address this issue, a formulation can be used
to constrain the error in each validation set to be satisfied during learning.
We show such an approach later, applied to ANN learning and its successful
prediction of regime changes in testing.

+ + +

g(-L+1)

q−1q−1

g(-L) g(-L+2) g(L)

q−1
R(t+L-1) R(t+L-2)

R(t+L)
R(t-L)

S(t)

Fig. 17.3. A symmetric FIR filter with 2L taps

17.2.3 Random Noise

Random noise is uncorrelated, has zero mean, and is not predictable due to
its uncorrelated nature. As its presence in a time series distracts a model from
learning useful clean information, especially when the signal-to-noise ratio is
relatively low, it is always desirable to eliminate noise before learning.

17. Constraint-Based Neural Network Learning 407

IBM stock prices

pass

lag period

lag period

high
TodayLag by 10 days

low
pass

Frequency responses of

Autocorrelations

a 20−tap FIR filter bank

0.4

−0.4

0.6

0.8

1

32

1.2

0 0.5 1 1.5 2 2.5 3

−0.2

−0.8

−0.6

200150100500

54

52

50

48

46

44

42

40

38

36

34

200150100500

1

0.8

0.6

0.4
3.5

0.2

0

0.2

0200150100500

55

50

45

40

35

30

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0 5 10 15 20

Fig. 17.4. An illustration of a filtering process on a time series of noisy IBM
daily closing prices using a 20-tap symmetric low-pass FIR filter to de-noise the
time series. Both the low-pass and high-pass data have a 10-day lag. The right two
panels show the autocorrelation plots for both filtered time series

In the literature, de-noising is usually done by low-pass filtering or wavelet
transforms [17.33, 17.58]. Figure 17.3 illustrates the use of a symmetric FIR
filter to generate de-noised data S(t):

S(t) =
L∑

j=−L

R(t + l)g(j), (17.2)

where g(j) is the jth filter coefficient, 2 L is the number of filter taps, and
R(t) is the raw data in the noisy time series.

A symmetric FIR filter is a non-causal filter because its current filtered
output depends on future inputs. For example, the filtered output of a 2L-
tap symmetric filter ends at t0−L because it depends on raw data that ends
at t0. Such dependencies on future data lead to a lag (sometimes called an
edge effect) in the filtered data. Figure 17.4 shows a 10-day lag in both the
low-pass and high-pass data of the closing stock prices of IBM, when filtered
by a 20-tap symmetric FIR filter.

The edge effect is not a unique artifact of non-causal filters but also occurs
when causal filters are used. Although the outputs of causal filters do not
depend on future inputs, they reflect a delayed behavior of the original time
series and amount to a lag similar to that in non-causal filters.

To overcome edge effects in a time series, a predictor has to first predict
missing filtered data in the lag period before predicting into the future. In a
time series with high frequency random noise, such predictions will be limited
to those of low-pass data, as the autocorrelations between high frequency
samples at distances longer than the lag period will be low (Fig. 17.4). As a
result, we focus on the predictions of low-pass data in this chapter.

Existing approaches on predicting missing low-pass data in a lag period
typically impose some assumptions on the future raw data. Figure 17.5 show
some example approaches [17.33, 17.38, 17.57]. Here, flat extension assumes

408 B.W. Wah and M.L. Qian

Wraparound

Zero extensionFlat extension

0

Mirror extension

Fig. 17.5. Four techniques for handling edge effects in order to compensate for
missing data in the lag period. Solid lines represent actual raw data, and dashed
lines stand for extended data

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 a
bs

ol
ut

e
er

ro
rs

Day index in the lag period

Mirror extension
Flat extension

Fig. 17.6. The average absolute errors diverge quickly when predicting missing
low-pass data in the lag period of ten days

that future raw data R(t0+j), j = 1, 2, . . . , is the same as the latest observed
raw data R(t0); mirror extension assumes that future raw data is a mirror
image of history data, that is, R(t0+j) = R(t0−j+1); wrap-around assumes
that after a period of T , the time series repeats itself; and zero extension
assumes future data R(t0 + j) to be zero. Using the extended raw data, low-
pass filtering is then applied to obtain the de-noised data in the lag period.
In this chapter, we do not consider wrap-around and zero extension, as they
are applicable only when the time series is stationary and has zero mean.

Figure 17.6 shows the mean absolute errors between the true low-pass
data of the closing stock prices of IBM and its corresponding predicted low-
pass data using flat and mirror extensions. Although flat extension performs
slightly better than mirror extension in this case, both show that the average
errors of low-pass data in one part of the lag period (specifically, the last three
days) are considerably larger than those in the rest of the lag period. As the
low-pass values in the first seven days of the lag period are quite accurate,
they can be used as training patterns as if they were true low-pass values. In
our approach described in Sect. 17.4.2, we use de-noised data in the first part
of the lag period as training patterns, and predict patterns in the latter part
of the lag period and beyond. We further use constraints on the raw data in
the lag period in order to have more accurate predictions in the lag period.

17. Constraint-Based Neural Network Learning 409

0

0.02

0.04

0.06

0.08

0 2000 4000 6000 8000

M
SE

Number of Training Iterations

-0.8

-0.4

0

0.4

0.8

0 50 100 150 200

Pa
tte

rn
 E

rr
or

Pattern Number

target
training

training error

a) Progress of mean squared errors
b) Training errors on individual
patterns after 2000 iterations

Fig. 17.7. Sunspots time series trained by backpropagation using an unconstrained
formulation of (17.3)

17.2.4 Artificial Neural Networks

It is well known that ANNs are universal function approximators and
do not require knowledge of the process under consideration. ANNs for
modeling time series generally have special structures that store tempo-
ral information either explicitly, using time-delayed structures, or implic-
itly, using feedback structures. Examples of the first class include time-
delayed neural networks (TDNNs) [17.29] and FIR neural networks (FIR-
NN) [17.51, 17.52], whereas examples of the latter include recurrent neu-
ral networks (RNNs) [17.13, 17.55]. Other architectures, such as radial-basis
function network (RBF) [17.36] and supporting vector machines [17.37], store
approximate history information in either radial-basis functions or the so-
called supporting vectors.

Time-series predictions using ANNs have traditionally been formulated as
unconstrained optimization problems that minimize the mean squared errors
(MSE) defined as follows:

min
w

E(w) =
n∑

t=1

No∑

i=1

(oi(t)− di(t))2 (17.3)

where No is the number of output nodes in the ANN, o(t) and d(t) are,
respectively, the actual and desired outputs of the ANN at time t, w is a
vector of all the weights, and the training data consists of patterns observed
at t = 1, · · · , n.

Extensive past research has been conducted on designing learning algo-
rithms using an unconstrained formulation in order to lead to ANNs with
a small number of weights that can generalize well. However, such learning
algorithms have limited success because little guidance is provided in an un-
constrained formulation when a search is stuck in a local minimum of the
weight space. In this case, the unconstrained objective in Eq. (17.3) does not
indicate which patterns are violated and the best direction for the trajectory
to move.

410 B.W. Wah and M.L. Qian

Figure 17.7 illustrates the lack of guidance when an unconstrained formu-
lation is used. In this example, an ANN was trained by backpropagation to
predict the Sunspot time series. Figure 17.7a shows that the MSE in train-
ing decreased quickly in the first 1,000 iterations but had little improvement
after 2,000 iterations. Further examination of the weights shows that they
were almost frozen after 2,000 iterations, and the gradients in all the itera-
tions thereafter were very small. Yet the pattern errors in Fig. 17.7b shows
that there were still considerably large errors for some patterns, and that
these violated patterns were not identified in an unconstrained formulation.
To this end, we propose in the next section a constrained formulation with
a constraint on each pattern, and an efficient algorithm for searching in con-
strained space.

Besides minimizing training errors, cross validations have been used to
prevent overfitting in ANN training. Traditional learning involving cross val-
idations generally divides the available historical data into two disjoint train-
ing and validation sets and uses the MSE of the validation set as the sole
objective. The reason for using only one validation set is due to the limitation
of unconstrained formulations that can handle only one objective function.

A problem faced in traditional validations is in choosing a proper cross-
validation set. Although there is no defined way on how long and where the
validation set should be, one prefers to reserve the last portion of the historical
data for validation in order for the ANN to generalize well into the future.
Since the training and validations sets are disjoint, the use of the last portion
of patterns as a validation set prevents them from being used as training
patterns. As a result, the ANN learned does not have access to the most
recent patterns in a time series, which are usually the most important for
predicting into the future. This is a dilemma in traditional cross validations
used in time series predictions.

Another problem faced in traditional validations is related to piecewise
chaotic time series. Since piecewise chaotic time series behave differently at
changeover points, these points need to be learned specifically in order for the
learned system to generalize well. For example, the Laser time series [17.54]
in Fig. 17.8 is a piecewise chaotic time series with two changeover points at
180 and 600, respectively. To learn these changeover points, we like to have
one validation set at the segment around 600 and another at the segment
around 1,000, right before the end of the training set. Such multi-objective
learning cannot be handled by traditional single-objective formulations, but
can be modeled in a constrained formulation that considers the error of each
cross-validation set as an additional constraint.

In the rest of this chapter, we describe ANN solutions for predicting time
series. We first present, in the next section, constrained formulations and
learning algorithms for accurately predicting stationary and piecewise chaotic
nonlinear time series. We then present, in Sect. 17.4, the design of efficient

17. Constraint-Based Neural Network Learning 411

Fig. 17.8. Laser is a piecewise chaotic time series that requires at least two
validation sets: one for the regime changeover section and another at the end of
training

learning algorithms for predicting missing low-pass data of noisy time series
in the lag period and beyond.

17.3 Predictions of Noise-Free Stationary and Piecewise
Chaotic Time Series

The predictions of a noise-free time series by an ANN are generally carried
out by single-step (or iterative) predictions in which the inputs to the ANN in
each prediction step are the true observed (or predicted) outputs of the pre-
vious prediction step. In both approaches, we adopt a widely used evaluation
metric, the normalized mean square error (nMSE), defined as follows:

nMSE =
1

σ2N

t1∑
t=t0

(o(t)− d(t))2, (17.4)

where σ2 is the variance of the true time series in period [t0, t1], N is the
number of patterns tested, and o(t) and d(t), respectively, are the actual and
desired outputs at time t.

In this section, we describe the recurrent FIR ANN architecture used, the
constraints developed, the learning algorithm, and our experimental results.

17.3.1 Recurrent FIR Neural Networks

Although a variety of ANN architectures for modeling time series have been
studied in the past, there was no consensus on the best architecture to use.
For example, Horne and Giles concluded that “recurrent networks usually did
better than TDNNs except on the finite memory machine problem” [17.23].
Yet, Hallas and Dorffner stated that “recurrent neural networks do not seem

412 B.W. Wah and M.L. Qian

+
+

+

Unit delay

Bias node

with input 1

regular node

b) FIR filtera) Recurrent FIR ANN

recurrent node

FIR filter

q−1

w(1)

w(0)

x(t− 1)

x(t− 2)

x(t− T)

q−1

q−1

q−1

x(t)

x(t + 1)

y(t)

w(T)

x(t)

w(2)

q−1

q−1

Fig. 17.9. Structure of a three-layer RFIR: Double concentric circles in (a) indicate
recurrent nodes; other circles are non-recurrent nodes; and small boxes are bias
nodes with constant input 1. q−1 is a one unit time delay

to be able to do so (prediction) under the given conditions” and “a simple
feedforward network significantly performs best for most of the nonlinear
time series”[17.18]. However, many do agree that the best architecture is
problem dependent and that “the efficiency of the learning algorithm is more
important than the network model used” [17.28].

Since neither recurrent nor non-recurrent ANNs are found to be superior,
we propose a hybrid recurrent ANN called recurrent FIR neural network
(RFIR). In RFIR, each feedback link has a non-zero delay, and the link be-
tween any two nodes has an explicit memory modeled by a multi-tap FIR
filter (Fig. 17.9b) for storing history information. Figure 17.9a shows a simple
three-layer RFIR in which each feedback link has an associated unit delay.
The advantage of this architecture is that it can store more historical informa-
tion than both RNN and FIR-NN. The concept of RFIR can be generalized
easily to existing recurrent ANNs, such as Elman’s neural network [17.13],
fully recurrent neural networks (FRNN) [17.19], and nonlinear autoregressive
networks with exogenous inputs (NARX) [17.9].

17.3.2 Constrained Formulations for ANN Learning

A constrained formulation consists of a learning objective, similar to (17.3)
used in a traditional unconstrained formulation, and multiple constraints,
each enforcing a learning criterion. We describe two types of constraints con-
sidered, although others may be added as needed.

17. Constraint-Based Neural Network Learning 413

Test SetTraining Set

change of regime end of training

V1
V2

V3

Fig. 17.10. Three validation sets V1, V2 and V3 defined in a training set. Validation
sets V1 and V2 can be used to cover regime changes in a piecewise chaotic time series

Constraints on individual patterns. To address the lack of guidance in search,
we have recently proposed new constraints that account for the error on
each training pattern in a constraint [17.45, 17.46, 17.47, 17.48, 17.49]. The
resulting optimization problem is as follows:

minw E(w) =
n∑

t=1

No∑
i=1

φ((oi(t)− di(t))2 − τ)

subject to hi(t) = (oi(t)− di(t))2 ≤ τ for all i and t,
(17.5)

where φ(x) = max{0, x}. Constraint hi(t) ≤ τ prescribes that the error of
the ith output unit on the tth training pattern be less than τ , a predefined
small positive value on the learning accuracy to be achieved. Note that E(w) is
modified from (17.3) in such a way that when all the constraints are satisfied,
the objective will be zero and learning stops.

A constrained formulation is beneficial in difficult training scenarios be-
cause violated constraints provide additional guidance during a search, lead-
ing a trajectory in a direction that reduces overall constraint violations. It can
overcome the lack of guidance in Fig. 17.7 when the gradient of the objective
function in an unconstrained formulation is very small. A search algorithm
solving a constrained formulation has information on all pattern errors and on
exactly which patterns have large errors. Hence, it may intentionally modify
its search direction by increasing gradient contributions from patterns with
large errors.

Constraints on cross validations. Our constrained formulation leads to a new
method for cross validations [17.46], shown in Fig. 17.10, that defines multiple
validation sets in learning and that includes the error from each validation
set in a new constraint. The validation error for the ith output unit from the
kth, k = 1, · · · , v, validation set is accounted for by nMSE in both single-
step and iterative validations. The advantage of this new approach is that
training can be performed on all historical data available, without excluding
validation patterns from training as in previous approaches. It considers new
constraints on errors in iterative validations, thereby avoiding overfitting of
the ANN learned. Further, it allows a new validation set to be defined for
each regime transition region in the training data of a piecewise chaotic time
series, leading to more accurate predictions of regime changes in the future.

Denote the iterative (or single-step) validation-constraint function for the
ith output node in the kth validation set as hI

k,i (or hS
k,i). The constrained

414 B.W. Wah and M.L. Qian

formulation of (17.5) becomes

minw Eav(t0, t1) =
t1∑

t=t0

No∑
i=1

φ((oi(t)− di(t))2 − τ)

subject to hi(t) = (oi(t)− di(t))2 ≤ τ,
hI

k,i = eI
k,i ≤ τ I

k,i,

hS
k,i = eS

k,i ≤ τS
k,i,

(17.6)

where eI (or eS) is the nMSE of the iterative (or single-step) validation
error, and τ I

k,i and τS
k,i are predefined small positive constants.

Eq. (17.6) is a constrained nonlinear programming problem (NLP) with
non-differentiable function hI

k,i. Hence, existing Lagrangian methods that re-
quire the differentiability of functions cannot be applied. Existing methods
based on penalty formulations have difficulties in convergence when penal-
ties are not chosen properly. Yet, algorithms that sample in real space and
that apply the recently developed theory of Lagrange multipliers for discrete
constrained optimization [17.50, 17.56] are too inefficient for solving large
problem instances. To this end, we describe next an efficient learning algo-
rithm called violation-guided backpropagation (VGBP) [17.47, 17.48].

17.3.3 Violation-Guided Backpropagation Algorithm

Assuming that w is discretized, we first transform (17.6) into an augmented
Lagrangian function:

L(w, λ) = E(w) +
n∑

t=1

No∑

i=1

(
λi(t)φ(hi(t)− τ) +

1
2
φ2(hi(t)− τ)

)
(17.7)

+
∑

j=I,S

v∑

k=1

No∑

i=1

(
λj

k,iφ(hj
k,i − τ j

k,i) +
1
2
φ2(hj

k,i − τ j
k,i)

)
.

The discretization of w will result in an approximate solution to (17.6) be-
cause a discretized w that minimizes (17.6) may not be the same as the true
optimal w. With fixed error thresholds, (17.6) may not be feasible with a
discretized w but feasible with a continuous w. This is not an issue in ANN
learning using (17.6) because error thresholds in learning are adjusted from
loose to tight, and there always exist error thresholds that will lead to a
feasible discretized w.

According to the theory of Lagrange multipliers for discrete constrained
optimization [17.50], a constrained local minimum in the discrete w space
of (17.6) is equivalent to a saddle point in the discrete w space of (17.7),
which is a local minimum in the w subspace and a local maximum in the λ
subspace. To look for the saddle points of (17.7) by performing descents in
the w subspace and ascents in the λ subspace [17.44], we have proposed in
Fig. 17.11 the violation guided back-propagation algorithm [17.47, 17.48].

17. Constraint-Based Neural Network Learning 415

(greedy rules)

(gradient-based by BP)

Y

N
Stop training and

do prediction

candidate point and λ;
E) Initailizations:

set initial parameters
Start

N

Y

N

Y

parameters?
F) Reset

using R&T

D) Update Lagrangian values

C) Generate new candidate
in the λ subspace

B) Accept candidate point

Stopping
conditions

met?

Search in
λ subspace

in the w subspace
A) Generate new candidates

w loop λ loop

(deterministic rules)

(annealing rules)

Fig. 17.11. VGBP: an iterative search procedure employing relax-and-tighten
(R&T) to solve a discrete constrained formulation for ANN time-series predictions.
The shaded box represents the routine to look for saddle points in discretized w
subspace and continuous λ subspace

The λ loop carries out ascents in the λ subspace by generating candidates
in that subspace in Box (C) and by accepting them using deterministic rules
in Box (D). Box (C) increases λ if the violation of the corresponding con-
straint is found to be larger than a certain threshold. In this way, a training
pattern with a large error will have a larger Lagrange multiplier λ.

For a learning problem with a large number of weights and/or train-
ing patterns, it is essential that the points generated in Box (A) be likely
candidates to be accepted in Box (B). Since (17.7) is not differentiable, we
compute an approximate gradient direction by ignoring single-step and iter-
ative validation errors in (17.6) and use BP [17.48] to find the gradient of
the approximate Lagrangian function

∑n
t=1

∑No

i=1(1 + λi(t))(hi(t) − τ). We
then generate a trial point using the approximate gradient and step size η.
In this way, a training pattern with a large error will contribute more in the
overall gradient direction because of its larger Lagrange multiplier, leading
to an effective suppression of constraint violations.

Since the gradient direction computed by BP is based on a heuristic step
size and does not consider constraints due to cross validations, a search based
on that direction may not always lead to a reduced Lagrangian function value
and may get stuck in infeasible local minima of the w subspace. Although
restarts can help escape from those local minima, our experimental results
have shown that uncontrolled restarts from those points may lead to the loss
of valuable local information collected during a search. To address this issue,
we propose an annealing strategy in Box (B) that decides whether to go from
current point (w, λ) to (w′, λ) according to the Metropolis probability [17.47,
17.48]

AT (w′,w)|λ = exp
{

(L(w)−L(w′))+

T

}
, (17.8)

where x+ = min{0, x}, and T is introduced to control the acceptance proba-
bility.

Tolerances τ, τ I and τS are set by the relax-and-tighten strategy proposed
in [17.47]. This strategy is based on the observation that looser constraints
are easier to satisfy, while achieving larger violations at convergence, and that
tighter constraints are slower to satisfy, while achieving smaller violations at

416 B.W. Wah and M.L. Qian

Table 17.1. Single-step and iterative test performance of VGBP in nMSE on
Laser as compared to other published results. The test set consists of patterns from
1,001 to 1,100. As a comparison, we also show the test performance on patterns
from 1001 to 1050. Boxed numbers indicate the best results; N/A stands for data
not available. Both runs of VGBP were done on an RFIR with one input node, 20
hidden nodes, one output node, feedbacks from output to hidden layers and from
hidden to input layers, but without RFIR on each link

Method # of Training Single-step predictions Iterative predictions
weights 100-1000 1001-

1050
1001-
1100

1001-
1050

1001-
1100

FIR-
NN [17.52]

1105 0.00044 0.00061 0.023 0.0032 0.0434

ScaleNet N/A 0.00074 0.00437 0.0035 N/A N/A
[17.15]

VGBP
(Run
1)

461 0.00036 0.00043 0.0034 0.0054 0.0194

VGBP
(Run
2)

461 0.00107 0.00030 0.00276 0.0030 0.0294

0

50

100

150

200

250

1000 1020 1040 1060 1080 1100

L
as

er
 I

nt
en

si
ty

Pattern Index in Iterative Predictions

expected intensity
predicted intensity

Fig. 17.12. Iterative predictions starting at Pattern 1001 made by an ANN trained
by VGBP on a constrained formulation (Run 1 in Table 17.1)

convergence. By using loose constraints at the beginning and by tightening
the constraints gradually, learning converges faster with tighter tolerances.

17.3.4 Experimental Results

We have tested our formulations and algorithms on several benchmarks, in-
cluding Laser, Sunspots, and five chaotic time series. We present only partial
results here [17.46, 17.47, 17.48].

Laser is taken from the Sante Fe time series competition [17.54], in which
Wan’s FIR-NN [17.52] won the first place on this time series. Table 17.1 shows
that VGBP improves Wan’s result in terms of both single-step and iterative

17. Constraint-Based Neural Network Learning 417

Table 17.2. A comparison of single step-prediction performance in nMSE on
five methods: Carbon copy (CC), linear [17.52], FIR-NN [17.52], DRNN [17.2], and
VGBP. Carbon copy simply predicts the next time-series data to be the same as
the proceeding data (x(t + 1) = x(t)). The training (resp. testing) set shows the
patterns used in learning (resp. testing). Lorenz attractor has two data streams
labeled by x and z, respectively, whereas Ikeda attractor has two streams – real
(Re(x)) and imaginary (Im(x)) parts of a plane wave

Bench- TrainingTestingPerformance Design Methods

Mark Set Set Metrics CC Linear FIR-
NN

DRNN VGBP

MG17 1-
500

501- nMSE 0.6686 0.320 0.00985 0.00947 0.000057

2000 # of weights 0 N/A 196 197 121
MG30 1-

500
501- nMSE 0.3702 0.375 0.0279 0.0144 0.000374

2000 # of weights 0 N/A 196 197 121
Henon 1-

5000
5001- nMSE 1.633 0.874 0.0017 0.0012 0.000034

10000 # of weights 0 N/A 385 261 209
4001- nMSE x 0.0768 0.036 0.0070 0.0055 0.000034

Lorenz 1-
4000

5500 z 0.2086 0.090 0.0095 0.0078 0.000039

of weights 0 N/A 1070 542 527
10001-nMSE Re(x) 2.175 0.640 0.0080 0.0063 0.00023

Ikeda 1-
10000

11500 Im(x) 1.747 0.715 0.0150 0.0134 0.00022

of weights 0 N/A 2227 587 574

predictions, using less than half of the weights. Figure 17.12 further shows
that VGBP gives accurate iterative predictions for over 60 steps, predicting
precisely the regime changeover point and some phase shift afterwards.

We have also tested five more nonlinear chaotic time series: Mackey-Glass
17 (MG17), Mackey-Glass 30 (MG30), Henon, Lorenz, and Ikeda. Table 17.2
compares our results with four other predictors and shows that our ANNs
trained by VGBP on constrained formulations use less weights and achieve
nMSEs that are one to two orders of magnitude smaller.

17.4 Predictions of Noisy Time Series with High
Frequency Random Noise

As most financial time series have been found to be noisy and behave like
random walks [17.12, 17.58, 17.22], we use daily closing stock prices as ex-

418 B.W. Wah and M.L. Qian

amples of noisy time series to illustrate how such series can be learned using
constrained formulations. As mentioned earlier, a de-noised low-pass filtered
time series lags behind the original series, and a predictor needs to predict
the missing low-pass data in the lag period before predicting into the future.

17.4.1 Review on Financial Time Series Predictions

Models for financial time-series forecasting can be classified into linear,
nonlinear, and expert system-based. Linear models are still popular in fi-
nancial time-series predictions, the most popular of which are exponen-
tial smoothing, ARIMA models [17.31, 17.32, 17.35, 17.25], and GARCH
models (linear in mean and nonlinear in variance) [17.5, 17.34]. Nonlinear
models consist mainly of the k-nearest-neighbor methods and ANN meth-
ods [17.3, 17.34, 17.41]. Expert systems employ a collection of models (includ-
ing exponential smoothing methods, ARIMA methods, and moving average),
develop a set of rules for selecting a specific method [17.14, 17.35], and select
one method for activation when certain conditions are satisfied.

In the past twenty years, there were three Makridakis competitions
(also known as M-Competitions [17.30], M2-Competitions [17.31], and M3-
Competitions [17.32]) held to test forecasting accuracy, including financial
and economic time series. A variety of models, including those aforemen-
tioned, were tested. The conclusions reached were rather consistent. We list
below some related conclusions drawn from these competitions and the liter-
ature [17.17, 17.21, 17.34].

– No single method is clearly superior to other methods in most time series
tested.

– Existing methods do not outperform random walk models significantly and
statistically in terms of both prediction accuracy and prediction directions
(up/down trends). In some cases, they are even worse than random walks.

– Prediction quality is measurement dependent.

17.4.2 Constraint in the Lag Period

In our approach, we first apply flat extensions to generate future raw time
series data, obtain low-pass data in the first part of the lag period using
the extended raw data, and train an RFIR by VGBP, while including the
low-pass data in the first part of the lag period as learning patterns and as
additional constraints on raw data . After the RFIR is trained, we use it to
predict low-pass data in the latter part of the lag period and into the future.

In order to improve prediction accuracy, we include a special constraint in
the lag period by utilizing the available raw data. Let R(t) be the raw data,
S(t) be the low-pass data, and Ŝ(t) be the ANN output at time t (where
t can occur during learning or during prediction). Since the low-pass curve
is a smoothed version of the raw data curve, the raw data in the lag period

17. Constraint-Based Neural Network Learning 419

L
o

w
−

fr
eq

u
en

cy

DAY

Low frequency target

Lag

Network output

Actual raw data

PRICE

Today

fi
lt

er
in

g
 e

n
d

ed

Fig. 17.13. Illustration of an additional constraint in the lag period. The raw
data should center around the low-pass data as well as the ANN outputs

predictionstraining
iterative

t0-10 t0+1

t0-3

Fig. 17.14. Predictions beyond the lag period using a 20-tap filter

generally centers around the true low-pass curve and, consequently, the curve
of the ANN outputs (Fig. 17.13). This observation motivates us to add a new
constraint in (17.6) on the difference between the raw data and the ANN
outputs in the lag period:

hlag =
t0∑

t=t0−m+1

Ŝ(t)−R(t) ≤ τ lag. (17.9)

The new constrained formulation for ANN learning of noisy time series can
now be solved by VGBP.

17.4.3 Experimental Results

We have conducted experiments by low-pass filtering of time series using
a 20-tap filter that incurs a 10-unit lag. After extending the raw data by
flat extensions and low-pass filtering of the extended data, we have found
experimentally that the last three low-pass values in the lag period have
considerably large errors (Fig. 17.6). Figure 17.14 shows the use of the first
seven low-pass values in the lag period in training RFIR and the iterative
predictions from t0 − 2. True predictions start from t0 + 1.

To test whether our approach will lead to more accurate predictions on
future data, we have used the daily closing prices of IBM (symbol IBM),
Citigroup (symbol C) and Exxon-Mobil (symbol XOM) between April 1, 1997

420 B.W. Wah and M.L. Qian

and March 31, 2002. We have also constructed the following five predictors:

CC: Carbon copy that simply copies the most recently avail-
able data;

AR(30): Autoregression with an order of 30, using the TISEAN
implementation [17.20];

NN: Unconstrained formulation trained by BP on RFIR with
one input node, two hidden nodes, one output node,
feedbacks from hidden to input layers and from output
to input layers, and one-tap FIR structure on each feed-
back link;

LNN: Constrained formulation, with constraints on the lag pe-
riod and using seven predicted data values in the lag pe-
riod, trained by VGBP using the same RFIR structure
as NN;

IP: Ideal predictor, same as LNN but using seven true values
in the lag period.

IP establishes an approximate upper bound for prediction accuracy, as it
uses seven error-free low-pass data in the lag period that are not available
otherwise.

To compare prediction accuracy, we use nMSE, as well as the widely
used metric called hit rate in financial time series predictions. Let D(t+h) =
sign(S(t + h) − S(t)) be the actual direction of change for S(t), and let
D̂(t + h) = sign(Ŝ(t + h)− Ŝ(t)) be the predicted direction change. We call
a prediction for horizon h a hit if and only if D̂(t + h) ×D(t + h) > 0, and
we define the hit rate H(h) as follows:

H(h) =

∣∣∣{t where D(t + h)D̂(t + h) > 0}
∣∣∣

∣∣∣{t where D(t + h)D̂(t + h) 6= 0}
∣∣∣
, t = 1, · · · , n, (17.10)

where |E| represents the number of elements in set E.
Figure 17.15a shows the nMSEs of the five predictors for the period

between April 1, 1997, and March 31, 2002. (Predictions did not start on April
1, 1997, as an initial window of 200 days were used for training before the
first prediction was made.) AR(30) and NN do not perform well because they
need to predict iteratively in the 10 day lag period before predicting into the
future. LNN improves significantly over CC and AR(30), especially for small
horizons, and outperforms traditional NN over all horizons. It also shows
that LNN has errors closest to those of IP over small prediction horizons,
and achieves slightly better nMSE at longer horizons. (Note that IP only
gives an approximate upper bound on accuracy.)

Figure 17.15b plots the hit rates for the five predictors. It shows that CC,
AR(30) and NN behave like random walks over the 10 day horizons, as they
always have around a 50% chance to predict the correct direction of price

17. Constraint-Based Neural Network Learning 421

0

0.05

0.1

0.15

0.2

0.25

0.3

0 2 4 6 8 10

nM
SE

Horizon

Citigroup

CC
AR(30)

NN
LNN

IP

40
45
50
55
60
65
70
75

0 2 4 6 8 10

R
at

e
%

Horizon

Citigroup

CC
AR(30)

NN
LNN

IP

0

0.1

0.2

0.3

0.4

0.5

0.6

0 2 4 6 8 10

nM
SE

Horizon

IBM

CC
AR(30)

NN
LNN

IP

45

50

55

60

65

70

75

0 2 4 6 8 10

R
at

e
%

Horizon

IBM

CC
AR(30)

NN
LNN

IP

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

0 2 4 6 8 10

nM
SE

Horizon

Exxon Mobil

CC
AR(30)

NN
LNN

IP

45
50
55
60
65
70
75
80

0 2 4 6 8 10

R
at

e
%

Horizon

Exxon Mobil

CC
AR(30)

NN
LNN

IP

a) nMSE b) Hit rate

Fig. 17.15. Performance of five predictors tested on the daily closing prices of
Citigroup, IBM and Exxon-Mobil

changes. On the other hand, LNN can achieve hit rates significantly higher
than 50% over small horizons (one to five days). Finally, IP performs better
than LNN for small horizons (one to five days), but performs statistically the
same as LNN for large horizons (six days and beyond).

Figure 17.16 plots the predictions of LNN on the next day closing prices
of IBM over 1,100 days, as compared to the actual low-pass data. The results
show that the predictions track well with the actual low-pass data.

Finally, we analyze the probability that a random walk can achieve the
same level of prediction accuracy as LNN, and conclude that it is very unlikely
that LNN is a random walk. Since a random walk has a probability of p = 0.5
to achieve a hit for each prediction, the probability for it to achieve k hits
out of n predictions is governed by a binomial probability:

Prob(Hits = k|n predictions) =
n!

k!(n− k)!
pk(1− p)n−k

=
n!

k!(n− k)!
0.5n. (17.11)

It can be shown that the probability for a random walk to achieve 660 hits
in 1,100 predictions (hit rate of 0.6) is only 1.15× 10−11, and that the prob-
ability for it to achieve more than 605 hits (hit rate of 0.55) is 4.05 × 10−4.

422 B.W. Wah and M.L. Qian

40

60

80

100

120

140

0 200 400 600 800 1000

Pr
ic

e

Day Index

Low-pass target
Prediction

Fig. 17.16. Next-day predictions on IBM’s low-pass daily closing prices

Hence, it is very unlikely that a random walk can achieve the same level of
prediction accuracy as LNN. Further, considering that results in the liter-
ature on financial time series forecasting achieve next day hit rates below
55% [17.17, 17.21, 17.34], our results are very competitive.

17.5 Conclusions

We have studied the predictions of noise-free as well as noisy time series using
ANNs.

For noise-free and possibly piecewise chaotic time series, we have proposed
new constrained formulations for ANN learning that allow multiple learning
criteria and prior knowledge to be included. Such criteria include testing er-
rors on multiple validation sets that can model regime changes in piecewise
chaotic time series, and the error of the ANN learned when validated on the
objective used in testing. We have further proposed a new RFIR architec-
ture that combines a recurrent structure and a memory-based FIR structure,
and incorporates a violation-guided backpropagation algorithm based on the
theory of Lagrange multipliers for discrete constrained optimization.

For noisy time series with high frequency random noise, we have studied
systematically the edge effect due to low-pass filtering of noisy time series.
To predict missing low-pass data in the lag period, we have developed an
approach that estimates low-pass values in the lag period using raw data ex-
tended by flat extensions, and that incorporates new constraints on predicted
low-pass data in the lag period. The new constraints enable active training in
the lag period that greatly improves the prediction accuracy in that period.

References

17.1 M. Aoki: State Space Modeling of Time Series (Springer-Verlag, Nerlin, 1987)

17. Constraint-Based Neural Network Learning 423

17.2 A. Aussem: Dynamical recurrent neural networks towards prediction and mod-
eling of dynamical systems. Neurocomputing, 28, 207-232 (1999)

17.3 S.D. Balkin, J.K. Ord: Automatic neural network modeling for univariate time
series. Int’l J. of Forecasting, 16, 509-515 (2000)

17.4 G.E.P. Box, G.M. Jenkins: Time Series Analysis: Forecasting and Control,
2nd ed. (Holden-Day, San Francisco, 1976)

17.5 C. Brooks, S.P. Burke, G. Persand: Benchmarks and the accuracy of GARCH
model estimation. Int’l J. of Forecasting, 17, 45-56 (2001)

17.6 R.G. Brown: Smoothing, Forecasting and Prediction (Prentice Hall, Englewood
Cliffs, NJ, 1963)

17.7 C. Chatfield: The analysis of time series-an introduction (Chapman & Hall,
London, 5 edition, 1996)

17.8 C. Chatfield: Time-series forecasting (Chapman & Hall/CRC, Boca Raton,
Florida, 2001)

17.9 S. Chen, S. Billings, P. Grant: Non-linear system identification using neural
networks. Int’l J. of Control, 51, 1191-1214 (1990)

17.10 D. Drossu, Z. Obradovic: Regime signaling techniques for non-stationary time
series forecasting. In: Proc. 30th Hwaii Int’l Conf. on System Sciences (Wailea,
HI, USA, 1997) 5, pp. 530-538

17.11 R.O. Duda, P.E. Hart: Pattern Classification and Scene Analysis (John Wiley
and Sons, 1973)

17.12 R.D. Edwards, J. Magee: Technical Analysis of Stock Trends (John Magee,
Springfield, MA, 5 edition, 1966)

17.13 J.L. Elman: Finding structure in time. Cognitive Science, 14, 179-211 (1990)
17.14 B.E. Flores, S.L. Pearce: The use of an expert system in the M3 competition.

Int’l J. of Forecasting, 16, 485-496 (2000)
17.15 A.B. Geva: ScaleNet - multiscale neural-network architecture for time series

prediction. IEEE Trans. on Neural Networks, 9 (5), 1471-1482 (1998)
17.16 C.W.J. Granger, A.P. Andersen: Introduction to Bilinear Time Series Models

(Vandenhoeck & Ruprect, Göittingen, 1978)
17.17 S. Gutjahr, M. Riedmiller, J. Klingemann: Daily prediction of the foreign ex-

change rate between the us dollar and the german mark using neural networks.
In: Proc. of SPICES pp. 492-498 (1997)

17.18 M. Hallas, G. Dorffner: A comparative study on feedforward and recur-
rent neural networks in time series prediction using gradient descent learning.
In: Proc. of 14th European Meeting on Cybernetics and Systems Research 2,
pp. 644-647 (1998)

17.19 S. Haykin: Neural Networks: A Comprehensive Foundation (Prentice Hall,
NJ, 2 edition, 1999)

17.20 R. Hegger, T. Schreiber: The TISEAN software package.
http://www.mpipks-dresden.mpg.de/ tisean (2002)

17.21 T. Hellstrm: Predicting a rank measure for stock returns. Theory of Stochas-
tic Processes, 6(20), 64-83 (2000)

17.22 T. Hellstrom, K. Holmstrom: Predicting the Stock Market. Technical Report
Series IMa-TOM-1997-07, Malardalen University, Vasteras, Sweden, 1997

17.23 B.G. Horne, C.L. Giles: An experimental comparison of recurrent neural
networks. In: G. Tesauro, D. Touretzky, T. Leen (eds.), Neural Information
Processing Systems (MIT Press, Cambridge, MA, 1995) pp. 697-704

17.24 A.K. Jain, M.N. Murty, P.J. Flynn: Data clustering: A review. ACM Com-
puting Surveys, 31 (3), 264-323 (1999)

17.25 E.S. Gardner Jr., E.A. Anderson-Fletcher, A.M. Wicks: Further results on
focus forecasting vs. exponential smoothing. Int’l J. of Forecasting, 17, 287-293
(2001)

424 B.W. Wah and M.L. Qian

17.26 B.H. Juang, L.R. Rabiner: Hidden Markov models for speech recognition.
Technometrics, 33, 251-272 (1991)

17.27 J. Kohlmorgen, K.R. Müller, K. Pawelzik: Analysis of drifting dynamics with
neural network hidden markov models. Advances in Neural Information Pro-
cessing Systems, 10 (1998)

17.28 T. Koskela, M. Lehtokangas, J. Saarinen, K. Kaski: Time series prediction
with multilayer perceptron, FIR and Elman neural networks. In: Proc. of the
World Congress on Neural Networks pp. 491-496 (1996)

17.29 K.J. Lang, G.E. Hinton: The development of the time-delayed neural net-
work architecture for speech recognition. Technical Report #CMU-CS-88-152,
Carnegie-Mellon University, Pittsburgh, PA, 1988

17.30 S. Makridakis, A. Andersen, R. Carbone, R. Fildes, M. Hibon, R.
Lewandowski, J. Newton, E. Parzen, R. Winkler: The accuracy of extrapo-
lation (time series) methods: results of a forecasting competition. Int’l J. of
Forecasting, 1, 111-153 (1982)

17.31 S. Makridakis, C. Chatfield, M. Hibon, M. Lawrence, T. Mills, K. Ord, L.F.
Simmons: The M2-Competition: a real-time judgementally based forecasting
study. Int’l J. of Forecasting, 9, 5-23 (1993)

17.32 S. Makridakis, M. Hibon: The M3-Competition: results, conclusions and im-
plications. Int’l J. of Forecasting, 16, 451-476 (2000)

17.33 T. Masters: Neural, Novel and Hybrid Algorithms for Time Series Prediction
(John Wiley & Sons, Inc., NY, 1995)

17.34 N. Meade: A comparison of the accuracy of short term foreign exchange
forecasting methods. Int’l J. of Forecasting, 18, 67-83 (2002)

17.35 G. Melard, J.M. Pasteels: Automatic arima modeling including interventions,
using time series expert software. Int’l J. of Forecasting, 16, 497-508 (2000)

17.36 J. Moody, C. Darken: Fast learning in networks of locally-tuned processing
units. Neural Computation, 1(2), 281-294 (1989)

17.37 K. Müller, A. Smola, G. Rätsch, B. Schölkopf, J. Kohlmorgen, and V. Vapnik:
Predicting time series with support vector machines. In: ICANN pp. 999-1004
(1997)

17.38 F. Murtagh, A. Aussem: Using the wavelet transform for multivariate data
analysis and time series forecasting. In: C. Hayashi, H.H. Bock, K. Yajima, Y.
Tanaka, N. Ohsumi, Y. Baba, editors, Data Science, Classification and Related
Methods pp. 617-624 (Springer-Verlag, 1998)

17.39 D.F. Nicholls, A.R. Pagan: Varying coefficient regression. In: E.J. Hannan,
P.R. Krishnaiah, M.M. Rao (eds.), Handbook of Statistics (North-Holland, Am-
sterdam, 1985) pp. 413-449

17.40 J.R. Quinlan: Induction of decision trees. Machine Learning, 1, 81-106 (1986)
17.41 S. Ramaswamy: One-step prediction of financial time series, BIS Working Pa-

per No. 57. Technical report, Bank for Interal Settlements, Basle, Switzerland,
1998

17.42 Y. Shang, B.W. Wah: Global optimization for neural network training. IEEE
Computer, 29, 45-54 (March 1996)

17.43 H. Tong: Nonlinear Time Series: A Dynamical System Approach (Oxford
University Press, Oxford, 1990)

17.44 B.W. Wah, Y.X. Chen: Constrained genetic algorithms and their applica-
tions in nonlinear constrained optimization. In: Proc. Int’l Conf. on Tools with
Artificial Intelligence (IEEE, November 2000) pp. 286-293

17.45 B.W. Wah, M.L. Qian: Constrained formulations for neural network training
and their applications to solve the two-spiral problem. In: Proc. Fifth Int’l Conf.
on Computer Science and Informatics 1, pp. 598-601 (February 2000)

17. Constraint-Based Neural Network Learning 425

17.46 B.W. Wah, M.L. Qian: Time-series predictions using constrained formula-
tions for neural-network training and cross validation. In: Proc. Int’l Conf.
on Intelligent Information Processing, 16th IFIP World Computer Congress
(Kluwer Academic Press, August 2000) pp. 220-226

17.47 B.W. Wah, M.L. Qian: Violation-guided learning for constrained formula-
tions in neural network time series prediction. In: Proc. Int’l Joint Conference
on Artificial Intelligence (IJCAI, Aug. 2001) pp. 771-776

17.48 B.W. Wah, M.L. Qian: Violation guided neural-network learning fo con-
strained formulations in time-series predictions. Int’l Journal on Computational
Intelligence and Applications, 1(4), 383-398 (December 2001)

17.49 B.W. Wah, M.L. Qian: Constrained formulations and algorithms for stock
price predictions using recurrent FIR neural networks. In: Proc. 2002 National
Conf. on Artificial Intelligence (AAAI, 2002)(accepted to appear)

17.50 B.W. Wah, Z. Wu: The theory of discrete Lagrange multipliers for nonlin-
ear discrete optimization. Principles and Practice of Constraint Programming,
pp. 28-42 (October 1999)

17.51 E.A. Wan: Temporal backpropagation for FIR neural networks. IEEE Int’l
Joint Conf. on Neural Networks, 1, pp. 575-580 (San Diego, CA., 1990)

17.52 E.A. Wan: Finite Impulse Response Neural Networks with Applications in
Time Series Prediction. Ph.D. Thesis, Standford University, 1993

17.53 C.J. Watkins: Models of Delayed Reinforcement Learning. Ph.D. thesis, Cam-
bridge University (Cambridge, UK, 1989)

17.54 A.S. Weigend, N.A. Gershenfeld (eds.): Time Series Prediction: Forecasting
the future and understanding the past (Addison-Wesley, 1994)

17.55 R.J. Williams, D. Zipser: A learning algorithm for continually running fully
recurrent neural networks. Neural Computation, 1, 270-280 (1989)

17.56 Z. Wu: The Theory and Applications of Nonlinear Constrained Optimization
using Lagrange Multipliers. Ph.D. Thesis, Dept. of Computer Science, Univ. of
Illinois, Urbana, IL (May 2001)

17.57 B.L. Zhang, R. Coggins, M.A. Jabri, D. Dersch, B. Flower: Multiresolution
forecasting for future trading using wavelet decompositions. IEEE Trans. on
Neural Networks, 12, 766-775 (2001)

17.58 G. Zheng, J.L. Starck, J.G. Campbell, F. Murtagh: Multiscale transforms for
filtering financial data streams. J. of Computational Intelligence in Finance, 7,
18-35 (1999)

