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1. Introduction 
A general mixed-integer nonlinear programming problem (MINLP) is formulated as follows: 

 
(1) 

where z = (x, y)T ∈ Z; x ∈ Rv and y ∈ Dw are, respectively, bounded continuous and discrete 

variables; f(z) is a lower-bounded objective function; g(z) = (g1(z),…, gr(z))T is a vector of r 
inequality constraint functions;2 and h(z)= (h1(z),…,hm(z))T is a vector of m equality constraint 
functions. Functions f(z), g(z), and h(z) are general functions that can be discontinuous, non-
differentiable, and not in closed form. 
Without loss of generality, we present our results with respect to minimization problems, 
knowing that maximization problems can be converted to minimization ones by negating 
their objectives. Because there is no closed-form solution to Pm, we develop in this chapter 
efficient procedures for finding locally optimal and feasible solutions to Pm, demonstrate 
that our procedures can lead to better solutions than existing methods, and illustrate the 
procedures on two applications. The proofs that our procedures have well-behaved 
convergence properties can be found in the reference [27], We first define the following 
terms. 
                                                 
1 Research supported by the National Science Foundation Grant IIS 03-12084 and a 
Department of Energy Early Career Principal Investigator Grant. 
2 Given two vectors V1 and V2 of the same dimension, V1 ≥ V2 means that each element of V1 

is greater than or equal to the corresponding element of V2; V1 > V2 means that at least one 
element of V1 is greater than the corresponding element of V2 and the other elements are 
greater than or equal to the corresponding elements of V2. 
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Definition 1. A mixed neighborhood Nm(z) for z = (x, y)T in the mixed space Rv × Dw
 is: 

 
(2) 

where Nc(x) = {x′ : kx′ − xk ≤ ε and ε → 0} is the continuous neighborhood of x, and the discrete 

neighborhood Nd(y) is a finite user-defined set of points {y′ ∈ Dw} such that y′ ∈ Nd(y) ⇔ y ∈ 

Nd(y′) [1]. Here, ε → 0 means that ε is arbitrarily close to 0. 
Definition 2. Point z of Pm is a feasible point iff h(z) = 0 and g(z) ≤ 0. 

Definition 3. Point z∗ is a constrained local minimum (CLMm) of Pm iff z∗ is feasible, and f(z∗) ≤ 

f(z) with respect to all feasible z ∈Nm(z∗). 

Definition 4. Point z∗ is a constrained global minimum (CGMm) of Pm iff z∗ is feasible, and  

f(z∗) ≤ f(z) for every feasible z ∈ Z. The set of all CGMm of Pm is Zopt. 
Note that a discrete neighborhood is a user-defined concept because it does not have any 
generally accepted definition. Hence, it is possible for z = (x, y)T to be a CLMm to a 

neighborhood Nd(y) but not to another neighborhood . The choice, however, does 
not affect the validity of a search as long as one definition is consistently used throughout. 
Normally, one may choose Nd(y) to include discrete points closest to z, although a search 
will also be correct if the neighborhood includes “distant” points. 
Finding a CLMm of Pm is often challenging. First, f(z), g(z), and h(z) may be non-convex and 
highly nonlinear, making it difficult to even find a feasible point or a feasible region. 
Moreover, it is not always useful to keep a search within a feasible region because there may 
be multiple disconnected feasible regions. To find high-quality solutions, a search may have 
to move from one feasible region to another. Second, f(z), g(z), and h(z) may be 
discontinuous or may not be differentiable, rendering it impossible to apply existing 
theories based on gradients. 
A popular method for solving Pm is the penalty method (Section 2.1). It transforms Pm into 
an unconstrained penalty function and finds suitable penalties in such a way that a global 
minimum of the penalty function corresponds to a CGMm of Pm. Because it is 
computationally intractable to look for global minima when the penalty function is highly 
nonlinear, penalty methods are only effective for finding CGMm in special cases. 
This chapter is based on the theory of extended saddle points in mixed space [25, 29] 
(Section 2.2), which shows the one-to-one correspondence between a CLMm of Pm and an 
extended saddle point (ESP) of the corresponding penalty function. The necessary and 
sufficient condition allows us to find a CLMm of Pm by looking for an ESP of the 
corresponding penalty function. 
One way to look for those ESPs is to minimize the penalty function, while gradually 
increasing its penalties until they are larger than some thresholds. The approach is not 
sufficient because it also generates stationary points of the penalty function that are not 
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CLMm of Pm. To avoid those undesirable stationary points, it is possible to restart the search 
when such stationary points are reached, or to periodically decrease the penalties in order 
for the search to escape from such local traps. However, this simple greedy approach for 
updating penalties may not always work well across different problems. 
Our goals in this chapter are to design efficient methods for finding ESPs of a penalty 
formulation of Pm and to illustrate them on two applications. We have made three 
contributions in this chapter. 
First, we propose in Section 3.1 a constrained simulated annealing algorithm (CSA), an 
extension of conventional simulated annealing (SA) [18], for solving Pm. In addition to 
probabilistic descents in the problem-variable subspace as in SA, CSA does probabilistic 
ascents in the penalty subspace, using a method that controls descents and ascents in a 
unified fashion. Because CSA is sample-based, it is inefficient for solving large problems. To 
this end, we propose in Section 3.2 a constraint-partitioned simulated annealing algorithm 
(CPSA). By exploiting the locality of constraints in many constraint optimization problems, 
CPSA partitions Pm into multiple loosely coupled subproblems that are related by very few 
global constraints, solves each subproblem independently, and iteratively resolves the 
inconsistent global constraints. 
Second, we show in Section 4 the asymptotic convergence of CSA and CPSA to a 
constrained global minimum with probability one in discrete constrained optimization 
problems, under a specific temperature schedule [27]. The property can be proved by 
modeling the search as a strongly ergodic Markov chain and by showing that CSA and 
CPSA minimize an implicit virtual energy at any constrained global minimum with 
probability one. The result is significant because it extends conventional SA, which 
guarantees asymptotic convergence in discrete unconstrained optimization, to that in 
discrete constrained optimization. It also establishes the condition under which optimal 
solutions can be found in constraint-partitioned nonlinear optimization problems. 
Last, we evaluate CSA and CPSA in Section 5 by solving some benchmarks in continuous 
space and by demonstrating their effectiveness when compared to other dynamic penalty 
methods. We also apply CSA to solve two real-world applications, one on sensor-network 
placements and another on out-of-core compiler code generation. 

2. Previous work on penalty methods 

Direct and penalty methods are two general approaches for solving Pm. Since direct 
methods are only effective for solving some special cases of Pm, we focus on penalty 
methods in this chapter. 
A penalty function of Pm is a summation of its objective and constraint functions weighted 

by penalties. Using penalty vectors α ∈ Rm
 and β ∈ Rr, the general penalty function for Pm is: 

 (3) 

where P and Q are transformation functions. The goal of a penalty method is to find 

suitable α∗ and β∗ in such a way that z∗ that minimizes (3) corresponds to either a CLMm or a 
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CGMm of Pm. Penalty methods belong to a general approach that can solve continuous, 
discrete, and mixed constrained optimization problems, with no continuity, differentiability, 
and convexity requirements. 
When P(g(z)) and Q(h(z)) are general functions that can take positive and negative values, 

unique values of α∗ and β∗ must be found in order for a local minimum z∗ of (3) to 

correspond to a CLMm or CGMm of Pm. (The proof is not shown.) However, the approach of 

solving Pm by finding local minima of (3) does not always work for discrete or mixed 

problems because there may not exist any feasible penalties at z∗. (This behavior is 

illustrated in Example 1 in Section 2.1.) It is also possible for the penalties to exist at z∗ but 
(3) is not at a local minimum there. A special case exists in continuous problems when 
constraint functions are continuous, differentiable, and regular. For those problems, the 
Karush-Kuhn-Tucker (KKT) condition shows that unique penalties always exist at 
constrained local minima [21]. In general, existing penalty methods for solving Pm transform 

g(z) and h(z) in (3) into non-negative functions before finding its local or global minima. In 
this section, we review some existing penalty methods in the literature. 

2.1 Penalty methods for constrained global optimization 
Static penalty methods. A static-penalty method [21, 22] formulates Pm as the minimization of 
(3) when its transformed constraints have the following properties: a) P(h(z)) ≥ 0 and Q(g(z)) 
≥ 0; and b) P(h(z)) = 0 iff h(z) = 0, and Q(g(z)) = 0 iff g(z) ≤ 0. By finding suitable penalty 

vectors α and β, an example method looks for z∗ by solving the following problem with 
constant ρ > 0: 

 

(4) 

where gj(z)+ = max(0, gj (z)), and g(z)+ = (g1(z)+, . . . , gr(z)+)T . 

Given z∗, an interesting property of P1 is that z∗ is a CGMm of Pm iff there exist finite α∗ ≥ 0 

and β∗ ≥ 0 such that z∗ is a global minimum of Ls((z, α∗∗, β∗∗)T ) for any α∗∗ > α∗ and β∗∗ > 

β∗. To show this result, note that αi and βj in P1 must be greater than zero in order to penalize 
those transformed violated constraint functions |hi(z)|ρ and (gj(z)+) ρ, which are non-negative 
with a minimum of zero. As (4) is to be minimized with respect to z, increasing the penalty 
of a violated constraint to a large enough value will force the corresponding transformed 
constraint function to achieve the minimum of zero, and such penalties always exist if a 
feasible solution to Pm exists. At those points where all the constraints are satisfied, every 
term on the right of (4) except the first is zero, and a global minimum of (4) corresponds to a 
CGMm of Pm. 
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Example 1. Consider the following simple discrete optimization problem: 

 

(5) 

Obviously, y∗ = 0. Assuming a penalty function Lp((y, α)T ) = f(y)+ αy and Nd(y) = {y−1, 

y+1}, there is no single α∗ that can make Lp((y, α∗)T ) a local minimum at y∗ = 0 with respect 

to y = ±1. This is true because we arrive at an inconsistent α∗ when we solve the following 
inequalities: 

 

On the other hand, by using Ls((y, α)T ) = f(y) + α |y| and by setting α∗ = 
4

3
 , the CGMd of 

(5) corresponds to the global minimum of Ls((y, α∗∗)T ) for any α∗∗ > α∗.                                  ■ 
A variation of the static-penalty method proposed in [16] uses discrete penalty values and 
assigns a penalty value αi(hi(z)) when hi(z) exceeds a discrete level ℓi (resp., βj(gj(z)) when gj(z)+ 

exceeds a discrete level ℓj), where a higher level of constraint violation entails a larger 
penalty value. The penalty method then solves the following minimization problem: 

 
(6) 

A limitation common to all static-penalty methods is that their penalties have to be found by 
trial and error. Each trial is computationally expensive because it involves finding a global 
minimum of a nonlinear function. To this end, many penalty methods resort to finding local 
minima of penalty functions. However, such an approach is heuristic because there is no 
formal property that relates a CLMm of Pm to a local minimum of the corresponding penalty 
function. As illustrated earlier, it is possible that no feasible penalties exist in order to have a 
local minimum at a CLMm in the penalty function. It is also possible for the penalties to exist 
at the CLMm but the penalty function is not at a local minimum there. 

Dynamic penalty methods. Instead of finding α∗∗ and β∗∗ by trial and error, a dynamic-
penalty method [21, 22] increases the penalties in (4) gradually, finds the global minimum z∗ 
of (4) with respect to z, and stops when z∗ is a feasible solution to Pm. To show that z∗ is a 

CGMm when the algorithm stops, we know that the penalties need to be increased when z∗ is 

a global minimum of (4) but not a feasible solution to Pm. The first time z∗ is a feasible 
solution to Pm, the solution must also be a CGMm. Hence, the method leads to the smallest 
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α∗∗ and β∗∗ that allow a CGMm to be found. However, it has the same limitation as static-
penalty methods because it requires computationally expensive algorithms for finding the 
global minima of nonlinear functions. 
There are many variations of dynamic penalty methods. A well-known one is the non-
stationary method (NS) [17] that solves a sequence of minimization problems with the 
following in iteration t: 

 
(7) 

where  
Here, C and ρ are constant parameters, with a reasonable setting of C = 0.01 and ρ = 2. An 
advantage of the NS penalty method is that it requires only a few parameters to be tuned. 
Another dynamic penalty method is the adaptive penalty method (AP) [5] that makes use of a 
feedback from the search process. AP solves the following minimization problem in 
iteration t: 

 
(8) 

where αi(t) is, respectively, increased, decreased, or left unchanged when the constraint  

hi(z) = 0 is respectively, infeasible, feasible, or neither in the last ℓ iterations. That is, 

 

(9) 

where ℓ is a positive integer, λ1, λ2 > 1, and λ1 ≠ λ2 in order to avoid cycles in updates. We 

use ℓ = 3, λ1 = 1.5, and λ2 = 1.25 in our experiments. A similar rule applies to the updates of 
βj(t). 
The threshold penalty method estimates and dynamically adjusts a near-feasible threshold qi(t) 
(resp., q′j (t)) for each constraint in iteration t. Each threshold indicates a reasonable amount 
of violation allowed for promising but infeasible points during the solution of the following 
problem: 

 
(10) 

There are two other variations of dynamic penalty methods that are not as popular: the 
death penalty method simply rejects all infeasible individuals [4]; and a penalty method that 
uses the number of violated constraints instead of the degree of violations in the penalty 
function [20]. 
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Exact penalty methods. Besides the dynamic penalty methods reviewed above that require 
solving a series of unconstrained minimization problems under different penalty values, the 
exact penalty methods are another class of penalty methods that can yield an optimal solution 
by solving a single unconstrained optimization of the penalty function with appropriate 
penalty values. The most common form solves the following minimization problem in 
continuous space [35, 6]: 

 
(11) 

It has been shown that, for continuous and differentiable problems and when certain 
constraint qualification conditions are satisfied, there exists c∗ > 0 such that the x∗ that 
minimizes (11) is also a global optimal solution to the original problem [35, 6]. In fact, c 

needs to be larger than the summation of all the Lagrange multipliers at x∗, while the 
existence of the Lagrange multipliers requires the continuity and differentiability of the 
functions. 
Besides (11), there are various other formulations of exact penalty methods [11, 12, 10, 3]. 
However, they are limited to continuous and differentiable functions and to global 
optimization. The theoretical results for these methods were developed by relating their 
penalties to their Lagrange multipliers, whose existence requires the continuity and 
differentiability of the constraint functions. 
In our experiments, we only evaluate our proposed methods with respect to dynamic 
penalty methods P3 and P4 for the following reasons. It is impractical to implement P1 

because it requires choosing some suitable penalty values a priori. The control of progress in 
solving P2 is difficult because it requires tuning many (ℓ· (m+r)) parameters that are hard to 
generalize. The method based on solving P5 is also hard to generalize because it depends on 
choosing an appropriate sequence of violation thresholds. Reducing the thresholds quickly 
leads to large penalties and the search trapped at infeasible points, whereas reducing the 
thresholds slowly leads to slow convergence. We do not evaluate exact penalty methods 
because they were developed for problems with continuous and differentiable functions. 

2.2 Necessary and sufficient conditions on constrained local minimization 
We first describe in this section the theory of extended saddle points (ESPs) that shows the 
one-to-one correspondence between a CLMm of Pm and an ESP of the penalty function. We 
then present the partitioning of the ESP condition into multiple necessary conditions and the 
formulation of the corresponding subproblems. Because the results have been published 
earlier [25, 29], we only summarize some high-level concepts without the precise formalism 
and their proofs. 
Definition 5. For penalty vectors α ∈ Rm

 and β ∈ Rr, we define a penalty function of Pm as: 

 
(12) 
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Next, we informally define a constraint-qualification condition needed in the main theorem 
[25]. Consider a feasible point z′ = (x′, y′)T and a neighboring point z′′ = (x′+ p , y ′)T under an 
infinitely small perturbation along direction p  ∈X in the x subspace. When the constraint-
qualification condition is satisfied at z′, it means that there is no p  such that the rates of 
change of all equality and active inequality constraints between z′′ and z′ are zero. To see 
why this is necessary, assume that f(z) at z′ decreases along p  and that all equality and 
active inequality constraints at z′ have zero rates of change between z′′ and z′. In this case, it 
is not possible to find some finite penalty values for the constraints at z′′ in such a way that 
leads to a local minimum of the penalty function at z′ with respect to z′′. Hence, if the above 
scenario were true for some p  at z′, then it is not possible to have a local minimum of the 
penalty function at z′. In short, constraint qualification at z′ requires at least one equality or 
active inequality constraint to have a non-zero rate of change along each direction p  at z′ in 
the x subspace. 

Theorem 1. Necessary and sufficient condition on CLMm of Pm [25]. Assuming z∗ ∈ Z of Pm 

satisfies the constraint-qualification condition, then z∗ is a CLMm of Pm iff there exist some 

finite α∗ ≥ 0 and β∗ ≥ 0 that satisfies the following extended saddle-point condition (ESPC): 

 (13) 

for any α** > α* and β** > β* and for all z∈Nm(z*), α∈ Rm, and β∈ Rr. 

Note that (13) can be satisfied under rather loose conditions because it is true for a range of 
penalty values and not for unique values. For this reason, we call (z*, α**, β**)T an extended 
saddle point (ESP) of (12). The theorem leads to an easy way for finding CLMm. Since an ESP 
is a local minimum of (12) (but not the converse), z* can be found by gradually increasing 
the penalties of those violated constraints in (12) and by repeatedly finding the local minima 
of (12) until a feasible solution to Pm is obtained. The search for local minima can be 
accomplished by any existing local-search algorithm for unconstrained optimization. 
Example 1 (cont’d). In solving (5), if we use Lm((y, α)T) = f(y) + α|y| and choose α* = 1 we 
have an ESP at y* = 0 for any α** > α*. This establishes a local minimum of Lm((y, α)T )at y* = 
0 with respect to Nd(y) = {y − 1, y + 1}. Note that the α* that satisfies Theorem 1 is only 
required to establish a local minimum of Lm((y, α)T ) at y* = 0 and is, therefore, smaller than 

the α* (=
4

3
) required to establish a global minimum of Lm((y, α)T )in the static-penalty 

method.                                                                                                                                                  ■ 
An important feature of the ESPC in Theorem 1 is that it can be partitioned in such a way 
that each subproblem implementing a partitioned condition can be solved by looking for 
any α** and β** that are larger than α* and β*. 
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Consider Pt, a version of Pm whose constraints can be partitioned into N subsets: 

 

(14) 

Each subset of constraints can be treated as a subproblem, where Subproblem t, t = 1, . . . ,N, 
has local state vector of ut mixed variables, and  
Here, z(t) includes all the variables that appear in any of the mt local equality constraint 

functions 
 

and the rt local inequality constraint functions 

. Since the partitioning is by constraints, z(1), . . . , z(N) may 

overlap with each other. Further, z(g) includes all the variables that appear in any of the p 

global equality constraint functions H = (H1, . . . ,Hp)T and the q global inequality constraint 
functions G = (G1, . . . , Gq)T. 
We first define Nm(z), the mixed neighborhood of z for Pt, and decompose the ESPC in (13) 
into a set of necessary conditions that collectively are sufficient. Each partitioned ESPC is 
then satisfied by finding an ESP of the corresponding subproblem, and any violated global 
constraints are resolved by finding some appropriate penalties. 
Definition 6.  the mixed neighborhood of z for Pt when partitioned by its constraints, 
is: 

 
(15) 

where  is the mixed neighborhood of z(t) (see Definition 2). 
Intuitively, is separated into N neighborhoods, where the tth neighborhood only 
perturbs the variables in z(t) while leaving those variables in z\z(t) unchanged. 
Without showing the details, we can consider Pt as a MINLP and apply Theorem 1 to derive 
its ESPC. We then decompose the ESPC into N necessary conditions, one for each 
subproblem, and an overall necessary condition on the global constraints across the 
subproblems. We first define the penalty function for Subproblem t. 
Definition 7. Let  be the sum of the transformed 
global constraint functions weighted by their penalties, where 

are the penalty vectors for the global 
constraints. Then the penalty function for Pt in (14) and the corresponding penalty function 
in Subproblem t are defined as follows: 

 
(16) 
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 (17) 

where  are the 
penalty vectors for the local constraints in Subproblem t. 
Theorem 2. Partitioned necessary and sufficient ESPC on CLMm of Pt [25]. Given  the 
ESPC in (13) can be rewritten into N + 1 necessary conditions that, collectively, are 
sufficient: 

 

 
(18) 

 (19) 

for any  

and for all   
Theorem 2 shows that the original ESPC in Theorem 1 can be partitioned into N necessary 
conditions in (18) and an overall necessary condition in (19) on the global constraints across 
the subproblems. Because finding an ESP to each partitioned condition is equivalent to 
solving a MINLP, we can reformulate the ESP search of the tth condition as the solution of 
the following optimization problem: 

 
                                                        subject to    

(20) 

The weighted sum of the global constraint functions in the objective of (20) is important 
because it leads to points that minimize the violations of the global constraints. When γT and 

ηT are large enough, solving ( )t
tP will lead to points, if they exist, that satisfy the global 

constraints. Note that ( )t
tP  is very similar to the original problem and can be solved by the 

same solver to the original problem with some modifications on the objective function to be 
optimized. 
In summary, we have shown in this section that the search for a CLMm of Pm is equivalent to 
finding an ESP of the corresponding penalty function, and that this necessary and sufficient 
condition can be partitioned into multiple necessary conditions. The latter result allows the 
original problem to be decomposed by its constraints to multiple subproblems and to the 
reweighting of those violated global constraints defined by (19). The major benefit of this 
decomposition is that each subproblem involves only a fraction of the original constraints 
and is, therefore, a significant relaxation of the original problem with much lower 
complexity. The decomposition leads to a large reduction in the complexity of the original 
problem if the global constraints is small in quantity and can be resolved efficiently. We 
demonstrate in Section 5 that the number of global constraints in many benchmarks is 
indeed small when we exploit the locality of the constraints. In the next section, we describe 
our extensions to simulated annealing for finding ESPs. 
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3. Simulated annealing for constrained optimization 
In this section, we present three algorithms for finding ESPs: the first two implementing the 
results in Theorems 1 and 2, and the third extending the penalty search algorithms in 
Section 2.1. All three methods are based on sampling the search space of a problem during 
their search and can be applied to solve continuous, discrete, and mixed-integer 
optimization problems. Without loss of generality, we only consider Pm with equality 
constraints, since an inequality constraint gj(z) ≤ 0 can be transformed into an equivalent 
equality constraint gj(z)+ = 0. 

3.1 Constrained simulated annealing (CSA) 
Figure 1 presents CSA, our algorithm for finding an ESP whose (z*, α**)T satisfies (13). In 
addition to probabilistic descents in the z subspace as in SA [18], with an acceptance 
probability governed by a temperature that is reduced by a properly chosen cooling 
schedule, CSA also does probabilistic ascents in the penalty subspace. The success of CSA 
lies in its strategy to search in the joint space, instead of applying SA to search in the 
subspace of the penalty function and updating the penalties in a separate phase of the 
algorithm. The latter approach would be taken in existing static and the dynamic penalty 
methods discussed in Section 2.1. CSA overcomes the limitations of existing penalty 
methods because it does not require a separate algorithm for choosing penalties. The rest of 
this section explains the steps of CSA [30, 28]. 
 

 
 

Figure 1. CSA: Constrained simulated annealing (see text for the initial values of the 
parameters). The differences between CSA and SA lie in their definitions of state z, 
neighborhood Nm(z), generation probability G(z, z′) and acceptance probability AT (z, z′). 
 

Line 2 sets a starting point z ← (z, α)T , where z can be either user-provided or randomly 
generated (such as using a fixed seed 123 in our experiments), and α is initialized to zero. 
Line 3 initializes control parameter temperature T to be so large that almost any trial point z′ 
will be accepted. In our experiments on continuous problems, we initialize T  

by first randomly generating 100 points of x and their corresponding neighbors  
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x′ ∈ Nc(x) in close proximity, where |x′i−xi| ≤ 0.001, and then setting 

 Hence, we use a large initial T if the function 

is rugged is large), or the function is not rugged but its 

constraint violation (|hi(x)|) is large. We also initialize κ to 0.95 in our experiments. 

Line 4 sets the number of iterations at each temperature. In our experiments, we choose NT ← 

ζ (20n + m) where ζ ← 10(n + m), n is the number of variables, and m is the number of 
equality constraints. This setting is based on the heuristic rule in [9] using n +m instead of n. 
Line 5 stops CSA when the current z is not changed, i.e., no other z′ is accepted, in two 
successive temperature changes, or when the current T is small enough (e.g. T < 10−6). 
Line 7 generates a random point z′ ∈ Nm(z) from the current , where  
Λ = Rm

 is the space of the penalty vector. In our implementation, Nm(z) consists of (z′, α)T 

and  (z, α′)T , where z′∈  (see Definition 1), and α′ ∈  is a point neighboring to α 

when h(z) ≠ 0: 

 (21) 

and  (22) 

According to this definition, αi is not perturbed when hi(z) = 0 is satisfied. 
G(z, z′), the generation probability from z to z′ ∈Nm(z), satisfies: 

 
(23) 

Since the choice of G(z, z′) is arbitrary as long as it satisfies (23), we select z′ in our 
experiments with uniform probability across all the points in Nm(z), independent of T: 

 
(24) 

As we perturb either z or α but not both simultaneously, (24) means that z′ is generated 

either by choosing z′ ∈  randomly or by generating α′ uniformly in a predefined range. 
Line 8 accepts z′ with acceptance probability AT (z, z′) that consists of two components, 
depending on whether z or α is changed in z′: 

 

(25) 
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The acceptance probability in (25) differs from the acceptance probability used in 
conventional SA, which only has the first case in (25) and whose goal is to look for a global 
minimum in the z subspace. Without the α subspace, only probabilistic descents in the z 
subspace are carried out. 
 

 
Figure 2. CPSA: Constraint-partitioned simulated annealing. 

In contrast, our goal is to look for an ESP in the joint Z × Λ space, each existing at a local 
minimum in the z subspace and at a local maximum in the α subspace. To this end, CSA 

carries out probabilistic descents of  with respect to z for each fixed α. That is, 

when we generate a new z′ under a fixed α, we accept it with probability one when 

is negative; otherwise, we accept it with probability 
. This step has exactly the same effect as in conventional SA; that is, it performs 

descents with occasional ascents in the z subspace. 

However, descents in the z subspace alone will lead to a local/global minimum of the 
penalty function without satisfying the corresponding constraints. In order to satisfy all the 
constraints, CSA also carries out probabilistic ascents of  with respect to α for 
each fixed z in order to increase the penalties of violated constraints and to force them into 

satisfaction. Hence, when we generate a new α′ under a fixed z, we accept it with probability 

one when   is positive; otherwise, we accept it with 

probability . This step is the same as that in conventional SA when performing 
ascents with occasional descents in the α subspace. Note that when a constraint is satisfied, 
the corresponding penalty will not be changed according to (22). 
Finally, Line 10 reduces T by the following cooling schedule after looping NT times at given T: 

 (26) 
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At high T, (25) allows any trial point to be accepted with high probabilities, thereby 
allowing the search to traverse a large space and overcome infeasible regions. When T is 
reduced, the acceptance probability decreases, and at very low temperatures, the algorithm 
behaves like a local search. 

3.2 Constraint-Partitioned Simulated Annealing (CPSA) 
We present in this section CPSA, an extension of CSA that decomposes the search in CSA 
into multiple subproblems after partitioning the constraints into subsets. Recall that, 
according to Theorem 2, Pt in (14) can be partitioned into a sequence of N subproblems 
defined in (20) and an overall necessary condition defined in (19) on the global constraints 
across the subproblems, after choosing an appropriate mixed neighborhood. Instead of 
considering all the constraints together as in CSA, CPSA performs searches in multiple 
subproblems, each involving a small subset of the constraints. As in CSA, we only consider 
Pt with equality constraints. 
Figure 2 illustrates the idea in CPSA. Unlike the original CSA that solves the problem as a 
whole, CPSA solves each subproblem independently. In Subproblem t, t = 1, ...,N, CSA is 
performed in the (z(t), α(t))T subspace related to the local constraints h(t)(z(t)) = 0. In 
addition, there is a global search that explores in the (z(g),γ)T subspace on the global 
constraints H(z) = 0. This additional search is needed for resolving any violated global 
constraints. 
 

 
Figure 3. The CPSA search procedure. 
Figure 3 describes the CPSA procedure. The first six lines are similar to those in CSA. 
To facilitate the convergence analysis of CPSA in a Markov-chain model, Lines 7-14 
randomly pick a subproblem for evaluation, instead of deterministically enumerating the 
subproblems in a round-robin fashion, and stochastically accept a new probe using an 
acceptance probability governed by a decreasing temperature. This approach leads to a 
memoryless Markovian process in CPSA. 
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Line 7 randomly selects Subproblem i, i = 1 . . . ,N +1, with probability Ps(t), where Ps(t) can 
be arbitrarily chosen as long as: 

 
(27) 

When t is between 1 and N (Line 8), it represents a local exploration step in Subproblem t. In 
this case, Line 9 generates a trial point  from the current point 

 using a generation probability G(t)(z, z′) that can be arbitrary as long as the 
following is satisfied: 

 
(28) 

The point is generated by perturbing z(t) and α(t) in their neighborhood : 

 (29) 

 
                                  

(30) 
 

and  is defined in (15) and  This means that z′ ∈  only differs 
from z in z(t) or α(t) and remains the same for the other variables. This is different from CSA 

that perturbs z in the overall variable space. As in CSA, αi is not perturbed when hi(z(t)) = 0 

is satisfied. Last, Line 10 accepts z′ with the Metropolis probability AT (z, z′) similar to that in 
(25): 

 

(31) 

When t = N + 1 (Line 11), it represents a global exploration step. In this case, Line 12 

generates a random trial point  using a generation probability G(g)(z, z′)  

that satisfies the condition similar to that in (28). Assuming
1mN (z(g)) to be the mixed 

neighborhood of z(g) and Λ(g) = Rp, z′ is obtained by perturbing z(g) and γ in their 

neighborhood : 

 (32) 

 (33) 
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 (34) 

Again, z′ is accepted with probability AT (z, z′) in (31) (Line 13). Note that both  (z) 

and  ensure the ergodicity of the Markov chain, which is required for achieving 
asymptotic convergence. 
When compared to CSA, CPSA reduces the search complexity through constraint 
partitioning. Since both CSA and CPSA need to converge to an equilibrium distribution of 
variables at a given temperature before the temperature is reduced, the total search time 
depends on the convergence time at each temperature. By partitioning the constraints into 
subsets, each subproblem only involves an exponentially smaller subspace with a small 
number of variables and penalties. Thus, each subproblem takes significantly less time to 
converge to an equilibrium state at a given temperature, and the total time for all the 
subproblems to converge is also significantly reduced. This reduction in complexity is 
experimentally validated in Section 5. 

3.3 Greedy ESPC Search Method (GEM) 
In this section, we present a dynamic penalty method based on a greedy search of an ESP. 
Instead of probabilistically accepting a probe as in CSA and CPSA, our greedy approach 
accepts the probe if it improves the value of the penalty function and rejects it otherwise. 
One simple approach that does not work well is to gradually increase α** until α** > α*, 
while minimizing the penalty function with respect to z using an existing local-search 
method. This simple iterative search does not always work well because the penalty 
function has many local minima that satisfy the second inequality in (13), but some of these 
local minima do not satisfy the first inequality in (13) even when α** > α*. Hence, the search 
may generate stationary points that are local minima of the penalty function but are not 
feasible solutions to the original problem. 
To address this issue, Figure 4 shows a global search called the Greedy ESPC Search Method 
[32] (GEM). GEM uses the following penalty function: 

 
(35) 

Lines 5-8 carries out Ng iterative descents in the z subspace. In each iteration, Line 6 

generates a probe z′ ∈  neighboring to z. As defined in (24) for CSA, we select z′ with 
uniform probability across all the points in . Line 7 then evaluates L g  ((z′, α)T ) and 

accepts z′ only when it reduces the value of L g . After the Ng  descents, Line 9 updates the 
penalty vector α in order to bias the search towards resolving those violated constraints. 
When α** reaches its upper bound during a search but a local minimum of L g  does not 
correspond to a CLMm of Pm, we can reduce α** instead of restarting the search from a new 
starting point. The decrease will change the terrain of L g  and “lower” its barrier, thereby 
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allowing a local search to continue in the same trajectory and move to another local 
minimum of L g . In Line 10, we reduce the penalty value of a constraint when its maximum 
violation is not reduced for three consecutive iterations. To reduce the penalties, Line 11 
multiplies each element in α by a random real number uniformly generated between 0.4 to 
0.6. By repeatedly increasing α** to its upper bound and by reducing it to some lower 
bound, a local search will be able to escape from local traps and visit multiple local minima 
of the penalty function. We leave the presentation of the parameters used in GEM and its 
experimental results to Section 5. 
 

 
Figure 4. Greedy ESPC search method (GEM). 

4. Asymptotic convergence of CSA and CPSA 
In this subsection, we show the asymptotic convergence of CSA and CPSA to a constrained 
global minimum in discrete constrained optimization problems. Without repeating the 
definitions in Section 1, we can similarly define a discrete nonlinear programming problem 
(Pd), a discrete neighborhood (Nd(y)), a discrete constrained local minimum (CLMd), a 
discrete constrained global minimum (CGMd), and a penalty function in discrete space (Ld). 

4.1 Asymptotic convergence of CSA 
We first define the asymptotic convergence property. For a global minimization problem, let  
Ω be its search space, Ωs be the set of all global minima, and ω(j) ∈ Ω, j = 0, 1, . . . , be a 
sequence of points generated by an iterative procedure ψ until some stopping conditions 
hold. 
Definition 8. Procedure ψ is said to have asymptotic convergence to a global minimum, or 

simply asymptotic convergence [2], if ψ converges with probability one to an element in Ωs; 
that is, lim ( ( ) ) 1sj

P jω
→∞

∈Ω = , independent of ω (0), where P(w) is the probability of event w. 

In the following, we first state the result on the asymptotic convergence of CSA to a CGMd of 
Pd with probability one when T approaches 0 and when T is reduced according to a specific 

cooling schedule. By modeling CSA by an inhomogeneous Markov chain, we show that the 
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chain is strongly ergodic, that the chain minimizes an implicit virtual energy based on the 
framework of generalized SA (GSA) [24, 23], and that the virtual energy is at its minimum at 
any CGMd. We state the main theorems without proofs [27] and illustrate the theorems by 
examples. 
CSA can be modeled by an inhomogeneous Markov chain that consists of a sequence of 
homogeneous Markov chains of finite length, each at a specific temperature in a cooling 
schedule. Its one-step transition probability matrix is PT = [PT (y, y′)], where: 

 

(36) 

Example 2. Consider the following simple discrete minimization problem: 

 
(37) 

where y ∈ Y = {0.5, 0.6,… , 1.2}. The corresponding penalty function is: 

 (38) 

By choosing α ∈ Λ = {2, 3, 4, 5, 6}, with the maximum penalty value αmax at 6, the state 
space is  states. At y = 0.6 or y = 1.0 where 
the constraint is satisfied, we can choose α* = 1, and any α** > α*, including αmax, would 
satisfy (13) in Theorem 1. 
In the Markov chain, we define Nd(y) as in (21), where  and  are as follows: 

 (39) 

 
(40) 

Figure 5 shows the state space S of the Markov chain. In this chain, an arrow from y to y′ 
∈Nd(y) (where y′ = (y′, α)T or (y, α′)T ) means that there is a one-step transition from y to y 

whose PT (y, y′) > 0. For y = 0.6 and y = 1.0, there is no transition among the points in the α 

dimension because the constraints are satisfied at those y values (according to (22)). 
There are two ESPs in this Markov chain at (0.6, 5)T and (0.6, 6)T , which correspond to the 
local minimum at y = 0.6, and two ESPs at (1.0, 5)T and (1.0, 6)T , which correspond to the 
local minimum at y = 1.0. CSA is designed to locate one of the ESPs at (0.6, 6)T and (1.0, 6)T . 
These correspond, respectively, to the CLMd at y* = 0.6 and y* = 1.0.                                          ■ 
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Let  and NL be the maximum of the minimum number 
of transitions required to reach yopt from all y ∈S. By properly constructing Nd(y), we state 
without proof that PT is irreducible and that NL can always be found. This property is 
illustrated in Figure 5 in which any two nodes can always reach each other. 
Let NT , the number of trials per temperature, be NL. The following theorem states the strong 
ergodicity of the Markov chain, where strong ergodicity means that state y of the Markov 
chain has a unique stationary probability πT (y). (The proof can be found in the reference 
[27].) 
 

 
 

Figure 5. The Markov chain with the transition probabilities defined in (36) for the example 
problem in (37) and the corresponding penalty-function value at each state. The four ESPs 
are shaded in (a). 

Theorem 3. The inhomogeneous Markov chain is strongly ergodic if the sequence of 
temperatures {Tk, k = 0, 1, 2, …} satisfies: 

 
(41) 

where  

Example 2 (cont’d). In the Markov chain in Figure 5,  ΔL = 0.411 and NL = 11. Hence, the 
Markov chain is strongly ergodic if we use a cooling schedule  Note that the 
cooling schedule used in CSA (Line 10 of Figure 1) does not satisfy the condition. 
Our Markov chain also fits into the framework of generalized simulated annealing (GSA) [24, 
23] when we define an irreducible Markov kernel PT (y, y′) and its associated communication 
cost v(y, y′), where  

 
(42) 

Based on the communication costs over all directed edges, the virtual energy W(y) (according 
to Definition 2.5 in [23, 24]) is the cost of the minimum-cost spanning tree rooted at y: 

 (43) 
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where G(y) is the set of spanning trees rooted at y, and V (g) is the sum of the 
communication costs over all the edges of g. 
The following quoted result shows the asymptotic convergence of GSA in minimizing W(i): 
Proposition 1 “(Proposition 2.6 in [14, 23, 24]). For every T > 0, the unique stationary 
distribution πT of the Markov chain satisfies: 

 
(44) 

where W(i) is the virtual energy of i, and 
 

 

 
       a) Virtual energy W(y)        b) Convergence prob. at (1, 6)T    c) Reachability prob. at (1, 6)T 

Figure 6. Virtual energy of the Markov chain in Figure 5a and the convergence behavior of 
CSA and random search at (1.0, 6)T . 

In contrast to SA that strives to minimize a single unconstrained objective, CSA does not 
minimize Ld((y, α)T ). This property is illustrated in Figure 5b in which the ESPs are not at 
the global minimum of Ld((y, α)T ). Rather, CSA aims to implicitly minimize W(y) according 
to GSA [24, 23]. That is, y*∈Yopt corresponds to y* = (y*, αmax)T with the minimum W(y), and 
W((y*, αmax)T ) < W((y, α)T ) for all y ≠ y* and α ∈ Λ and for all y = y* and α ≠ αmax. The 
following theorem shows that CSA asymptotically converges to y* with probability one. (See 
the proof in the reference [27].) 
Theorem 4. Given the inhomogeneous Markov chain modeling CSA with transition 
probability defined in (36) and the sequence of decreasing temperatures that satisfy (41), the 
Markov chain converges to a CGMd with probability one as k → ∞. 
Example 2 (cont’d). We illustrate the virtual energy W(y) of the Markov chain in Figure 5a 
and the convergence behavior of CSA and random search. 
One approach to find W(y) that works well for a small problem is to enumerate all possible 
spanning trees rooted at y and to find the one with the minimum cost. Another more 
efficient way adopted in this example is to compute W(y) using (44). This can be done by 
first numerically computing the stationary probability πT (y) of the Markov chain at a given 
T using the one-step transition probability PT (y, y′) in (36), where πT evolves with iteration k 
as follows: 

 (45) 
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until  In this example, we set ε = 10−16 as the stopping precision. Since 
, independent of the initial vector  , we set  

Figure 6a shows W((y, α)T) of Figure 5a. Clearly, Ld((y, α)T ) ≠ W((y, α)T ). For a given y, 

W((y, α)T ) is non-increasing as α increases. For example, W((0.6, 3)T ) = 4.44 ≥ W((0.6, 4)T ) = 

4.03, and W((0.8, 2)T ) = 4.05 ≥ W((0.8, 6)T ) = 3.14. We also have W((y, α)T ) minimized at y = 

1.0 when α = αmax = 6: W((0.6, 6)T ) = 3.37 ≥ W((0.8, 6)T ) = 3.14 ≥ W((1.0, 6)T) = 0.097. Hence, 

W((y, α)T ) is minimized at (y*, αmax)T = (1.0, 6)T , which is an ESP with the minimum 

objective value. In contrast, Ld((y, α)T ) is non-decreasing as α increases. In Figure 5b, the 

minimum value of Ld((y, α)T ) is at (1.2, 2)T , which is not a feasible point. 

To illustrate the convergence of CSA to y* = 1.0, Figure 6b plots  as a function of k, 
where y* = (1.0, 6)T . In this example, we set T0 = 1.0, NT = 5, and κ = 0.9 (the cooling schedule 
in Figure 1). Obviously, as the cooling schedule is more aggressive than that in Theorem 3, 
one would not expect the search to converge to a CGMd with probability one, as proved in 
Theorem 4. As T approaches zero, W(y*) approaches zero, and  monotonically 
increases and approaches one. Similar figures can be drawn to show that , y ≠ y*, 
decreases to zero as T is reduced. Therefore, CSA is more likely to find y* as the search 
progresses. In contrast, for random search,  is constant, independent of k. 
Note that it is not possible to demonstrate asymptotic convergence using only a finite 
number of iterations. Our example, however, shows that the probability of finding a CGMd 

improves over time. Hence, it becomes more likely to find a CGMd when more time is spent 
to solve the problem. 
Last, Figure 6c depicts the reachability probability  of finding y* in any of the first k 

iterations. Assuming all the iterations are independent,  is defined as: 

 
(46) 

The figure shows that CSA has better reachability probabilities than random search over the 
100 iterations evaluated, although the difference diminishes as the number of iterations is 
increased. 
It is easy to show that CSA has asymptotic reachability [2] of y*; that is,  

Asymptotic reachability is weaker than asymptotic convergence because it only requires the 
algorithm to hit a global minimum sometime during a search and can be guaranteed if the 
algorithm is ergodic. (Ergodicity means that any two points in the search space can be 
reached from each other with a non-zero probability.) Asymptotic reachability can be 
accomplished in any ergodic search by keeping track of the best solution found during the 
search. In contrast, asymptotic convergence requires the algorithm to converge to a global 
minimum with probability one. Consequently, the probability of a probe to hit the solution 
increases as the search progresses. 
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4.2 Asymptotic convergence of CPSA 
By following a similar approach in the last section on proving the asymptotic convergence 
of CSA, we prove in this section the asymptotic convergence of CPSA to a CGMd of Pd. 
CPSA can be modeled by an inhomogeneous Markov chain that consists of a sequence of 
homogeneous Markov chains of finite length, each at a specific temperature in a given 
cooling schedule. The state space of the Markov chain can be described by state 

, where y ∈Dw is the vector of problem variables and α and 

γ are the penalty vectors. 

According to the generation probability G(t)(y, y′) and the acceptance probability AT (y, y′), 
the one-step transition probability matrix of the Markov chain for CPSA is PT = [PT (y, y′)], 
where: 

 

(47) 

Let , and NL be the maximum of the minimum 
number of transitions required to reach yopt from all  Given {Tk, k = 0, 1, 2, …} that 
satisfy (41) and NT , the number of trials per temperature, be NL, a similar theorem as in 
Theorem 3 can be proved [8]. This means that state y of the Markov chain has a unique 
stationary probability πT (y). 
Note that ΔL defined in Theorem 3 is the maximum difference between the penalty-function 
values of two neighboring states. Although this value depends on the user-defined 
neighborhood, it is usually smaller for CPSA than for CSA because CPSA has a partitioned 
neighborhood, and two neighboring states can differ by only a subset of the variables. In 
contrast, two states in CSA can differ by more variables and have larger variations in their 
penalty-function values. According to (41), a smaller ΔL allows the temperature to be 
reduced faster in the convergence to a CGMd. 
Similar to CSA, (47) also fits into the framework of GSA if we define an irreducible Markov 
kernel PT (y, y′) and its associated communication cost v(y, y′), where  

 
(48) 

In a way similar to that in CSA, we use the result that any process modeled by GSA 
minimizes an implicit virtual energy W(y) and converges to the global minimum of W(y) 
with probability one. The following theorem states the asymptotic convergence of CPSA to a 
CGMd. The proof in the reference [27] shows that W(y) is minimized at (y*, αmax, γmax)T for 

some αmax and γmax. 
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Theorem 5. Given the inhomogeneous Markov chain modeling CPSA with transition 
probability defined in (47) and the sequence of decreasing temperatures that satisfy (41), the 
Markov chain converges to a CGMd with probability one as k → ∞. 
Again, the cooling schedule of CPSA in Figure 3 is more aggressive than that in Theorem 5. 

5. Experimental results on continuous constrained problems 
In this section, we apply CSA and CPSA to solve some nonlinear continuous optimization 
benchmarks and compare their performance to that of other dynamic penalty methods. We 
further illustrate the application of the methods on two real-world applications. 

5.1 Implementation details of CSA for solving dontinuous problems 
In theory, any neighborhoods 

1c
N (x) and 

2cN (α) that satisfy (21) and (22) can be used. In 

practice, however, appropriate neighborhoods must be chosen in any efficient 
implementation. 
In generating trial point x′ = (x′, α)T from x = (x, α)T where x′ ∈

1c
N (x), we choose x′ to differ 

from x in the ith element, where i is uniformly distributed in {1, 2,…, n}: 

 (49) 

and ⊗ is the vector-product operator. Here, e1 is a vector whose ith element is 1 and the other 

elements are 0, and θ is a vector whose ith element θ i is Cauchy distributed with density  

f d(x i) = and scale parameter i. Other distributions of θ i studied include uniform 

and Gaussian [30]. During the course of CSA, we dynamically update i using the following 
modified 1-to-1 rate rule [9] in order to balance the ratio between accepted and rejected 
configurations: 

 

(50) 

where pi is the fraction of x′ accepted. If pi is low, then too many trial points of x′ are rejected, 

and σi is reduced; otherwise, the trial points of x′ are too close to x, and i is increased. We 

set β0 = 7, β1 = 2, pu = 0.3, and pv = 0.2 after experimenting different combinations of 
parameters [30]. Note that it is possible to get somewhat better convergence results when 
problem-specific parameters are used, although the results will not be general in that case. 
Similarly, in generating trial point x′′ = (x, α′)T from x = (x, α)T where α′ ∈

2cN (α), we 

choose α′ to differ from α in the jth element, where j is uniformly distributed in {1, 2, …,m}: 

 (51) 
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Here, the jth element of e2 is 1 and the others are 0, and the νj is uniformly distributed in [−φj, 

φj ]. We adjust φj according to the degree of constraint violations, where: 

 (52) 

When hi(x) = 0 is satisfied, φi = 0, and αi does not need to be updated. Otherwise, we adjust φi 

by modifying wi according to how fast hi(x) is changing: 

 

(53) 

where η0 = 1.25, η1=0.95, τ0 = 1.0, and τ 1 = 0.01 were chosen experimentally. When hi(x) is 
reduced too quickly (i.e., hi(x) < τ 1T is satisfied), hi(x) is over-weighted, leading to a possibly 
poor objective value or difficulty in satisfying other under-weighted constraints. Hence, we 
reduce αi’s neighborhood. In contrast, if hi(x) is reduced too slowly (i.e., hi(x) > τ 0T is 
satisfied), we enlarge αi’s neighborhood in order to improve its chance of satisfaction. Note 
that wi is adjusted using T as a referenc because constraint violations are expected to 
decrease when T decreases. Other distributions of φj studied include non-symmetric 
uniform and non-uniform [30]. 
Finally, we use the cooling schedule defined in Figure 1, which is more aggressive than that 
in (41). We accept the x′ or x′′ generated according to the Metropolis probability defined in 
(25). Other probabilities studied include logistic, Hastings, and Tsallis [30]. We set the ratio 
of generating x′ and x′′ from x to be 20n to m, which means that x is updated more 
frequently than α. 
Example 3. Figure 7 illustrates the run-time behavior at four temperatures when CSA is 
applied to solve the following continuous constrained optimization problem: 

 

(54) 

The objective function f(x) is very rugged because it is made up of a two-dimensional Rastrigin 
function with 11n (where n = 2) local minima. There are four constrained local minima at the 
four corners denoted by rectangles, and a constrained global minimum at (−3.2,−3.2). 
Assuming a penalty function Lc((x, α)T )= f(x)+α1|(x1−3.2)(x1+3.2)|+α2|(x2−3.2)(x2+3.2)| and 
that samples in x are drawn in double-precision floating-point space, CSA starts from x = (0, 

0)T with initial temperature T0 = 20 and a cooling rate κ = 0.95. At high temperatures (e.g. T0 

= 20), the probability of accepting a trial point is high; hence, the neighborhood size is large 
according to (50). Large jumps in the x subspace in Figure 7a are due to the use of the 
Cauchy distribution for generating remote trial points, which increases the chance of getting 
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out of infeasible local minima. Probabilistic ascents with respect to α also help push the 
search trajectory to feasible regions. As T is reduced, the acceptance probability of a trial 
point is reduced, leading to smaller neighborhoods. Finally, the search converges to the 
constrained global minimum at x*= (−3.2,−3.2)T.                                                                            ■ 
 

        
(a) T = 20         (b) T = 10.24 

       
(c) T = 8.192          (d) T = 0.45 

Figure 7. Example illustrating the run-time behavior of CSA at four temperatures in solving 
(54). 

 
                 a) TRIMLOSS                                b) ORTHREGC                          c) OPTCDEG3 

Figure 8. Strongly regular constraint-variable structures in some continuous optimization 
problems. A dot in each graph represents a variable associated with a constraint. 
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5.2 Implementation details of CPSA for solving continuous problems 
We have observed that the constraints of many application benchmarks do not involve 
variables that are picked randomly from their variable sets. Invariably, many constraints in 
existing benchmarks are highly structured because they model spatial and temporal 
relationships that have strong locality, such as those in physical structures, optimal control, 
and staged processing. 
Figure 8 illustrates this point by depicting the regular constraint structure of three 
benchmarks. It shows a dot where a constraint (with unique ID on the x axis) is related to a 
variable (with a unique ID on the y axis). When the order of the variables and that of the 
constraints are properly arranged, the figure shows a strongly regular constraint-variable 
structure. 
In CPSA, we follow a previously proposed automated partitioning strategy [26] for 
analyzing the constraint structure and for determining how th constraints are to be 
partitioned. The focus of our previous work is to solve the partitioned subproblems using an 
existing solver SNOPT [15]. In contrast, our focus here is to demonstrate the improvement of 
CPSA over CSA and on their asymptotic convergence property. 
Based on Pm with continuous variables and represented in AMPL [13], our partitioning 
strategy consists of two steps. In the first step, we enumerate all the indexing vectors in the 
AMPL model and select one that leads to the minimum Rglobal, which is the ratio of the 
number of global constraints to that of all constraints. We choose Rglobal as a heuristic metric 
for measuring the partitioning quality, since a small number of global constraints usually 
translates into faster resolution. In the second step, after fixing the index vector for 
partitioning the constraints, we decide on a suitable number of partitions. We have found a 
convex relationship between the number of partitions (N) and the complexity of solving Pm. 
When N is small, there are very few subproblems to be solved but each is expensive to 
evaluate; in contrast, when N is large, there are many subproblems to be solved although 
each is simple to evaluate. Hence, there is an optimal N that leads to the minimum time for 
solving Pm. To find this optimal N, we have developed an iterative algorithm that starts from 
a large N, that evaluates one subproblem under this partitioning (while assuming all the 
global constraints can be resolved in one iteration) in order to estimate the complexity of 
solving Pm, and that reduces N by half until the estimated complexity starts to increase. We 
leave the details of the algorithm to the reference [26]. 
Besides the partitioning strategy, CPSA uses the same mechanism and parameters described 
in Section 5.1 for generating trial points in the x, α, and γ subspaces. 

5.3 Implementation details of GEM for solving continuous problems 
The parameter in GEM were set based on the package developed by Zhe Wu and dated 
08/13/2000 [32]. In generating a neighboring point of x for continuous problems, we use a 
Cauchy distribution with density  for each variable xi, i = 1,…, n, where i 

is a parameter controlling the Cauchy distribution. We initialize each i to 0.1. For the last 50 
probes that perturb xi, if more than 40 probes lead to a decrease of Lm, we increase i by a 
factor of 1.001; if less than two probes lead to a decrease of Lm, we decrease i by a factor of 
1.02. We increase the penalty i for constraint hi by  where �i is set to 
0.0001 in our experiments. We consider a constraint to be feasible and stop increasing its 
penalty when its violation is less than 0.00001. 
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5.4 Evaluation results on continuous optimization benchmarks 
Using the parameters of CSA and CPSA presented in the previous subsections and 
assuming that samples were drawn in double-precision floating-point space, we report in 
this section some experimental results on using CSA and CPSA to solve selected problems 
from CUTE [7], a constrained and unconstrained testing environment. We have selected 
those problems based on the criterion that at least the objective or one of the constraint 
functions is nonlinear. Many of those evaluated were from real applications, such as 
semiconductor analysis, chemical reactions, economic equilibrium, and production 
planning. Both the number of variables and the number of constraints in CUTE can be as 
large as several thousand. 
Table 1 shows the CUTE benchmark problems studied and the performance of CPSA, CSA 
GEM in (35), P3 in (7), and P4 in (8). In our experiments, we have used the parameters of P3 
and P4 presented in Section 2.2. For each solver and each instance, we tried 100 runs from 
random starting points and report the average solution found (Qavg), the average CPU time 
per run of those successful runs (Tavg), the best solution found (Qbest), and the fraction of runs 
there were successful (Psucc). We show in shaded boxes the best Qavg and Qbest among the five 
solvers when there are differences. We do not list the best solutions of P3 and P4 because they 
are always worse than those of CSA, CPSA, and GEM. Also, we do not report the results on 
those smaller CUTE instances with less than ten variables (BT*, AL*, HS*, MA*, NG*, TW*, 
WO*, ZE*, ZY*) [30] because these instances were easily solvable by all the solvers studied. 
When compared to P3, P4, and GEM, CPSA and CSA found much better solutions on the 
average and the best solutions on most of the instances evaluated. In addition, CPSA and 
CSA have a higher success probability in finding a solution for all the instances studied. 
The results also show the effectiveness of integrating constraint partitioning with CSA. 
CPSA is much faster than CSA in terms of Tavg for all the instances tested. The reduction in 
time can be more than an order of magnitude for large problems, such as ZAMB2-8 and 
READING6. CPSA can also achieve the same or better quality and success ratio than CSA 
for most of the instances tested. For example, for LAUNCH, CPSA achieves an average 
quality of 21.85, best quality of 9.01, and a success ratio of 100%, whereas CSA achieves, 
respectively, 26.94, 9.13, and 90%. 
The nonlinear continuous optimization benchmarks evaluated in this section are meant to 
demonstrate the effectiveness of CSA and CPSA as dynamic penalty methods. We have 
studied these benchmarks because their formulations and solutions are readily available and 
because benchmarks on nonlinear discrete constrained optimization are scarce. These 
benchmarks, however, have continuous and differentiable functions and, therefore, can be 
solved much better by solvers that exploit such properties. In fact, the best solution of most 
of these problems can be found by a licensed version of SNOPT [15] (version 6.2) in less than 
one second of CPU time! In this respect, CSA and CPSA are not meant to compete with 
these solvers. Rather, CSA and CPSA are useful as constrained optimization methods for 
solving discrete, continuous, and mixed-integer problems whose constraint and objective 
functions are not necessarily continuous, differentiable, and in closed form. In these 
applications, penalty methods are invariably used as an effective solution approach. We 
illustrate in the following section the effectiveness of CSA for solving two real-world 
applications. 
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Table 1. Experimental results comparing CPSA, CSA, GEM, P3, and P4 in solving selected 
nonlinear continuous problems from CUTE. Each instance was solved by a solver 100 times 
from random starting points. The best Qavg (resp. Qbest) among the five solvers are shown in 
shaded boxes. ′−′means that no feasible solution was found in a time limit of 36,000 sec. All 
runs were done on an AMD Athlon MP2800 PC with RH Linux AS4. 
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5.5 Applications of CSA on two real-world applications 
Sensor-network placement optimization. The application involves finding a suitable 
placement of sensors in a wireless sensor network (WSN) [31, 33]. Given N sensors, the 
problem is to find their locations that minimize the false alarm rate, while maintaining a 
minimum detection probability for every point in a 2-D region A [34]: 

 
(55) 

where PD(x, y) denotes the detection probability of location (x, y), and PF denotes the false 
alarm rate over all locations in A. To compute PD and PF , we need to first compute the local 
detection probability 

iDP and the local false alarm rate 
iFP for each sensor i, i = 1,…,N, as 

follows: 

 
(56) 

 
(57) 

The probabilistic model is based on a Gaussian noise assumption [34], where bi, , a, and e 
are constants, and (xi, yi) is the coordinates of the ith sensor. After all the local decisions have 
been sent to a fusion center, the center will find that an event happens at (x, y) if a majority 
of the sensors have reported so. Therefore, we have the following equations: 

 
(58) 

 
(59) 

where S0 and S1 denote the set of nodes that, respectively, detect or do not detect an event. 
The functions in the above formulation are very expensive to evaluate. In fact, the cost for 
computing PD(x, y) is Θ(2n), since we need to consider all combinations of S0 and S1. The cost 
is so expensive that it is impossible to directly compute PD(x, y) or its derivatives. Thus, the 
problem has no closed form and without gradient information. Instead, a Monte-Carlo 
simulation is typically used to estimate PD(x, y) within reasonable time [34]. Previous work 
in WSN have solved this problem using some greedy heuristic methods that are ad-hoc and 
suboptimal [34]. 
We have applied CSA to solve (55) and have found it to yield much better solutions than 
existing greedy heuristics [34]. In our approach, we find the minimum number of sensors by 
a binary search that solves (55) using multiple runs of CSA. For example, in a 20 ×20 grid, 



 Simulated Annealing 

 

184 

CSA can find a sensor placement with only 16 sensors to meet the given thresholds of PD ≥ 
95% and PF ≤ 5%, while a previous heuristic method [34] needs 22 sensors. In a 40×40 grid, 
CSA can find a sensor placement with only 28 sensors to meet the same constraints, while 
the existing heuristic method [34] needs 43 sensors. 
Synthesis of out-of-core algorithms. A recent application uses CSA to optimize the out-of-
core code generation for a special class of imperfectly nested loops encoding tensor 
contractions that arise in quantum chemistry computation [19]. In this task, the code needs 
to execute some large, imperfectly nested loops. These loops operate on arrays that are too 
large to fit in the physical memory. Therefore, the problem is to find the optimal tiling of the 
loops and the placement of disk I/O statements. 
Given the abstract code, the loop ranges, and the memory limit of the computer, the out-of-
core code-generation algorithm first enumerates all the feasible placements of disk 
read/write statements for each array. To find the best combination of placements of all 
arrays, a discrete constrained nonlinear optimization problem is formulated and provided 
as input to CSA. 
The variables of the problem include tile sizes and the placement variables. The constraints 
include the input-array constraints, which specify that the read statement for an input array 
can only be placed for execution before the statement where it is consumed. They also 
include the input-output-array constraints, which specify that the write statement for an 
output array can only be placed after the statement where it is produced. Lastly, there are a 
number of other intermediate-array constraints. 
Experimental measurements on sequential and parallel versions of the generated code show 
that the solutions generated by CSA consistently outperform previous sampling approach 
and heuristic equal-tile-size approach. When compared to previous approaches, CSA can 
reduce the disk I/O cost by a factor of up to four [19]. 

6. Conclusions 
We have reported in this chapter constrained simulated annealing (CSA) and constraint-
partitione simulated annealing (CPSA), two dynamic-penalty methods for finding 
constrained global minima of discrete constrained optimization problems. Based on the 
theory of extended saddle points (ESPs), our methods look for the local minima of a penalty 
function when the penalties are larger than some thresholds and when the constraints are 
satisfied. To reach an ESP, our methods perform probabilistic ascents in the penalty 
subspace, in addition to probabilistic descents in the problem-variable subspace as in 
conventional simulated annealing (SA). Because both methods are based on sampling the 
search space of a problem during their search, they can be applied to solve continuous, 
discrete, and mixed-integer optimization problems without continuity and differentiability. 
Based on the decomposition of the ESP condition into multiple necessary conditions [25], we 
have shown that many benchmarks with highly structured and localized constraint 
functions can be decomposed into loosely coupled subproblems that are related by a small 
number of global constraints. By exploiting constraint partitioning, we have demonstrated 
that CPSA can significantly reduce the complexity of CSA. 
We have shown the asymptotic convergence of CSA and CPSA to a constrained global 
minimum with probability one. The result is theoretically important because it extends SA, 
which guarantees asymptotic convergence in discrete unconstrained optimization, to that in 
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discrete constrained optimization. Moreover, it establishes a condition under which optimal 
solutions can be found in constraint-partitioned nonlinear optimization problems. 
Lastly, we illustrate the effectiveness of CSA and CPSA for solving some nonlinear 
benchmarks and two real-world applications. CSA and CPSA are particularly effective 
when the constraint and objective functions and their gradients are too expensive to be 
evaluated or are not in closed form. 

7. References 
E. Aarts and J. Korst. Simulated Annealing and Boltzmann Machines. J. Wiley and Sons, 1989. 
S. Anily and A Federgruen. Simulated annealing methods with general acceptance 

probabilities. Journal of Appl. Prob., 24:657–667, 1987. 
A. Auslender, R. Cominetti, and M. Maddou. Asymptotic analysis for penalty and barrier 

methods in convex and linear programming. Mathematics of Operations Research, 
22:43–62, 1997. 

T. Back, F. Hoffmeister, and H.-P. Schwefel. A survey of evolution strategies. In Proc. of the 
4th Int’l Conf. on Genetic Algorithms, pages 2–9, 1991. 

J. C. Bean and A. B. Hadj-Alouane. A dual genetic algorithm for bounded integer programs. 
In Tech. Rep. TR 92-53, Dept. of Industrial and Operations Engineering, The Univ. of 
Michigan, 1992. 

D. P. Bertsekas and A. E. Koksal. Enhanced optimality conditions and exact penalty 
functions. Proc. of Allerton Conf., 2000. 

I. Bongartz, A. R. Conn, N. Gould, and P. L. Toint. CUTE: Constrained and unconstrained 
testing environment. ACM Trans. on Mathematical Software, 21(1):123–160, 1995. 

Y. X. Chen. Solving Nonlinear Constrained Optimization Problems through Constraint 
Partitioning. Ph.D. Thesis, Dept. of Computer Science, Univ. of Illinois, Urbana, IL, 
September 2005. 

A. Corana, M. Marchesi, C. Martini, and S. Ridella. Minimizing multimodal functions of 
continuous variables with the simulated annealing algorithm. ACM Trans. on 
Mathematical Software, 13(3):262–280, 1987. 

J. P. Evans, F. J. Gould, and J. W. Tolle. Exact penalty functions in nonlinear programming. 
Mathematical Programming, 4:72–97, 1973. 

R. Fletcher. A class of methods for nonlinear programming with termination and 
convergence properties. In J. Abadie, editor, Integer and Nonlinear Programming. 
North-Holland, Amsterdam, 1970. 

R. Fletcher. An exact penalty function for nonlinear programming with inequalities. Tech. 
Rep. 478, Atomic Energy Research Establishment, Harwell, 1972. 

R. Fourer, D. M. Gay, and B. W. Kernighan. AMPL: A Modeling Language for Mathematical 
Programming. Brooks Cole Pub. Co., 2002. 

M. I. Freidlin and A. D. Wentzell. Random perturbations of dynamical systems. Springer, 1984. 
P. E. Gill, W. Murray, and M. Saunders. SNOPT: An SQP algorithm for large-scale 

constrained optimization. SIAM J. on Optimization, 12:979–1006, 2002. 
A. Homaifar, S. H-Y. Lai, and X. Qi. Constrained optimization via genetic algorithms. 

Simulation, 62(4):242–254, 1994. 
J. Joines and C. Houck. On the use of non-stationary penalty functions to solve nonlinear 

constrained optimization problems with gas. In Proc. of the First IEEE Int’l Conf. on 
Evolutionary Computation, pages 579–584, 1994. 



 Simulated Annealing 

 

186 

S. Kirkpatrick, C. D. Gelatt, Jr., and M. P. Vecchi. Optimization by simulated annealing. 
Science, 220(4598):671–680, May 1983. 

S. Krishnan, S. Krishnamoorthy, G. Baumgartner, C. C. Lam, J. Ramanujam, P. Sadayappan, 
and V. Choppella. Efficient synthesis of out-of-core algorithms using a nonlinear 
optimization solver. Technical report, Dept. of Computer and Information Science, 
Ohio State University, Columbus, OH, 2004. 

A. Kuri. A universal eclectric genetic algorithm for constrained optimization. In Proc. 6th 
European Congress on Intelligent Techniques and Soft Computing, pages 518–522, 1998. 

D. G. Luenberger. Linear and Nonlinear Programming. Addison-Wesley, Reading, MA, 1984. 
R. L. Rardin. Optimization in Operations Research. Prentice Hall, 1998. 
A. Trouve. Rough large deviation estimates for the optimal convergence speed exponent of 

generalized simulated annealing algorithms. Technical report, LMENS-94-8, Ecole 
Normale Superieure, France, 1994. 

A. Trouve. Cycle decomposition and simulated annealing. SIAM Journal on Control and 
Optimization, 34(3):966–986, 1996. 

B. Wah and Y. X. Chen. Constraint partitioning in penalty formulations for solving temporal 
planning problems. Artificial Intelligence, 170(3):187–231, 2006. 

B. W.Wah and Y. X. Chen. Solving large-scale nonlinear programming problems by 
constraint partitioning. In Proc. Principles and Practice of Constraint Programming, 
LCNS-3709, pages 697–711. Springer-Verlag, October 2005. 

B. W. Wah, Y. X. Chen, and T. Wang. Simulated annealing with asymptotic convergence for 
nonlinear constrained optimization. J. of Global Optimization, 39:1–37, 2007. 

B. W. Wah and T. Wang. Simulated annealing with asymptotic convergence for nonlinear 
constrained global optimization. In Proc. Principles and Practice of Constraint 
Programming, pages 461–475. Springer-Verlag, October 1999. 

B. W. Wah and Z. Wu. The theory of discrete Lagrange multipliers for nonlinear discrete 
optimization. In Proc. Principles and Practice of Constraint Programming, pages 28–42. 
Springer- Verlag, October 1999. 

T. Wang. Global Optimization for Constrained Nonlinear Programming. Ph.D. Thesis, Dept. of 
Computer Science, Univ. of Illinois, Urbana, IL, December 2000. 

X. Wang, G. Xing, Y. Zhang, C. Lu, R. Pless, , and C. Gill. Integrated coverage and 
connectivity configuration in wireless sensor networks. In Proc. First ACM Conf. on 
Embedded Networked Sensor Systems, pages 28–39, 2003. 

Z. Wu. The Theory and Applications of Nonlinear Constrained Optimization using Lagrange 
Multipliers. Ph.D. Thesis, Dept. of Computer Science, Univ. of Illinois, Urbana, IL, 
May 2001. 

G. Xing, C. Lu, R. Pless, , and Q. Huang. On greedy geographic routing algorithms in 
sensing-covered networks. In Proc. ACM Int’l Symp. on Mobile Ad Hoc Networking 
and Computing, pages 31–42, 2004. 

G. Xing, C. Lu, R. Pless, and J. A. O’Sullivan. Co-Grid: An efficient coverage maintenance 
protocol for distributed sensor networks. In Proc. Int’l Symp. on Information 
Processing in Sensor Networks, pages 414–423, 2004. 

W. I. Zangwill. Nonlinear programming via penalty functions. Management Science, 13:344–
358, 1967. 


	Text1: Source:  Simulated Annealing, Book edited by: Cher Ming Tan, ISBN 978-953-7619-07-7, pp. 420, February 2008, I-Tech Education and Publishing, Vienna, Austria
	Text2: Open Access Database www.i-techonline.com


