The 1st International Conference on Distributed Computing Systems, Oc.ober

1-5, 1979, Huntsville, Alabama.

THE PLACEMENTS OF RELATI ONS ON A DISTRIBUTED R:E.‘LA TIONAL DATA BASE

C. V. Ramamoorthy and Benjamin W. Wah
Computer Secience Division, Department of
Electrical Engineering and Computer Sciences and the
Electronics Research Laboratory,
University of California, Berkeley, C£ 94720,

ABETRACT

!n this paper, the problem of optimal placements of
relations on a distributed relational data base is studied.
1t is found that this problem can be decomposed inte
multiple sub-problems of optimizing the placernents of
individual relations. A technique is proposed to introduce
redundant information onto the distributed data base so
that non-decomposable queries can be made decompos-
able. As a resuit, the operational costs are found to
decrease when suflicient redundant information is added.
A simpie example is used to illustrate the technique.

1. INTRODUCTION

The recent advances in large-scale integrated logic
and communication technology. coupled with the explo-
sion in size and complexity of the application aress, have
led to the design of distributed architectures. Basically,
a Distributed Compuder System (DCS) is considered as an
interconnection of digital systems called Processing Ele-
ments (PE's), each having certain procassing capabilities,
communicating with each other through en interconnec-
tion network and working on a set of jobs, which may be
related or unrelated [RAMT76, AND75]. This definition
encompasaes a wide range of configurationa from an uni-
processor system with different functional units Lo a mul-
tiplicity of general purpose computers (e.g. ARFANET).

Data on a DCS are managed through a Dalec Hase
(D8} which is a collection of stored operational data used
by the application systems of some particular enterprise
[DAT?7). A Distributed Data Base (DDB) can be regarded
as the data stored at different locations of a DCS. It can
be considered to exist only when data elements at multi-
ple locations are interrelated and/or there is a need to
access data stored at some locations from another loca-
tion.)

Beceuse of the availability of many parallel
resources on a NCS, and the increasing need for larger
data bases, the design of eflicient coordination achemes
for the management of data on a DCS is a very critical
problem. In this paper, the problem of optimal place-
menta of relations on e distributed relational DB is stu-
died. The ebjective of the problem is to place multiple
copies of a relation on the DCS so as to minimize the total
operationnl costs of the system which may include
storege cost, multiple update cost, retrieval cost, query
processing cost and file migration cost {if the assign-
ments are dynamic), The theme of this paper is to
demonstrate that the placements of multiple relations on
a distributed relational DB can be optimized for each

Rosearch was supportped partially by Ballistic Mimsile Defense Con-
traol DASGSO-77-C-0138 and ARO contract DAAGRO-78-G-0188. Prepara-
tion of this paper was supported in part by National Sclenge Foundation
under ;rml; MCS 78-07291.

642

CH 1445 -6/79/0000- 642%00.75 © 1979 IEEE

relatign independently. It is assumed that a technigue
eXiyts to find the oplimal placements of multiple copies
gf a single file on a DDB. There are many techniguss
available, e.g. [CAS72, LEV74, WAH79). We have shown in
[WAH79, RAM79b] that the placements of multiple copies
of u single file is isomorphic to the single commodity
warehouse location problem. BHased on this properiy,
many techniques developed for both problems are inter-
changeable. Among these are algorithms developed in
the warehouse location problem, such as the add-drop
algorithm, the branch and bound algorithms, the proba-
bilistic branch and bound algorithm, the integer pro-
gramming technigque, the steepest ascent algorithin and
the dynamic programming methods, These algorithms
can be applied to solve the {dynamic) file allocation prab-
lem. On the other hand, Lthere are algorithms developed
in the file allocation problem which can be used to solve
the warehouse location problem. These include the
hyper-cabe technique, the clustering technique, the
dynamic programming methods and the max-fow min-
cut network flow technique. . .

A technique is proposed in this paper in which redun-
dant information is added to the DDB which further
reduces the operational costa of the systemn. It is shown
by an exarmnple DDB that under certain conditions, the
technique can reduce the total operational costs of the
system. A relational data model is chosen in this paper
because it is very popular and the results obtained would
be inore specific. However, the technique proposed in
this paper can be generalized Lo eny type of data model
and file system.))

1I. QUERIES ON A RELATIONAL DB

In a relationat DB [{OD70], data is viewed as relations
of varying degree, the degree heing the number of dis-
tinct domains participating in the relation. Each
instance of a relation is known as a tuple, which has a
value for each domain of the relation. Thus a relation can
simply be represented in tabular form with columns as
domains and rows as tuples,

A Query is an access request made by a user or a
programm, in which one or more relations have teo be
acceased. A gquery on a relational DB consists of two
paris: the part specifying the domaing of the relation to
be retrieved and the part specifying the predicate which
is & guantificalion representing the defining properties of
the set to be accessed. Let S be a relation of domains sg,
sname, city, inventory; and SP be a relation of domaina
s#, p# (Figure 1). The queries on a relational DB can bs
classified into the following categories [DAT77Y: ‘

(1) Retrieval Operations

{(a) Single Relation Retrieval: The

be retrieved i3 defined on the same relation as
" the set.

predicate i -
representing the defining property of the set to

(a}) Relation §
S | sg sname ! city inventory
1 | Supplier A New York 1500
3 | Supplier B | San Francisco 700
5 | Supplier C Chicago 2500

(b} Relation SF

SP_ s# | py
1 Al
2 Al
3 AZ
4 1 A2
5 P2
Figure 1 Relations §and 5P
£.g. GET (S.sname) (S.city="Paris" AND

S.inventory»1000)
{v) Multiple Relation Retrievali The predicate, as
well as the set to be retrieved, may be defined
over multiple relations,
Eg. GET (S.sname): AND
SP.p#="PE")
Relation § and SP must be available simultane-
ously before the retrievel can be processed.

Storage Operations

a) Single Relation Update;
b) Mulliple Relation Update;
¢) Insertion:

{d) Deletion,

Library Functions

There represent more complicated operations on
the predicate than the equality operations, e.g.
counting the number of occurences, selecling the
maximum/minimum etc.

Single relation gueries can be processed very easily
on a distributed relational DB. When the relation is geo-
graphically digtributed, the query can be sent to a node
in which & copy of the relation resides and be processed
there, The results after the processing can be sent back
to the requesiing node. It is generally true that the
amount of comrnunications needed to transmit the
results is much smaller than the amount needed to
transmit the relations.

On the other hand, the processing of a mult-relation
query is more complicated, When multiple relations are
accessed hy the same query on a DDB, these relations
usually have to reside at a common location before the
query can be processed. Substantial communicaticn
overhead may be involved if these relations are geograph-
ically distributed and a copy of each relation has to be
transferred to a common location. It is therefore neces-
sary to decompese the query into sub-queries so that
each sub-query accesses a single relation. This technique
has been proposed in the design of the centralized ver-
sion of INGRES [WON78], and is extended to the design of
Spp-t [WON77] end distributed INGRES [EPS78].
Specifically, the technique consists of two steps. The first
step is Lo select a site with the minimum amocount of data
movements to that site before the query can be pro-

(S.s#=SP.s#

(2)

(3)

643

cessed. This is used as a staerting point for the second
step of the algorithm which determines the sequence of
moves that results in a minimum cost. The algorithm
used is a greedy algorithm and only local oplima can
result in such an algorithm. Hevner and Yao [HEV78]
have followed a similar approach and have developed two
optimal algorithms for arranging data transmissions and
local data processing with minimel response time and
minimal total time, for a special class of queries. These
optimal algorithms are used as a basis to develop a gen-
eral query processing algorithm for a general guery in
which each required relation may have any number of
joining domains and cutput domains and each node may.
have any number of required relations. This general algo-
rithm is & heuristic which uses an improved exhaustive
search to find eflicient distribution strategies. Ghosh
also proposed a model of daka distribution on a DB which
faucilitates query processing [GHO78]. Specifically, the
model consists of a DB with multiple target segment
types and there are queries with multiple target segment
types. The objeclive is Lo distribute the segmenls on the
DB so as to maximize the number of segments that the
querigs can retrieve in parallel from different nodes. The
model only looks at the problem from a retrieval point of
view and no cost is associated with retrieving & segment
from & node.

Most of the previous work address the problem from
a viewpoint of what are the processing sequence of the
query and where it should be processed. However, they
do not consider the distribution of files which can make
the processing of queries more eflicient. Further, there
exists queries which are non-decomposable. For exam-
ple, the query:

GET (S.sname): (S.s#=SP.s# AND SP.p="F,")
i nol decomposable into single relation retrievals
because there is a logical relation “"=" which is deflned
over a comnion domain s# of the relation £ and SP. These
relations must be available simultaneously at &8 common
location before the retrieval or update operations can be
performzd. Instead of solving the problem of decompos-
ing the gueries, we study a technique to reduce the pro-
cedsing end commaunication coats for non-decomposable
queries in this paper. It is shown Iater, by the introduc-
tion of some redundant information on the DB, non-
decomposable queries may be made decompesable, {see
slse [RAMT9a]). The basic assumption made over here is
that all the required relations are moved to the node at
which the query originates, before the processing of the
query begins, It is possible to consider a sequence of
moves which will minimize the total amount of data
transferred. However the problem will be very compli-
cated and the intention of this paper ia to demonstrate
the usefulness of the technigue of using redundant infor-
mation,

Before the technique is discussed, the problem of
placements of relations on a DDB is first formulated.

THE PLACEMENTS OF RELATIONS ON A DDB
In Lhis section, « inudel for the placements of multi-
ple relations on a BUH 15 formulated. The model is shown
for the special case of two relations and is generalized
later to the case of more than two relations,

Consider two relations a and b, the retrieval and
update rate at node i are {see Figure 2)%

1L

gfa(gfs) = rale of access at node i_r:;r a single rela-
tion retrieval accessing relation a(b);

gfds = rate of access at node i for a multi-relation
reirieval accessing both relations a and b;

RELATION & RELATION b

8) RETRIEVALS

RELATION a RELATION b

b) UPDATES

=% SINGLE RELATION ACCESSES
== MULTI-RELATION ACCESSES

Figure 2 Rotriaval and Update Rute on n
2-Relation DB from Node i

ufe(udy) = rate of update at node | for 2 singie rela-
tion query updating relation a{b);

uf 2 (ud) = rate of update at node i for & multi-
relation query accessing both relations u and
b before updating relation a{b).

The costs for each unit of access are;

St,(SI’_}) = cormraunication end processing cost per
unit query of accessing relation a{b) from
nodo i to node |

H?J(th}'= communication and processing cost per
unit update of mul' ;e updating reistion a(b)
from node i to node ;.

We differentiaty between the costs of retrisvals and
updates because in asome epplications, retrievals are
more important than updates and therefore would have a
higher cost (e.g. inventory system); while in other real
time applications, updates mey be more frequent and
thersfore more critical (e.g. sirline reservation syatem),

! The conventon of the symbols used sre as follows: L] represent
indagoes for nodux; a.b represent indexes for relations the mpermj mipu
repressnt an st of r:h‘l*:nn- that the query muwst acoems betore Lhe
quary can procewssd; the subscripls represvent the nodee conoerned
and \he target Uat of relations for uupquu-y.

Let:
n = number of nodes on the DCS;
l.{%) = length of relation a({b);

Jia(fes) = per unit cost of storing relation a(b) at
node i.

We define trom the characteristics of the queries initiated
from nede i, Lhe following symbols:
{1) Single relation retrievols:

afa{al,) = fraction of relation a(b) that is put into
the result relation due to the execution of a -
single relation retrieval on a{b);

(2) Multi-retation retrievala:

afd{al?) = fraction of relation a{b} that is needed
to process a multi-relation retrieval on a and
b

(3) Single relation updates:

B8 (By) = truction of relation a(b) that will be
updated by a single relation update;

{4) Multi-relation updates:

v XpdH) = traction of relstion a(b) that is needed
to process a mulli-relation updale before the
updates can be performed;

gr{BPP) = fraction of relation a{b) that will be
updated by a multi-relation update after rela-
tions a and b have been accessed. i

In processing a multi-relation update, the relations a and
b must be accevsed frst in order to determine what are
the actunl updates that have to be made. This in meas-
ured by the parameters v and vf®. The fraction of
relations a and b to be updated afier they have been
determined are measured by the parameters
BE3 and B :

The parameters defined above can be estimated
from the characteristica of the different typea of queriexn
that can be made on the DDB and the distribution of the
daia stored in the relations.

The control variables governing the file localions and
the routing discipline are defined as follows:

0 itrelation a(b) doss not exisi ol node ¢
YY) = { 1 otherwise

X&,(XPy) = Iraction of gueries mads st node i on
relation a(b) that are routed to node j.
It in true that it X[4>0, then Y7=1 for r=s,b.
The oplimization problem of placing relations a and
b on the DDB can be formulated in the following linear
program: .

min ‘ (1)
"EG:'. ‘)_31 ’% QTJfr.rlrxT.;SfJ {1a)
+ B B % ardiattinsy, (1)
+ 3)ﬁ 2 W Bl ol MT YT (1le)

ragbi=] Sul

‘ n "

+ 3 Y P usl| T vllLXES

rma b iml Jul =g b (ld)

+ B3 ML Y]]
n

+ 5 Y Sk (1€}

rua.b i=l

subjuct to the following constraints:

Y, Tt r=a.,b (10
i=]
i ATy=1, r=ea,b,i=12..n {(1g)
i=1
nY¥y e ii‘z Xl; 20, r=ab, j=lLa.n (1h)
Y=01, r=agb,i=12..n (18)

Eq. la represents the access cost for single relation
retrievals; Eq. 1b represents the access cost for multi-
relation retrievals; Eq. lc represents the update cost for
single rslation updates; Eq. 1d represents the update cost
for multi-relation updates and Egq. le represents the
storage cost of relations on the DDB. Condition 1f assures
that at least one copy of the relalion exists; condition 1g
assures that all the queries are serviced; conditien lh
assures that the relation must exist at a node if a route is
defined to access it at that node and condition li assures
that the control variables ¥Y{ are integral.

LEMMA 1
The above optimization problem can be partitioned into
two independent optimizetion sub-problems for each
relation:

(2} min {2}
n n n n
D S QEKESE + 3 D USMYYE+ P R
i=1 J=] i=l j=1 i=1
where
QF = (gfanfe + ghtpald + uldvid + uld i
UP = (ufaffa + wfSBRN
Fé= ficla
subject to;
ez
i=l
n
Y axi=1 i=1,..n
f=1 .
n
n¥f2z Y} X 20 J=l..n
{m}
Ys = 0,1 i=1,..n
(%) min ‘ (3)
L b Y n n
S T abxpsSty + 3 3 UMl TP+ S FEYE
fz] =1 i=1 j=1) (£3)
where

9l = (glyaldy + glihals® + uldvi® + wiPriPh

Ul = (ufpBle + ulP' B8N

645

Fip = Jixlhe
subject to:

Pzt

=l

i=l...n

n
APz Y XB 20 j=l..m
=1 .

;"b = 0,1 i=1,...,n

Prao, .
We n{Jtice in optimization problem (1) that thers are no
cross produck terms in the control variables of relations
a and b. Therefore, the objective function of {1} can be
written as a sum of objective functions of optimization
problems (2) and (3), and similarly, the consiraints can
be partitioned into two independent sets. The solution to
2) will therefore be a constant in (1) which implies that
%3) can be solved independently. Similarly, the solution
to (3) will be a constant in (1) and this implies that (2}
can be solved independently.

We conclude that the optimization problem for rela-
tions a and b can be carried out as two optimization sub-
problems for relations a and b independently.

A turther simplification of the integer programs (2)
and (3} is to first sotve for X[, r=a.,b, and substitute into
the integer programs. lt is shown in [ALC?8] that,

5Ty = i Sus

Xl =

4] otherwisa

The detailed proo! will not be shown here.

A generalization of Lemma 1 is to allow any number
of retations in the DDB. This is shown in the following
theorem,

THEOREM 1

The general problem of optimizing the placements of
multiple relations on a DDB can be decomposed into mul-
tiple sub-problems of optimizing the placemenis of each
relation independently,

The proof, which require some symbols to be defined
and can be dene by obvious generalization of the proof of
Lemma 1, will not be shown here,

The importance of Theorem 1 is that the original
optimization problem of piacing multiple copies of m
relations on the DDB, which has a complexity of the order
of 0{2™), is reduced to m simpler optimization sub-
problems of placing multiple copies of each relation on
the DDB, each of which has a complexity of the crder of
0{2™). We will not study the elgorithm for deciding the
placements of multiple copies of a relation on a DDB.
There are many techniques available, e.g. [CAS72, LEV74,
MOR77, WAH?8). Some of these technigues are exhauastive
and give optimal solutions, e.g. [CAS72, LEV74, MOR77};
others give sub-optimal solutions and have a polynomial
running time, e.g. [WAH73). We describe in the next sec-
tion a technique to reduce the cost of the objective func-
tion of (1} by the use of redundant information.

V. COST REDUCTICN ON THE PLACEMENTS OF RELA-
TIONS ON A DDB BY UTILIZING REDUNDANT INFORMA-
TION

In section 1, the technique of query decomposition is
briefly described. In query decomposition, optimization
is performed on the processing of a single query which
originates at a node. The objective is to decompose a
multi-relation query into as many single relation sub-
queries as possible so that data (relation} movements
from one node to another van be minimized. However,
there exists non-decomposable queries which require all
the relstions that they access to be present at a common
tocation. A large number of relatlon transfers may be
nesded if these relalions are geographically distributed.
1n order to aveid these extra relation transfers, a tech-
nique utilizing redundant information is propos.ed here.
Insiead of decompoding queries that access multl_ple rela-
tions, it may be sufficient to provide redundant informa-
tion in each relation so that rultiple relations do not
need to reside at a single location before the guery can
be processed. For example, in processing the query:

GET (S.sname): (S.8§=SP.s# AND SP.p="Fg")
on two geographically separated relations, S and SP (Fig-
ure 1), it may be necessary to transfer relation S to the
node where SP resides and then process the query there
or vice versa, However, if the information (S.s#:_SP.s#) is
compiled beforehand into the two reiations (Figure 3y,
then the above query cen be decomposed into two singie
relation sub-queries:

GET (S.a#, S.aname): (S.3§=SP.s§) and

GET {SP.s#): (S.s#=SP.af AND SP.p#="Pg").

In this canse, the processing can be done in parallel and
the amount of information Lransfers is much smaller.

This technigue poses several problems. First, it is
necessary to take one extra bit for each tuple in order to
compile this piece of information. If the amount of infor-
mation to be added is large, {e.g. when the number of
different predicates defined on a common domain of two
reiations is large), the size of the extra storage space

{e) Relation S

S| af | S.apf= sname cit; invent
SP.s¥ Y i
1 1 Supplier A New York 1500
3 1 Supplier B | San Francisco 700
5 1 Supplier C Chicago 2500

{b) Relation SP

SP | s | S.ap= P#
SP.s#

1 1 Al

g Al

3 1 AZ

4 A2

5 1 rz

Figure 3 Relations S and SP with (S.5#=SP.s#) information
compiled into the relations

(0]

may be significant. Second, when the common domain of
one relation is modified, it is necessary to "multiple
update" the redundant information in ell the comimoen
domains of the other relations in the DDB. Referring to
Figure 3, if an extra tuple with s#="2", spame="8upplier
D", city="Boston" and inventory="3000" is added to rela-
tion S, then it is necessary to find out whalt are the
changes that have been made on the redundant informa-
tion {s.a§=SP.s§) in both relations S and SP, and to
update these chapges in addition to the eoriginal update.
In this case, the (S.s#=SP.s#) information has tc be
chapged in relations % and SP bhecause relation SP con-
tains a tuple with s§=2. If updating activilies are fre-
quont, the "mullipte update” cost is large, The net effect
of this technique 1s therefore Lo reduce the total retrieval
cost and increase the total update cost of the system.
Further, the response time in reflecting an update on the
DB may be longer in this case because of the need to
update the redundant information. Third, this technique
requires that the DB designer be able to estimate the
amount of additional information Lo be compiled into the
relations. A possible technique is to pre-analyze the type
of predicates used in retrievals and updates and to deter-
mine what are the essential information to be compiled
into the relations. A compromize should bhe made
between introducing extra information with additional
storage space and higiner cest in multiple updates, and
reducing the amount of relation transfers. It would be
advantageous for the more frequently used predicatea
and less advantageous for the others. .

In the remainder of this section, a mode! is
developed for deciding how much redundant information
is needed on the DDB in order for this technique to be
cost eflective, We first examine the strategies that have
Lo be used for retrievals and updates,

The strategies on retrievals of a geogrephically dis-
tributed relation is the same as the strategy when no
redundent information is used. The necessary informa-
tion to be used in processing the query is first projected
onto ternporary files before they are sent to the originat-
ing node. On the other hand, the strategy on updates is
different from the case of no redundant information
because it is also necessary to check whether the redun-
dant information is updated, There are two variations of
the update strategy:

(1) The updates are firat sent to the multiple copies
of the file to be updated; :
The necessary information on all the relations,
which is needed to determine i! the redundant
information has to be updated, is sent to & com-
mon node;
The updates te be made on the redundant infor-
mation are determined thers;
The updates on the redundant information are
sent oul to all the affected relations,

(=) The necessary information on all the relations,
which is needed to determine if the redundant
information has to be updated, is sent to node i
where the update originates, {actually, it can be
sent to any other node, but the control overhead
in doing this would usually be greater);

The update to be made on the redundant informa-
tion are determined at this node;

The updates on the target relation as well as the
updates on the redundant information, are senkt
out to all the relations.

The advantage of using strategy (1) is that the
updates on the target relation wiil be reflected on the DB
in a shorter time than strategy (2). But strategy (1)
invelves more control overhead and the response time in

reflecting the updates on the redundant information will
be longer than strategy {(2). In general, strategy (2} will
have & shorter overall response time. We assume that
strategy () is used in our model. .

As before, the model for determining the use of
redundant information is first developed for the special
case of two relations and is generalized to the case of
more than two relations later.

Consider two relations a and b, the retrieval and the
update retes, using the notations defined earlier, are
shown in Figure 4. There are two additional types of sin-
gle relation retrievals. These are originally multi-relation
retrievals. Due to the use of redundant information, part
of the multi-relation retrievals are decomposed into sin-
gle relation retrievals., In describing the model, the fol-
lowing symbols are definad:

v88, = fraction of non-decomposable multi-relation
retrievals on a and b from node i that remain
non-decomposable’ even with the use of
redundant informatiomn;

afad ol

(ofd+al) [(of2+aly)
= fraction of multi-relation-reduced-single-
relation retrievals from node i on a{b) due to
the use of redundant information;
(1=vfb)92, is the original rate of multi-
relation retrievals that is decomposable with
the use of redundant informatinn;
{(1=922)982 (ofd+0d) is the total rate of
multi-relation-reduced-single-relation
retrievals to relations & and b after the
decomposition;
It is generaily true that ofP+ef®21, that is,
the total rate of additionel single retation
retrievals after the use of redundant informa-
tion, is grealer than the reduclion in multi-
rolation retrisval rate;
The access rats of multi-relation-reduced-
single-relation retrievals on relution r is
(1~78s)gfdp 0l for r=ab ; ’

efXed) = fraction of relation a(b) that is the
resull to a multi-relation-reduced-single-
relation retrieval on a{b);

SEL(6F) = traction of non-decompesable multi-
relation updates on a(b) from node i that
remain non-decomposable even with the use
of redundant information;

nlas{misn) = traction of updates on relation a(b)
from node i that will update redundant infor-
mation on relations a and b;

¢Pa(8Py) = fraction of relation a(b) in which the
redundant information has to be updated due
Lo updates originating from node i;

U'a{l's} =length of relation a(b) after the use of

redundant infermation.

In our model, although the amount of storage is greater
after redundant information is used, ie. ')\ >l (r=zab),
but the effect on communication is very small beceuse
the redundant information does not have to be
transferred over the network in processing a query.

647

a,b

RELATION a

RELATION b

/

a} RETRIEVALS

2
.

b) UPDATES

RELATION a

RELATION b

\\\

3 SINGLE RELATION ACCESSES

2.

95 {lvila, 0% 2,

e MULTI-RELATION TRANSFORMED SINGLE RELATION ACCESSES,

DUE TO THE USE OF REDUNDANT INFORMATION
HULTI-RELATION ACCESSES

' REDUNDART INFORHATION

Figure 4 RETRIEVAL AND UPDATE RATE ON A 2-RELATION DATA BASE
FROM RODE 1 USING ADDITIONAL REDWNDANT INFORMATION

The optimization problem of piacing relations a and_

b on the DDB after the uss of redundant information can
be formulated in the following linear-program:

min (4)
¥ f: i glral L' X457, {4a)
rug.b (=t =1)

+ 2 B ,% (1~782)ab 2 ol RelM I XT,SL, (ab)
* E“}'f]l' J"‘ reLqlLaal M XSl {4c)
+ 0 PP ule Bl U MIYT (4d)

r=gb t=1 J=t

*)3 iu-".;"[dr.#’ T OuplLXE Sy

reg b (w] j=1 ama,b (4e)
+ BT, MY
+ T B B aleatlorut) L%a 20, X5 Sty
rug.hin] jw (4!)
+ , Ea ey l'tﬂf..f";}
* 5Pttt (4g)
ragbis] ~
subyect to:
IR R r=a,b i
tal
Y Xy =1 =a,b 1i=l..n
J=i

nYya i X[;20 r=atlb jF=l..n
i1

Yr=01 r=a.b i=l..n

Most of the terms in Eq. 4 are the same as in Eg. 1,
except in this case Eq. 4b represents the access cost for
rmaulti-relation-reduced-single-relation retrievals using the
redundant information; and Eq. 4f represents the update
cost for the redundant information. The term
N aslule+ufi?) for r=ab represents the access rate of
updates that mey have eflects on the redundant informa-
tion. In determining whether the redundant information
will be updated, it is necessary to perform a multi-
relation retrieval on the relatipns concerned. In this
case, since we know the updates to be made dn relation r,
we can fetch a copy of all other relations s+ and move
the copy to node i. This cost is represented by the term
¥ ol Xl S¢; in Eg. 4. After the updates on the
avr

redundant information has been determined, the actual
updates, together with the updates on the redundant
information are sent to all the nodes which have a copy of

the relation. This cost is represented by the term
YelitMl Y inBg. 4t

t=a,b
A similar lemma and theorem can be proved for this
problem.

LEMMA 2 .
Optimization problem'4 can be partitioned into two
independent optimization sub-problems for each ralation:

n n n
i in S i
(@) min 3 Qe minsty+ & 5 vpuery + 3?. FEYRs)
where:
OF = [glaals + (=788)gtds ol edd + 2ESuold afd
+ Ul RVED + ulPOEVEL + nla s (st i)al i Il

UP = [ufaBla + ullBES + nla s (ule +uldd)ela
+ "J(‘.n.a(uib.b"'ucitjfau]ru
Fgz fiala
subjuct to:.

P rrzt

imt

648

YE=190,1 i=l,..m
(@)min 3 QP minSE,+ 30 3 UMEYP+ 3 FPYigy
izl 1.¥§=1 is1 jui ist
whera:

Q0 = [glea®s + (1=7880 Joftpolidels® + v&du gl alst
+ wPPE AV + ulp S80I + nla p (ula FuPDaltll,

UP = [ula B8 + wfB8° + nlan(ufatuls®tds
+ ndan (udy +ul ek, 10y

FE=fialy
subject fo:

L3
Yrrza
{=1

Yt=01 PED

THEOREM 2

The general! problem of optimizing the placements of
multiple relations on a DDB using additional redundant
information can be decomposed into multiple sub-
problems of optimizing the placements of each relation
independently.

The proofs of Lemma 2 and Theorem 2 are very simi-
lar to that of Lemma 1 and Theorem 1 and will not be
itlugtrated here. -

¥We demonstrate the use of this technique in the next
section with a simple example.

V. A NUMERICAL EXAMPLE TQ ILLUSTRATE THE USE
OF REDUNDANT INFORMATION ON A DDB

In this section, we show by the use of a numerical
example, the cost improvement when redundant informa-
tion is introduced on the DDE,

Conusider s DCS of 3 nodes with two relations, S and
SP. on the DDB. Let S has domains s(1), sname(m{.
city(8), .inventory(2) and SP has domains s#(1), pg{1)L
Asgsume that 5 has 500 tuples and SP has 10000 tuples.
The following parameters are also assumed:

01 2
[Sigl=[M4]1=11 0 1.5/*10°?
1.5 0©

Sis=[isp =10
Is = I's = 500%18 = 9000 {words)?
lsp = L'gp = 10000%2 = 20000 (words)?

Node Paremeters]
1 | ofls | uls | ulfs™ | qf8p | wife | Wl | o8
1 100 20 115 80 120 40 100
2 50 | 100 50 | 100 25 35 50
3 75 15 35 50 15 10 5

! The number in the parenthesis indicates the lengih in words in
each domaln.

® Note that L =1y {r=8,9F) beoause iu this case, we do not consld-
or the cost of atorage on the DDB (f; =0, r=5,5P) and the redun
dant information usually does not have to be sent over the n=twork in
order Lo process & query.

and for ail isf1,e.u4,
afls = alfp = e = vl = 01
e PP = ¢ = 0.05
aldf = afif = 0.3
Bis = Fikp = BT = i = 0.25
o3P = ofH = 0.8
¢Cs = ¢f8p = 0.05

These parameters have all been chosen hased on
some esitimated distribution of the data stored in the
relations and the characteristics of the queries made on
these two relations. They have been set independent of
the nodes and the relations for easy understanding. The
fixed cost of storage on the systern have all been
neglected because the storage cost im usually very small
as compared to the communication cost. It ia intended
to show by this example, the amount of redundant infor-
mation needed in order for this technique tc be cost
sflective.

In Figure 5 and 6, two graphs nre plotted to show the
ratio of cost with redundancy and cost without redun-
dancy against 857 9 In Figure 5, the graaph is plotted
for various values of yf¢'sp 7, with n{ssp ? fixed at 0.5.
Similarly, in Figure 8, the ragh is plotted for various
values of 7{g.sp ° with 755‘?;} fixed at 0.5. It is seen
from these two graphs that whenever suflficient redun-
dant information is added to the DDB so that over half of
the non-decomposable queries or updates become
decomposable, the resultant operational costs ere less
than the costs without the use of redundant information.
Further, it is seen from Figure 8 that when the fraction of
updates that will update the redundant inforration is
lesgs than 0.5, there is, in general, & cost improvement. -

. The results we have shown in the example are for
illustration. More detailed evaluations are necessary
before any definite conclusions can be drawn.

VI CONCLUSION

In this paper, we have studied the problem of
optimal relation placements on a distributed relational
data base. The objective of the problem is to minimize
the total operational costs of the system. It is proven
that the problem of placements of multiple relations on a
DDB can be decomposed into multiple sub-problems of
opiimal placements of individual relations, This results in
& significant reduction in the complexity of the optimiza-
tion problem. The type of queries that can be made on a
distribuled relstionsl data base are also classified. 1t is
souh Whatl non-devomposably quarles onuse a lot of com-
nueation vverhead on the wystern. A technlgue ls pro-
posed in this paper which pre-analyzes the type of
queries being made on the data base and the characteris-
tics of the data, and intrecduces additiona! redundant
information onto the data base so that non-decomposable
queries can be made decompeosable. The result is a
decrease in the totel retrieval cost and ap increase in the
total vpdate coat. It is seen that this problem can simi-
larly be decomposed inte multiple sub-problems of
optimizing the placements of individual relations. A sim-

1L Iy amumed that r=3, SP; the tes 657,)]s sp are In-
dependent of | and r and the varisbles ¥y & tp are independent of r.

ple example is used to illustrate some of the properties 9!
the Lochnique. 1t must be noted that a lot of generality is
introduced in the development of the technique and a lot
of parameters are defined. However, in most prnctical
cases, most of these parameters will be identical, and
thecefore as illustrated in the example, the number of
parameters to be estimated on the system is refatively

small.

REFERENCES : .

[AND75] Anderson, G. A. and Jensen, E. D., "Computer
Interconnection Structures: Taxonomy,
Characteristics and Examples”, Computing
Surveys, Yol 7, No. 4, December, 1975.
Alcoufle, A.. and Muratet, G., "Optimum
Location of Plants”, Management 3cience,
Yol. 23, No. 3, Nov. 1878, pp. 267-274.

Casey, R. G., "Allocation of Copies of a File in
an Information Network”, AFIPS, SICC, 1972,
pp- 617-625.

Codd, E. F., "A Relational Model of Dain for
Large Shered Data Bases”, CACM, Vol. 13, No.
8, June 1970,

Date, C. J., "An Introduction te Data Dase
Systems”, 2nd Edition, Addison-Wesley, 1877.

Epstein, et. al., "Distributed Query Process-
ing in a Relational Data Base System”,
Report No. UCE/ERL M78/18, Electronics
Research Laboratory, University of Califor-
nia, Berkeley, 1978,

Ghosh, S. P., "Distributing A Data Base with
Logical Associations on a Computer Network
for Parallel Searching”, IEEETSE, Vol. SE-2,
No. 2. June 1976, pp. 106-113.

Hevner A. R., and Yao, S. B., "Query Procesa-
ing in Distributed Date Bases", IEEE Trans.
on Software Engineering, Vol. SE-5, No. 3,
May 1878, pp. 177-187.

Levin, K. D., "Organizing Distributed Data
Bases in Computer Networks”, Ph.D. Disser-
tation, University of Pennsylvania, 1974.

Morgan, H. L., and Levin, K. D.. "Optimal Pro-
gram and Data Locationz in Computer Net-
worka"”, CACM, Vol. 20, No. 5, May 1877. pp.
315-322,

Ramemoorthy, C. V., and Krishnarao, T.,
"T'ne Design lssues in Distributed Computer
Systems”, Infotech State of the Art Report
on Distributed Systems, 1978, pp. 375~400.

Ramameorthy, C. V., and Wah, B. W., “Data
Management in Distributed Data Bases®,
Proc. NCC, AFIPS Presa, 1979, pp, 1011-1024.

Ramoamoorthy, C. V., and Wah, B. W., "Tha
Isomorphism between File Allocation and
Warehouse Location”, submitted for publica-
tion.

Wah, H. W., “Data Management in Distributed
Syatems and Distributed Data Bases”, Ph.D.
Dissertation. University of Californis. Berke-
ley, 1979,

Wong, E., and Youssefi, K., "Dacomposition -
A Strategy for Query Processing”, ACM
Trans. on Data Base, Vol. 1, No. 3. Sept. 1976,
pp. 223-241,

Wong, E., "Restructuring Dispersed Data
from SDD-1: A System for Distributed Data
Bases", Comp. Corp. of America, Tech. Rep.
CCA-77-03, 1977.

[ALC78]
[CAST7E]
{cOoD70)

[DATT?)

[EPS78)

[GHO"TB]
[HEV79)

{LEV74]

l[uon'r'r]
[RAM76)]

[RAM79a]

{RAM79b]
[WAHTS]
[fwoN7s)

[WONTT)

1.4
1.3
Yoz
B 731‘0
e SUTR
= _%’ 1. :L Y=
§ E 1. — —v—m—-—.-u\.———-_.a-.—o—.;—.-—-.-n-- T-O.-‘r--—-u_m——h-.—-p—-—.—--n-ﬁ-
gl .
£ § .sl» ¥s0,2
: 5
[y - y=3,0
=2 B .8/-
‘:‘ 8 :
P ‘.
-~ ::»5 . ?

T WITH REDUHDANCY
s WITHOYT REDUNDANCY

& {n=0,5)

Flgure 5 a PLOT oF CosT BATID W.r.t, Y FoR VARIbus VALUES oFr ¢
13 assumeg that Yi84n apg independent of p=5.5p and 1)

£.s
f.4
5.3
*1.0
F. 1.2 n
[
& = L n=0.8
S = 1.1
= § n=0.6
glE .
o é" f.p -—-u-v--\—-——-—-—-.—-—-——.-----.-u.----q. ...s_-.-.-..-—._.-.-..-\-..
E & n=0,4
* g
a - 8
g5 |
. 8 n=0,2
. - « 2
JE
L?R n=0,0

—— WITH REDUNDANGY
"= WITHOUT REDUNDANCY

Figure 6 A PLoT OF cost RATID w.rt, Y FOR \MRI'UUS YALUES OF ¢
{1t ig assumed thay Yib.n are 1ndependent of re§ gp and 4}

ACKkND FLEBCEHEN r
¥e Yould fike ¢y thank My, €. R Yiek and Mr, J, g Seajr
) of K.

