PROCEEDINGS 1981 NATTONAL CCMPUTER CONFERENCE, AFIP3 PRES3S.

The architecture of MANIP—a parallel computer
system for solving NP-complete problems

by BENJAMIN W. WAH

Purdue University
West Lafayette, Indiana

and

Y. W. MA

University of California, Berkeley
Berkeley, California

ABSTRACT

In this paper, we study the network architecture of MANIP,
a parallel Machine for processing Non-determlInistic Poly-
nomial complete problems. The most general technique that
can be used to solve a wide variety of NP-complete problems
on a uni-processor system, optimally or sub-optimally, is the
branch and bound algorithm. We have adapted and extended
the branch and bound algorithm for parallel processing. The
parallel branch and bound algorithm requires a combination
of sorting and merging. A common memory to sort for a large
number of processors can become a bottleneck in the system.
We have proposed a system with distributed intelligence so
that sorting can be carried out in a distributed fashion. A
uni-directional ring network is proved to be the optimal and
most cost-effective inter-processor communication network
when sorting is done by a hardware priority queue in each
processor.

[. INTRODUCTION

A class of common, deterministic problems defined in com-
puter science, operations research, and other application
areas is the NP-complete problems. > This class of problems is
characterized by a deterministic algorithm that computes a
function from a countable domain into a countable range, and
it generally involves the optimization of an objective function.
The computation time for all known optimal algorithms for
this class of problems increases exponentially with the prob-

lem size, i.e., if n represents the size of the problem, then the-

computation time goes up as k" where &k > 1. There is a sub-
class of NP-complete problems called strong NP-complete
problems'® such that there is no “‘pseudopolynomial” algo-
rithm which solves the problem in a time bounded by a poly-
- nomial in the input length and the magnitude of the largest
number in the given problem instance. The implication of a
problem being strongly NP-complete is that there is no fully

- polynomial time approximation scheme which solves the prob-

149

lem in a time bounded by a polynomial in the input length and
the reciprocal of the prescribed degree of accuracy, Many
problems in areas like deterministic scheduling, graph theory,
routing, database, mathematical programming, automata and
language theory, image processing, microprogram optimiza-
tion, etc., have been proved to be either NP-complete or
strongly NP-complete.'” The set of NP-complete problems
therefore spans a wide spectrum of application areas.

We are presenting in this paper the architectural design of
a parallel computer system that can be used to solve NP-
complete problems without fully polynomial time approxi-
mation schemes. Since the time complexity to solve these
problems optimally is exponential, the common approachisto
solve optimally for small problems and to solve sub-optimally
using heuristics for large problems. The most general tech-
nique that can be used to solve a wide variety of these prob-
lems, optimally or sub-optimally, is the branch and bound
algorithm.* The branch and bound algorithm will be dis-
cussed in detail in Section II. Conventionally, the branch and
bound algorithm has generally been studied with respect to
limited memory space, the selection and bounding criteria,
the theoretical behavior, and the adaptation to a single com-
puter system. What little work that has gone on from the
viewpoint of parallelism has been directed toward a general
purpose computer network.. The problem of the necessary
parallel computer architecture and its associated operating
system to provide an execution environment for a branch and
bound algorithm has been little studied or less understood,
The significance of this study therefore lies in two aspects.
First, it can result in the design of a special purpose VLSI
parallel computer system to execute the parallel branch and
bound algorithm. The number of computers can be designed
to fit the need of the applications. Second, with a better
understanding of the parallel branch and bound algorithm, it
can be designed into existing computer networks and distrib-
uted computer systems.

The feasibility of this study has greatly increased with re-

150 National Computer Conference, 1981

cent changes in the state of the art in memory; VLSI, and
communication technologies. ‘The cost per unit of memory is
decreasing and a wide variety of new storage devices, such as
CCD memoty, bubble memory are available. A number of
other technologies are undergoing intensive study, including
holographic, laser and other optical, and magneto-optical,
and have the potential for commercial development within the
next decade. At the same time, the number of components
per chip is doubling each year and there is a trend of increased
specialization in the functions of the VLSI chip'® * and the
design of a single chip computer system.*® A conference was
held in Caltech in 1979 to investigate the potential of VLSI
technology.* Lastly, the improvement in wideband communi-
cation technology allows local or remote computers to be
interconnected together using optical fibers and satellites.

With the economic feasibility and consequent existence of
these new technologies, more powerful search strategies can
be used in the branch and bound algorithm. Traditional imple-
mentation of branch and bound algorithm is faced with the
problem of limited memory size. With larger and inexpensive
secondary storage, the branch and bound algorithm can be
designed with a virtual backing store. Candidate problems
unlikely to lead to the optimal solution can be stored in the
secondary storage. The conventional virtual memory system
does not work very efficiently here because the access charac-
teristics of a branch and bound algorithm are significantly
different from the access characteristics of a program. The
complexity of the probiem is compounded as parallel com-
puters are used. Another problem faced in the efficient imple-
mentation of branch and bound algorithm is sorting. In order
for the execution time to be minimum, single processor imple-
mentation sorts the intermediate sub-problems by the lower
bounds in ascending order and the sub-problem with the min-
imum lower bound is picked up for expansion (best first
search). Other heuristic search strategies may also involve
searching through a set of values generated by heuristic func-
tions.” In a parallel computer system, the requirement that
the global set of subproblems are compietely sorted by lower
bounds can be relaxed. Suppose there are n processors, it is
sufficient to place one of the n sub-problems with minimum
jower bounds in each processor and not important which one
of these n sub-problemsis evaluated in a particular computer.
This relaxed sorting requirement can be incorporated into the
design of a more efficient architecture than conventional ar-
chitectures that perform complete sorting.

In this paper, we study the network architecture of MANIP,
an architecture using VLSI technology to implement a paraliel
branch and bound algorithm. We want to design special pur-
pose processors for evaluating the bounds and simple inter-
connection network for interconnecting the processors. The
system is designed with the following design objectives: First,
the system should be modularly expandable to include a very
large number of processors. Second, the design must have
high performance and the cost shouid be low by replicating
simpte cells. Third, the system should use distributed controi
so that there would not be a controller that becomes the
bottieneck in future system expansion. Fourth, efficient load
balancing strategies should be implemented so that the pro-
cessors can be kept busy most of the time. Lastly, the system
should be recoverable from hardware failures.

This paper is divided into five sections. Section Il presents
the branch and bound algorithm and the parallel version of
the branch and bound algorithm and discusses the previous
work on parailel computer architecture for branch and bound
algorithm. Section III identifies the architectural alternatives
in implementing the parallel branch and bound algorithm.
Section IV presents the network architecture and its opti-
mality. Lastly, section V provides some discussions on the
problem of implementation, the performance of the network,
and gives some concluding remarks. :

1. PREVIOUS WORK
A. Parallel Branch and Bound Algofithm

An NP-complete problem is usually pﬁt into the form of a
constrained optimization problem*:

minimize Colx)
subject to gi(x)=0
gz(x) = 0
gn(x)=0
and xeX

. where X represents the domain of optimization defined by the

m constraints, normally an Euclidean n-space, and x denotes
a vector (X1,Xe. - 1 Xn)- A solution vector that lies in X is said
to be a feasible solution and a feasible solution for which Co(x)}
is minimal is said to be an optimal solution.

Many methods exist to solve for the optimal solution in the
aforementioned optimization problem. Some of these are
specially designed techniques like Gomory’s cutting plane
method for solving integer programming problems. However,
the most general algorithm, although sometimes not the most
efficient, is the branch and bound algorithm. In this section,
we describe the branch and bound algorithm and expand the
aigorithminto a parallel version so that it can be implemented
on a parallel computer system.

1. Previous work on branch and bound algorithm

The branch and bound algorithm is an organized and intel-
ligently structured search of the space of all feasible solutions.
It has been extensively studied in areas such as artificial intel-
ligence and operations cesearch.?” * % ¥ It has been applied
extensively to soive problems in scheduling,*" * knapsack,*>
 traveling salesman,'® ** * facility allocation,' ¥ integer
programming,'®*" and many others. Dominance relation sim-
ilar to that used in dynamic programming has been used to
prune search tree nodes.

Theoretical properties of the branch and bound algorithm
have been developed in several studies.? 2 3 ** One study”
shows that depth-first search, breadth-first search and best-

* There are also problems which are not NP-complete and are put into this
form.,

The Architecture of MANIP 151

first search are special cases of heuristic search. In heuristic
search, an evaluation function f(n) for a sub-problem n is
computed as the sum of cost of an optimal path from a given
start node to n and cost of an optimal path from n to a goal.
An ordered search algorithm picks up a sub-problem with the
minimum value of f for expansion each time. Any general
heuristic functions can be included in the computation and the
choice of a heuristic function depends on the application,

2. Essential features of branch and bound algorithm

In branch and bound algorithm, the space of all feasible
solutions js repeatedly partitioned into smaller and smaller
subsets and both the lower and upper bounds are calculated
for the cost of solutions within each subset. After each par-
titioning, these subsets with a lower bound (in the case of
minimization) that exceeds either the cost of a known feasible
solution or the least upper bound of all the subsets, are ex-
cluded from all further partitioning. The partitioning process
continues until a feasible solution is found such that the cost
is no greater than the lower bound for any subset. The state
of the partitioning process at any time can be represented as
a partial tree (Figure 1). Each node in the tree represents a
partition and is termed sub-problem. The partitioning process
selects a partition and breaks up this partition into smaller
partitions which in essence extends the node in the partial tree
representing this partition by one level and using the sons to
denote the smaller partitions. In Figure 1, node j is expanded
in the partitioning process into & other partitions which are
represented as sons of node § in the partial tree.

There are two essential features of a branch and bound
algorithm, namely, the branching rule and the bounding rule.
Let us discuss these with respect to the tree in Figure 1. Each
node in the partial tree has two numbers associated with it—
the upper bound and the lower bound of the sub-problem.
The leaf nodes in the partial tree are candidates for parti-
tioning. We say that a leaf node of the partial tree whose fower
bound is less than both the value of a known feasible solution
and the greatest upper bound of all leaf nodes is active; other-
wise it is designated as terminated, and need not be considered
in any further computation.

The branching algorithm examines the set of active leaf.
nodes and selects one for expansion based on some pre-de-
fined criterion. If the set of active nodes is maintained in a
fitst-in-first-out (FIFQ) list, the algorithm is called a breadth-
first search. If the set is maintained in a last-in-first-out list,
then the algorithm is termed depth-first search. Lastly, if the
node selected for expansion is one with the minimum lower
bound, then the search algorithm is called a best-first search.
In a breadth-first search, the nodes of the tree will always be
examined in levels; that is, a node at a lower level will always
be examined before a node at a higher level. This search will
always find a goal node nearest to the root. However, the
sequence of nodes examined is always predetermined and
therefore the search is “blind.” The depth-first search has a
similar behavior except that a sub-tree is generated com-
pletely before the other sub-trees are examined. In both of
these alogrithms, since the next node to be examined is
known, the state of the parent node leading to the next node

Figure 1—A branch and bound tree

does not have to be kept because the path to the next node
from the root node is easily found and unique. These two
algorithms are therefore somewhat space-economical. On the
other hand, the best-first search is space consuming because
all the active sub-problems must be stored as intermediate
data in the computer. However, the total number of nodes
expanded is minimized in the sense that any branching oper-
ation performed under this policy must also be performed
under other policies, provided that all the bounds are
unique.* Since time is a critica! factor in evaluating large
NP-complete problems, we will implement the best-first
branching algorithm in MANIP. The large intermediate stor-
age problem can be solved by moving sub-problems with large
lower bounds to the secondary storage.

Once the sub-problem has been selected for partitioning,
the next task is to select some undetermined parameters in the
sub-problem in order to define alternatives for these parame-
ters and create multiple sub-problems. For example, in the
traveling salesman problem, the undetermined alternatives
are the set of untraversed edges. In expanding a sub-problem,
an untraversed edge (i,j) is selected and two alternatives can
be created, namely, the edge is traversed and that the sales-
man goes directly from city i to city § and vice versa. The
parameter chosen to be expanded is usually done in a rather
ad hoc fashion.

After new sub-problems are created, the bounding algo-
rithm is applied to evaluate the upper and lower bounds of a
sub-problem. In general, only the lower bound is evaluated
because the merit of using the upper bound is very small. The
bounding algorithm designed is highly dependent on the prob-
lem. For example, in an integer programming problem, a
linear program with the integer constraints relaxed can be
used as a lower bound;* in a traveling salesman problem, an
assignment algorithm'® or a spanning tree algorithm can be
used as the bounding algorithm. We present an example of an
NP-compiete problem, the vertex covering problem'” in order
to illustrate the parallel branch and bound algorithm,

In the vertex covering problem, the problem is to find, in an

152 National Computer Conference, 1981

Figure 2a—An example graph

undirected graph, the minimum number of vertices that are
needed to “cover” all the edges in the graph. (Cover means
that all the edges in the graph emanate from at least one of the
included vertices.) The branching rule uses the best-first
search and branches on an unselected vertex with the largest
out-degree. Two sub-problems can be created, one including
this vertex in the set and one excluding it. The lower bound in
the bounding rule is chosen to be the minimum number of
unselected vertices such that the total out-degree is greater

than or equal to the number of uncovered edges, Notice that

edges emanating from different vertices in the lower bound
calculation may overlap and therefore this vertex does not
necessarily cover all the uncovered edges. Futther, if a vertex
has been excluded in a previous stage and there are uncovered
edges emanating from this excluded vertex in the current sub-
problem, the unselected vertex covering these edges must be
included in the minimal set first. As an example, the branch
and bound tree for the graph in Figure 2a is shown in Figure
2b.

3. The parallel branch and bound algorithm

We identify three sources of paralielism in the branch and
bound algorithm.

a. Parallel evaluation of subproblems. Since multiple sub-
problems are available, they can be evaluated simultaneously.
Due to overheads in inter-processor communications and sor-
ting, and because some sub-problem evaluations are unneces-
sary, the improvement in execution time is usually less than x4
times (n is the number of processors). For example, Figure 2c
shows the parallel evaluation of branch and bound algorithm
on the graph in Figure 2a using two processors. It is seen that
the parallel evaluation of node 2 in Figure 2¢ is not useful,
since the corresponding node 3 in Figure 2b is not evaluated.
When the problem size is large, the parallelism will contribute
to better improvement in execution time.

b. Paralle! sorting of subproblems. In the best-first search,
the list of sub-problems must be maintained in a sorted order
by the lower bounds. This sorting can be done by parallel
architecture such as Batcher’s sorting network.? In Section I11
we give a discussion on the type of interconnection network
required for parallel sorting.

c. Parallel execution of the bounding algorithm. Specially
designed architecture can be used to implement a bounding
algorithm, For example, if the simplex algorithm is used, then
matrix manipulation hardware is helpful. However, the archi-

Terminated

Terminated
Feasible

solution

Figure 2b-—The branch and bound tree for Figure 2a. (The number in the
node indicates the order of evaluation; the number outside the node
indicates the lower bound, the number on the edge indicates the included or
excluded node.)

tecture is designed for solving general NP-complete problems.
therefore the bounding algorithm has to be changed for dif-
ferent problems. In this case, software implementation of the
algorithm is more cost effective. '

4. Efficlency considerations

Many results have been proved for the non-parallel versior
of the branch and bound algorithm.? *"*" It has been showr
that the best-first search is the best branching rule and min-
imizes the number of sub-problems expanded,* Furthermore
the branch and bound algorithm can be used as a genera
purpose heuristic to compute solutions that differ from the
optimum by no more than a prescribed amount.* Suppose i
was decided at the outset that a deviation of 10% from the
optimum is tolerabie. If a feasible solution of 150 is obtained
then all sub-probiems with lower bounds of 136.4 or mon
(= 150/1.1) will be terminated. This technique significantl
reduces the amount of intermediate storage and the time ti

4 13
L{2 23) 5
1 T 1 T
terminated optimal
solution

Figure 2c—The parallel branch and bound tree for Figure 2a
with two processors

The Architecture of MANIP 153

arrive at a sub-optimal solution. Technique is also available to
find the best solution in a given length of time.* It consists
basically of searching for an optimal solution for a length of
time equal to T/2. If one is not found, then search is continued

_for a sub-optimal solution that differs from the optimal by no
more than 5% in time of length T/4. The time for searching is
halved each time while the precision of the solution is reduced
until a solution is found. All these can be incorporated into
the parallel branch and bound algorithm.

Unfortunately, very little can be said about the efficiency of
the parallel branch and bound algorithm. It was found in one
study* that only those sub-problems with lower bounds
smaller than the optimal solution will be evaluatedin a branch
and bound algorithm. For a paralle! branch and bound algo-
rithm, the improvement in execution time will be n times (n
is the number of processors) if the number of sub-problems in
the intermediate list with lower bounds smaller than or equal
to the optimal solution is always greater than or equal to n.
However, this number is highly dependent on the problem
and the partitioning being carried out earlier. Simulations are
used to find the speed improvement using n processors.

B. Parallelism in NP-Complete Problem Evaulation

Many studies have been made to design multiple computers
to speed up problems in searching, Kuck™ has provided a
survey on using parallelism to evaluate arithmetic expressions
and linear recurrences, and execute programs. Tree struc-
tured architectures are proposed to solve problems in
searching® and database.®’ One of the tree architectures pro-
posed to solve a wide variety of problems is the X-tree.’
Alpha-beta algorithm has been proposed to be evaluated on
a tree architecture' and a general purpose network com-
puter.** Decision tree evaluation is also speeded up by using
associative processors.*” A variety of SIMD and MIMD inter-
connection networks have been proposed for processor-
processor communication or processor-memory communica-
tion. Examples of these include Benes,” indirect binary n-
cube,* banyan,”* STARAN's flip network,® Omega,* data
manipulator,”” ILLIAC IV's mesh,* perfect shuffle,®
PM21,% delta,* reverse exchange network,” etc, However,
these networks are usually designed for general purpose appli-
cations and therefore the necessary features for processing
NP-complete problems are not identified. Our study identifies
the necessary architectural features and therefore would pro-
vide insights to evaluate NP-complete problems on these
computers. '

Harris and Smith™ proposed a tree architecture to solve the
traveling salesman problem. Basically, the system dedicates
one subproblem to each processor and this processor reports
to its parent processor when the evaluation is complete.
Because of the limited degree of communication, some
processors may be working on tasks that can otherwise be
eliminated if a better interconnection network is designed.
Desai® * also proposed a staged MIMD system to solve an 0-1
integer program using implicit enumeration. Nevertheless,
implicit enumeration is time consuming and wasteful, and for
NP-complete problems, the critical issues of exponential
space or exponential time must be addressed in the algorithm,

tontraller for
order retriaval

mv

Interconnection Network
e

Processor = Memory

Sacondary
Storags

Figure 3a—Common memory

The only published work on applying branch and bound
algorithm to solve NP-complete problems is by El-Dessouki
and Huen.”? A general purpose network computer is as-
sumed. Due to memory space limitation, depth first search is
used to evaluate sub-problems. Because the network is as-
sumed to be slow and possibly distributed geographically,
extensive inter-processor communication cannot be done. No
performance results are given on the evaluation of example
NP-complete problems. However, depth first search has been
shown to be sub-optimal in minimizing the execution time of
the branch and bound algorithm.* In the light of VLSI tech-
nology, larger and inexpensive memories, and faster commu-
nication media, the consideration of reducing the execution
time (at the expense of larger memory space requirement) is
a more critical problem.

In the next two sections, we present the architecture re-
quired to support the parallel branch and bound algorithm.
We first compare two architectural alternatives and prove that
the uni-directional ring network is the optimal interconnec-
tion network.

III. ARCHITECTURAL ALTERNATIVES
SUPPORTING THE PARALLEL BRANCH AND
BOUND ALGORITHM

There are basically two architectural alternatives to imple-
ment a parallel branch and bound algorithm, that is, the
parallel processors can be interconnected either through a
common memory or directly to each other.

A. Common Merr;ory (Figure 3a)

In this implementation, the memory to store the sub-
problems is separated from the processors. Because a single

154 National Computer Conference, 1981

memory wouid become a bottleneck in the-accesses, muitiple
memory modules would have to be used. There is a processor-
memory interconnection network that connects the proces-
sors and memories together, The number of memory modules
used depends on the frequency of accesses from the proces-
sors which in turn depends on the complexity of the bounding
algorithm. Sub-problems generated by the processors are
stored through the interconnection network in the memories.
A secondary storage is also connected to the network for
extended storage.

Since it is required to order the sub-problem in ascending
order by their lower bounds, the memory must be capable of
order retrieval of the sub-problems. This means that each
memory module must be capable of order retrieval of the
sub-problems, and an external interconnection network must
be capable of merging the extrema obtained from each mod-
ule. The memory modules can be implemented with associa-
tive memory,*® or they can be implemented as VLSI priority
queues.**” The processor-memory interconnection network
can be designed for merging the sub-problems with minimum
lower bounds from each memory module. Suppose there are
n processors and p memory modules, then n sub-problems
with minimum lower bounds in each memory moduie are fed
to the sorting network. Sorting algorithms have been devel-
oped on mesh computers,*>®* perfect shuffle,* Batcher's odd-
even merging network,™® and others.*** Optimal sorting
networks have been investigated by Muller and Preparata,”
Baudet and Stevenson,* Hirschberg,”® and Preparata.®” It was
found that sorting of # numbers can be done in time 0{log)
with n? intermediate processors. Since sorting networks do
not allow intermediate results to be used untii the sorting is
completed, the maximum speed improvement that we can
have is O(z3—), assuming that the number of iterations is
improved by a factor of n.

The above sorting process is carried out in a decentralized
fashion in the common memory. On the other hand, it is
possible to perform sorting in a distributed fashion by sorting
the sub-problems locally in each processor and exchanging
messages among the processors. This leads to the second ar-
chitectural aiternative.

B. Private Memory (Figure 3b)-

In this alternative, each processor has a private memory and
is implemented as a unit. Sorting of sub-problems by lower
bounds is carried out locally within each processor, Since it is
not sufficient for the processor to work on local minima only,
a processor-processor interconnection network is used so that
local minima from different processors can be sent over the
network and distributed. The objective of the distribution s to
disribute the n global minima so that each processor has one

* A VLSI priority queue is a distributed logic device that maintains the sub-
problems in a sorted order. The logical structure is a two input, two output
device (deque) such that tags can be input ot ‘output from the top or bottom.
Comparators are inserted between consecutive elements in the queue. For any
two consecutive elements, if the top e¢lement is greater than the bottom ele-
ment, these two el ts are exchanged. By this means, larger clements are
*dropped” to the bottom of the queuc and smialler elements “float” to the top
of the queue, Further, elements can be inserted into the queue continuously
withaut waiting for the previous element to be sorted in the queuc.

M P

M P x

-
s %
W dnd
]
. =

™ o
™ o .§
bt
(Y]
1}
&6 &
wfoe s 8
U =
g 2
Lo
- I—

Secondary
Storage

Figure 3b--Private memory

of the global minima. Expansion of the global minima, as
mentioned earlier in Section I1, is the most effective criterion
of the parallel branch and bound algorithm.

The parallel branch and bound algorithm is implemented in
this architecture as follows. Each processor keeps a list of
sub-problems that are sorted by the lower bounds in ascending
order. At the beginning of a cycle, each processor picks up the
sub-problem with the minimum lower bounds in its list and
expands it into two or more sub-problems. The lower bounds
for the expanded sub-problems are evaluated and the sub-
problems are inserted back into the list. The local minima
from each processor are sent to neighboring processors and
inserted into the local lists there. This process repeats until the -
n global minima are distributed one to each processor. The
cycle then starts anew until each processor has one of the n
global minima. This procedure can be improved by over-
lapping the distribution with the expansion of the sub-
problems. Two possibilities can occur. First, the distribution
time can be smaller than or equal to the lower bound evalu-
ation time. So, although the distribution is completed, the
distribution must be carried out again when the lower bounds
for the currently expanded sub-problems are available. Sec-
ond, the distribution time can be greater than the lower bound
evaluation time, so the processors remain idie until the distri-
bution is compiete. In both of these cases, complete overlap
is not attained due to the different processing and distribution
times. A compromise can be made by overlapping the sub-
problem expansion with the sub-problem distribution. In the
case that the distribution is compieted first, a local sorting can
be performed when the sub-problems are evaluated and the
processors expand the local minima without waiting for a
complete distribution. In the case that the sub-problems eval-
uation is completed first, the next sub-problem in the local list
can be evaiuated immediately without waiting for the distribu-

The Architecture of MANIP 155

tion to complete. It is shown in Section IV that this strategy
is actually very effective.

C. Discussion

There are advantages and disadvantages associated with
each of the architectural alternatives presented in this section.
The first approach can either be fast (the processor-memory
interconnection network is a hardware sorting network such
“as Batcher’s network™) and expensive or stow and not quite
expensive (an external software sorter is used). Nonetheless,
the interconnection network available today generally
possesses properties of substantial delays, high cost and is
difficult to evolve. Furthermore, the sorting network orderly
retrieves the n sub-problems that have the minimum lower
bounds. Since this is not required by the system, this may lead
to unnecessary degradation in performance. Another charac-
teristic of the sorting network is that sorting has to be com-
pleted before the list is available. On the other hand, the
second alternative can utilize the current VLSI technology to
implement the processor and memory on a single chip. Al-
though the processor-processor interconnection network may
be expensive and incurs substantial overhead in sub-problem
distributions, it is shown that sorting does not have to be
completed before sub-problem expansion can begin and this
causes a relatively small degradation in performance. This,
together with a few other nice properties, make this a more
cost-effective design. We therefore select the second alterna-
tive in our design.

IV. NETWORK ARCHITECTURE

The objective of the network is to have a complete distribu-
tion; that is, to distribute the sub-problems in the local memo-
ries of the processors so that the n global minima can be
distributed, one to each of the n processors. The locations of
these 1 global minima are not known @ priori; otherwise the
problem is very simple and the processor with more than one
global minima can send one of these sub-problems to pro-
cessors without any. Since predetermined distribution oper-
ations are unknown, we can allow all the processors to carry
out the same distribution operations (e.g., distribute to the
nearest neighbor), or to carry out different distribution oper-
ations (e.g., one processor may be distributing to its nearest
neighbor while the others are not), The former type of distri-
bution possesses the property that each processor is connected
to and from the same number of neighboring processors and
has the state preserving property. That s, if the global minima
have been distributed to the processors, continual re-
distribution would not disturb the state and the global minima
would remain distributed to the processors. On the other
hand, each processor may be connected to and from a differ-
ent number of neighboring processors in the latter case and it
is rather difficult to preserve the state. For this reason, we
choose to investigate the former case only.

The design of the interconnection network ranges from a
simple uni-directional ring network where each processor can
communicate with one of its neighbors to a fully connected

network where communications can be carried out simuita-
neously with all the processors. Analysis in this section shows
that a simple uni-directional ring network is the optimal inter-
connection network, In order to do this, an urn model must
first be developed.

A. The Urn Model

The n processors in the system are represented as n urns
that contain # white marbles which stand for the globat min-
ima and § — n yellow marbles where S is the total number of
active sub-problems. The white marbles are originally distrib-
uted randomly to the urns. The distribution process moves the
marbles around so that eventually, one white marble is distrib-
uted to each urn. The white marbles are always “lighter” than
the yellow marbles so that they always “float’" to the top of the
urn. During the distribution process, one or more marbles are
taken from each urn and distributed to one or more urns in the
system. If a white marble exists in the urn, it is always distrib-
uted first. The ordering of the yellow and white marbles in the
urns models the ordering of the sub-problems by lower
bounds in ascending order in the processors. If one of the n
global minima {white marble) exists in a processor (urn), it is
always ordered before the other sub-problems (yellow mar-
bles) and is always distributed first. It should be noted that this
model does not take into account the ordering of the white
marbles which is important in a conventional sorting and
merging problem. It is sufficient for exactly one white marble
to be distributed to each urn whereas in a sorting and merging
problem, the white marbles are ordered before they are dis-
tributed to the urns. It is hoped that the relaxation induced in
this problem can help to reduce the amount of marble move-
ments.

We investigate distribution strategies that correspond to
different degrees of interconnection. The first strategy shifts
a white marble, if there are any, to the urn on the right. This
corresponds to a uni-directional ring network (Figure 4a). A
more general strategy distributes the jth marble (j < k&) in the
ith urn to the ([i +/] mod n)th um in parallel. This corre-
sponds to a k-connected network (Figure 5a). When k =1,
this becomes the uni-directional ring network. In Figures 4
and 5, we have also shown the state of the system after a
number of distributions.

In evaluating the interconnection network, all the over-
heads must be accounted for in the distribution process. The
overheads in a distribution include the time to shift and the
time to let the white marbles “float” to the top (which cor-
responds to merging the newly arrived sub-problems into the
original list). The lower bounds for the number of distribu-
tions to achieve complete distribution are shown in the next
section,

B. Lower Bound for a Complete Distribution

In evaluating the lower bound, the sorting method in each
processor must be taken into account. The overhead for
sorting depends on the implementation. The complexity is
O(m log m) for sorting m numbers by software (e.g., heap

156 National Computer Conference, 1981

0 |)
8 "

{a) Uni-directional ring network connecting four urpns with
initial state (0,3,0,1)

{b) Stare after 1 teft shift

] ‘0 o
L f--teff-
{c) State after 2 left shifts

B T R e L

{d) State after 3 left shifes

~ == distributlon of marbles

Figure 4—Uni-directional ring network connecting four urns

sort.”®), O(m) for sorting by a hardware priority queue, and
O((log m)?) for sorting by Batcher’s odd-even merging net-
work.™ In the following theorem, we evaluate the lower
bound of a complete distribution for the three sorting
methods.

Theorem [

Let K be the communication time to transfer one or more
sub-problems in parallei to the other processors, m be the
maximum number of sub-problems that can be stored in a
processor, and n be the number of processors in the system.
Depending on the degree of connection, the lower bounds on
the number of operations for a complete distribution is be-
tween O(K + n log m) and Q(nK + n log m) for sorting by
software, is between O(K +#) and O(Kn) for sorting by
hardware priority queues and is between O(K + log®m) and
O(Kn + n log’m) for sorting by Batcher's networks.

Proof
Suppose each urn is connected to n* otherurns (0=x < 1),
that is, urn { is connected to urn (f + k) mod n {l sk =n").
The maximum delay to transfer a marble from one urn to
another is n'™*, Assuming all the n marbles reside in one
single urn and transfers can be made in parallel to n* other

urns, it would take n'~* transfers to take all the marbles out
from this urn. Since all the transfers are carried out simulta-
neously, each urn would be receiving n* marbles in a time
interval K.

After each transfer, the marbles must be inserted into the
local lists before another distribution can take place. For
sorting by software, the time needed is the time to insert n*
numbers into a priority tree that may contain as many as m
numbers. The total sorting overhead is therefore O(n*log m).
For sorting by a hardware priority queue, each insertion takes
constant time and n* numbers can be inserted into the priority
queue in time O(n*). For sorting by Batcher’s network, all the
m numbers in a processor are connected to a network. The
sorting overhead is therefore O(log’m). :

To summarize, #n' " iterations are needed, and each iter-
ation takes time K for communication and additional over-
head for sorting. The lower bound on the total overhead is
therefore O(n'*[K +n’log m]) for sorting by software;
Q(n'~"(K + n*}) for sorting by hardware priority queues; and
O(n' (K + log’m) for sorting by Batcher’s network. For an
n-connected network, x =1 and the lower bounds are
O(K +n log m), O(K +n), O(K + log’m) for sorting by
software, hardware priority queue and Batcher’s network re-
spectively. For a uni-directional ring network, x =0 and the
corresponding lower bounds.are O(Kn + n log m), O(Kn),
and O(Kn + n log’m).

From the above theorem, it is obvious that sorting by hard-
ware priority queues is better than sorting by software and
Batcher's network for a uni-directional ring network. How-
ever, depending on the relative sizes of K, m, and n, sorting
by priority queues may be better than sorting by Batcher’s
network or vice versa in an n-connected network. In general,
K is very small because of the advances in communication
technologies; n is usually large because it governs the degree
of parallelism, m is also large, and in an n-connected net-
work, m = n. Taking these into account, the lower bounds for
an n-connected network are Q(n log m), O(n) and O(log’m)
for sorting by software, hardware priority queues, and
Batcher’s network. Batcher’'s network has less overhead if
m < Of{c™), where ¢ > 1. On the other hand, Batcher's net-

{a) 2-connected network connecting four urns with Inlftial
state (0,3,0,1)

(b) State after 1 shifr,
== gistribution of marbles

Figure 5—2-connected network connecting four urns

The Architecture of MANIP 157

work uses O(m log’m) hardware,* as compared to O(m) for
a hardware priority queue. For the present time, we favor the
use of a hardware priority queue because of its reduced hard-
ware complexity. In the next section, we prove that the uni-
directional ring network is the optimal network if hardware
priority queues are used.

C. The Optimal Interconnection Network with
Hardware Priority Queue

In this section, we show that the uni-directional ring net-
work is the optimal interconnection network by showing that
the amount of work needed for a complete distribution is
O(n — 1) and therefore equals the lower bound evaluated

earlier.

Theorem 2
The number of distributions for a complete distribution in
a k-connected network (1< k =nr) is at most n — 1.

Proof

We first prove the case of the uni-directional ring {1-con-
nected) network. The proof is by contradiction. Suppose a
white marble cannot get to the top of urn i in n = 1 distribu-
tions and remains in the second position, that is, after n — 1
distributions, urn i still contains at least two white marbles
and the distribution is not complete. An urn that stafts with
0 or 1 marbles can never get more than one marble aftern — 1
distributions. Hence urn i must have started with at least two
marbles. And in a — 1 distributions, n — 1 distinct white
marbles must have passed over the top of urn i, because if not,
the second white marble in urn § would have a chance to get
to the top of urm i This implies that there are altogether
n—1+2 = nr+1 white marbles in the system, which con-
tradicts the original assumption that there are n white marbles
in the urns. Complete distribution can always be achieved in
n — 1 distributions. The proof for a k-connected network with
k > 1 is similar and will not be repeated here.

The overall amount of work is therefore (n — 1)s(sorting
overhead). Since the sorting overhead is the smallest in a
uni-directional ring network, the overall complexity to
achieve a complete distribution is therefore O(n). As we have
proved in Theorem 1 that the lower bound of distributions
using hardware priority queues is O(n), the uni-directional
ring network is the optimal interconnection network. Al-
though the number of distributions to achieve a complete
distribution in a k -connected network (k > 1) may be smaller,
as evidenced in the simulation results shown later. The per-
formance can only be improved by a constant factor because
the lower bound is also O(n). Furthermore, the number of
network links in a k-connected network (k >1) is n*, as

- compared to n in a uni-directional ring network. We conclude
that the uni-directional ring network is the optimal and most
cost-effective way of implementation.

In the remainder of this section, we present some results on
the average fraction of umns containing white marbles using
the k-connected network and try to answer the question we
raise in Section IIl—namely, what is the degradation in per-

formance if 2 complete distribution is not attained before the
processors pick up sub-problems for expansion. The evalu-
ation results are obtained by generating all the possible com-
binations of n white marbles in the n urns as initial distribu-
tions. It is seen in Figure 6 that the increase in the average
fraction of urns containing white marbles due to increasing k
is rather small. Furthermore, the sorting overhead is not in-
cluded in the evaluation. The final performance for k >1 is
expected to be less than the performance of the uni-

_directional ring network. In Figure 7, the fraction of urns

containing marbles for the different number of distributions in
a uni-directional ring network is shown. It is seen that these
curves approach different asymptotic values as the number of
urns is increased. The asymptotic average fraction of urns
containing white marbles as the number of urns is increased
for no distribution (s = 0) has been shown to be 0.5. The
analyses for cases where s >0 are similar but more difficult.
It is also seen that the improvement is significant for the first
few distributions, but the improvement is diminishing as the
number of distributions is increased. This implies that the
fraction of urns containing white marbles is significantly im-
proved by a small number of distributions. In general, less
than half of the urns do not contain white marbles for an
incomplete distribution.

D. Technology Dependent Considerations

‘We have assumed in the urn model that each marble repre-
sents a sub-problem. Actually, a sub-problem is characterized
not only by a lower bound, but also by the state of the prob-
jem. For example, let a graph of p nodes be represented in the
form of a p by p connectivity matrix, and each sub-problem
include a partial assignment of the nodes and edges. In a
distribution, the partial assignment must alsc be transferred
with the lower bound of the sub-problem. ¥ p is large, the
transfer time can be in the order of milliseconds or seconds.
On the other hand, sorting in the processors has a relatively
small overhead as compared with the distribution time. If we
examine the complexity measure of the uni-directional ring
network again, we discover a more serious problem. The over-
heads for complete distribution is O(n). Suppose the number
of cycles in a parallel branch and bound algorithm improves by
a factor of n, and in each cycle, there is an overhead for
distribution of Q{n); this implies that there is no overall im-
provement in performance as far as complexity measure. is
concerned, These observations imply that it is necessary to
design additional hardware or strategies in order to reduce the
distribution overhead so that distribution can be overlapped
completely with sub-problem expansion. There are several
alternatives. :

The first alternative considers sending the tags {each con-
sisting of the urn number and the lower bound) instead of the
white marble (the entire sub-problem) ina distribution. After
O(n) distributions, complete distribution is obtained. These
tags are then gated to an external controller which counts the
number of white marbles in each urn and decides on the
optimal transfer sequence of white marbles from one urn to
another. A k-connected network may be used in order to
allow k parallel sub-problem transfers to be made from each

158 National Computer Conference, 1981

1.00
.875
]
2 .750
[
2
1w
e
z .625
(L}
=
E .500
[~}
w
)
z
= .375 |
('Y
o
-
-
5 250 f-
=
(™
a2 |
0.00 [}] [[1 1 t 1 [
0 | 2 3 4 5 6 7 8 9 TIEY

NUMBER OF SHUFFLES

Figure 6—Performance of the k-connected network fﬁr 12 urns
(k =1 for uni-directional ring network)

urn. Of course, the value of £ has to be determined so that the
response time requirement is satisfied.

The second alternative considers sending 1 marbles from
each urn and passing them through a sorting network such as
Batcher’s sorting network. The first # marbies coming out
from the sorting network must be white, and they are returned
in parallel to the n urns. As we know, the complexity for
sorting n* numbers using Batcher’s network is O(4 log’n).
The overall improvement of the parallel branch and bound

algorithm is at most
n
0(log’n)
Further, this scheme uses extensive hardware and may not be
practical when » is large.

None of the above schemes is perfect and requires addi-
tional hardware support. However, when hardware becomes
sufficiently inexpensive, it may be possible to use more pro-
cessors and allow them to operate at over 50% efficiency (the
average number of urns containing white marbles without any
distribution is over 50%). Furthermore, we have assumed so

far that the system operates in a coupled fashion; that is, the
sub-problems are evaluated while the distributions are made
and the evaluation of the next set of problems does not start
until part or all of the distributions are done. In practice, the
sub-problems have different sizes and different processing
times and therefore it would be inefficient for the system to
wait until all the processors are finished. Each processor
would behave independently and execute the lower bound
evaluation function in its local memory. When this evaluation
is finished, it picks up a sub-problem with the minimum lower
bound from its local list of sub-problems. Since the time when
one processor picks up a sub-problem to the time when
another processor picks up a new sup-problem can be rela-
tively short, the distribution process may not be completed
and the system would be operating at less than optimal
performance. .]
Finally, if an urn does not contain a white marble (one of
the first # global minima), it may contain a marble of different
color (which may correspond to one of the jn + 1th to
{j + 1)nth global minima, j >0, and this is distributed accord-

The Architecture of MANIP 159

.875

.750

.625

500 =

. 375 s

.250

FRACTION OF URNS CONTAINING WHITE MARBLES

125 =

1 1 (] | 1 [

0.00

6 7 8

NUMBER OF URNS

Figure 7-~Performance of the uni-directional ring network (k=1)
for different number of urns (s = distributions)

ingly. So although a processor may not be working on one of
the nth global minima, the expansion of a sub-problem with
the minimum lower bound may still contribute to the speedup.

One interesting point to notice is when a small number of
distributions are made, the distribution of the first global

minima improves; that is, the number of urms containing white

marbles increases. However, the distribution of the n + lthto
2nth global minima which are represented as black marbles
may be worse. This distribution is important because it
governs the distribution of the white marbles in the next iter-
ation (when the black marbles in this iteration become the
white marbles in the next iteration). It is shown that the aver-
age number of urns containing black marbles after a complete
distribution is actually smaller than the average number of
urns if the marbles were distributed randomly. This phenom-
enon is illustrated in Figure 8. Fortunately, the difference
between these two average numbers for large n is insignif-
icant. The simulation results are not included here.

The problem discussed in this section for speeding up the

distribution time can be solved by faster technology. The ring
network can run up to several hundred mega-bits per second
and can be used as a “barrel” as in Control Data Cor-
poration’s 6000 and 7000 series computers,® It can be realized
with sub-nanosecond emitter coupled logic that can operate at
rates up to 100 MHz, Off-the-shelf parts, such as Fairchild’s
F100K, are available to implement the uni-directional ring
network.

V. CONCLUSION

In this paper, we have proposed and studied the network
architecture of MANIP, a parallel computer system for pro-
cessing NP-complete problems. NP-complete problems have
the unique property that the computation time for all known
optimal algorithms increases exponentially with the problem
size. Thus a small increase in the problem size may cause a
very large increase in the problem space needed for the opti-

160 National Computer Conference, 1981

—-——_u——u»——m——--—-——-—-

SR TIE S

====< distribution of marbles

Figure 8—The decrease in the number of urns containing black marbles
when the shuffle is complete (the white marbles represent the first
n global minima; the black marbles represent then + Lst to 2nth global minima)

mal algorithm to complete the examination. Due to the inher-
ent difficulty in solving NP-complete problems, parailelism in
processing is proposed to expand the size of solvable prob-
lems. The most general technique that can be used o solve a
wide variety of NP-complete probiems on a uni-processor
system, optimally or suboptimally, is the branch and bound
algorithm. We have studied in this paper a parallel version of
the branch and bound algorithm which can be executed effi-
ciently on a parallel computer system.

‘The parallel branch and bound algorithm requires a combi-
nation of sorting and merging. The sub-problems are evalu-
ated to produce new sub-problems which are inserted into a
list of previously created sub-problems. This list is maintained
in a sorted order by the lower bounds of the sub-problems so
that the minima can be picked up for expansion in the next
cycle. The process is terminated when a feasible solution is
found with a value smaller than the lower bounds of ail the
sub-problems in the list. Since it is important to maintain a
global sorted list of sub-problems, a common memory shared
by all the processors can be used, However, this can become
a bottleneck when the number of processors is large. We have
proposed an alternative such that each processor has a local
memory and the processors communicate with each other
through an inter-processor communication network. When
the processors have created new sub-problems, they are first
inserted into the local list, and then sub-problems with min-
imum lower bounds from each processor are distributed until
a set of n global minima are obtained. These n global minima
are distributed to the n processors in the system for processing
(complete distribution).

We have proved that the lower bound for the amount of
work to achieve a complete distribution is O(n) when sorting
is done by a hardware priority queue within each processor.
We have also shown that the uni-directional ring network is
the optimal and most cost-effective way of implementing the

inter-processor communication network. Sorting by other
sorting methods gives different performance. Sorting by soft-
ware, such as heap sort, has a worse performance, while
sorting by Batcher’s odd-even merging network has a better
performance at the expense of increased hardware complex-
ity. The proposed interconnection network is reliable because
of its simplicity and it reconfigurability. Faulty processors can
be switched off the network without affecting the per-
formance of other processors. Redundant rings can also be
used to increase the reliability of the network.

The architecture of the processors and the performance
evaluation of the system is given in a different paper. The
simulation results there show that with complete distributions,
the number of iterations reduce by a factor of n using n
processors. With no distribution, the performance is very

" poor. However, when one or more distributions are applied in

each iteration, the total number of iterations is the same as if
a complete distribution is used (with very small variations).
One major problem encountered in the simulations is the
problem of insufficient memory space. The branch and bound
algorithm has to switch from best-first search to depth-first
search when memory space is exhausted. This significantly
degrades the memory performance. A method to increase the
virtual space of the branch and bound algorithm is to use a
virtual memory management system. This will be presented in
a future paper.

REFERENCES

1. §. G. Aki, D. T. Barnard, and R. J. Doran, wSimulation and Analysis in
Deriving Time and Storage Requirements for & Parallel Alpha-Beta Algo-
vithm,” Proc. of 1980 Int'l. Conf. on Parallel Processing, Michigan, pp.
231-234, 1980. .

2. K. E. Batcher, “Sorting Networks and their Applications,” Proc. AFIPS
Spring Joint Computer Conference, Vol. 32, pp. 307-314, Apr. 1968.

1. K. E. Batcher, “The Flip Network in STARAN," Proc. of 1976 inv'l Conf.
on Parallel Processing, Michigan, pp. 65-71, 1976

4. G. Baudet and D. Stevenson, “Optimal Sorting Algorithms for Parallel
Computers,” IEEE Trans. on Computers, Vol. C-27, No. 1, pp. 84-87, Jan.
1978. '

5. V. E., Benes, “Optimal Rearrangeable Multistate Connecting Networks,”
Bell System Technical Journal, Vol. 48, No. 4, pp. 1641-1656, July 1964.

6. J. L. Bentley and H. T. Kung, “A Tree Machine for Searching Problems,”
Proc. of 1979 International Conf. on Parallel Processing, Michigan, pp.
257-266, 1979.

7. B. C. Desai, ""The BPU, A Staged Parallel Processing System to Solve the
Zero-One Problem,” Proc. of 1C578, Taipei. Taiwan, pp. 802-817, Dec.
1978.

8. B. C. Desai, " A Parallel Microcessing System,” Proc. of 1979 inrl. Conf,
on Parallel Processing, p. 136, 1979.

9, A.M. Despain and D. A. Patterson, “X-tree: A Tree Structured Multipro-
¢cessor Computer Architecture,” Proc. of 5th Symp. on Comp. Arch., Palo
Alto, CA, 1978, pp. 144-151.

10. W. L. Eastman, “A Solution to the Traveling Salesman Problem,”
presented at the American Summer Meeting of the Econometric Society,
Cambridge, Mass., Aug. 1958,

11. A. Efromyson and T. C. Ray, “A Branch and Bound Algorithm for Plant
Location,” Operations Research, Vol. 14, pp. 361-368, 1966.

12. El-Dessouki and W. H. Huen, “Distributed Enumeration on Network
Computers,” Proc. of 1979 Int'l. Conf. on Paraliel Processing, Michigan,
pp. 137-146, 1979. Also published in JEEE Trans, on Computers, Vol.
C-29, No. 9, pp. 818-825, Secpt. 1980.

13. T. Feng, “Data Manipulating Functions in Parallel Processors and Their
Implications,” IEEE Trans. Computers, Vol. C-23, No. 3, pp. 309-318,
Mar. 1974,

The Architecture of MANIP 16%

15.

16.

17.

18.

19,

21

2,

26.

27,

29,

3L

32.

3.

3s5.

I

38.

3.

. J. P. Fishburn, R. A. Finkel, and S. A, Lawless, “Parallel Alpha-Beta

Search on ARACHNE,” Proc. of 1980 Int'l. Conf. on Parallel Processing,

Michigan, pp. 235-243, 1980,

Foster, M. J. and H. T. Kung, “Design of special-purpose VLSI chips,”

1EEE Computer, Vol. 13, No. 1, pp. 26-40, 1980,

M. R. Garey and D. §. Johason, “Strong NP-completeness Results:

Motivations, Examples, and Implications,” JACM, Vol. 25, No. 3, pp.

499.508, July 1978,

M. R. Garey and D. §. Johnson, Computers and Intractability, A Guide 1o

the Theory of NP-completeness, W. H. Freeman and Company, San Fran-

cisco, 1979.

R. Garfinkel, “On Partitioning the Feasible Set in a Branch and Bound

Algorithm for the Asymmetric Travelling Salesman Problem,"” Operalions

Research, Vol. 21, No. 1, pp. 340-342, 1973.

R. S. Garfinkel and G. L. Nemhauser, Integer Programming, John Wiley

and Sons, Inc., New York, 1972,

. A. M. Geoffrion and R. E. Marsten, “Integer Programming Algorithms: A

Framework and State-of-the-Art Survey,” Management Science, Vol. 18,

No. 9, pp. 465-491, May 1972,

L. R. Goke and G. I. Lipovski, “Banyan Networks for Partitioning Multi-

processor Systems,” Proc. Ist Anrual Comp. Architecture Conf., pp- 21-28,

Dec. 1973.

. J. A. Harris and D. R. Smith, “Hicrarchical Multi-processor Orga-
nizations,” Proc. 4th Anmual Symp. on Comp. Arch., pp. 41-48, 1977,

. M. Held and R. Karp, “A Dynamic Programming Approach to Sequencing

Problems,” Jr. of SIAM, Vol. 10, pp. 196-210, 1962.

M. Held and R. Karp, “The Traveliing Salesman Problem and Minimum

Spanning Teees,” Operations Research, Vol. 18, pp. 1138-1162, 1970.

. M. Held and R. Karp, “The Travcliing Salesman Problem and Minimum

Spanning Trees, Part 11," Marth. Prog., Vol. 1, pp. 6-25, 1971.

D. S. Hirschberg, “Fast Parallel Sorting Algorithms,” CACM, Vol. 21, No.

8, pp. 657-601, Aug. 1978.

E. Horowitz and 8. Sahni, Fund.

puter Science Press, Maryland, 1978,

. 'T. Ibaraki, “Computational Efficiency of Approximate Branch and Bound

Algorithms,” Math. of Oper. Reseurch, Val. 1, No. 3, pp. 287-298, 1976.

T. Ibaraki, “Theoretical Comparisons of Search Strategies in Branch and

Bound Algorithms,” Int. Jr. of Comp. and Info. Sci., Vol. 5, No. 4, pp.

315-344, 1976,

tals of Computer Algorithms, Com-

. T. Ibaraki, “On the Computational Efficiency of Branch and Bound Algo-

rithms,” J. of Oper. Res. Soc. of Japan, Vol. 20, No. 1, pp. 16-35, 1977,
T. Tbaraki, “The Power of Dominance Relations in Branch and Bound
Algorithms,” JACM, Vol. 24, No, 2, pp. 264-279, 1977.

T. Ibaraki, “Depth-m Search in Branch-and-Bound Algorithms,” Ini. Jr. of
Comp. and Inf. Sci., Vol. 7, No. 4, pp. 315-343, 1978, .

G, Ingargiola and J. Korsh, A Reduction Algorithm for Zero-one Single
Knapsack Problems,” Management Science, Vol. 20, No. 4, pp. 460-663,
1973,

. G. Ingargiola and J. Korsh, “A Generat Algorithm for One Dimensional

Knapsack Problems,” Operations Research, Vol. 25, No. 5, pp. 752-759,
1977.

R. M. Karp, “Reducibility Among Combinational Problems,” Complexiry
of Computer Computations, R. E. Miller and 1. W. Thatcher, eds., Plenum
Press, New York, pp. 85-104, 1572,

. D. E. Knuth, The Art of Computer Programming, Sorting, and Searching,

vol. 3, Addison-Wesley, 1973.

W. Kohler and K. Steiglitz, “Characterization and Theoretical Comparison
of Branch and Bound Algorithms for Permutation Problems,” JACM, Vol.
21, No. 1, pp. 140-156, 1974,

D. J. Kuck, “ILLIAC IV Software and Application Programming,” [EEE
Trans. on Comp., Vol. C-17, pp. 746-757, Aug. 1968,

D. J. Kuck, A Survey of Paralle! Michine QOrganization and Program-
ming,” Computing Survey, Vol. 9, No. 1, pp. 29-54, 1977.

. H. T. Kung, *The Structure of Parallel Algorithms,” Advances in Com-

puters, Vol. 19, Yovits, M. C. ed., Academic Press, New York, 1980,

41

42.

43.

45,

47.

49.

51.

52.

53.
54,

55.

56.

57.

58.

59.

61.
62.

63.

65.

67.

. B. Lageweg, J. Lenstra and A. Rinnooykar, *Job-shop Scheduling by
Implicit Enumeration,” Management Science, Vol. 24, No. 4, pp. 441-400,
1977,

E. A. Lamagna, “The Complexity of Monotone Networks for Certain
Bilinear ¥orms, Routing Problems, Sorting and Merging,” JEEE Trans. on
Computers, Vol. C-28, No. 10, pp. 773-782, Oct. 1979,

A. H. Land and A. Doig, "An Automatic Method for Salving Discrete
Programming Problems,” Econometrica, Vol, 28, pp. 497-520, 1960.

. Lawler, E. L. and Wood, D. W., *Branch and Bound Mcthods: A Survey,”
Operations Research, Vol. 14, pp. 699-719, 1966.

D. Lawrie, “Access and Alignment of Data in an Array Processor,” IEEE
Trans. Computers, Vol. C-24, No. 12, pp. 215-255, Dec. 1975.

. 1. Lenstra, “Sequencing by Enumerative Methods,” Math, Centre. Tract
69, Mathematisch Centrum, Amsterdam, 1976.

D. D. Marshall, A Parallel Processor Approach for Scarching Decision
Trees”, Proc. of 1977 Inv'l, Conf. on Parallel Processing, Michigan, pp.
199-201, 1977,

. L. Mitten, “Branch and Bound Methods: General Formutation and Proper-
tics,” Operations Research, Vol 18, pp. 24-34, 1970.

H. P. Moravec, “Fully Connecting Multiple Computers with Pipclined
Sorting Nets,” }EEE Trans. on Computers, Vol. C-28, No. 10, pp. 795-798,
Oct, 1979,

. T. Morin and R. Marsten, “Branch and Bound Strategics for Dynamic
Programming,” Operations Research, Vol. 24, pp. 611-627, 1976.

D. E. Muller and F. P. Preparata, “Bounds to Complexities of Networks
for Sorting and Switching,” JACM, Vol. 22, No. 2, pp. 195-201, Apr. 1975.
1. Nassimi and S. Sahni, “Bitonic Sort on a Mesh Connected Paraliel
Computer,” IEEE Trans. on Computers, Vol. C-27, No. 1, pp. 2-7, Jan.
1979. -

N. J. Nitsson, Problem Solving Methods in Artificial Intelligence, McGraw
Hill, New York, 1971,

3. H. Patel, “*Processor-Memory Interconnections for Multiprocessors,” 6th
Annual Symposium on Compuier Architecture, pp. 168-177, 1979,

D. A. Patterson and C, H. Sequin, “Design Considerations for Single Chip
Computers of the Future,” JEEE Trans. on Computers, Vol. C-29, No. 2,
pp. 108-116, Feb. 1980,

M. C. Pease, “The Indirect Binary ncube Microprocessor Artay,” JEEE
Trans. on Computers, Yol. C-26, No. 5, pp. 458-473, May 1977,

F. P. Preparata, “Parallelism in Sorting,” Proc. of 1977 Inrl. Conf. on
Parallel Processing, Michigan, pp. 202-206, Aug. 1977.

C. V. Ramamoorthy, J. L. Turner, and B. W. Wah, “A Design of a Fast
Cellular Associative Memory for Ordered Retrieval,” IEEE Trans. on
Computers, Vol. C-27, No. 9, pp. 800-814, Sept. 1978.

G. Sa, “Branch and Bound and Approximate Solutions to the Capacitated
Plant Location Problem,” Operaiions Research, Vol. 17, No. 6, pp.
1005-1016, 1969,

. $. Sahni, “General Techniques for Combinational Approximation,” Oper-
ations Research, Vol, 25, No. 6, pp. 920-936, 1977.

R. Sedgewick, “Data Movement in Odd-Even Merging,” SIAM Journal of
Computing, Yol. 7, No. 3, pp. 239-272, Aug. 1978,

C. L. Seitz, Proceedings of the Cultech Conference on Very Large Scale
Integration, California Institute of Technology, Jan. 1979.

S. W. Song, “A Highly Concurrent Tree Machine for Database Applica-
tions,” Proc. of 1980 Int'l. Conf. on Parallel Processing, Michigan, pp,
259-268, 1979,

. H. Stone, "Paralle) Processing with the Perfect Shuifle,” JEEE Trans. on
Computers, Vol, C-20, No. 2, pp. 153-161, Feb. 1971.

C. D. Thompson and H. T. Kung, “Sorting on a Mesh-Connected Paralicl
Comgputer,” CACM, Vol. 20, No. 4, pp. 263-271, Apr. 1977,

.). E. Thornton, Design of a Computer: The Conirol Data 6000, Scott,
Foresman and Company, Glenview, Hlinois, pp. 141-153, 1970.

C. L. Wu and T. Y. Feng, “The Reversc-Exchange Interconnection Net-
work,” IEEE Trans. on Computers, Yol. C-29, No. 9, pp. 801-811, Sept.
1980.

