PROCEEDINGS OF 1982 TEFE COMPUTER SOFTWARE AND APPLICATIONS CONFERENCE

PROBABILISTIC MODELLING OF
BRANCH AND BOUND ALGORITHMS

Benjamin W. Wah and Chee Fen Yu

School of Electrical Engineering
Purdue University
West Lafays:tte, IN 47907

Abstract

Branch and bound algorithms are organized and
intelligently structured searches of solutions for
enumerative-type problems such as NP-complete prob-
lems. In this paper, we propose a probabilistic modet of
branch and bound algorithms with best first search. We
have (1) estimated the total virtual memory space
requirement; and (2) predicted the number of sub-
problems evaluated before the process terminates. The
model is useful for designing virtual memory support of
branch and bound algorithms. It is also important to jus-
tify that approximate branch and bound algorithms can
be very effective in reducing the total number of itera-
tions.

1. Introduction

A branch and bound algorithm is an efficient algo-
rithm to solve for problems that are put into the form of
a constrained optimization.

Minimize Cgy{x)
subject to g{x) > 0
gz(x) = 0

gm[x)zo
xeX

and

in which X represents the domain of optimization defined
by the m cobnstraints, normally an euclidean n-space, and
x denotes a vector (X;Xs, ...,%;) {Problems that are
NP-complete cap be put into this form. There exists
problems that are not NP-complete, but are put into this
form as well.) A solution vector that lies in x is called a
feasible solution, and a feasible solution for which Cy(x) is
minimal is ¢alled an optimal solution.

The branch and bound algorithm is an organized
and intelligently structured search of the space of all
feasible solutions. It has been extensively studied in
areas such as artificial intelligence and operations
research [0, 16, 21, 22]. It has been applied to solve prob-
lems in seheduling (17, 20], knapsack |13, 14], travelling

Research supported by National Science Foundation Grant ECS81-

05068 and a grant from the Center for Automation, Design and
Manufacturing of Purdue Unjversity

CH1810-1/82/0000/0647$00.75 © 1982 IEEE

647

salesman JS], facility allocation {2, integer programming
14, 6}, and many others. Dominance relations similar to
those used in dynamic programming have been used to
prune search tree nodes. Theoretical properties of branch
and bound algerithms have been developed in several stu-
dies PG, 12, 18, 22].

n branch and bound algorithms [19, 21}, the space
of all feasible solutions is repeatedly partitioned into
smaller and smaller subsets, and both the lower and

-upper bounds are calculated for solutions within each

subset. After each partitioning, subsets with lower
bounds (in the case of minimization) that exceed either
the value of & known feasible solution or the least upper
bound of all subsets are excluded from further considera-
tion. The partitioning process continues until a feasible
solution is found such that the value is no greater than
the lower bound of any subsets.

The state of the partitioning process at any time can
be represented as a partial tree (Figure 1). Each node in
the tree represents a partition and is called a sub-
problem. The partitioning process selects a partition and
breaks up. this partition intc smaller partitions, This
extends the node in the partial tree representing this par-
tition by one level and uses the sons to denote the smaller
partitions. In Figure 1, node j is expanded in the parti-
tioning process into k other partitions, which are
represented as sons of node j in the partial tree.

There are two essential features of a branch and
bound algorithm: the branching rule and the bounding
rule. With respect to the partial tree in Figure 1, each

Figure 1. A branch and bound tree.

pode in the tree has two aumbers associated with it - the
upper bound and the lower bound of the sub-problem.
The leaf nodes in the partial tree are candidates for parti-
tioning. A leal node of the partial tree whose lower
bound is less than both the value of a known feasible
solution and the greatest upper bound of all leaf nodes is
active; otherwise, it is terminated and need not be con-
sidered in any further computation.)

The branching algorithm examines the set of active
leaf nodes and, based on some predefined criterion, selects
one for expansion. If the set of active nodes is main-
tained in a first-in first-out (FIFO) list, the algorithm is
called a breadth-first search. If the set is maintained in a
Jast-in, first-out list, the algorithm is called s depth-first
search. Lastly, il the node sclected for expansion is one
with the minimum lower bound, the search algorithm is
called a best-first search.

in a breadth-first search, the nodes of the tree wili
ajways be examined in levels. That is, a node at a lower
level will always be examined before a node at a higher
Jevel. This search will always find a goal node nearest to
the root; however, the sequence of nodes examined is
predetermined, so the search is "blind.” The depth-first
search has a similar behavior except that a subtree is
generated completely before the other subtrees are exam-
ined. In both algorithms, the next node to be examined
is known, so the state of the parent node leading to the
next node from the root node is easily found and is
unique. Furthermore, the memory space required for
storing the state is very small. These two algorithms are,
therefore, space-saving.

In contrast, the best-first search is space-consuming
because all active subproblems must be stored as inter-
mediate data in the computer. The total number of
nodes expanded, however, is minimum in the sense that
any branching operation performed under this policy
must also be performed under other policies, provided
that all the bounds are unique [19]. Since time is a more
critical factor in evaluating large optimization problems,
the behavior of the best-first search merits further study,

One study [11] shows that depth-first, breadth-first
and best-first searches are special caSPs, ol heuristi
search. In heuristic search, an evaluation l'unctionr 1(N
for a sub-problem n is computed as the sum of cost of ;;3
optimal path from a given start node to n and cost of an
optimal path from n to a goal. An ordered search al
tithm picks up a sub-problem with the minimum va13eg§}
[for expansion each time. Any general heuristic func-
tions can be included in the computation and the choi ce
of a hewristic function depends on the application 1c
) Once the subproblem has been selected for 'art'tio
ing, some undetermined parameters in the sug rolbl -
El;stbgeds:éectsd sr:i that alternatives for these parl;met:l:ls

*fined and multiple sub-problems created. F
example, in the traveling salesman probl S deten
mined alternatives are the set of uprt em, the undeter-
expanding a sub-problem, an unt ntraversed edges. In
selected, and two alternatives ¢ nbl‘aVQrsed edge (ij) is
s traversed and the caleemmn an ﬁ'created: (1) the edge
city j and (2) vi goes directly from city i to
P18 i ey dored o, POrOTEeT chesn o be

ter new sub- .

algorithm is applii; "igizr?sl are created, the bounding
bounds of a_ sub-problem al(:;ate the upper and lower
bound is evaluated, because the enerally, only the lower
bound are small. The b éljlerlts of using the upper
glemg_ned is highly o:iepnendent.oct:rlx1 tll?egp:tﬁlgfnthu]l? that is
le, in an integer programmi em. For exam-

with relaxed in Ing problem, a linear pro
teger constraints can be used as a li’;g"

bound \18]-, in the traveling salesman problem, an assign-
ment algorithm {1} or a spanning tree algorithm can be

used as the bounding algorithm.
As an example to illustrate the use of branch and

bound algorithms, the evaluation of an integer program-
ming problem is shown here. The integer programming

problem may be expressed as

Minimize CX
subject to AX > B '
XT = (xl,XQ, PP ,xn}

x;, non-negative integer, i=1,2,...n.

These problems differ from ordinary linear programming
problems in that the variables are restricted lo mon-
negative integer values. .
One approach to the problem is the f{ollowing.
Apply the dual simplex method to a sub-problem. If the
optimal solution is integral, a feasible solution has been
generated, otherwise, create two new sub-problems as fol-
lows. Choose a variable that has a non-integer value (say
x; = 4.4) and restrict that variable to the next lower
integral value for one problem (x; < 4) and to the next
higher integral value (x; = 5) for the other. The variable
chosen is the one with the greatest up or down penalty.
The up penalty for a variable x; having a value of 3 is
the estimate of the amount by which the solution to the
current subproblem would increase if the integral

constraint x; > |a;| was introduced. The down penally is

similay, except that it is associated with the comstraint
X; 53{&, . The lower bound of a new sub-problem is the

sum of the optimal simplex solution and the associated
penalty. This process is repeated on the new sub-
probl};ams.
igure 2(b) shows the branch and bound tree for ¢
problem in Figure 2(a). The dual simplex method givlzes
an optimal solution of 14.2 for the original problem
Since the variables are not integral, a feasible solution
has not been generated. Up and down penalties are cal-
culited for the variables and x, has the greatest penalty (
=18 }. Two new sub-problems are then created, one
with x,=0 and the other with x;, > 1. The lower bounds
are caleulated as in Figure 2{(b). The dual simplex
metimd is then applied to the sub-problem with the
smaller lowgr bound and a feasible solution is generated
;v;tgpztliin\rﬁnal?lt? having inttlegral values. This constitutes
: solution since ¢ i
- silb-fﬁpblem e e lowet bound of the remain-
n this paper we present an approximate i
model of the branch and bound algc?r?thm. a‘i*:hi:t:'ﬁ)lzlﬁtzg
mportant because it forms the basis of design of a virtual
a]g(r)r:-?{g'mzpelgastimg ;g::;m supporthing branch and bound
1 . F ermore, the model i ful i
i 122 . is useful in
algogith%n ! {924}.ebaVlor of approximate branch and bound

mi? Xg = Txy + 3x, + qx3

*, +2x2+3x333

BKI +_x2+x3 3 5

X
;’Xzysz 0, fnteger

4 . Anex am; .
B ple of an inte,
E€T programmi
RE problem,

Optimal dual simplex solution

Xy = 4.2 down up
x. = 0.4 variable| penalty| penalty
1 .
Xy = 3.8 xy 0.8 1.8
Xy = 0 L9 0.3 0.13
z = 14.2 + 0, z = th.2 + 1.8
= 15.0 = 16,0

Feasible Terminated

solution
Optimal dual simplex solution
w 15.0
0 5 z = lower bound
= 0
=5

X, = 0

3

X

X
]

Figure 2b. Branch and bound tree for Figure 2a.

2. The Model of the Branch and Bound Process
with Best First Search

The branch and bound process can be modelled as
two walls moving towards each other. The front wall
indicates the value of the lower bound for the sub-
problems currently expanded. The back wall represents
the minimum of-all the feasible solutions.

Initially, the front wall is undefined and the bhack
wall is at infinity. The lower bound for the problem is
evaluated and this is taken to be the position of the front
wall. The problem is then branched into two or more
sub-problems and a lower hound is calculated for each
sub-problem. Since the lower bounds of descendent sub-
problems are always greater than the lower bound of
ancestor sub-problems, the front wall always moves to
the right (see Figure 3). Once the current sub-problem
has been expanded, the front wall moves to the position
of the minimum of the set of active sub-problems. This
sub-problem is then expanded and the process repeats.

When a sub-problem generated becomes a [feasible
solution, the value of the solution is compared with the

ition of the back wall. If the position of the back wall
15 greater than the value of the new feasible solution, the
back wall is set to this value; otherwise the feasible
solution is ignored. Successive expansion of the sub-
problems cause the front and back walls to approach each
other émd the process is terminated when the two walls
coincide.

649

REGION

RE%LON FRONT REGION OF ACTIVE BACK oF
EXAMINED WALL SUBPROBLEMS WALL FEASIBLE
SUBPROBLEMS 7] r7} SOLUTIONS
9
<=
LosT
© ACTIVE SUBPROBLEMS
@ CURRENTLY EXPANDED SUBPROBLEM
@ EXAMINED SUBPROBLEM
& FEASIBLE SOLUTION
Figure 3. The model of branch and bound process with

best- first search.

In the following sections, the positions of the front
and back walls are caleulated. Some simplifying assump-
tions are made in order for the calculations to be tract-

able.

2.1 The Position of the Front Wall

The solution of ihe [following broblem is desired:
given the position of the front wall, what is the expected
number of sub-problems examined; or inversely, given the
number of sub-problems examined, what is the expected
position of the front walll The set of examired sub-
problems consists of sub-problems that have been pro-
cessed and no longer belong to the set of active sub-
problems. The following assumptions are made in the
derivation:

(A1) The differences between the lower bounds of the
expanded sub-problems and the parent sub-problem are
independent, identically distributed random variables
satis{ying the gamma density function {8]

— yal—Ny X (1}
T(a) e >

0 (1)
The density function is monotenic if a <1, and
unbounded near the origin when a < 1. For a > 1, the
graph is bell-shaped and as e — oo, the density function
hecomes normal T.'S] A Gamma density function is chosen
because it represents a very general class of density func-
tions. As shown in the next section, this assumption is
valid for integer programming.

(A2) Each parent sub-problem is expanded into two
smaller sub-problems. This assumption is valid for a
class of NP-complete problems,

Let I be the lower bound of the first sub-problem.
Let N{x) be the number of sub-problems examined when
the front wall is at position x and E{N(x)) be the
expected value of N(x). When the parent sub-problem is
expanded, y' and y'' are the differences between the
lower bounds of the expanded sub-problems and the
parent sub-problem. E{N(x)} can be written in the form
of a renewal equation [23].

fg(y;a,k) = x<0

E(N(x))=1+ [Ey(N(x~y' }dF gy’ }* [E{(N(x-y"' }dFq(y")
0 0
or

E(N(x)} =1+ 2 | E{(N(x-y}dF g{y) 2
)
where

E(N{(x-y)if y <
B (N(x-y) ={ iy < (3)

The evaluation of the above renewal equation would
result in an incomplete gamma function that cannot be
solved analytically. Since fg{y} — 0, as y —» oo, the
assumption that x is reasonably large implies that for any
¥y > x, fgly) =~ 0. This leads to an approximate renewal
equation which can be written as:

E'(N(x)) =1+ 2 [E'(N(x=y))dF o(y) (4)
1]

To solve Eq. (4), a solution is guessed and is substituted
into Eq. (4} imn order to verify it. Assaume that
E'(N{x)) = k e™ — 1. Substituting into Eq. (4), we
obtain an identity

[= <]
ke™ - 1=1+ 2 [(ke - NdFo(y)
0

o]
or 1 =2 f e™dFq(y) ()
6
Using the density function of Eq. (1) and substitut-
ing it into Eq. (5), m can be solved,
m = A2/% —1) (6)
To solve for the constant k, we use the boundary condi-

tion E'(I) = 1. Substituting for x = | in the assumed
solution, we obtain k=2e ™. Therefore,
E'(N(x)) = 2 & 0x-1 M

As similar to problems in general renewal theory, the
derivation of the distribution function of N(x} is difficult.
The expected value of N{(x) will, therefore, be used in the
calculation of the position of the back wall.

At this time, it is important to know the total
number of sub-problems generated. Ail the sub-problems
to the left of the front wall must have been examined
(non-terminal nodes) and all the sub-problems to the
right of the front wall are active and not examined {ter-
minal nodes). Assuming a well balanced binary tree, the
approximate expected total number of nodes in the
branch and bound tree is E(N{x)) and using Eq. (7),

E(N(x)) = 2 E'(N(x)) + 1 (8}

2.2 The Position of the Back Wall

To determine the position of the back wall, the
mechanism involved in generating a feasible sclution
must be understood. Let n be the number of input
parameters. n ¢an be the number of variables in an
integer programming problem; n can be the number of
cities that a travelling salesman wishes to visit; n can also
be the number of nodes in a graph of the vertex covering
problem. Before a feasible solution can be obtained, a
chain of sub-problem expansions must be generated. The
number of sub-problems in a chain can be less than n
(vertex covering problem), equal to n (integer program-
ming problem) or greater than n (travelling salesman

650

problem}. To evaluate the position of the back wall, the
following additional assumptions are made: ’

{A3) Every chain that results in a feasible solution i3
made up of n sub-problem evaluations. Each chain starts
at the origin and has a length equal to the sum of p
independent gamma distributed random variables. Vari.
able length chains will be considered in the future.

{A4) The chains leading to feasible solutions are
independent. This assumption is not true in general but
is necessary for mathematical tractability.

The number of chains due to F{Ny{x)) nodes in the
branch and bound tree is C{n,x), and the maximum is
Coax(D0:X) which is given by the lollowing equation.

n-1 | Cppapin,x)
E(Ni{x)) = %0 [m“‘—“—-—l C9)
i=0 2
Chnax(1/X) can be solved by first caleulating its approxi-
mate value without the ceiling in Eq. (8). and searching
for the solution in the vicinity of the approximate value.
The actyal number of chains formed is, of course,
less than C_.(n,x). The position of the back wal]
estimated using C_,.(n,x) will, therefore, be a lower
bound of the actual position. :
By assumption (A3), the length of each chain is also
gamma distributed with a density function f(y) since the
family of gamma densities is closed under convolution.

fo(y) = fgly; n % a,) (10)

Since ail the chains are assumed independent
(assumption (Ad)), the position of the back wall is given
by the minimum value of all the chains, The distribution
function of the minimum of C{n,x) independent, identi-
cally distributed random variables is Fg(y) where,

Fply) = 1= [1 = Fo(y)] (") (1)
The expected position of the back wall is E{b)
oo
E(b) = [y dFg(y) {12)
0

2.3 The Distribution of Sub-Problems Behind the
Front Wali

In this section, the distribution function of the
difference between the lower bounds of active sub-
problems and the front wall is calculated. The generation
of active sub-problems is depicted in Figure 4, The dis-
tribution functions of z, and z, are sought. Since y,; and
¥ are gamma distributed, an assumption which simplify
the calculation is the following,

| - ¥]
i | -
Active sub-probles
z, _1I
Z
%/@
parcht 4
sub-
problem
— -;
é Active sub-problem
2y A_JI
| o~ y]
I b 2 1

Front Wal?

Figure 4. The generation of a pair of active sub-problems.

A . T A a2, AT
v

L LR P e s

(A5) The parent sub-problem and the corresponding
active sub-problems it generates can be at any position as
long as they lie on opposite sides of the front wall.

From the above assumption, it implies that x and z,
have the same distribution function. Since y, is gamma
distributed, x and z, are also gamma distributed.

L0y) =2 ¢ 1,0y} = fg(y; a/2, A) (13)

Similarly, 2, is gamma distributed with an additional
constraint that z; > 2. Therefore,

f, (v} = fgly; a/2, N1 = Fgly; a/2, A)] (14)

In this section, we have derived the analytical
behavior of the branch and bound algorithms and have
shown that the active sub-problems behind the front wall
are gamma distributed. In the next section, the analyti-
cal model is compared against some simulation results.

3. Comparison of the Analytical Model with Simu-
Iations

A. program to solve an integer program was written
in the ¢ language and run on a VAX 11/780 computer at
Purdue. It takes about 10 minutes of CPU time and 15
Mbytes of memory to solve a 20 variable 20 constraint
integer program. The cumulative statistics on the
increase in the lower bounds of son subproblems with
respect to the parent subproblem was collected over the
duration of the solution process. An exponential distribu-
tion was fitted on the collected statistics and the results
are shown in Table 1. The .20 critical value for the

Table 1 Testing of the hypothesis that the increase in
lower bounds of son sub-problems is exponen-
tially distributed for 20 variable, 20 constraint
integer programming problems. (A histogram
of 200 buckets is used for the experimental dis-
tribution.)

Problem # Sample mean Kolmogorov-Smirnov

Variable, D,
1 0.184 0.057
2 0.322 0.063
3 0.170 0.062
4 0.230 0.076
9 0.312 0.049

Kolmogorov-Smirnov test is 0.076. Thus the hypothesis
that the density function of the increase in lower bounds
of son sub—{)roblems is exponential may be accepted. {An
exponential distribution implies @ = (1) in Eq. S)e

Using the analytical expressions derived i Section 2,
we have plotted in Figures 5 to 7 the performance of the
branch and bound algorithm using best-first search, In
Figures 5 and B, the position of the front and back walls
are plotted for two runs of the integer program using the
measured mean of the exponential distribution. It is seen
that the expected number of sub-problems examined
increases exponentially with the position of the front
wall. On the other hand, the position of the back wall
approaches the front wall as the number of sub-problems
examined is incressed. However, the approach is rather
slow and the slope of the graph for the back wall is steep.
This implies that as the problem size becomes larger, the
number of sub-problems that have to be examined before
the process terminates increases exponentially.

In spite of the various assumptions that we have

OPT WAL
SOLUTION

NUMBER OF $UE-PROBLEMS £XAMIMED

e AMALYTICAL PREDECTION

- am = STHULATIONS

0 70 R0 130 70 750 760 o M0 70 800
POSITION

Figure 5. The positions of the front and back walls for a 20
variable 20 constraint integer program - RUN 1.

OPTIMAL
SOLUT oM

POSITION OF BACK WALL

——— ANALYTILCAL
PREDILCTION

—— e SIMULATIONS

se6 510 520 530 Sk0 550 560 570 S5B0 590 60D
POSITION

Figure 8. The positions of the front and back walls for a 20
variable 20 constraint integer program - RUN 2.

651

< 10l
3
c
i
z [
£ 10]
-]
w
E
&
-]
S 0%
o fG(v; 1, 0.1}
2 ——n
i =40
w
o pT
N
LY
£
3
=
103_‘ . 0.1}

n=20

n T

v
10 167 &

. .
to 107 in

Number of Sub=Problems fvaluated

Figure 7. The number of active sub-problems between the
two walls as a function of the number of sub-
problems evaluated.

made, the estimated positions of the front wall match to
within two percent of the simulated position. The results
concerning the simulation of the back wall position is not
plotted because an initial feasible solution is not gen-
erated in our runs and the first feasible solution oblained
usuaily becomes the optimal solution. Nonetheless,
assuming 2% error in the estimated positions of the back
wall which are plotted in Figures 5 and 6, the number of
iterations at termination is predicted correctly. Due to
the steepness of the curves and the exponential scale
used, the predicted number of iterations may lie in a
range of several orders of magnitude,

In Figure 7, the analytical number of active sub-
problems as a function of the number of sub-problems
examined is plotted. It indicates that the number of
sctive sub-problems first grows to a maximum and
decreases to zero at the termination of the process.
Furthermore, as n is doubled, the pumber of active sub-
problems grows by a factor of 10%. These indicate the
need of an efficient memory management scheme for stor-
ing the active sub-problems.

4. Concluding Remarks and Implications

In this paper, we have studied the probabilistic
modelling of the branch and bound algorithms. The
model consists of two walls approaching each other. The
front wall represents the value of the lower bound for the
sub-problem currently being exg)anded. The back wall
represents the minimum of all feasible solutions. These
two walls approach each other and eventually coincides
at the termination of the process.

In the derivation of the positions of the front and
back walls, it was assumed that the differences between
the lower bounds of the expanded sub-problems and the
parent sub-problems are independent, identically distri-

" than min

652

buted random variables satisfying the gamma density
function. Subsequently, it was shown that the distribu-
tion is exponential for integer programming (gamma dis-
tribution with « =1 }. Some simplifying assumptions
were also introduced to make the model mathematically
tractable. Lastly, the distribution and number of active
sub-problems were derived. :

The model clearly shows that the sub-problems con-
stitute a dynamically varying list ordered by lower
bounds. The access characteristics of the branch and
bound aigorithm calls for the access of jitems at the head
of this list and insertion into the list. The B¥-tree [15]
which requires dynamic rebalancing, appears to the best
organization for pages in the virtual memory operating
system, especially if the index portion of the tree can be
kept in main memory.

Nonetheless, the overhead incurred by a page fault is
considerable. This may be minimized with a properly
designed replacement algorithm. We have developed a
simuiation model and used the gamma distribution func-
tion derived in Eq. (14) to drive the replacement algo-
rithm. Due to the special shape of the gamma distribu-
tion with o« = 0.5, when a constant number of sub-
problems at the head of the list are removed, it results in
a smaller number of page faults. However, usage of the
best-first search implies that sub-problem with the
minimum lower bound is evaluated each time which may
be replaced by the replacemeni algorithm. ‘Fo avoid the
additional page faults due to this fetch, the first page of
the B tree is always kept in primary memory. Analysis
and simulations show that the replacement algorithm is
very effective [25).

The results derived on the positions of the front wall
are very important in showing ,the effectiveness of
approximate branch and bound algorithms. Lawler pro-
posed the use of branch and bound aigorithms as a gen-
eral purpose heuristic to compute solutions that differ
from the optimum by no more than a preseribed amount
[19]. Suppose it was decided at the outset that a devia-
tion of 10% from the optimum is tolerable. If a feasible
solution of 150 is obtained, then ail sub-problems with

lower bounds of 136.4 or more (= -1--1-] will be ter-

minated.

In general, syppose a feasible solution of value F is
obtained initially and the optimal solution has value P
(P > F). Let n be the prescribed degree of accuracy.
This implies that all sub-problems with values greater

, P{ can be eliminated. From Eq. {7) the

itn
number of subproblems evaluated is,

4

. F -
, M2o-1 ——PH
-Eq(N(x)):ze(iy ”—1 . (19)

The number of subproblems evaluated when the optimal
solution is found is s

i
Eg(N(x)) = 2 *2°-1P-1) — 3 (18)

The number of jterations saved using approximation is
Ep(N(x})~E,(N(x)}. If a good initial feasible solution is
generated, then the maximum number of iteragions saved
is when nl: e ?l and is proportional to

@P2¥ -1 9 1+ yhich is exponentisi in 1.

The simple derivation here illustrates that the

approximate branch and bound algorithm is an effective
technique in reducing the total number of iterations. A

future paper will pursue on the anomalies of approximate
branch and bound algorithms [24].

.

[2]
(3}
[4]
[s]

(6]

7]

[8)
[0}

[z0]

[11]

- Travelling

REFERENCES

W. L. Eastman, “A Solution to the Traveling Sales-
man Problem,” presented at the American Summer
Metling of the Econometric Society, Cambridge,
Mass., Aug. 1958

M. A. Efroymson and T. C. Ray, “A Branch and
Bound Algerithm for Plant Location,” Operations
Research, Vol. 14, pp. 361-368, 1966. :
W. Feller, An Mtroduction to Probebility Theory
and ils Applications, Vol. I, 2nd edition, John
Wiley & Sons, Inc., 1971,

R. S, Garfinkel and G. L. Nemhauser, Integer Pro-
gramming, John Wiley and Sons, Ine., New York,
1972,

R. Garfinkel, *‘On Partitioning the Feasible Set in a
Branch and Bound Algorithm for the Asymmetric
Salesman Problem,” Operations
Research, Vol. 21, No. 1, pp. 340-342, 1973.

A. M, Geoffrion and R. E. Marsten, “Integer Pro-
gramming Algorithms: A Framework and State-of-
the-Art Survey,” Managemen! Secience, Vol. 18, No.
9, pp. 465-491, May 1972,

I.. Guibas and R. Sedgewick, “A Dichromatic
Framework for Balanced Trees,” Proe, 19'th Symp.
Foundations of Compuler Science, pp. 8-21, 1978,

P. G. Hoel, 8. C. Port and C. J. Stone, Iniroduction
{o Probability Theory, Houghton Miffin Co., 1971.
E. Horowitz and S. Sahni, Fundamenials of Com-
puler Algorithms, Computer Science Press, Mary-
land, 1978.

T. Ibaraki, ‘'Computational Efficiency of Approxi-

mate Branch and Bound Algorithms,” Math. of

Oper. Research, Yol. 1, No. 3, pp. 287-208, 1976.

T. Ibaraki, “Theoretical Comparisons of Search
Strategies in Branch and Bound Algorithms,” Int
Jr. of Comp. and Info. Sci., Vol. 5, No. 4, pp. 315
344, 1976.

[12]

[13)

[14]
[15}

[16]

(17]
18]
[10]
[20]
211

[22)
[23)

{24)

(25]

653

T. Ibaraki, “Depth-m Search in Branch-and-Bound
Algorithms,” Int. Jr. of Comp. and Inf. Sci., Vol. 7,
No. 4, pp. 315-343, 1978.

G. Ingargiola and J. Korsh, “A Reduction Algo-
rithm for Zero-one Single Knapsack Problems,”
Management Science, Vol. 20, No. 4, pp. 460-663,
1973.

G. Ingargiola and J. Korsh, “A General Algorithm
for One Dimensional Knapsack Problems,” Opera-
tions Research, Vol. 25, No. 5, pp. 752-759, 1977.

D. E. Knuth, The Art of Compuler Programming,
Sorting, and Searching, Vol. 3, Addison-Wesley,
1973.

W. Kohler and K. Steiglitz, **Characterization and
Theoretical Comparison of Branch and Bound Algo-
rithms for Permutation Problems,” JACM, Vol. 21,
No. 1, pp. 140-156, 1974.

B. Lageweg, J. Lenstra and A. Rinnooy Kan, "Job-
shop Scheduling by Implicit Enumeration,” Manage-
ment Seience, Vol. 24, No. 4, pp. 441-400, 1877,

A. H. Land and A. Doig, “An Automatic Method
for Solving Discrete Programming Problems,”
Feonomelrica, Vol. 28, pp. 497-520, 1960,

Lawler, E, L. and Woad, D. W,., “Branch and
Bound Methods: A Survey,” Operations Rescarch,
Vol. 14, pp. 699-719, 1968.

J. Lenstra, “Sequencing by Enumerative Methods,”
Mauath. Centre. Tract 69, Mathematisch Centrum,
Amsterdam, 1976.

L. Mitten, “Branch and Bound Methods: General
Formulation and Properties,” Operglions Research,
Vol. 18, pp. 24-34, 1970.

N. J. Nilsson, Problem Solving Methods in Artificial
Intelligence, McGraw Hill, New York, 1971.

S. M. Ross, Appiied Probability Models with Optimi-
zat;’gn Applicalions, Holden-Day, San Francisco,
1970,

B. Wah and G.J. Li, “The Anomalies of Parallel
Approximate Branch and Bound Algorithms,”
under preparation. :
C.F.Yu Virtual Memory Support for Branch and
Bound Algorithms, Masters Thesis, Purdue Univer-
sity, 1982,

