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Abstract 
Branch and bound algorithms are organized and 

intelligently structured searches of solutions for 
enumerative-type problems such as NP·complete prob
lems. In this paper, we propose a probabilistic model of 
branch and bound algorithms with best first search. We 
have (I) estimated the total virtual memory space 
requirement; and (2) predicted the number of sub
problems evaluated before the process terminates. The 
model is useful for designing virtual memory support of 
branch and bound algorithms. It is also important to jus
tify that approximate branch and bound algorithms can 
be very effective in reducing the total number of itera· 
tions. 

1. Introduction 
A branch and bound algorithm is an efficient algo

rithm to solve for problems that are put into the Corm of 
a constrained optimization. 

Minimize C0(x) 

subject to g1(x) ;:-: 0 

g2(x) <': 0 

in which X represents the domain or optimization defined 
by the m constraints, normally an euclidean n-spa.ee, and 
X denotes a vector {x.,x 2, •.• , xn). (Problems that are 
NP-complete can be put into this Corm. There exists 
problems that are not NP~complete, but are put into this 
form as well.) A solution vector that lies in x is called a 
feasible solution, and a feasible solution for which C0(x) is 
minimal is called an optimal solution. 

The branch and bound algorithm is an organized 
and intelligently structured search of the space of all 
feasible solutions. It has been extensively studied in 
areas such as artificial intelligence and operations 
research (9, 19, 21, 22]. It has been applied to solve prob
lems in scheduling [17, 20], knapsack [13, 14), travelling 
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salesman 15). facility allocation [2], integer programming 
[4, 6], and many others. Dominance relations similar to 
those used in dynamic programming have been used to 
prune search tree nodes. Theoretical properties of branch 
and bound algorithms have been developed in several stu· 
dies (10, 12, 16, 221. 

In branch ani! bound algorithms [19, 21], the space 
of all feasible solutions is repeatedly partitioned into 
smaller and smaller subsets, and both the lower and 

·upper bounds are calculated for solutions within each 
subset. After each partitioning, subsCts with lower 
bounds (in the case or minimization) that exceed either 
the value of a known feasible solution or the least upper 
bound of all subsets are excluded from further consider&· 
tion. The partitioning process continues until a feasible 
solution is found such that the value is no greater than 
the lower bound of any subsets. 

The state of the partitioning process at any time can 
be represented as a partial tree (Figure 1). Each node in 
the tree represents a partition and is called a sub-
problem. The partitioning process selects a partition and 
breaks up this partition into smaller partitions. This 
ex tends the node in the partial tree representing this par· 
tition by one level and uses the sons to denote the smaller 
partitions. In Figure 1, node j is expanded in the parti .. 
tioning process into k other partitions, which are 
represented as sons of node j in the partial tree. 

There are two essential features of a branch and 
bound algorithm: the branching rule and the bounding 
rule. With respect to the partial tree in Figure 1, each 

Figure 1. A branch and bound tree. 



node in the tree has two numbers associated with it • the 
uppN bound and the \ower bound of the sub-problem. 
The leaf nodes in the partial tree are candidates for parti
tioning. A leaf node of the partial tree whose \o~er 
bound is less than both the value of a known feastb\e 
solution and the greatest upper bound of all leaf nodes is 
active; otherwise, it is terminated and need not be con
sidered in any further computation. 

The branching algorithm examines the set of active 
lear nodes and, based on some predefined criterion, selects 
one for expansion. If the set of active nodes is main
tained in a first-in first-out (FIFO) list, the algorithm is 
called a breadth-first search. If the set is maintained in a 
last-in, first-out list, the algorithm is called a. depth-first 
s('arch. Lastly, if the node selected for expansion is one 
with the minimum lower bound, the search algorithm is 
called a best-first search. 

ln a breadth-first search, the nodes of the tree will 
a)wayf!. be examined in levels. That is, a node at a. lower 
level will always be examined before a node at a higher 
level. This search will always find a goal node nearest to 
the root; however, the sequence or nodes examined is 
predetermined, so the search is "blind." The depth-first 
search hn..<; a similar behavior except that a subtree is 
generated completely before the other subtrees are exam· 
ined. In both algorithms, the next node to be examined 
is known, so the state or the parent node leading to the 
ne~t node from the root node is easily round and is 
umque. Further!flore, the memory space required for 
stonng the state IS very small. These two algorithms are 
therefore, space-saving. ' 

In contras~, the best-first search is space-consuming 
beca_u~e all act~ve subproblems must be stored as inter
medtate data m the computer. The total number of 
nodPs expan_ded, however, is minimum in the sense that 
any branehmg operation performed under this policy 
must also be performed under other policies provided 
th_a~ a.H the bo~nds are unique [19}. Since tim~ is a mo;e 
<'rlhcal fa~tor m evaluating large optimization problems 
the beh•v•or of the best-first search merits further study ' 

d ~ne sfitudy ill] shows that depth-first, breadth-fir~t 
an est- rst ~ea!ches are Spec1al cases of heuristic 
~earch. In heunsttc search, an evaluation function f(n) 
or .a sub·problem n is computed as the sum or cost of an 
opt~mal path from a given start node to n and cost of an 
optimal. path rrom n to a goal. An ordered search a.l 
~~~hm ptcks '!P a sub-pr~blem with the minimum valueg~ 
. or expansi?D each ~lme. Any general heuristic rune .. 

lions <'an. b~ tnclu~ed m the computation and the choice 
or a teunstlc functiOn depends on the application. 
i nee the dsubproblem has been selected for partition
~~~t sbme 1 unt dtermhed parameters in the subproblem 
can bee ds:fi~~d a~~ t ma\:.ltfrnattes for these parameters 

:i~';!':\t~~nt:t'iv~a:~~~~hFe~':::a/~~~~';;., c:h:t~!dei.~~ 
expanding a sub~ roble se o untraversed edges. In 
siS. eletcted, andd two ~terna~~e:~a:n~!a;r~::Cdd·e(dl~eth(i,j)d is 

raverse and the sal . · ) e e ge 
city j and (2) vice ver:smaTbgoes directly from city i to 
expanded is usually donea~d ho~ parameter chosen to be 

After new sub-problems a. 
algorithm is applied to ev I rt created, the bounding 
bounds. of a. sub--problem a ua e the upper and lower 
bound Js evaluated, becaus~ th~ener~lly, on~y the lower 
bo~nd are small. The rt:Jerrts of u~mg the upper 
dest~ned i~ highly dependen~o~~~hg algorithm that is 
pl_e, m an mteger programrnin e problem. For exam· 
Wlt.h relaxed integer coost . gt problem, a linear program 

ram s can be used as a I ower 
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bound 118]; in the traveling sal~sman proble~, an assign
ment algorithm Ill or a. spannmg tree algorithm can be 
used as the bounding algorithm. . 

AJ; an example to illustrate the use of branch and 
bound algorithms, the evaluation or. an integer progra;m· 
ming problem is shown here. The mteger programmmg 
problem may be expressed as 

Minimize CX 
subject to AX 2: B 

XT = (x,,x2, ... ,xn) 

Xj, non-negative integer, i=l,2, ... n. 

These problems differ from ordinary linear programming 
problems in that the variables are restricted to non
negative integer values. 

One approach to the problem is the following. 
Apply the dual simplex method to a sub-problem. If the 
optimal solution is integral, a feasible solution bas been 
generated, otherwise, create two new sub-problems as rol· 
lows. Choose a. variable that has a non-integer value (say 
xi = 4.4) and restrict that variable to the next lower 
integral value for one problem (xi ~ 4) and to the next 
higher integral value (x; 2: 5) for the other. The variable 
chosen is the one with the greatest up or down penalty. 
The up penalty ror a variable X;_ having a value or a, is 
the estimate of the amount by which the solution to the 
current subproblem would increase if the integral 

constraint xi 2: [a;l was introduced. The down penalty is 

similar, ]except that it is assoeiated with the constraint 
X; ~ la;. The lower bound or a new sub-problem is the 
sum of the optimal simplex solution and the associated 
penally. This process is repeated on the new sub
problems. 

Figu_re 2\b) shows the branch and bound tree for the 
problem m F1gure 2(a). The dual simplex method gives 
a?- optimal solutwn of 14.2 ror the original problem 
Smce the variables are not integral, a feasible solutio~ 
has not been generated. Up and down penalties &re ea.l
;'t:ted for the variables and x 1 has the greatest penalty ( 
with ~·~lJ T;~h newhsub-~roblems are then created, one 

1 an e ot er Wlth x 1 > 1. The lower bounds 
are calc~lated as in Figure 2(bj. The dual sim 

;;!h~~ ~~~;;t,~u~~P~~~. !0fe~:b,:u:OfuWi!er. ;~:r:~~3 
With a~l vanabl~ hav!ng mtegral values. This constitutes 
~n optimal solution smce the lower bound or th r . 
mg sub-problem is greater e ema.m-

mod:ln 0}hfbepb;:~ch:u".f~~~~d~l a%~W:~mate. stochastic 

m
lmportant beca~se it forms the b:Jls of d~ignTh~f am~•~retul a's1 

emory operatmg syst . algorithms [25] F thm supporting branch and bound 

!i~~~~h~!h/~4r.~havi~~ orr.:::~~~xi~:tembr~~.~s .. :Je~u;d 

Figure~. 

min xo • 7x1 + 3x2 + ~x3 

xl + 2x2 + jx > 8 
3-

3x, + .xz + x3 ~ 5 

x,,x X > 0 I 
2' 3- • nteger 

An example or an integer pr . 
ogrammrng problem. 
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Figure 2b. Branch and bound tree for Figure 2a. 

2; The Model or the Branch and Bound Proeess 
with Best First Search 

The branch and bound process can be modelled as 
two walls moving towards each other. The front wall 
indicates the value of the lower bound !or the sub
proble.m.s currently expand~d. The .back wall represents 
the mmtmum of" all the feas1ble solutions. 

Initially, the front wall is undefined and the back 
wall is at infinity. The lower bound for the problem is 
evaluated and this is taken to be the position of the front 
wall. The problem is then branched into two or more 
sub-problems and a lower bound is calculated for each 
sub-problem. Since the lower bounds of descendent sub
problems are always greater than the lower bound of 
ancestor sub-problems, the front wall always moves to 
the right (see Figure 3). Once the current sub-problem 
has been. ~panded, the front wal~ moves to the position 
of the IDIDtmum or the set of actave sub-problems. This 
sub-problem is then expanded and the process repeats. 

When a sub-problem generated becomes a feasible 
sol~t~on, the value of the solution is compared with the 
pos1t1on of the back wall. If the position of the back wall 
ts greater than the value of the new feasible solution the 
back wall is set to this value; otherwise the fe~ible 
solution is ignored. Successive expansion of the sub
problems cause the front and back walls to approach each 
other and the process is terminated when the two walls 
coincide. 
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tl CURRENTLY EXPANDED SUBPROBLEM 

0 EXAMINED SUBPROBLEM 

@ FEASIBLE SOLUTION 

REGION 
BACK OF 
I.JALL FEASIBLE 

SOLUTIONS 

COST 

Figure 3. The model of branch and bound process with 
best- first search. 

In the following sections, the positions of the front 
and back walls are calculated. Some simplifying assump
tions are made in order for the calculations to be tract
able. 

2.1 The Position of the Fl'Ont Wall 
The solution of the following problem is desired: 

given the position of the front wall, what is the expected 
number of soh-problems examined; or inversely, given the 
nu'?J;>er of sub-problems examined, what is the expected 
pos1t10n of the front wall. The set of examined sub
problems consists or sub-problems that have been pro
cessed and no longer belong to the set of active sub
problems. The following assumptions are made in the 
derivation: 

(AI) The differences between the lower bounds of the 
expanded sub-problems and the parent sub-problem are 
independent, identically distributed random variables 

..... ,::.":.:~~:=~~:.::::: ~~' (<] 

The density function is monotonic if et < 1 and 
unbounded near the origin when o < 1. For a-> 

1

1 the 
graph is bell-shaped and as o - oo, the density fun~tion 
becomes normal (3]. A Gamma density function is chosen 
because it represents a very general class of density func
tions. As shown in the next section, this assumption is 
valid for integer programming. 

(A2) Each parent sub-problem is expanded into two 
smaller sub-problems. This assumption is valid for a 
class of NP-complete problems. 

Let I be the lower bound of the first sub-problem. 
Let N(x) be the number of sub-problems examined when 
the front wall is at position x and E(N(x)) be the 
expected value of N(x)· When the parent sub-problem is 
expanded, y' and y' are the differences between the 
lower bounds of the expanded sub-problems and the 
parent sub-problem. E(N(x)) can be written in the form 
of a renewal equation (23]. 



~ ~ 

E(N(x))=l+ I E 1(N(x-y' )dF c(Y' )+I E 1(N(x-y" )dF c(y") 
0 0 

or 
~ 

E(N(x)) =I+ 2 I E 1(N(x-y)dFc(Y) (2) 

where 
0 

_ {E(N(x-y))ir y < x 
E,(N(x-y)) - 0 it y ;:: x (3) 

The evaluation of the above renewal equation would 
result in an incomplete gamma !unction that cannot be 
solved analytically. Since Cc(Y)- 0, as y - oo, the 
a...:;sumption that x is reasonably large implies that for any 
y > x, f0 (y) :!l 0. This leads to an approximate renewal 
equation which can be written as: 

~ 

E' (N(x)) = I + 2 I E' (N(x-y))dF c(y) (4) 
0 

To solve Eg. {4), a solution is guessed and is substituted 
into Eq. (4) in order to verity it. Assume that 
E' (N(x)) = k em•- I. Substituting into Eq. (4), we 
obtain an identity 

~ 

k em• - I = I + 2 I (k em(•-y)- 1)dF c(Y) 
0 

~ 

or I = 2 I e-mydF c(Y) (5) 
0 

Using the density function or Eq. (I) and substitut
ing it into Eq. (5), m can be solved, 

m = >.(21/o- I) (6) 

To solve for the constant k, we use the boundary condi
tion E' (I) = l. Substituting ror x = I in the assumed 
solution, we obtain k=2e-m1. Therefore, 

E' (N(x)) = 2 e'l2''"-1H•-11 - 1 (7) 

As similar to problems in general renewal theory, the 
derivation or the distribution function or N(x) is difficult. 
The expected value of N(x) will, therefore, be used in the 
calculation or the position or the back wall. 

At this time, it is important to know the· total 
number or sub-problems generated. All the sub-problems 
to the lett or the rront wall must have been examined 
(non-terminal nodes) and all the sub-problems to the 
right or the rront wall are active and not examined (terw 
minal nodes). Assuming a well balanced binary tree, the 
approximate expected total number or nodes in the 
branch and bound tree is E(NT(x)) and using Eq. (7), 

E(NT(x)) "'2 E'(N(x)) +I (8) 

2.2 The Position or the Baek Wall 
To determine the position or the back wall, the 

mechanism involved in generating a feasible solution 
must be understood. Let n be the number or input 
parameters. n can be the number or variables in an 
integer programming problem; n can be the number or 
cities that a traveiJing salesman wishes to visitj n can also 
be the number or nodes in a graph of the vertex covering 
problem. Berore a reasible solution can be obtained, a 
chain or sub-problem expansions must be generated. The 
number or sub-problems in a chain can be less than n 
(vertex covering problem), equal to n (integer program
ming problem) or greater than n (travelling salesman 
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probl~m). To evaluate the ~osition or the back wall, the 
roHowmg add1honal assumptions are made: · 

(A3) Every chain that results in a reasible solution is 
made up or n sub-problem evaluations. Each chain starts 
at the origin and has a length equal to the sum or 0 
independent gamma distributed random variables. Vart. 
able length chains will be considered in the. ruture. 

(A4) The chains leading to reasible solutions are 
independent. This assumption is not true in general but 
is necessary for mathematical tractability. 

The number or chains due to E(N-r(x)) nodes in the 
branch and bound tree is C(n,x), and the maxirrium is 
Cmu(n,x) which is given by the rollowing equation. 

n-t fe (n x) I E(N-r(x)) = ~ mu. ' 
j=O 2l 

(9) 

em.,.( n,x) can be solved by first calculating its approxi
mate value without the ceiling in Eq. (0). and searching 
Cor the solution in the vicinity of the approximate value. 

The actual number or chains formed is, or course 
less than em.,.( n,x ). The position or. the back wad 
estimated using cmu(n,x) will, therefore, be a lower 
bound or the actual position. 

By assumption (A3), the length or each chain is also 
gamma distributed with a density function fc(y) since the 
ramily of gamma densities is closed under convolution. 

ro(y) = rc(y; n • <>, >.) (IO) 

Since all the chains are assumed independent 
(assumption (A4)), the position or the back wall is given 
by the minimum value of all the chains. The distribution 
function or the minimum or C(n,x) inderendent, identi
cally distributed random variables is F 8 (y where, 

Fa(Y) = 1- {I- F,(y)JC(n,x) (II) 

The expected position or the back wall is E(b) 
~ 

E(b) = I y dF8 (y) 
0 

(12) 

2.3 The Distribution or Sub-ProbleDUI Behind the 
Front Wall 

In this section, the distribution runetion or the 
difference between the lower bounds of active sub
problems and the front wall is calculated. The generation 
or active sub-problems is depicted in Figure 4. The dis
tribution functions or z1 and z2 are sought. Since y1 and 
y2 are gamma distributed, an assumption which simplify 
the calculation is the rollowing. 

poo~ent 

sub
probl'""' 

~--------·· --------~ 

., -------1 

,, 
f~ont Wall 

Figure 4. The generation or~ pair of active sub-problems. 
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(AS) The parent sub-problem and the corrl>lponding 
active sub--problems it generates can be at any position as 
long as they lie on opposite sides of the front wall. 

From the above assumption, it implies that x tLDd z2 
have the same distribution function. Since y 1 is gamma 
distributed, x and z2 are also gamma distributed. 

f,(y) = 2 • f,,(y) = fo(y; o/2, X) (13) 

Similarly, z1 is gamma distributed with an additional 
constraint that z1 > z2. Therefore, 

f,,(y) = fo(y; o/2, X)[1- F a(y; o/2, X)] (14) 

In this section, we have derived the analytical 
behavior ·of the branch and bound algorithms and have 
shown that the active sub-problems behind the front wall 
are gamma distributed. In the next section, the analyti· 
cal model is compared against some simulation results. 

3. Comparlaon or the Anal:ytleal Model with Slmu
latioDB 

A program to solve an integer program was written 
in the c language and run on a VAX 11/780. computer at 
Purdue. It takes about 10 minutes of CPU time and 15 
Mbytes of memory to solve a 20 variable 20 constraint 
integer program. The cumulative statistics on the 
increase in the lower bounds of son subproblems with 
respect to the parent subproblem was collected over the 
duration of the solution process. An ex.Ponential distribu
tion was fitted on the collected statistics and the results 
are shown in Table 1. The .20 critical value for the 

Table 1 Testing of the hypothesis that the increase in 
lower bounds of son sub-problems is exponen· 
tially distributed for 20 variable, 20 constraint 
integer programming problems. (A histogram 
of 200 buckets is used for the experimental di&
tribution.) 

Problem # Sample mean 

1 
2 
3 
4 
5 

0.184 
0.322 
0.170 
0.230 
0.312 

Kolmogorov-Smirnov 
Variable, 0 8 

0.057 
0.063 
0.062 
0.076 
0.049 

Kolmogorov-Smirnov test is 0.076. Thus the hypothesis 
that the density function of the increase in lower bounds 
or son sub-rroblems is exponential may be accepted. (An 
exponentia distribution implies o = (1) in E'l. 1.) 

Using the analytical expressions derived m Section 2, 
we have plotted in Figures 5 to 7 the performance of the 
branch and bound algorithm using best-first search. In 
Figures & and 6, the position of the front and back walls 
are plotted for two runs of the integer program using the 
measured mean of the exponential distribution. It is seen 
that the expected number or sub-problems examined 
increases exponentially with the position of the front 
wall. On the other hand, the position of the back wall 
approaches the front wall as the number of sub-problems 
examined is increased. However, the approach is rather 
slow and the slope of the graph for the back wall is. steep. 
This implies that as the problem size becomes larger, the 
number of sub-problems that have to be examined before 
the process terminates increases exponentially. 

In spite of the various assumptions that we have 
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Figure 5. The positions or the front and back walls for a 20 
variable 20 constraint integer program .. RUN 1. 
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Figure 6. The positions of the front and back walls for a 20 
variable 20 constraint integer program- RUN 2. 
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Number of Sub-Proble"ls [valuated 

The number of active sub-problems between the 
two walls as a function of the number or sub-
problems evaluated. 

made, the estimated positions of the front wall match to 
within two percent of the simulated position. The results 
concerning the simulation of the hack wa.ll position is not 
plott.E>d because an initial feasible solution is not gen
erated in our runs and the first feasible solution obtained 
usually becomes the optimal solution. Nonetheless, 
assuming 2% error in the estimated positions or the back 
wall which are plotted in Figures 5 and 6, the number of 
iterations at termination is predicted correctly. Due to 
the steepness of the curves and the exponential scale 
used, the predicted number of iterations may lie in a 
range of several orders of magnitude. 

In Figure 7, the analytical number of active sulr 
problems as a function of the number of sulrproblems 
examined is plotted. It indicates that the number of 
active sulrproblems first grows to a maximum and 
decreases to zero at the termination or the process. 
Furthermore, as n is doubled, the number of active sulr 
problems grows by a !actor of 104. These indicate the 
need of an efficient memory management scheme for stor
ing the active sub-problems. 

4. Coneluding Remarks and lmplleatlons 
In this paper, we have studied the probabilistic 

modelling of the branch and bound algorithms. The 
model consists of two walls approaching each other. The 
front wall represents the value of the lower bound for the 
sub-problem currently being expanded. The back wall 
repres;ents the minimum of all feasible solutions. These 
two walls. approach each other and eventually coincides 
at the termination of the process. 

In the derivation of the positions of the front and 
back walls, it was assumed that the differences between 
the )ower bounds of the expanded sub-problems a.nd the 
parent sub-problems are independent, identically distri-
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buted random variables satisfying the gamma density 
function. Subsequently, it was shown that the distribu~ 
tion is exponential for integer programming (gamma dis-
tribution with o = 1 ). Some simplifying assumptions 
were also introduced to make the model mathematically 
tractable. Lastly, the distribution and number of active 
sub~problems were derived. . 

The model clearly shows that the sub-problems con
stitute a dynamically varying list ordered by lower 
bounds. The access characteristics of the branch and 
bound algorithm calls for the access of items at the head 
o! this list and insertion into the list. The s+ ·tree [15[ 
which requires dynamic rebalancing, appears to the best 
organization for pages in the virtual memory operating 
system, especially if the index portion of the tree can be 
kept in main memory . 

Nonetheless, the overhead incurred by a page fault is 
considerable. This may be minimized with a properly 
designed replacement algorithm. We have developed a 
simulation model and used the gamma distribution fuoce 
tion derived in Eq. (14) to drive the replacement algo
rithm. Due to the special shape o! the gamma distribu· 
tion with o = 0.5, when a constant number of sub. 
problems at the head of the Jist are removed; it results in 
a smaller number of page fauJts. However, usage of the 
best-first search implies that sub-problem with the 
minimum lower bound is evaluated each time which may 
be replaced by the replacement algorithm. To avoid the 
additional page faults due to this fetch, the first page or 
the s+ tree is always kept in primary memory. Analysis 
and simulations show that the replacement algorithm is 
very effective {25J. 

The reSults derived on the positions of the front wall 
are very important in showing • the effectiveness of 
approximate branch and bound algorithms .. Lawler pro
posed the use of branch and bound algorithms as a gen~ 
eral purpose heuristic to compute solutions that dilfer 
from the optimum by no more than a prescribed amount 
[19j. Suppose it was decided at the outset that a devia
tion of 10% from the optimum is tolerable. It a feasible 
solution of 150 is obtained, then all sub--problems with 
lower bounds or 136.4 or more (= 150 ) will be ter· 

1.1 
minated. 

In general, suppose a reasible solution of value F is 
obtained initially and the optimal solution has value P 
(P ~ F). Let 'I be the prescribed degree of accuracy. 
This impties that Jll sub-problems with va. lues greater 

than min +F , P can be eliminated. Froin Eq. (7) the 
I 'I ·. 

number o subproblems evaluated is, . 
.L F 

E~(N(x)) = 2 .~r••~J)(min( I+o'P)~J) -1 (15) 

The number or subproblems evaluated when the optimal 
solution is found is 

.L 

E~(N(x)) = 2 e~(2•~J)(P~J)- 1 (16) 

TJle number of iterations saved using approximation is 
E0(N(x))-E,(N(x)). I! a good initial. feasible solution is 
generated, tnen the maximum number of iterations saved 
is when F = P and is proportional to 

).P(2 11• -I) 

2"P(2 ''• -J) - 2 t+" which is exponentia:1 in q. 

The simple derivation here illustrates that the 
approximate branch and bound algorithm is an eft'eetive 
technique in reducing the total number of iterations. A 



future paper will pursue on the anomalies of approximate 
branch and bound algorithms 1241. 
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