
PROCEEDINGS OF 1982 IEEE COMPUTER SOFTWARE AND APPLICATIONS CONFERENCE

PROBABILISTIC MODELLING OF
BRANCH AND BOUND ALGORITHMS

Benjamin W. Wah and Chee Fen Yu

School of Electrical Engineering
Purdue University

West Lafayette, IN 47907

Abstract
Branch and bound algorithms are organized and

intelligently structured searches of solutions for
enumerative-type problems such as NP·complete prob
lems. In this paper, we propose a probabilistic model of
branch and bound algorithms with best first search. We
have (I) estimated the total virtual memory space
requirement; and (2) predicted the number of sub
problems evaluated before the process terminates. The
model is useful for designing virtual memory support of
branch and bound algorithms. It is also important to jus
tify that approximate branch and bound algorithms can
be very effective in reducing the total number of itera·
tions.

1. Introduction
A branch and bound algorithm is an efficient algo

rithm to solve for problems that are put into the Corm of
a constrained optimization.

Minimize C0(x)

subject to g1(x) ;:-: 0

g2(x) <': 0

in which X represents the domain or optimization defined
by the m constraints, normally an euclidean n-spa.ee, and
X denotes a vector {x.,x 2, •.• , xn). (Problems that are
NP-complete can be put into this Corm. There exists
problems that are not NP~complete, but are put into this
form as well.) A solution vector that lies in x is called a
feasible solution, and a feasible solution for which C0(x) is
minimal is called an optimal solution.

The branch and bound algorithm is an organized
and intelligently structured search of the space of all
feasible solutions. It has been extensively studied in
areas such as artificial intelligence and operations
research (9, 19, 21, 22]. It has been applied to solve prob
lems in scheduling [17, 20], knapsack [13, 14), travelling

Researeh supported by National Science Foundation Grant ECS81.
05968 and a araot from the Center for Automation, Design ud
Manutacturin& ot Purdue Univer!lity

'

647
CH1810-1/82/000010647$00.7S ©. 1982 IEEE

salesman 15). facility allocation [2], integer programming
[4, 6], and many others. Dominance relations similar to
those used in dynamic programming have been used to
prune search tree nodes. Theoretical properties of branch
and bound algorithms have been developed in several stu·
dies (10, 12, 16, 221.

In branch ani! bound algorithms [19, 21], the space
of all feasible solutions is repeatedly partitioned into
smaller and smaller subsets, and both the lower and

·upper bounds are calculated for solutions within each
subset. After each partitioning, subsCts with lower
bounds (in the case or minimization) that exceed either
the value of a known feasible solution or the least upper
bound of all subsets are excluded from further consider&·
tion. The partitioning process continues until a feasible
solution is found such that the value is no greater than
the lower bound of any subsets.

The state of the partitioning process at any time can
be represented as a partial tree (Figure 1). Each node in
the tree represents a partition and is called a sub-
problem. The partitioning process selects a partition and
breaks up this partition into smaller partitions. This
ex tends the node in the partial tree representing this par·
tition by one level and uses the sons to denote the smaller
partitions. In Figure 1, node j is expanded in the parti ..
tioning process into k other partitions, which are
represented as sons of node j in the partial tree.

There are two essential features of a branch and
bound algorithm: the branching rule and the bounding
rule. With respect to the partial tree in Figure 1, each

Figure 1. A branch and bound tree.

node in the tree has two numbers associated with it • the
uppN bound and the \ower bound of the sub-problem.
The leaf nodes in the partial tree are candidates for parti
tioning. A leaf node of the partial tree whose \o~er
bound is less than both the value of a known feastb\e
solution and the greatest upper bound of all leaf nodes is
active; otherwise, it is terminated and need not be con
sidered in any further computation.

The branching algorithm examines the set of active
lear nodes and, based on some predefined criterion, selects
one for expansion. If the set of active nodes is main
tained in a first-in first-out (FIFO) list, the algorithm is
called a breadth-first search. If the set is maintained in a
last-in, first-out list, the algorithm is called a. depth-first
s('arch. Lastly, if the node selected for expansion is one
with the minimum lower bound, the search algorithm is
called a best-first search.

ln a breadth-first search, the nodes of the tree will
a)wayf!. be examined in levels. That is, a node at a. lower
level will always be examined before a node at a higher
level. This search will always find a goal node nearest to
the root; however, the sequence or nodes examined is
predetermined, so the search is "blind." The depth-first
search hn..<; a similar behavior except that a subtree is
generated completely before the other subtrees are exam·
ined. In both algorithms, the next node to be examined
is known, so the state or the parent node leading to the
ne~t node from the root node is easily round and is
umque. Further!flore, the memory space required for
stonng the state IS very small. These two algorithms are
therefore, space-saving. '

In contras~, the best-first search is space-consuming
beca_u~e all act~ve subproblems must be stored as inter
medtate data m the computer. The total number of
nodPs expan_ded, however, is minimum in the sense that
any branehmg operation performed under this policy
must also be performed under other policies provided
th_a~ a.H the bo~nds are unique [19}. Since tim~ is a mo;e
<'rlhcal fa~tor m evaluating large optimization problems
the beh•v•or of the best-first search merits further study '

d ~ne sfitudy ill] shows that depth-first, breadth-fir~t
an est- rst ~ea!ches are Spec1al cases of heuristic
~earch. In heunsttc search, an evaluation function f(n)
or .a sub·problem n is computed as the sum or cost of an
opt~mal path from a given start node to n and cost of an
optimal. path rrom n to a goal. An ordered search a.l
~~~hm ptcks '!P a sub-pr~blem with the minimum valueg~ 
. or expansi?D each ~lme. Any general heuristic rune .. 

lions <'an. b~ tnclu~ed m the computation and the choice 
or a teunstlc functiOn depends on the application. 
i nee the dsubproblem has been selected for partition
~~~t sbme 1 unt dtermhed parameters in the subproblem 
can bee ds:fi~~d a~~ t ma\:.ltfrnattes for these parameters

:i~';!':\t~~nt:t'iv~a:~~~~hFe~':::a/~~~~';;., c:h:t~!dei.~~
expanding a sub~ roble se o untraversed edges. In
siS. eletcted, andd two ~terna~~e:~a:n~!a;r~::Cdd·e(dl~eth(i,j)d is

raverse and the sal . ·) e e ge
city j and (2) vice ver:smaTbgoes directly from city i to
expanded is usually donea~d ho~ parameter chosen to be

After new sub-problems a.
algorithm is applied to ev I rt created, the bounding
bounds. of a. sub--problem a ua e the upper and lower
bound Js evaluated, becaus~ th~ener~lly, on~y the lower
bo~nd are small. The rt:Jerrts of u~mg the upper
dest~ned i~ highly dependen~o~~~hg algorithm that is
pl_e, m an mteger programrnin e problem. For exam·
Wlt.h relaxed integer coost . gt problem, a linear program

ram s can be used as a I ower

648

bound 118]; in the traveling sal~sman proble~, an assign
ment algorithm Ill or a. spannmg tree algorithm can be
used as the bounding algorithm. .

AJ; an example to illustrate the use of branch and
bound algorithms, the evaluation or. an integer progra;m·
ming problem is shown here. The mteger programmmg
problem may be expressed as

Minimize CX
subject to AX 2: B

XT = (x,,x2, ... ,xn)

Xj, non-negative integer, i=l,2, ... n.

These problems differ from ordinary linear programming
problems in that the variables are restricted to non
negative integer values.

One approach to the problem is the following.
Apply the dual simplex method to a sub-problem. If the
optimal solution is integral, a feasible solution bas been
generated, otherwise, create two new sub-problems as rol·
lows. Choose a. variable that has a non-integer value (say
xi = 4.4) and restrict that variable to the next lower
integral value for one problem (xi ~ 4) and to the next
higher integral value (x; 2: 5) for the other. The variable
chosen is the one with the greatest up or down penalty.
The up penalty ror a variable X;_ having a value or a, is
the estimate of the amount by which the solution to the
current subproblem would increase if the integral

constraint xi 2: [a;l was introduced. The down penalty is

similar,]except that it is assoeiated with the constraint
X; ~ la;. The lower bound or a new sub-problem is the
sum of the optimal simplex solution and the associated
penally. This process is repeated on the new sub
problems.

Figu_re 2\b) shows the branch and bound tree for the
problem m F1gure 2(a). The dual simplex method gives
a?- optimal solutwn of 14.2 ror the original problem
Smce the variables are not integral, a feasible solutio~
has not been generated. Up and down penalties &re ea.l
;'t:ted for the variables and x 1 has the greatest penalty (
with ~·~lJ T;~h newhsub-~roblems are then created, one

1 an e ot er Wlth x 1 > 1. The lower bounds
are calc~lated as in Figure 2(bj. The dual sim

;;!h~~ ~~~;;t,~u~~P~~~. !0fe~:b,:u:OfuWi!er. ;~:r:~~3
With a~l vanabl~ hav!ng mtegral values. This constitutes
~n optimal solution smce the lower bound or th r .
mg sub-problem is greater e ema.m-

mod:ln 0}hfbepb;:~ch:u".f~~~~d~l a%~W:~mate. stochastic

m
lmportant beca~se it forms the b:Jls of d~ignTh~f am~•~retul a's1

emory operatmg syst . algorithms [25] F thm supporting branch and bound

!i~~~~h~!h/~4r.~havi~~ orr.:::~~~xi~:tembr~~.~s .. :Je~u;d

Figure~.

min xo • 7x1 + 3x2 + ~x3

xl + 2x2 + jx > 8
3-

3x, + .xz + x3 ~ 5

x,,x X > 0 I
2' 3- • nteger

An example or an integer pr .
ogrammrng problem.

I

I

1

\

Optimal dual simplex solution

xo = 14.2

x, - 0.4

xz - J,8

x3 • 0

z .. t~t.z • o.t-=-A
• 15.0

Fea!iible
Solution

variable

x,
xz

Optimal dual simplex solution

xo - 15.0
x

1
• 0

x2 • 5
x3 • 0

down
penalty

0.8
0.3

Term\ nated

up
pena 1 ty

1.8
0.13

z .. '" .2 + 1.8
16.0

z ""' lower bound

Figure 2b. Branch and bound tree for Figure 2a.

2; The Model or the Branch and Bound Proeess
with Best First Search

The branch and bound process can be modelled as
two walls moving towards each other. The front wall
indicates the value of the lower bound !or the sub
proble.m.s currently expand~d. The .back wall represents
the mmtmum of" all the feas1ble solutions.

Initially, the front wall is undefined and the back
wall is at infinity. The lower bound for the problem is
evaluated and this is taken to be the position of the front
wall. The problem is then branched into two or more
sub-problems and a lower bound is calculated for each
sub-problem. Since the lower bounds of descendent sub
problems are always greater than the lower bound of
ancestor sub-problems, the front wall always moves to
the right (see Figure 3). Once the current sub-problem
has been. ~panded, the front wal~ moves to the position
of the IDIDtmum or the set of actave sub-problems. This
sub-problem is then expanded and the process repeats.

When a sub-problem generated becomes a feasible
sol~t~on, the value of the solution is compared with the
pos1t1on of the back wall. If the position of the back wall
ts greater than the value of the new feasible solution the
back wall is set to this value; otherwise the fe~ible
solution is ignored. Successive expansion of the sub
problems cause the front and back walls to approach each
other and the process is terminated when the two walls
coincide.

649

REGION
OF FRONT REGION OF ACTIVE

SUBPROBLEMS EXAM\ NED WALL
SUBPROBLEMS

Q ACTIIJE SUBPROBLEMS

tl CURRENTLY EXPANDED SUBPROBLEM

0 EXAMINED SUBPROBLEM

@ FEASIBLE SOLUTION

REGION
BACK OF
I.JALL FEASIBLE

SOLUTIONS

COST

Figure 3. The model of branch and bound process with
best- first search.

In the following sections, the positions of the front
and back walls are calculated. Some simplifying assump
tions are made in order for the calculations to be tract
able.

2.1 The Position of the Fl'Ont Wall
The solution of the following problem is desired:

given the position of the front wall, what is the expected
number of soh-problems examined; or inversely, given the
nu'?J;>er of sub-problems examined, what is the expected
pos1t10n of the front wall. The set of examined sub
problems consists or sub-problems that have been pro
cessed and no longer belong to the set of active sub
problems. The following assumptions are made in the
derivation:

(AI) The differences between the lower bounds of the
expanded sub-problems and the parent sub-problem are
independent, identically distributed random variables

..... ,::.":.:~~:=~~:.::::: ~~' (<]

The density function is monotonic if et < 1 and
unbounded near the origin when o < 1. For a->

1

1 the
graph is bell-shaped and as o - oo, the density fun~tion
becomes normal (3]. A Gamma density function is chosen
because it represents a very general class of density func
tions. As shown in the next section, this assumption is
valid for integer programming.

(A2) Each parent sub-problem is expanded into two
smaller sub-problems. This assumption is valid for a
class of NP-complete problems.

Let I be the lower bound of the first sub-problem.
Let N(x) be the number of sub-problems examined when
the front wall is at position x and E(N(x)) be the
expected value of N(x)· When the parent sub-problem is
expanded, y' and y' are the differences between the
lower bounds of the expanded sub-problems and the
parent sub-problem. E(N(x)) can be written in the form
of a renewal equation (23].

~ ~

E(N(x))=l+ I E 1(N(x-y')dF c(Y')+I E 1(N(x-y")dF c(y")
0 0

or
~

E(N(x)) =I+ 2 I E 1(N(x-y)dFc(Y) (2)

where
0

_ {E(N(x-y))ir y < x
E,(N(x-y)) - 0 it y ;:: x (3)

The evaluation of the above renewal equation would
result in an incomplete gamma !unction that cannot be
solved analytically. Since Cc(Y)- 0, as y - oo, the
a...:;sumption that x is reasonably large implies that for any
y > x, f0 (y) :!l 0. This leads to an approximate renewal
equation which can be written as:

~

E' (N(x)) = I + 2 I E' (N(x-y))dF c(y) (4)
0

To solve Eg. {4), a solution is guessed and is substituted
into Eq. (4) in order to verity it. Assume that
E' (N(x)) = k em•- I. Substituting into Eq. (4), we
obtain an identity

~

k em• - I = I + 2 I (k em(•-y)- 1)dF c(Y)
0

~

or I = 2 I e-mydF c(Y) (5)
0

Using the density function or Eq. (I) and substitut
ing it into Eq. (5), m can be solved,

m = >.(21/o- I) (6)

To solve for the constant k, we use the boundary condi
tion E' (I) = l. Substituting ror x = I in the assumed
solution, we obtain k=2e-m1. Therefore,

E' (N(x)) = 2 e'l2''"-1H•-11 - 1 (7)

As similar to problems in general renewal theory, the
derivation or the distribution function or N(x) is difficult.
The expected value of N(x) will, therefore, be used in the
calculation or the position or the back wall.

At this time, it is important to know the· total
number or sub-problems generated. All the sub-problems
to the lett or the rront wall must have been examined
(non-terminal nodes) and all the sub-problems to the
right or the rront wall are active and not examined (terw
minal nodes). Assuming a well balanced binary tree, the
approximate expected total number or nodes in the
branch and bound tree is E(NT(x)) and using Eq. (7),

E(NT(x)) "'2 E'(N(x)) +I (8)

2.2 The Position or the Baek Wall
To determine the position or the back wall, the

mechanism involved in generating a feasible solution
must be understood. Let n be the number or input
parameters. n can be the number or variables in an
integer programming problem; n can be the number or
cities that a traveiJing salesman wishes to visitj n can also
be the number or nodes in a graph of the vertex covering
problem. Berore a reasible solution can be obtained, a
chain or sub-problem expansions must be generated. The
number or sub-problems in a chain can be less than n
(vertex covering problem), equal to n (integer program
ming problem) or greater than n (travelling salesman

6SO

probl~m). To evaluate the ~osition or the back wall, the
roHowmg add1honal assumptions are made: ·

(A3) Every chain that results in a reasible solution is
made up or n sub-problem evaluations. Each chain starts
at the origin and has a length equal to the sum or 0
independent gamma distributed random variables. Vart.
able length chains will be considered in the. ruture.

(A4) The chains leading to reasible solutions are
independent. This assumption is not true in general but
is necessary for mathematical tractability.

The number or chains due to E(N-r(x)) nodes in the
branch and bound tree is C(n,x), and the maxirrium is
Cmu(n,x) which is given by the rollowing equation.

n-t fe (n x) I E(N-r(x)) = ~ mu. '
j=O 2l

(9)

em.,.(n,x) can be solved by first calculating its approxi
mate value without the ceiling in Eq. (0). and searching
Cor the solution in the vicinity of the approximate value.

The actual number or chains formed is, or course
less than em.,.(n,x). The position or. the back wad
estimated using cmu(n,x) will, therefore, be a lower
bound or the actual position.

By assumption (A3), the length or each chain is also
gamma distributed with a density function fc(y) since the
ramily of gamma densities is closed under convolution.

ro(y) = rc(y; n • <>, >.) (IO)

Since all the chains are assumed independent
(assumption (A4)), the position or the back wall is given
by the minimum value of all the chains. The distribution
function or the minimum or C(n,x) inderendent, identi
cally distributed random variables is F 8 (y where,

Fa(Y) = 1- {I- F,(y)JC(n,x) (II)

The expected position or the back wall is E(b)
~

E(b) = I y dF8 (y)
0

(12)

2.3 The Distribution or Sub-ProbleDUI Behind the
Front Wall

In this section, the distribution runetion or the
difference between the lower bounds of active sub
problems and the front wall is calculated. The generation
or active sub-problems is depicted in Figure 4. The dis
tribution functions or z1 and z2 are sought. Since y1 and
y2 are gamma distributed, an assumption which simplify
the calculation is the rollowing.

poo~ent

sub
probl'""'

~--------·· --------~

., -------1

,,
f~ont Wall

Figure 4. The generation or~ pair of active sub-problems.

I
i

l
I
I
!

l

I r

' j

I
i

'

(AS) The parent sub-problem and the corrl>lponding
active sub--problems it generates can be at any position as
long as they lie on opposite sides of the front wall.

From the above assumption, it implies that x tLDd z2
have the same distribution function. Since y 1 is gamma
distributed, x and z2 are also gamma distributed.

f,(y) = 2 • f,,(y) = fo(y; o/2, X) (13)

Similarly, z1 is gamma distributed with an additional
constraint that z1 > z2. Therefore,

f,,(y) = fo(y; o/2, X)[1- F a(y; o/2, X)] (14)

In this section, we have derived the analytical
behavior ·of the branch and bound algorithms and have
shown that the active sub-problems behind the front wall
are gamma distributed. In the next section, the analyti·
cal model is compared against some simulation results.

3. Comparlaon or the Anal:ytleal Model with Slmu
latioDB

A program to solve an integer program was written
in the c language and run on a VAX 11/780. computer at
Purdue. It takes about 10 minutes of CPU time and 15
Mbytes of memory to solve a 20 variable 20 constraint
integer program. The cumulative statistics on the
increase in the lower bounds of son subproblems with
respect to the parent subproblem was collected over the
duration of the solution process. An ex.Ponential distribu
tion was fitted on the collected statistics and the results
are shown in Table 1. The .20 critical value for the

Table 1 Testing of the hypothesis that the increase in
lower bounds of son sub-problems is exponen·
tially distributed for 20 variable, 20 constraint
integer programming problems. (A histogram
of 200 buckets is used for the experimental di&
tribution.)

Problem # Sample mean

1
2
3
4
5

0.184
0.322
0.170
0.230
0.312

Kolmogorov-Smirnov
Variable, 0 8

0.057
0.063
0.062
0.076
0.049

Kolmogorov-Smirnov test is 0.076. Thus the hypothesis
that the density function of the increase in lower bounds
or son sub-rroblems is exponential may be accepted. (An
exponentia distribution implies o = (1) in E'l. 1.)

Using the analytical expressions derived m Section 2,
we have plotted in Figures 5 to 7 the performance of the
branch and bound algorithm using best-first search. In
Figures & and 6, the position of the front and back walls
are plotted for two runs of the integer program using the
measured mean of the exponential distribution. It is seen
that the expected number or sub-problems examined
increases exponentially with the position of the front
wall. On the other hand, the position of the back wall
approaches the front wall as the number of sub-problems
examined is increased. However, the approach is rather
slow and the slope of the graph for the back wall is. steep.
This implies that as the problem size becomes larger, the
number of sub-problems that have to be examined before
the process terminates increases exponentially.

In spite of the various assumptions that we have

651

"
--NW.HICAL .IIEOICTIOII

---- $111ULATICIIIIS

f'OSITIOII

Figure 5. The positions or the front and back walls for a 20
variable 20 constraint integer program .. RUN 1.

••'

••'

••'

10

OPTIHAL
SOLUTION

.,.,,..,"... ..
FI\OIIT WALL

ANAL YTI tAL
PREDICTION

SUtULATIONS

soo sto s2o 530 silo 550 560 s1o sao s!lo 6oo
POSITION

Figure 6. The positions of the front and back walls for a 20
variable 20 constraint integer program- RUN 2.

"'

!: "'
l
0 • •

"' 3
~

~
~

"' ~
~
':;

10
4

•
~ ,
z

10 l

lo'

10

10

Figure 7.

fG(y; 1, 0.1)

n•20

Number of Sub-Proble"ls [valuated

The number of active sub-problems between the
two walls as a function of the number or sub-
problems evaluated.

made, the estimated positions of the front wall match to
within two percent of the simulated position. The results
concerning the simulation of the hack wa.ll position is not
plott.E>d because an initial feasible solution is not gen
erated in our runs and the first feasible solution obtained
usually becomes the optimal solution. Nonetheless,
assuming 2% error in the estimated positions or the back
wall which are plotted in Figures 5 and 6, the number of
iterations at termination is predicted correctly. Due to
the steepness of the curves and the exponential scale
used, the predicted number of iterations may lie in a
range of several orders of magnitude.

In Figure 7, the analytical number of active sulr
problems as a function of the number of sulrproblems
examined is plotted. It indicates that the number of
active sulrproblems first grows to a maximum and
decreases to zero at the termination or the process.
Furthermore, as n is doubled, the number of active sulr
problems grows by a !actor of 104. These indicate the
need of an efficient memory management scheme for stor
ing the active sub-problems.

4. Coneluding Remarks and lmplleatlons
In this paper, we have studied the probabilistic

modelling of the branch and bound algorithms. The
model consists of two walls approaching each other. The
front wall represents the value of the lower bound for the
sub-problem currently being expanded. The back wall
repres;ents the minimum of all feasible solutions. These
two walls. approach each other and eventually coincides
at the termination of the process.

In the derivation of the positions of the front and
back walls, it was assumed that the differences between
the)ower bounds of the expanded sub-problems a.nd the
parent sub-problems are independent, identically distri-

652

buted random variables satisfying the gamma density
function. Subsequently, it was shown that the distribu~
tion is exponential for integer programming (gamma dis-
tribution with o = 1). Some simplifying assumptions
were also introduced to make the model mathematically
tractable. Lastly, the distribution and number of active
sub~problems were derived. .

The model clearly shows that the sub-problems con
stitute a dynamically varying list ordered by lower
bounds. The access characteristics of the branch and
bound algorithm calls for the access of items at the head
o! this list and insertion into the list. The s+ ·tree [15[
which requires dynamic rebalancing, appears to the best
organization for pages in the virtual memory operating
system, especially if the index portion of the tree can be
kept in main memory .

Nonetheless, the overhead incurred by a page fault is
considerable. This may be minimized with a properly
designed replacement algorithm. We have developed a
simulation model and used the gamma distribution fuoce
tion derived in Eq. (14) to drive the replacement algo
rithm. Due to the special shape o! the gamma distribu·
tion with o = 0.5, when a constant number of sub.
problems at the head of the Jist are removed; it results in
a smaller number of page fauJts. However, usage of the
best-first search implies that sub-problem with the
minimum lower bound is evaluated each time which may
be replaced by the replacement algorithm. To avoid the
additional page faults due to this fetch, the first page or
the s+ tree is always kept in primary memory. Analysis
and simulations show that the replacement algorithm is
very effective {25J.

The reSults derived on the positions of the front wall
are very important in showing • the effectiveness of
approximate branch and bound algorithms .. Lawler pro
posed the use of branch and bound algorithms as a gen~
eral purpose heuristic to compute solutions that dilfer
from the optimum by no more than a prescribed amount
[19j. Suppose it was decided at the outset that a devia
tion of 10% from the optimum is tolerable. It a feasible
solution of 150 is obtained, then all sub--problems with
lower bounds or 136.4 or more (= 150) will be ter·

1.1
minated.

In general, suppose a reasible solution of value F is
obtained initially and the optimal solution has value P
(P ~ F). Let 'I be the prescribed degree of accuracy.
This impties that Jll sub-problems with va. lues greater

than min +F , P can be eliminated. Froin Eq. (7) the
I 'I ·.

number o subproblems evaluated is, .
.L F

E~(N(x)) = 2 .~r••~J)(min(I+o'P)~J) -1 (15)

The number or subproblems evaluated when the optimal
solution is found is

.L

E~(N(x)) = 2 e~(2•~J)(P~J)- 1 (16)

TJle number of iterations saved using approximation is
E0(N(x))-E,(N(x)). I! a good initial. feasible solution is
generated, tnen the maximum number of iterations saved
is when F = P and is proportional to

).P(2 11• -I)

2"P(2 ''• -J) - 2 t+" which is exponentia:1 in q.

The simple derivation here illustrates that the
approximate branch and bound algorithm is an eft'eetive
technique in reducing the total number of iterations. A

future paper will pursue on the anomalies of approximate
branch and bound algorithms 1241.

REFERENCES

III W. L. Eastman, "A Solution to the Traveling Sales-
man Problem," presented a~ the A_men"can Su.~mer
Melting of the Econometnc Socrety, Cambridge,

121
Mass., Aug. 1958.
M. A. Efroymson and T. C. Ray, "A Branch and
Bound Algorithm for Plant Location," Operations
Research, Vol. 14, pp. 36!-368, !966.

131 W. Feller, An Introduction to Probability Theory
and its Applications, Vol. II, 2nd edition, John
Wiley & Sons, Inc., 1971.

141 R. S. Garfinkel and G. L. Nemhauser, Integer Pro-
gramming, John Wiley and Sons, Inc., New York,
1972.

I 5I R. Garfinkel, "On Partitioning the Feasible Set in a
Branch and Bound Algorithm for the Asymmetric
Travelling Salesman Problem," Operations
Research, Vol. 21, No. I, pp. 340-342, 1973.

161 A. M. Geoffrion and R. E. Marsten, "Integer Pro-
gramming Algorithms: A Framework and State-of·
the-Art Survey," A{anagement Science, Vol. 18, No.
9, pp. 465-491, May 1972.

171 L. Guibas and R. Sedgewick, "A Dichromatic
Framework for Balanced Trees," Proc. 19'th Symp.
Foundations of Computer Science, pp. 8-21, 1978.

181 P. G. Hoel, S. C. Port and C. J. Stone, Introduction
to Probability Theory, Houghton Mitnin Co., 1971.

(91 E. Horowitz and S. Sahni, Fundamentals of Com-
puler Algon'thms, Computer Science Press, Mary-
land, 1978.

(10(T. lbaraki, "Computational Efficiency of Approxi-
mate Branch and Bound Algorithms," Math. of
Oper. Research, Vol. I, No. 3, pp. 287-298, 1976.

{Ill T. lbaraki1 "Theoretical Comparisons or Search
Strategies m Branch and Bound Algorithms," Int.
Jr. of Comp. and Info. Sci., VoL 5, No. 4, pp. 315-
344, 1976.

[12)

(!3J

II41

II51

II6I

II71

II81

II91

1201

1211

(221

(231

(241

(251

653

T. Ibaraki, "Depth-m Search in Branch-a~d-Bound
Algorithms," Int. Jr. of Comp. and Inf. Sc1., Vol. 7,
No. 4, pp. 315-343, 1978. " .
G. Jngargiola and J. Korsh, A ReductiOn A!g<>
rithm for Zero-one Single Knapsack Problems,"
Management Science, Vol. 20, No. 4, pp. 460-663,
1973.
G. Ingargiola and J. Korsh, "A General Algorithm
for One Dimensional Knapsack Problems," Opera
tions Research, Vol. 25, No.5, pp. 752-759, 1977.
D. E. Knuth, The Art of Computer Programming,
Sorting, and Searching, Vol. 3, Addison·Wesley,
!973.
W. Kohler and K. Steiglitz, "Characterization and
Theoretical Comparison of Branch and Bound Algcr
rithms for Permutation Problems," JACM, Vol. 21,
No. !, pp. 140-156, 1974.
B. Lageweg, J. Lenstra and A. Rinnooy Kan, "Job
shop Scheduling by Implicit Enumeration," Manage
ment Science, Vol. 24, No. 4, pp. 441-400, 1G77.
A. H. Land and A. Doig, "An Automatic Method
for Solving Discrete Programming Problems,"
Econometrica, Vol. 28, pp. 4Q7-520, 1960.
Lawler E. L. and Wood, D. W ., "Branch and
Bound 'Methods: A Survey," Operations Research,
Vol. 14, pp. 699-7!9, 1966.
J. Lenstra, "Sequencing by Enumerative Methods,"
Math. Centre. Tract 69, Matbematisch Centrum,
Amsterdam, 1976.
L. Mitten, "Branch and Bound Methods: General
Formulation and Properties," Operations Research,
Vol. !8, pp. 24-34, 1970.
N. J. Niloson, Problem Solving Methods in Artificial
Intelligence, McGraw Hill, New York, 1971.
S. M. Ross, Applied Probability Mode/a with Optimi
zation Applications, Holden-Day, San Francisco,
1970.
B. Wah and G.J. Li, "The Anomalies of Parallel
Approximate Branch and Bound Algorithms,"
under preparation.
C.F.Yu Virtual Memory Support for Branch and
Bound Algorithms, Masters Thesis, Purdue Univer
sity, 1982.

