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Abstract

In this paper, we have studied the interconneetion of
resources to multiprocessors and the distributed schedul-
ing of these resources. Three different classes of intercon-
pection networks have been investigated; namely, single
shared bus, multiple shared buses, and networks with log-
arithmic delays such as the cube and Omega networks.
For a given network, the resource mapping problem
entails the search of one (or more) of the free resources
which ean be connected to each requesting processor. To
prevent the bottleneck of sequential scheduling, the
type(s) and number{s) of resources desired by a processor
are given to the network and it is the responsibility of the
network to find the necessary resources and connect them
to the processor, The addressing mechanism is, thus, dis-
tributed in the network. This is a generalization of con-
ventional interconnection networks with routing tags in
which all the resources are of different types.

Keywords and phrases: address mapping, eross-bar
switch, Omega and cube networks, queueing delay,
vesource sharing, shared bus.

1. INTRODUCTION

The recent advances in large-scale integrated logic
and communication technology, coupled with the explo-
sion in size and complexity of new applications, have led
to the development of parallel processing systems with a
large number of general and special purpose processing
units. An interconnection network is an essential element
of a parallel processing system as it interconnects proces-
sors and resources. Its function is to route requests ini-
tiated from one point to another point connected on the
network [5,8,11,14,1517,21]. The notable characteristic
of these networks is that they operate with address map-
ping. That is, a request is initiated with a specific desti-
nation or a set of destinations and routing is dome by
addresses. Examples of these networks are the Banyan
7], binary n-cube [15], cube [18], perfect shuffle [20], flip
3|, Omega [11], data manipulator [5], augmented data
manipulatorJlQL delta [14], and baseline [21]. Examples
of systems designed with interconnection networks are
TRAC [17], STARAN [2|, C.mmp [22], ILLIAC IV {10],
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PLURIBUS (13], Numerical Aerodynamic Simulation
Facility {(NASF) [1,4] and the Ballistic Missile Defense
testbed [12].

In a resource sharing eavironment, a request is
directed to any one or more of a poocl of identical
resources and not to any particular element in the pool.
This exists in a multiprocessor system with a set of ident-
ieal {or sets of identical) VLSI chips performing special
functions like matrix inversion, fast Fourier transform
and sorting. Another application lies in a system with
load balancing. Processors are considered as resources
themselves. When a processor is overloaded, the excess
load is sent to any available processor in the system.
Resource sharing is also an important element in dataflow
machines. Tasks in node store are sent to a pool of
identical processors for processing.

To use an address mapping network in this environ-
ment, the address of a free resource must first be sought
and given to the request before it enters the network.
This implies a centralized scheduler which manages the
free resources. This has been studied with respect to the
Banyan network [9,16]. In these studies, it is shown that
when a processor makes a request for multiple resources,
by allocating resources with smaller distance functions,
the amount of network blockage caused by the allocation
of these resources is reduced [8]. A tree network is pro-
posed to aid the scheduler in choosing a resource to allo-
cate and has a delay of O(n) in selecting a free resource
(n is the total number of resources) (16]. The major
disadvantage of this approach is that the scheduler can
become a bottleneck since it services requests sequen-
tially. This approach is practical when the number of
resources is not large or when requests are not very
frequent. The performance of resource sharing systems
under address mapping has also been studied elsewhere
[25,28,20,30,31]. In these studies, resources are modules
that requests can be directed to. Examples include
memory modules and I/O devices. Under these applica-
tions, the destination address of a request is known a
priori.

Another solution which avoids the sequential
scheduling of requests is to allow requests to be sent
without any destination tags and it is the responsibility
of the network to route the maximum number of requests
to the free resources. In this way, the scheduling intelli-
gence is distributed in the interconnection network. This
approach permits multiple requests to be routed simul-
taneously.  We termed this network a resource sharing
interconnection network (RSIN) [23,24}. It is the goal of
this paper to study the tradeoffs of different RSINs.
Three classes of interconnection networks that include
single shared bus, multiple shared buses and networks
with logarithmic delays such as cube and Omega net-
works, have been investigated. In each case, the distri-



buted control algorithm is described and illustrated. The
erformance of the single shared bus is analyzed using
arkovian models while the performance of multiple
shared buses is approximated as multiple single shared
bus systems. The analytical performance of cube type
petworks is difficult and they have only been evaluated
using simulations.

The RSIN discussed here is a generalization of
address mapping interconnection networks with routing
tags [11,18]. An address mapping network is a RSIN con-
necting processors and multiple types of resources with
one resource in each type. In a resource sharing mode,
multiple resources are allowed in each type.

In the next section, a classification of RSINs is
deseribed. Sections 3 to 5 discuss the different RSINs. In
section B, the performance of these networks are com-
pared. Section 7 provides some concluding remarks.

2. RSINs in & Multiprocessor System

An organization showing the use of RSIN is depicted
in Figure 1. Each processor has a connection to the net-
work. Multiple resources may be connected on a single
ocutput port from the RSIN. The reasons for multiple
resources to share a single output link are that each task
may request multiple resources simultaneously, and an
output link may not be fully utilized by a single resource.

A configuration of RSIN can be characterized by a
triplet: p/ixjx & N/r where p is the pumber of processors,
r is the pumber of resources per output port and N is the
network configuration. For the network N, ¢ the number
of RSINs, and j/k is the number of input/output ports
for each RSIN. As an example, a system has 16
processors and 32 resources. If the RSIN is made up of
16 private buses connecting each processor to two private
resources, the configuration is described as 16/18x1x1
SBUS/2. H the RSIN is a 16 by 32 cross-bar swileh,
there is one resource on each output port and the system
is deseribed as 18/1x18x32 XBAR /1. Lastly, if a 16 by
16 cube network 1s used, we have 16/1x16x16 CUBE/2.

A task is serviced in the following fashion after it is

generated in a processor. It is queued at the processor

until the processor has established a connection with a
sufficient number of resources. The task is sent to the
resource{s). After data transmission is completed, the
network connection is broken and the task is serviced at
the resource{s) until finished. The results of processing
are routed to the processor through a2 common memory or
an address mapping network.
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Figure 1.

RSIN as used in a multiprocessor environment.
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Tasks or requests are characterized by three values:
the inter-arrival time of tasks in each processor, the time
to transmit a task to the resource(s) and the time for a
resource to service a task. We define,

1/X — average inter-arrival time of tasks in each
processor;

1/p, —average time for a processor to transmit a
task to the resource(s) after the connection
is established;

L/p, — average time for a resource to service a task
after data transmission is completed.

The basjc assumptions made in this study are:

There is one class of tasks and their arrivals in each
processor are governed by a Poisson distribution.
Tasks transmission and service times are exponen-
tially distributed.

Blocked or rejected tasks are queued at the proces-
sors and retried as soon as the network indicates
that free resources are available. Task service is
done in FIFO order. No queueing is allowed at the
resources,

The network delay is negligible. This assumption is
made so that we can isolate the performance of the
network due to blockages alone.

All the resources in the system are identical. For
multiple types of resources, the routing algorithm
has to be modified by associating a routing tag
corresponding to the resource type with each
request.

A task can request multiple resources simultane-
ously with a restriction that the maximum number
of resources requested cannot exceed the number of
resources accessible through the network. Because
we want to compare the performance of processors
with private versus shared resources, and the
number of resources accessible in a system with
private resources is very limited, we make the sim-
plifying assumption that each task requests one
resource in the performance analysis. However, the
algorithm for requesting multiple resources will be
discussed in systems with shared resources.

A processor can transmit one task at a time to the
resources, Other tasks arriving during the task
transmission time are queued.

Blockages in the system are caused by two reasons
regardless of whether centralized or distributed schedul-
ing is used, namely, blockage due to the shared links in
the network and blockage due to busy resources. To
illustrate blockage due to the network, consider a 4 by 4
Omega network (Figure 2) with interchange boxes that
can be set to one of the four possible states: straight,
exchange, upper broadecast, and lower broadcast. In this
example, assume processors 0, 1, 2 are requesting one
resource each and resources 0, 1, 2 are available. Proces-
sor 3 is not making a request and resource 3 is busy.
Further, the network is completely free. All the resources
will be allocated if the following processor-resource map-
pings are used: {(0,0}, (1,1), (2,2}}, {30,1), {1,0), {2,2)?,
{(0,2), {1,0), (2,1}} or {(0,2), (1,1), (2,0)}. But if the fol-
lowing processor-resource mappings are used: {(0,0), (1,2},
(2,1}} or {{0,1), {1,2), (2,0)}, then a maximum of two out
of three resources can be allocated without blocking. A
similar example can be generated for the cube network.
This illustrates that the scheduler must be designed prop-
erly to give the maximum resource utilization.

The performance of the routing algorithm used in
an RSIN is measured by d, the expected delay in the
queue before free resources are allocated. In this paper,
we compare three network configurations, namely, single
shared bus, multiple shared buses, and Omega and cube
networks. Only distributed scheduling algoritbms will be
discussed.

(1)
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{a) Processor-resource mapping: {(0,1) , (1,0) , (2,2)}. All
resources are allocated.
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(b) Processor-resource mapping: {{0,1) , {1,2) , (2,0)}.
Only 2 of the resources are allocated,

Figure 2. A RSIN using 4 by 4 Omega network.

3. RSINs Using Single Shared Bus

A shared bus is used to connect a subset of proces-
sors to a subset of resources. Other subsets of processors
in the system cannot access resources connected for this
subset. Since different subsets of processors do not inter-
fere with each other in the accesses, the performance of
each bus can be analyzed independently.

Status information of resources is commaunicated by
the bus to processors and tasks are transmitted over the
bus from processors to resources. Every time free
resources are allocated or busy resources complete their
tasks, the number of free resources available on this bus
is broadcast to all the connected processors via the net-
work. This information will wake up blocked requests in
the queues of processors, and the first request in each
queue that requests less resources than what is available
will be sent to the network. I multiple requests are sent
to the network simultaneously, an arbitrator will select
one request at random and the other requests are queued
at the processors again. As a new request is generated in
a processor, if the number of free resources available is
less than what is requested, the request is queued at the
processor until sufficient resources are available; other-
wise, it is sent to the network.

When task transmission time is very small as com-
ared to task service time, the single bus approach is the
est. Otherwise, it is the major source of bottleneck in

the system. The private resource approach is feasible
when resources are plentiful, However, it is still expen-
sive as the number of processors becomes large and the
number of types of resources increases. It will be more
efficient if processors can share the available resources in
the system. The single bus approach is interesting
ge;:ause it provides an upper bound on the queueing
elay.

A queueing model of the shared bus is shown in Fig-
ure 3. The degenerate cases of this model can be
analyzed very easily using conventional methods. When
#, s very small as compared to 4, or when the number of
resources is very large, free resources are always available

RESQURCES

no buffer
space at Wg
resources

oA

queue at shared -
processor(s) bus

resgurces

Figure 3. A queueing model of the shared-bus.

and the system is modelled as an M/M/1 queueing sys-
tem. On the other hand, when 4, is small as compared
to g, and the number of resources is small, the overhead
in the bus is negligible and the system can be approxi
mated by an M/M/r queueing system. For cases in
between, the analysis is elaborate. The reason is due to
the fact that there is no buffer space at the resources and
the bus must be idle when all the resources are busy, or
when no task is queyed for transmission. In the
remainder of this section, a Markovian analysis of the sin-
gle shared bus is shown.

The state transition diagram for p/lx1x1 SBUS/r
system is depicted in Figure 4 (assuming each task
requests the use of one resource}. Each state is
represented as N,'hs where £¢{0,1,2,...} is the number of
queuned tasks; ne{0,1} is the number of task transmitting;
and s¢{0,1,...,r} is the number of busy resources.

Instate N! , ¢ > 1, n = 1,0 < s <r1, and a new
task arrives (with rate p)), the new state becomes N!*\.
Similarly, when a task in transmission is completed (with
rate g ), the resource receiving the task begins service
and a task in the queue is immediately sent to the bus.
The new state becomes NI 7, ;. When a resource finishes
serving a task (with rate spu.}, the pew state is NI _,.
The boundary states are those with § =0, or o =0, or
n=1ands =0,orn =1ands =r-1 Thecasen =0
occurs when there is no queued request or when all the
resources are utilized. In the latter case, a task queued

v ertd g ] [ia2 ]

Figure 4. State transition diagram for a p/lxixl
UNIBUS/r system. (Each task requests the use
of one resource.) :



on the bus cannot begin transmission until a free resource
is available. Therefore, state N{ _, is changed to state
N}, when data transmission in the bus is completed. For
states with n = 0, there is no g, transition. Likewise, for
states with s = 0, there is no p, transition. The average
queveing delay can be obtained by first solving the aver-
age queue length °gnd r[gflying Little's Formula.
4= 30|30 Pr(N{) + Pr(Nj) (1)
Pr =1 =0
where Pr(-} is the stationary probability for a state.
To solve for the stationary probability values, we
can express all states in terms of an elementary state(s}
and to solve for the elementary state(s) by using the rela-
tionship that all probability values sum to unity. Refer-
ring to figure 4, we let the set of states on a 45 column
to be a stage. We designate the states on stage 0 to be
the elementary states, By expressing the relationship
among states on stages i+1, i and i-1, we have the fol-
lowing matrix equation.

[ Ni -
H ph+un By 0 0
Nif 0 ptu,ts, 0
Nif 0 0 Phtp.tip, -3,
| 1= : L : :
N .
No. :
Pt g+ 1)g,
0

It is not difficult to see that the r+1 by r+1 matrix
multiplying the states on stage i+1 (second term on the
RHS of eq. 2) is singular. Therefore, the states on stage
i+1 cannot be expressed in terms of states on lower -
stages. However, from eq. 2, we see that states on lower
stages can be expressed in terms of states on higher
stages. This does not imply that the elementary states
can be chosen at infinity because the stationary probabili-
ties there approach zero. A compromise is to choose the
elementary states at a sufficiently large stage, g+ 1, such
that the stationary probabilities of states above stage
q+1 are approximately zero and the stationary probabili-
ties of states below stage q++1 can be solved accurately to
within the precision of the computer.

There is no good method for choosing q. A simple
procedure is to start with ¢ = 2 and to solve for the
queveing delay d {eq. 1). This is repeated for increasing
values of q until d starts to decrease. At this point, the
maximum precision in solving for the elementary states is
attained and the procedure terminates. The iterative
procedure is compared against a procedure which solves
for all the stationary probabilities simultaneously using
(r + 1)(q + 1} balance equations and is found to be
within four digits of accuracy in all cases.

Some performance results of the single shared bus
are shown in Figures 5 and 8 for g /u, = 0.1 and 1.0
respectively with 16 processors and 32 resources. These
results are plotted with respect to the traffic intensity of
a hypothetical systern with a single bus of service rate 16
p, and a single resource of service rate 32

(px = 18X\ AT )} 8

malized with respect to the average task service times,
The processors can be connected to the resources via a
single bus, or they can be partitioned and each partition
is connected via a single bus to a subset of the resources.
In Figure 5, we see that the delay is smaller as the
pumber of partitions increases. A strange behavior is

The delay times are nor-

observed for the case of 16 partitions (16/16x1x1
SBUS/2). It has a worse delay than the case of 2 parti-
tions (i6/2xIx1 SBUS/18) for p, below 0.64 and
approaches the delay for the case of 8 partitions
(16/8x1x1 SBUS/4) as p, increases. The reason for this
is that under light loads, the bottleneck is at the
resources. Therefore, systems with a smaller number of
accessible resources have higher delays. Under heavy
loads, the bottleneck is at the bus. Thus, systems with a
smaller number of partitions have higher delays. The
above phenomenon is not observed for cases of 1, 2, and 8
partitions because they have a sufficient number of
resources connected and the resources do not pose a
bottleneck under light load. In Figure 5, we have also
shown the performance when each processor is connected
to 3, 4 and oo resources via & private bus. We see that
the delay is almost halved as the number of private
resources for each processor is increased from 2 to 4. For
infinitely many resources, the bus is the bottleneck and
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Figure 5.

the system can be modeled as an M/M/1 queue which
saturates when p, = 6.0,

The strange behavior observed when p./p, = 0.1
does not occur when p,/p, = 1.0 (Figure 6). In this case,
the bus is always the bottleneck and as the number of
partitions increases, the delay decreases. Further, the
improvement of using infinite resources is very small due
to the high data transmission time.
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4. RSINs Using Multiple Shared Buses

The approach using multiple shared buses is a
hybrid of cross-bar switch and single shared bus. The
RSIN is a cross-bar switch while each output port of the
cross-bar is connected to a single shared bus with one or
more resources. In contrast to the shared bus, the cross-
bar switch is non-blocking and will give the highest
resource utilization and the least delay. The cross-bar
switch is useful in providing a lower bound on the queue-
ing delay.

In this section, the design of a cross-bar switch to
support distributed resource scheduling is shown. The
cell design for single resource requests is presented, and
can be generalized to multi-resource requests. Figure 7
shows the overall structure of a cross-bar network. Pro-
cessor 1, 0 < i < p, initiates a request by sending a
request signal to the switch along the i-th row. Resource
controller j, 0 < j < m, indicates that bus j is free and
at least one resource is free by sending =z resource signal
along the j-th column. At cell C;; where there are
request and resource signals, the switchi is set on and data
transfer can begin. The request signal is removed from
any further cells along the i-th row. Similarly, the
resource signal is removed from any further cells along
the j-th column. Each cell in the switch has enough
intelligence to resolve the conflicts and to route the
requests. There is a control latch in each cell to indicate
its state. It is obvious that there is no centralized control
for the routing of requests.

Because requests can appear and disappear at any
time, it is important that a change in request state for
one processor does not affect the state of allocation of
other processors. To illustrate this, referring to Figure
7(a), if the request signal to cell C;; is removed, then the
latch in C;; is reset and a free resource is available. The
resource signal will again propagate down the j-th
column. Processor k may have made a request previ-
ously. Since no resource signal was passed along the j-th
column, it tried to search for another resource and found
one. The new resource signal passed along the j-th
column should be ignored in cell Cy; in order not to
upset the state of a previous allocation.

We also assume that the system operates in two
modes: request mode and reset mode. In the request
mode, processors can make requests for free resources. In
the reset mode, processors can relinquish previously
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A cross-bar switch to support decentralized
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Figure 7.

acquired resources. This method degrades performance
because requests and resets cannol operate concurrently.
However, a single signal line suffices to indicate which
mode is active. Other alternatives which allow con-
currency in requests and resets include (a) the use of state
saving latches in each cell and, (b) the use of separate
request and reset control lines. These alternatives require
more hardware and will be investigated in the distributed
Omega and cube networks.

Referring to Figure 7(b), the inputs and outputs of
cell C;; which connects processor i and bus j have the fol-

lowing jneaning: .
X 0 processor i is not searching for a free resource
ii T |1 processor i is searching for a free resource

{request mode)

0 processor i does not want to change the
state of allocation '

processor i wishes to relinquish the
allocated resource

Xi,j= 1

(reset mode)
X;; always returns to 0 at the end of each mode;

0 bus j is busy or all the resources connected
through bus j busy;
new request cannot be accepted.
i bus } is free and a free resource on
bus j is available;
a new request can be accepted.




D§; - data line to send data {rom the i-th processor;
DO; - data line for resources on the j-th bus to receive

data from the i-th processor;

0 Latch is off; any request made by processor i
is passed to the next cell, C sub ij+1
1 Latch is on; processor i is connected to bus j

Li

L

5;;/R; - the set/reset signal for the control latch in cell
C
MODE - controls the cell to be in request or reset mode.

bt
The input/output relationship of the control signals is

shown in the truth table in Table 1.

Table 1 Truth table and control signals for cell C;;
in & cross-bar switch.

Inputs Qutputs
b TH R R TR Y ETER T
1o 0 o ()
o {1 | o | L; |o]o
1 0 1 0 0 0
1 13 a 0 1 0
Xij+1 =X Yy
Yisn; = Xig Yij Ly
S =X, Y
R;‘ i =0
DY, =L;; DL + DO;4y;
{a) Request mode’
Inputs Outputs
X 1Y [ Xjay | Yie; [ 5 [Ry
0 0 1] 1) 0 0
0 1 1 0 1 0 0
i 0 1 0 0 1
1 1 1 1 0 1
Xij+1 = X;;
i+1j = Yjj
S =0
Ry, =X,
DO;; = L;; DI, + DOy

{b) Reset mode

In the request mode, the latch is set {S;; = 1) if pro-
cessor i is making a request, bus j is free, and a resource
connecied on bus j is available. If bus j is not available,
or all the resources on bus j are busy {Y;; = 0), then the
request signal is passed to the next cell Xij+1 = X3
The resource signal to the next cell (Y;4,;) éepends on
the state of the control latch in the cell. I} JY1 = 0, then
Y41, =0. If Y,; =1 and X;; = 1, then the control
latch” is set and Y—’.,, j = 0. Since the X;; signal returns
to 0 at the end of the request mode, but the Y;; signal
may still be kept at I, so Y, ,; equals the out:pui.j of the
control latch (L;;} when X;; = b and Y;; = 1. For those
processors which have made requests previously, the state
of allocation is not disturbed in the current request mode
and data transmission can continue. In the reset mode, if
processor 1 issues a reset signal, all the control latches in
row i of the network are reset. The logic equations for
the controls and outputs are also shown in Table 1. '
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The boundary connections for the switch are as fol-
lows. Each X, signal is connected directly back to P,
Similarly, each Y ; signal is connected back to R;. Sup-
pose P, makes a request by setting X;; =1 and it
receives at the end of the request cycle, X, = 1; this
means that the request is not satisfied and P, should
resubmit its request in the next request cyele. Likewise,
R; indicates that bus j is free and resources are available
by setting Yo; = k. I at the end of the request cycle,
Y,; = 1, this means that no resource is allocated and R;
should send out the Y,; = 1 signal continuously. Other-
wise, it will set Yo ; =D to indicate that the bus is allo-
cated.

Requests and resets are accepted at the beginning of
the corresponding cycles. They are mot accepted in the
middle of a cycle because the next cyele cannot start
until all the signals in the current cycle have settled. In
each cycle, the signals propagate from the top left corner
at 45 to the bottom right corner (Figure 7{a)) in a
wave-like motion. The maximum time for signal propa-
gation is, therefore, proportional to n+m. In the request
cycle, the maximum gate delays in each cell is four, The
maximum length of the request cycle is 4{n+m) gate
delays. In the reset cycle, the maximum delay in each
cell is one. The maximum length of the reset cycle is
(o +m) gate delays.

A final remark about the design is that it is asym-
metric. That is, it favors processors with lower index
numbers. This means that processors which are located
closer to the resources always have higher priority. How-
ever, it is inevitable in this approach due to the fact that
request signals are initiated simultaneously at the begin-
ning of a request eycle. There are two solutions to this
problem. First, the request cycle can be lengthened and
requests are initiated randomly within the request cycle.
This degrades the performance of the system. Second,
more control and separate request and reset signal lines
are built into each cell so that requests and resels can be
carried oul simultaneously. This is the approach taken in
the Heidelberg POLYP Polyprocessor [27). The major
disadvantage is that the extra signal lines pose a problem
in VLSI implementation.

A Markovian analysis similar to that of the single
bus is difficult due to the extensiveness of the number of
states. For a system with m buses and r resources on
each bus, the number of states in each stage is (r + I)™.
The analysis method shown in the last section can only
be applied when m is very small. However, we observe
that under light load, each processor generates requests
and sends data to resources as if other processors are not
present. As far as a processor is concerned, the cross-bar
switeh just looks like a single shared bus with multiple
resources connected because a processor can only
transmit one task at a time to the resources. This
implies that the analysis techniques of Section 3 can be
applied directly when the load is light. The approximate
de(llays are very close to the simulation results for
Bd < 1.

Under heavy load, the multiple buses are ‘“parti-
tioned” among the processors in a sense that each proces-
sor can only access a subset of the buses because all the
other buses are busy. If p is the number of processors
and m is the number of buses, this partitioning effect can
be analyzed if m/p or p/m is an integer. Two cases are
considered. If p 1s greater than m and p/m is an integer,
then p/m is the number of processors assigned on a single
bus. The analysis for delay is-similar to that of Section 3
with a single bus connecting p/m processors to r
resources. If p is smaller than m and m/p is an integer,
then each processor is connected by m/p buses to mr/p
resources. As far as a processor is concerned, the multi-
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Figure 8. Normalized queueing delay of multiple shared
buses for pfp, = 1.0.

ple buses do not improve delay over a single bus. The
analysis for delay is similar to that of Section 3 with a
single bus connecting 1 processor to mer/p resources.
The heavy load approximation is found to be satisfactory
when pd is large. Simulations are used for cases in
between.

Some performance results of the cross-bar switch are
depicted in Figures 8 and 9. An observation from these
figures is that a system with eight 2 x 4 cross-bar
switches is nearly as good as a system with one 18 x ¢o
cross-bar switch (with one resource attached to each out-
put port). As can be exgected, by partitioning the net-
work into smaller cross-bar switches and by attaching
more resources to the output ports we can achieve a
smaller delay.

5. RSINs Using Omega and Cube Networks
The Omega [11] and generalized cube [18] metworks
belong to a class of networks with the property that the
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- exchange, upper broadeast, or

delay from a source to any reachable destination is pro-
ortional to the logarithm of the number of source points.
he basic element in these networks is.a 2-input 2-output
4-function interchange box which allows a straight,
lower broadcast connec-
tion. For a network connecting N inputs to N outputs

(N is a power of 2), there are log,N stages and -E-tlogzN

interchange boxes. The delay in the networks is, there-
fore, Olog,N). Figure 12 shows an example of an Omega
network with N = 8. The O(Nlog,N) hardware complex-
ity is much better than that o? the cross-bar switch

(O o

he Omega network is equivalent to the cube net-
work with the difference that it operates in the reverse
direction. Furthermore, the Omega network can be rear-
ranged. into a cube network by renaming the inputs and
outputs. This rearrangement is exemplified in the Omega
network in Figure 12. If By, and B, are moved so that
they are adjacent to Bys and By, and with proper rela-
beling of processors and resources, the Omega network is
transformed into a cube network. Using these networks
as RSINs, they are, therefore, statistically equivalent. In
the following discussion, we will only present results on
the Omega network. The performance of the cube
network is identical.

As seen in Figure 2, some of the feasible mappings
from sources to destinations do pot lead to maximal
resource allocation. A centralized scheduler has to exam-
ine all the different possible ordered mappings in order to
allocate the maximum pumber of resources. Suppose X
processors are making requests and y TT)FCGS are {ree.

x
The scheduler has to try a maximum of ! {for x 2 ¥)

or i 1 {for y > x) mappings in order to find the best

one. 'Sub-optimal heuristics can be used [24], but will
only be practical when x and y are small.

On the other hand, a distributed scheduling alge-
rithm allows all the requests to be scheduled in parallel.
The resource scheduling overhead is, therefore, propor-
tional to the delay time in the network (Oflog;N}) and
independent of the number of requesting processors,

The distributed algorithm is implemented by distri-
buting the routing intelligence into the interconnection
network so that there is no centralized control. Each
exchange box can resolve conflicts and route requests to
the appropriate destinations. If a request is blocked, it
will be sent back to the originating exchange box in the
previous stage. Request routing is, thus, dynamic and all
the exchange boxes operate independently.

Before the algorithm is described, some symbols
must be defined. Functionally, there are five control sig-
nals for each exchange box:
pumber of resources requested;

I, = number of allocated resources to be released;

S = pumber of resources reachable from this link;

J = number of resources rejected from the
search;

C = number of free resoutces successfully found.

There are associated registers in each exchange box which
store this information. These control signals are indi-
cated in Figure 10. The first subscript in the notations
indicates the stage at which the signal originates. The
second subscript indicates that the signal is originated
from or directed to the upper/lower half of the box. The
index of the box, j, is implicit and not included in the
notations.

The control algorithm for each exchange box is writ-
ten in pidgin Algol and is shown in Figure 11. The total
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Figure 10. Control signals for a 2 by 2 exchange box.

number of reachable resources from the two input ports
are caleulated at the beginning and at the end of the
loop. If any change is detected, this information is
passed back to the previous stage. This allows status
change to be propagated as early as possible. When a
connection is released, the status information does not
change because resources may still be processing the
tasks. Rejects are serviced before queries because they
have higher priority. Reject/query with the largest
number of resources is always serviced first. OQuiput
ports ordered by the number of accessible resources are
chosen successively. In case of ties, a random selection is
made. After a query is sent to an output port, the
corresponding availability register is zeroed because
resources are no longer accessible from this port. In ser-
vicing completion signals, since a query may request mul-
tiple resources and they may be sent through multiple
output ports, all the completion signals for a query must
be assembled before they are sent back to the previous
stage. The algorithin shown in Figure 11 is applicable to
exchange boxes with a larger number of input and output
ports (such as the Banyan and delta networks).

As an example, Figure 12 shows an 8x8 Omega net-
work. Suppose resources Ry, R, R, and Ry are available
and status information are passed to the processors. The
numbers on the output/input ports represent the status
information received/sent. Assuming that Py, Py, Py, and
P; are requesting one resource each, the requests are sent
simultaneously to the network after new status informa-
tion arrives. In stage 0, no conflict is encountered. B,
in stage 1 receives two requests. Since only one cutput
terminal leads to free resources, the request originating
from Bys is rejected. This request, subsequently, finds
another toute via By ; and By, to Ry, In this example,
each request has to pass through 3.5 exchange boxes on
the average before it finds a free resource. For clarity,
status changes due to new requests are not indicated in
the figure.

One peculiar characteristic of the network is that
status information changes always arrive at the proces-
sors simultaneously since the delay through all the boxes
are identical. Requests queued at processors, therefore,
enter the network simultaneously. This may cause undue
conflict, especially to multi-resource requests. A solution
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Process net (i, j);

7+ distributed scheduling algorithm in exchange
box j on stage i of Omega and cube networks
(refer to Figure 10} #/

while (true} do

Begin™
Wil {arrival of any control signal);
/* calculate total number of resources

reachable from the output ports */

service status signal (S) change,
Store S;4;; and 5,4, into the availa-
bility registers A; and Ay */

/*

service release (L), '

If release(s} is received, send release(s)
to appropriate output port(s) in stage
i1/

/*

service reject (1),
All rejects are collected at the input
ports. The largest reject is always ser-
viced first. Available output port{s) are
scanned successively until one with the
largest number of available resources is
found. In case of ties, a random selec-
tion is made. Set the corresponding
availability register to zero and send
query. Continue searching until all the
resources needed for this reject are
found, otherwise send the unsatisfied
rejects along the original input ports
over which the queries are sent and
. decrease the resources queried. If all
the resources requested by a query are
rejected, the query is eliminated from
the exchange box x/

/*

service query (Q),

Queries are serviced in a similar fashion
as rejects. The largest query is always
serviced first. »/

/*

service completion {C),
A completion signal received is held in
. an exchange box until all the necessary
completion signals are collected. When
all the resources queried are found, a
completion signal Is sent to stage i-1
along the original input port over
which the query is sent */

/*

send status signals back to the previous
stage if any change is made. Calculate
the total number of resources reachable
from the output ports. If this is
different from the total calculated pre-
viously, send
Si1 = Si2 = 8411 + ;412 along the
status links to stage i-1. #/ _

end;

end process

Control algorithin for each exchange box

Figure 11.
in the Omega and Cube networks.
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is to use a similar strategy as Ethernet [26] which ini-
tiates requests with s random delay after the arrival of
new status information.

The delay characteristics of the Omega and cube
networks were evaluated by simulations and are plotted
in Figures 13 and 14. There is basically very little
difference in delays between eight 2 x 2 networks or one
16 x 16 network, although the cost of one 16 x 16 net-
work is much higher. A conclusion similar to the cross-
bar switch can also be reached. That is, it is more cost-
effective to partition the system into multiple smaller net-
works instead of using a single network.
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Figure 14. Normalized queueing delay of Omega or cube
networks for p. /g, = L0, -

6. Comparison of Different RSINs

In this section, we discuss the tradeoffs of different
RSINs, The tradeofls have to be made with respect to
the relative cost of resources and networks.

If the cost of resources is small as compared the cost
of a RSIN, the obvious solution is to connect & large
number of resources to each processor by a private bus.
As we have seen in Section 3, this results in the least cost
and delay.

If the cost of resources is large as compared to the -
cost of an RSIN, then for a given number of resources,
the problem is to find the most efficient RSIN. As seen
in Figures 5, 6, 8, 8, 13 and 14, the multiple private bus
approach has the worst delays. The cube and Omega
networks have slightly larger delays than the cross-bar
switch when the load is high, but the difference is usually
insignificant. The choice, therefore, depends on the cost
of implementation. Cross-bar communication networks
have been shown to compare favorably to Banyan type
networks for VLSI implementation provided that the
whole network is implemented on one chip [6]. When the
network is built on muitiple chips, Banyan type networks
are still less expensive to implement.

If the cost of resources is about the same as the cost
of an RSIN, the choice is more difficult. In this case, a
large number of small interconnection metworks, coupled
with a larger number of resources, will give good perfor-
mance. This is illustrated in our evaluations which show
that a 18/16x1x1 SBUS/3 system has a much better
delay behavior than a 18/4x4x4 CUBE/2 or a 16/4x4x4
XBAR /2 system.

" Jn summary, the multiple private bus approach is
attractive when the cost of resources is not high. When
resources are expensive, the cube, Omega, or cross-bar
petworks are good candidates of RSINs. This conclusion
is true for all values of g,/p,.

7. Concluslon

In this paper distributed scheduling algorithms for
resource sharing are studied. Resource sharing differs
from conventional accesses through addresses in that a
request is directed towards any one of a pool of free
resources. A centralized scheduling algorithm can be

308a



used to search for the addresses of free resources and sup-
ply them to the requests. A conventional address map-
ping network can be used. The scheduler is a potential
source of bottleneck because all requests are serviced
sequentiaily. On the other hand, a distributed scheduling
algorithm allows requests to be scheduled in parallel with
a delay time that is proportional to the network delay
and independent of the number of requests.

Three resource sharing interconnection networks
utilizing distributed scheduling are compared in this
paper. The cross-bar switch results in the least delay
time, but is the most expensive. The single bus has the
highest blocking and is the least expensive. The private
resource approach suffers from the unnecessary replica-
tion of resources and is not practical when the number of
types of resources is large or when resources are expen-
sive. Networks which have queueing delays between the
private resource approach and the cross-bar switch are
networks with logarithmic delays such as the Omega and
cube npetworks. 'They represent versatile and cost-
effective interconnection networks for resource sharing.
The networks can be designed so that they operate in
both resource sharing and address mapping modes.

Although we have studied cases with one class of
identical resources, the approach can be extended easily
to a general system which has multiple types of resources.
The algorithms discussed have to be modified by identify-
ing the type of resource requested by a processor and the
type of resources reachable from an exchange box. This
can be done by sending a binary request code (instead of
1 bit) indicating the type of resources requested in the
distributed algorithms. In the distributed Omega and
cube networks, multiple resource availability registers,
one for each type of resources, have to be included in an
exchange box. In the degenerate case in which there is
one resource in each type, the network operates in the
address mapping mode and the resource code in each
request becomes its address. Resource accesses, therefore,
are a generalization of the conventional address-mapping
accesses.
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