IEEE International Conference on Communications

Chicago, IL

June 23-~26, 1985

THE EFFECTS OF LOAD BALANCING
ON RESPONSE TIME FOR LOCAL COMPUTER SYSTEMS
WITH A MULTIACCESS NETWORK

Katherine M. Baumgartner and Benjamin W. Wah
School of Electrical Engineering

Purdue University
West Lafayette, IN 47907

ABSTRACT

Load balancing has been shown to be effective in reduc-
ing the average response time of jobs in a distributed com-
puter system. In this paper, we derive the average response
time due to load balancing for computers connected by a local
CSMA/CD network. Based on a contention-resclution proto-
col that can identify the stations with the minimum and the
maximum response times efficiently, jobs are sent from the
maximally loaded processor to the minimally loaded processaor.
The average response time is analyzed by an approximate
quening network and is compared against simulation results.

It is found that the benefits of load balancing are maximum at’

moderate traffic intensities and load balancing intervals that
are short compared to job service time.

1. INTRODUCTION

The decreasing cost, the growth in technology, and the
diversification of applications have caused computer systems to
evolve from being centralized to being distributed. A distri-
buted computer aystem may possess a large number of general
and special purpose autonomous processing units intercon-
nected by a network. The primary lunction of the network is
to allow communication among devices. A secondary fumction
is resource sharing, a special form of which is load balancing.
Load balancing uses communication lzcilitics to support remote
job execution in a user transparent f{ashion to improve
resource utilization, A decision to load balance a job is made
if the job is likely to be finished sconer when executed
remotely than when executed locally.

L.oad balancing decisions can be made in a centralized or
a distribnted manner. A ¢entralized decision implies that
status information is collected, and decisions to load-balance
are made al one location. An example would be a aystem with
a job scheduler at one location that collects jobs and
dispatches them to stations for processing. Theoretical studies
on centralized lond balancing have been made by Chow and
Kohler [ChK79] and Ni and Hwang [Nille1]. The major prob-
lem in centralized scheduling is the overhead of collecting
status information and jobs. If this overhead is large, schedul-
ing decisions are frequently based on inaccurate and outdated
status information, which conld he detrimentsl ta perfor-
mance. In contrast, a distributed load balancing scheme does
not limit Lhe sehieduling intelligence to one processor. It avaids
the bottleneck of collecting status information and jobs at a
single site and allows the scheduler to react quickly to dynamic
changes in the system state,

Load balancing ean also be classified as deterministic or
probabilistic [ChK79]. A decision based on the current state of
the system is deterministic or state dependent. For this type of

Renenrch wupported by CIDMAQC, a research unit of Purdue Univeesity,
sponsored by Purdue, Cincinnati Milicron Corporation, Control Data Cor-
poration, Cummina Engine Company, Ransburg Corporation, and TRW.

International Conference on Communications, 1985,

decision, system performance is optimized by either mirimizing
or maximizing a system parametcr such as response time, sys-
tem time, or throughput. A decision is probabilistic if an arriv-
ing job is dispatched to the processors according to a set of
branching probabilities that are collected from previous experi-
ence. In the case that branching probabilities are derived from
the service rates ol processors, the strategy is called propor-
tional branching [ChK79].

Deterministic load balancing strategies result in better
performance; however, the overhead associated with imple-
menting them is higher than that associated with probabilistic
strategies. 1t was found that a probabilistic strategy for a sin-
gle job class [NiH81] yielded better performance than a propor-
tionz! branching strategy. An optimal probabilistic algorithm
for multiple job classes was found to be easier to implement
than deterministic strategies. However, probabilistic strategies
are sometimes insensitive to dynamic changes in system load
and may result in suboptimal performance.

Load balancing is implemented on the Purdue Engineer-
ing Computer Netwerk (ECN} which is a system of computers
connected by a hybrid of Ethernet and point-to-point links
[Hwa82]. The load balancing decisions are distributed: each
processor decides whether to send its jobs for remote execu-
tion. A processor polls other processors for status information
aboul their loads, decides which processor has the lowest load,
and sends the job for remote processing if the turnaround time
is shorter.

A common result of the previous studies on load balanc-
ing is that a2 network of computers with load balancing per-
forms better than one without load balancing. Load balanc-
ing, however, may have the following side cffecta:

(1) Status information used in a deterministic decision must
be readily available; otherwise, decisions based on out-
dated or inaccurate status information could degrade the
performance,

{2) Load balancing increases network load which can impede
message transmissions,

Consequently, load balancing is eflective when the overheads
of broadcasting status information and sending jobs and
results are relatively small.

This study considers load balancing on a local computer
aystem connected by a CSMA/OD multinccess network, The
objeetive i do determine the effects of load balancing o the
average responae fime. These effects are a function of the
traffic intenaity, which is the ratio of the job arrival rate to the
job service rate. As the traffic intensity chaeges, the decision
to load balance must be adjusted. The results obtained can
guide the design of better load balancing stratepies,

. There are six sections following this introduction. Section
Two gives background about CSMA/CD networks and conten-
tion resolution. Section Three describes the protocol for mak-
ing load balancing decisions in the network. Secctions Four
and Five explain the methods for the analyses and simulations

10.1.1

262

CH2175-8/85/0000-0262 $1.00 © 1985 IEEE

respectively. Scetion Six summarizes the results, and Seven
draws conclusions.

2. CARRIER-SENSE-MULTIACCESS NETWORKS

Carricr-sense-multinccess networks with collision detec-
tion (CSMAJCD networks) are a type of local area networks
with packet switching and a bus topology ([Tan8l].
CSMA/CD networks evolved from CSMA networks, which
have listen-before-talk protocols to avoid overlapping transmis-
sions, The collision-detection capability of CSMA/CD npet-
works sllows processors to additionally haten-while-talk, so col-
lisions resulting from simultaneous transmissions can be
detected and stopped immediately.

There arc three types of protocols for contention resolu-
tion in CSMA/CD networks. Collision-free protocols strictly
schedule bus accesses, so no collisions occur. Cortention pro-
tocols function at the other extreme by allowing processors to
transmit whenever they find the bus idle. When collisions
occur due to simulianeous transmissions, proccssors stop
transmitting, wait for some prescribed amount of time, and try
again. The backoff algorithm of Ethernet is an example in this
class. The disadvantage of collision-free protocols is the over-
head of waiting for transmission, while the disadvantage of
contention protocols is the time wasted during collisions. A
third type of contention-resolution protocol is the limited con-
tention protocol, This type of protocol chooses a processor for
transmission from among those waiting to transmit based on a
priori information of the workload. The Virtusl-Window Pro-
tacol propoesed by Wah and Juang [Wal83,JuW84] is an exam-
ple of a limited-contention protocol.

"The Virtual- Window Protocol shown in Figure 1 functions
as follows. Stations wishing to transmit participate in a con-
tention period that consists of a number of rentention alots,
Each station generates a random number called a contention
parameter that is used for the entire contention period. For
regular message transfers, each station has equal chance of
being chosen for transmission, so the contention parameters
can be generated from a uniform distribution between 0 and 1.
The stations maintain a common window (interval) for conten-
tion, In a contention slot, stations having coutention parame-
ters within the window broadcast a short signal to contend for
the channcl. If a collision or no transmission occurs, the win-
dow boundaries are adjusted in parallel at all stations for the
next contention slot. This continues until a single station is
isolated in the window, This station is the winner and is
allowed to transmit its packet. The distribution of the conten-
tion parameters and an estimate of the channel load are used
to update the window in an efficient manner, so the number of
contention slots is kept to a minimum. Analyses and simula-
tions have shown that contention can be resolved in a
minimum average of 2.4 coutention slots indepeadent of the
num ber of contending stations and the distribution function of
the coutention parameters, provided that the parameters are
independent and identically distributed.

All three of these types of contention-resolution protocols
can be used for performing load balancing operations with
varying degrees of efficiency. Regardless of whether the deci-
sion is made in n centralized or a distributed manner, load
information must be collected at decision locations. For an n-
processor system, if the scheduler utilizes the message-passing
subsystem for routing status information, then (n—1) point-
to-point (ransmissions of processor status inlormation are
required for a centralized decision, and n broadcasts of load
information are required for a distributed decision. Status
information can be propagated more cfficiently with the
Virtual-Window Protocol by using contention parameters that
reflcct processor loads. The distribution of response times at
different atations can be wused in the protocaol to identify the
stations with Lthe maximum and the minimum response times
efficiently.

procedure window_protocol_station_j;
/* procedure to find window boundaries for
isolating one of the contending stations +/

[/* window - function to calculate window size w,

random - function to generate local contention parameter,

estimate - function to estimate channel load,

transmit_signai - function to send signal to bus with
other stations synchronously,

detect - function to detect whether there is collision
on the bus (three-state),

r, - local contention parameter,

i - estimated chanpel load,

Ib_window - lower bound of window to be searched
(minimum is L),

ub_window - upper bound of window to be searched
{maximum is U},

contending - boclean to continue the contention process,

state - state of collision detect, can be collision, idle, or
success {for three-state collision detection). +/

fb_window := L;

ub_window := U;

r, := random(L,U);

B = estimate{);

w ;= window{ Ib_window, ub_window, @i);
contending := true;

while (contending} do |
if (r; = Ib_window and r; & w) then |
transmit_signal();
/* test for unique station in the window »/
state : = detect(});
if state =idle then
/+ update lower bound of window +f
Ib_window := w
else if state = collision then
/+ update upper bound of window +/
ub_window ;= w
else /+ succeasful isolation of minimum +/
return{lb_window, ub_window);
w := window(1b_window, ub_window, 3}]
elae
contending := false] /* stop contenting +/

]

Figure 1. Procedure illustrating the basic steps executed in
each station for contending the channel with a
three-state collision-detection mechanism.

3. LOAD BALANCING PROTOCOL

Multiaccess networks have a hroadcast bus topology that
allows one job to be sent across. the network at a time.
Response time is the amount of time elapsed from job submis-
sion to job completion and is an indication of the processor
load. To have the maximum reduction in response time, a job
must be sent {rom the maximally loaded processor to the
minimally loaded processor.

The load balancing protocol consists of two steps that are
repeated continually. The set of stations with the highest-
priority task is identified in the first siep, then the aciions to
proceed with this task are performed ia the second step.
There are four tasks associated with load balancing using the
Virtual-Window Protocol. - They are regular message transfer,
resuft return, job migration, and identification of the proces-
sors to be involved in a load balancing operation. These tasks
are ordered according to the following priority levels.

(1) regular message transfer (highest priority);
(2) result return;
(3) job migration; and

10.1.2

263

(4) identification of the maximally and the minimally loaded
processors (lowest priority).

Task 1 has the highest priority because regular message
transfer is the primary function of the network, so load
balancing should not degrade this commupication. Result
return has priority over job migration because any delay in
returning results contributes to an jucrease in response time,
while an earlier trausmission of a job te a remote processor
may not reduce the job response time unless the remote pro-
cessor is idle. Task 3 has priotity over Task 4 because a job
must be completely sent before it can be processed, and the
delay in completing a job transfer may tie up valuable buffer
space unnecessarily and reduce the processor utilization. The
Virtusl- Window Protocol may be used for priotity resolution,
identification of the maximally and minimally loaded proces-
sors for a load balancing operation, and contention resolution
for message, job, and result transfers.

4. RESPONSE TIME ANALYSIS FOR A LOAD BAL-
ANCED NETWORK :

4.1, Assumptions
The analytical model is derived with the following

assumptions:

{1) the stations are modeled as M/M/1 systems [Kle75] con-
pected by a single bus;

(2) each station ¢an accommodate at most { jobs (including
the ope in service);

(3) the bus service time is exponentially distributed and each
joad balanced job is serviced by the bus only once;

(4) the petwork is only used for load balancing and not for
regular message transfers;

(5) the times for identifying the maximally and the minimally
loaded processors and for resolving contentions are negligi-
ble.

The finite queue limit was chosen to model a realistic
implementation. The bus service time, or {oad balancing inter-
val, takes into account petwork contention, o the additional
complexity of modeling contention can be avoided. The last
assumption was made because the Virtual-Window Protocol
can resolve contentions in a small bounded amount of time on
the average. If another protocol were used, or the decision
made in & centralized manner, the time required for the load
balancing operation would have to be adjusted. For most
other protocols, this interval would be increased.

The analytical model is a two-processor system modeled
as M/M/1/] servers and connected by a bus modeled as an
M/M/1/1 server. Load balancing involves only two processors
at 3 time when using a bus network, the maximally and
minimally loaded processors. In comparing a two-processor
system with a system with more processors and the same bus
service rate, the effect is to decrease the per-processor access to
the bus. A system with more than two processors corresponds
10 a two-processor system with a longer load balancing inter-
val, Therefore, a system with more than two processors can
be approximated by a two-processor system with a propor-
tionately smaller bus service rate,

4.3. Description of a System State

The state of each station is specified by the mumber of
jobs in its quene. The queue limit imposed results in § +1 pos-
sible states for a station since it can have from zero to { jobs
queued (Assumption 2). The bus can be in any one of the
a(n~1) states in load balancing a job from one station to
another, or can be idle. The state of the system depends on
the states of the n connected stations and the state of the pet-
work. A good representation would be a sorted sequence of
{(n+1) numbers, (q;,9g, ..., 9y, b), in Which the g (greater than
or equal Lo g;+,) corresponds to the number of quened jobs in
one of the stations, and b indicates the state of the bus. Let

T(n,f) be the number of states fo[the n stations, each with a
queue limit of ¢, then T(n,f) =3, T(n-1j), n>1, with boun-

iZ1
dary conditions T(n,1} =1 and T(1,¢)=0. T(n,}) equals the
number of permutations of §+1 u]umbers whose sum is n, and

has a closed form: T{n,f) = nn] As a result of not distin-

guishing the stations with equal number of queued jobs, the
pumber of states for the bus can be reduced to (f +1F+1 if
a>{f+1). For a system with n=8 and § =3, T(8,3) is 185,
the number of states for the bus is 17, and the total number of
states is 9405. The number of states can be further reduced
because some states accounted for in this model will have rero
probability, specifically those states in which load balancing
would be advantageous and the bus is idle.. Additionally, -
when jobs are load balanced, they use buffer apace at both the
source and destination processors {or the duration they are on
the bus, hence reducing the queue limit at the source and des-
tination stations by one when Joad balancing is carried out.

An additionsl reduction in the worst-case number of
states is achieved when a two-processor model is used. For
example, T{2,10) =66, and the number of states is 3+66=198.
The stale representation for a two-processor model is a triplet,
{1, G b), where g, and g are the quene lengths of Processor 1
and Processor 2 respectively, and b is the state of the bus.
The bus status is either 0 indicating that it is idle, or 1 indi-
cating that the job on the bus has a destination of Processor 1,
or 2 that indicating the job on the bus has a destination of
Processor 2.

4.3. Computing the Average Response Time

The method used to find the average response time has
three steps. The first is to use ihe state described above to
determine the Bow balance equations. The steady state proba-
bility vector, m, is found by solving the system of flow equa-
tions, and the boundary condition that the probabilities sum
to one. Il F is the matrix of coefficients of the flow-balance
and boundary-conditions equations, then

0 0
0 ¢
Fa=|" and w=F7" (1}
0 0
1 1

Lastly, the response time can be obtained from the steady
state probabilities.

Using the state described in the last section, there are five
events that will canse a state transition. These eveats include
an arrival to Processor One, an arrival to Processor Two, a
departure from Processor One, a departure from Processor
Two, and a completion of bus service. There may be fewer
events for a given state, For example, there car be no arrivals
when the queue is full, mor departures when the queue is
empty, or bus completions when the bus is idle. Bus service
(load balancing) is initiated when the bus is idle and the queue
lengths are such that load balancing would be advantageous.

An example of a flow diagram for a system with a queve
limit of two is shown is Figure 2. Al permutations of states
for the two stations are shown. For the system shown, the
bus service time is very small compared to the processor ser-
vice time, so jobs are load balanced whenever the queue
lengths differ by two or more. Note that State (2, 1, 1) does
not exist because the job on the bus uses buffer space at both
the source and destination stations, hence reducing the quene
limit in both stations to one. Also, an arrival to Queue 1 in
State (1, 0, 0) results in State (1, 0, 2), as load balancing has
been automatically initiated.

If the probability of State (q;, @, b) is Py, o, and the
arrival rate to each processor is X\, the service rate for each
processor is g, and the bus service rate is jtp, then the flow

10.1.3

264

Figure 2. Flow diagram for a system with n=2 and § = 2
{each state is a triplet with the first two numbers
indicating the state of the stations and the third
number indicating the state of the bus).

balance equation for a typical state with q,>>qq is
(25 + 20+ pp)P g, qo0 = MPy —1,4,2 F Do, q5-12) (2)

0P+ 1aze T Payagr1,2) ¥ B0lPy v g1+ qu'ﬂ,c\n'z}

The coeflicients in Eq. (2) are determined by the flows in and
out of State Py o1, Once F is found, m, the steady-state pro-
bability vector, is found by solving Eq. {1). The limiting fac-
tor in the analysis is the size of Matrix F, which has to be
inverted.

The average response time is found using Little’s for-
mnula, which states that the average number of jobs in the ays-
tem is equal to the product of the average arrival rate and the
average waiting time (response time) [Kle75]. The average
num ber of jobs in the system is the sum of the number of jobs
in each state weighted by the state probabilities.

Eliobs insystem] = Y (jobs instatei) x Pr(statei)
slaten
The average arrival rate found by taking a weighted average
of the arrival rate to each state.

Elarrivalrate] = ¥ (arrival ratestatei) x Pr{statei) (3)
statei

The response time is

Eljobsin sxsteml (4)

Elarrivalrate] ~

5. SIMULATION OF A LOAD BALANCED NET.
WORK OF COMPUTERS

The first part of this section describes SMPL, a simula-
tior language, and the second part describes the model used to
simulate the network of computers with load balancing.

E[response time] =

§.1. Dencription of the Simulation Language

The simulations were performed using SMPL, a simple
portable simulation language, on a DEC VAX 11/780 com-
puter [Mac80]. SMPL is an event driven language that was
designed to model discrete-event systems. The language is a
package of subroutines that handle queue management and
atatistic gathering. A SMPL simulation model consists of
Jaelities and tokens, where facilities are static, and tokens are
active and move from [facility to [facility. An event
corresponds to a token reserving or releasing a facility.

To simulate a network of queues using SMPL, the model
must first be initialized, which involves declaring facilities, ini-
tializing tokens, and scheduling initial events. After initializa-

tion, events that include the reservation and release of facili-
ties are caused and scheduled until the simulation iz com-
pleted. When a reservation of a facility is caused, the follow-
ing sequence of actions occurs: (1) if the facility is busy (a
token has previously reserved the facility) the token is queued;
(2) otherwise, the facility is reserved and a release is scheduled
at some future time depending on the service characteristics of
the facility. The sequence of actions associated with the
release of a facility are: (1) releasing the facility; {2) scheduling
a reserve for a queued token at this facility; and {3) scheduling
a reserve for the released token at its next facility if necessary.

5.2. Description of the Simulation Model

There is one dilference between the assumptions made for
the analysis and the simulations. For the analysis, job migra-
tion and result return for one job are accounted for in one bus
service time (the load balancing interval). Two bus service
times are used for the simulation, one for job migration and
one for result return. These times are assumed to be exponen-
tially distributed, each has a rate equal to one half of the load
balancing interval. Other assumptions remain unchanged,

Eath station connected to the bus is modeled by two
tacilities. The producer models users generating jobs with a
Poisson distribution and average rate k. The server models
the actual service of jobs, which is Poisson distributed with
rate p. The bus is modeled by one facility with a queuing
space of one (including the job in service). The service time at
this facility corresponds to the time to send a job or result
across the network, and is Poisson distributed with rate jiy/2.

The tokens are the active part of the model. The path
that a token takes through the passive model depends on
whether or not the job is invelved in a load balancing opera-
tion. All jobs are generated at one of the stations. If a job is
not involved in a load balancing operation, it is routed to the
server at that station for local execution. Otherwise, it is
routed to the bus for job migration, to a server at another sta-
tion for remote execution, and to the bus again for result
return when execution is completed. Before a job is sept for
remote execution, buffer space is reserved for it at the
deatination's queue.

Load balancing is initiated whenever the bus becomes
idle. At that point, if the load is not evenly distributed and, if
load balancing is beneficial, a job is migrated from the maxi-
mally loaded processor to the minimally loaded processor. At
the completion of remote execution, the results are returmed.
The priorities of transfer follow those described in Section 3.

8. RESULTS

Before presenting the results, some performance limita-
tions will be considered, A system without load balancing con-
sists of autonomous M/M/1/0 subsystems. On the other
hand, the best possible system would be one with n parallel
servers of average rate pu each, a single queue with limit nx{
(including jobs in service), and a single arrival stream of jobs
with rate nxA. It is expected that a system with load balanc-
ing will result in a smaller average response time than that of
the independent M/M/1/§ system, but a larger average
response time than that of the M/M fn/nf aystem.

The queue limit imposed also creates a performance limi-
tation. Jobs arriving at a queue with rate A and finding the
queue full have to be discarded. For Markovian queues, the
eflective arrival rate is given by Eq. (3).

The simulations and analyses were performed for a range
of load halancing intervals and traffic intensities. A service rate
of 0.1 jobs per second was used, and the arrival rate was
varied to change the traffic intensity. The queue limit, §, was
set to be five, The average load balancing interval was varied
from a small value up to ome at whichk no load balancing
occurred. The results are summarized in Figures 3, 4, and 5.

10.1.4

265

- - P T AN]

——- ety

T—-0 & procutior slmylotons
- O—- & procensor 1imulohigns

B 8 processor itutnlions

TN LN G LTI BN _LISEN FIen .ETONS 100
Effectivg Traffjc lmenaity

Figure 3. Delay for system with § =5, #=0.1 at a small load
balancing interval for n=2, n=4, and n=8.

e WML
L X s gharbyuit
a3 E procassar simylaligne
OO0 4 proceisnr SImulationy
badand S——A 8 processer simulofiom

Dela C(secondsy

O aeets immie .Mes TS WHAM LEaes Fioses STHN 188

Eftective Traffic Inensity

Figure 4. Delay for system with =5, u=0.1 at a moderate
toad balancing interval for n=2, n=4, and n=8,

.08 ———— MM
—— gnalysis
D—{j 2 procevscr sinwiations
. O— 4 procassar yimuintions
H—dy 8 procesaor simuloiions
.
~
i |
E -,
=
T
"‘!'_u.u-
FLIC L ol
(X
. —— -
K000 LIS KIS ST NSRS SENIM TOMM TSNS 1.0

£ftective Traffic Inmensicy

Figure 5. Delay for system with §=5, p=0.1 at a large load
balancing interval for n=2, n=4, and p=8.

These figures show that the delays associated with the
analyses are slightly lower than those with the simulations for
the eight-processor case. The reason for this discrepancy is
due to the irregularities in the load balancing interval for the
simulations. In the simulations, the bus is used to transmit

jobs and results that are exponentially distributed, and load
balancing is imitiated when the bus is free, The interval
between two load balancing operations is, therefore, irregular.
When there is a long interval between two load balancing
operations, there is more imbalance in the worklead which
causes Lhe average response time to increase. However, when
the load balancing interval is short, the workload may be
already well balanced, and the benefits of load balancing are
small. It may be possible to more accurately analyze systems
with more than two processors by using a hyper-exponential
distribution for the bus service time instead of an exponential
service distribution. That would introduce larger variances
into the distribution of the service time of the bus and more
accurately predict the delay.

These figures also show that load balancing has the
greatest benefit at moderate traffic intensities and at load
balancing intervals that are smaller than the average service
time. At low traffic intensities, situations for which load
balancing is beneficial do not occur frequently. When the load
balancing interval is large, the eflectiveness of load balancing is
reduced as a result of the delay incurred.

7. CONCLUSIONS

In this paper, we have presented an approximate queuing
model to analyze the reduction in average response time due to
load balancing for a local computer system connected by a
multiaccess bus. Due to an eflective contention-resolution pro-
tocol, the overhead of propagating status information for the
load balancing protocol is negligible. We found that load
balancing is beneficial when the trafic intensity is moderate,
and the load balancing interval is of the same magnitude or
smaller than the average service time. At high traffic intensi-
ties, instabilities in performance can result with load balane-
ing.
Our study can lead to the design of a good load balancing
strategy. From our results, we found that load balancing
should be used sparingly at high traffic intcnsities. A thres-
hold that requires a minimum savings as a function of load can
be sel to reduce the amount of load balancing at high loads.
Our results can also be applied to determine the effects of con-
necting the stutions by multiple busses and to allow multiple
jobs to be load balanced simultaneously.

REFERENCES ‘

[ChK79] Y. C. Chow and W. Kobller, “Madels for Dynamic
Load Balancing in a Heterogeneous Multiple Proces-
sor System,” [EEE Trons. on Comput., Vol. C-28,
May 1978, pp. 334-361.

[Hwa82] K. Hwang, et al, “A Unix-Based Local Computer
Network With Load Balancing,” IEEE Computer,
Vol. 15, April 19382, pp. 65-60.

[Juwsgd} J. Y. Juang and B. W, Wah, “Unified Window Pro-

tacol for Local Multiaccess Networks,” Proc. of 8'rd

Annual Joint Conf. of IEEE Computer and Com-

municelions Societics, April 1984, pp. 23.

L. Kleinrock, Queuing Systema Volume 1: Theory,

John Wiley, New York, 1975.

M. H. MacDougall, SMPL - A Simple Poriable Simu-

{ation Language, Technical Report, Amdahl Cor-

poration, 1980. .

L. M. Ni and K. Hwang, "Optimal Load Balancing

Strategies for a Multiple Processor System,” Proc. of

10'th Intl Conf. on Parallel Proccssing, August

1981, pp. 352-357.

A. 8, Tanenbaum, Computer Nelworks, Prentice

Hall Inc., New Jersey, 1081,

[Walg83] B. W. Wah and I. Y. Juang, “Load Balancing on
Local Multiaccess Networks,” Proc. of 8'th Conf. on
Local Compuler Netwerks, October 1983, pp. 55-A1.

[Kle?5}
{Mac80]

[NiH81]

[Tan81]

10.15

266

