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ABSTRACI' 
Parallel depth-first searches are widely used to solve com­

binatorial optimization and decision problems in artificial intelli­
gence and operations research. These problems are represented 
by OR-trees and AND/OR-trees. The performance of parallel 
depth-first searches may be difficult to predict due to the non­
determinism and anomalies of parallelism. In this paper we have 
derived the performance bounds of parallel depth-first searches 
with respect to optimization problems represented as OR-trees 
and have verified these bounds by simulations. These bounds 
provide the theoretical foundation to determine the number of 
processors to assure a near-linear speedup. The conditions to 
cope with parallel-to-parallel anomalies are also investigated. 
For decision problems represented by AND/OR-trees. such as 
evaluating logic programs, we have studied an ordered depth­
first search that rearranges nodes in each level of the AND/OR 
tree to minimize the expected search cost. 

1. INTRODUCTION 
Combinatorial-search problems can be classified into two 

types. The first type is decision problems that decide whether at 
least one solution exists and satisfies a given set of con­
straints [21]. Theorem-proving. expert systems. and evaluating 
a logic program belong to this class. The second type is combina­
torial extremum-search or optimization problems that are 
characterized by an objective function to be minimized or max­
imized and a set of constraints to be satisfied. Practical problems 
such as finding tbe shortest path. planning, finding the shortest 
tour of a traveling salesman, job-shop scheduling. packing a 
knapsack. vertex cover. and integer programming belong to this 
class. 

The non-terminal nodes in a search tree (or graph) can be 
classified as AND-nodes and OR-nodes. An AND-node 
represents a problem (or subproblem) that is solved only if all 
its descendant nodes have been solved. while an OR-node 
represents a problem (or subproblem) that is solved only if any 
of its immediate descendants is solved. Based on these two kinds 
of nodes. a combinatorial search can be classified into an AND 
tree. OR-tree, and AND/OR-tree search [25]. Note that a general 
datatlow graph contains AND-nodes and OR-nodes that relate 
the descendant nodes. as we11 as other nodes that relate the 
ascendant nodes. 

In this paper we will concentrate on evaluating problems 
that arise in nondeterministic computations, namely, those prob­
lems that are represented as OR-trees or AND/OR-trees. As an 
AND-tree represents deterministic computations and all nodes in 
it must be evaluated. it will not be discussed here [14]. Due to 
space limitation, we will only present results on the depth~first 
search strategy. Results on other strategies with respect to OR­
trees can be found elsewhere [15. 16]. 

An OR-tree is a state-space tree in which all non-terminal 
nodes are OR-nodes. while an AND/OR-tree is a problem-
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reduction representation that consists of AND-nodes and OR­
nodes. Many AND/OR-tree search procedures. such as AO". 
sss·. and dynamic programming. can be formulated as a general 
branch-and-bound (B&B) proc<dure [8. 19]. which is a well­
known OR-tree search method. Likewise, evaluating a logic pro­
gram can be represented as an OR-tree or AND/OR-tree 
search [7]. 

Both combinatorial OR-tree and AND/OR-tree search pro­
cedures can be characterized by four constituents: a branching 
rule. a selection rule. an elimination rule. and a termination con­
dition. The first two rules are used to decompose problems into 
simpler subproblems and to appropriately order the search. The 
last two rules are used to to eliminate unnecessary subproblems. 
Appropriately ordering the search and restricting the region 
searched are key ideas behind any search algorithms. 

The rules to guide the search and to prune unnecessary 
searches may differ for optimization and decision problems. In 
optimization problems. a lower bound of the objective value for 
each nonterminal node can be used to guide the search and to 
prune nodes that cannot lead to a better solution. Dominance 
tests. such as a-(3 prunirig. can also be adopted as elimination 
rules. In decision problems. it was found that the ratio of the 
success probability of a subproblem to the estimated overhead of 
evaluating the subproblem is useful to guide the 
search [21. 1. 12]. The elimination rules are more restricted in 
decision problems. such as evaluating a logic program. Pruning a 
subproblem with a smaller success probability or a larger search 
cost may remove a possible (and possibly a unique) solution. In 
this case only when a terminal node is found to be true or false. 
AND-pruning or OR-pruning rules can be applied [12]. 

There are three basic selection strategies. namely. depth­
first. breadth-first. and best-first searches. A generalized heuris­
tic function can be used to unify these three kinds of search stra­
tegies and resolve ambiguities in the heuristic function [4. 10]. 
To resolve the ambiguity on the selection of subproblems. dis­
tinct heuristic values must be defined for the nodes to allow ties 
to be broken. A path number can be used to define an unambi­
guous heuristic function. The path nwnber of a node in a tree is 
a sequence of (h+1) integers representing the path -from the root 
to this node. where b is the maximum number of levels of the 
tree [10, 15]. For example. the path numbers of nodes A. B. C. 
and Din Figure lc are 0000.0100.0200. and 0300. respectively, 
Note that the nodes having equal path numbers never coexist 
simultaneously in the search process. For a depth-first search. 
the generalized heuristic function is defined as 

h(P;) =(path number.level number) (t) 

Although a best-first search expands fewer nodes than a 
depth-first search. it requires a secondary memory to maintain 
the large number of active nodes, hence the total time, including 
the time spent on data transfers between the main and secondary 
memories, to solve a problem may be longer than that required 
by the depth-first search. Simulations have shown that the best 
OR-tree search strategy depends on the accuracy of the 
problem-dependent lower-bound function [24]. Very inaccurate 
lower bounds are not useful to guide the search, while very 
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accurate lower bounds will prune most unnecessary expansions. 
In both cases the number of subproblems expanded by depth!. 
first and best-first searches will not differ greatly. and a depth­
first search is better as it requires less memory space. 

Extensive studies have been conducted on OR­
parallelism [2. 12, 15. 18]. but very few studies have been done 
on analyzing the speedups and efficiency of OR-parallelism. Due 
to the nondeterminism. combinatorial OR-tree and A~D/OR-tree 
searches are quit-e different from conventional deterministic 
numerical computations. Simulation results have revealed that 
using more processors in parallel depth-first searches might 
degrade the performance. even when the communication over­
head is ignored [10]. The prediction of performance and 
methods to cope with anomalous behavior are important prob-­
lems to be studied in designing multiprocessors for parallel 
depth-first searches and will be addressed in this paper. 

To take advantage of the search efficiency of best-first 
searches while avoiding their memory overhead. an informed 
depth-first search can be used [20]. In this strategy best-first 
search is performed locally and depth-first search globally. A 
special case is one in which all sibling nodes are ordered accord­
ing to heuristic values of the siblings (a more accurate definition 
will be given in Section 3). We will show that this ordered 
depth-first strategy is very effective to evaluate logic programs 
represented as AND/OR trees. 

2. PARALLEL DEPTH-FIRST OR-TREE SEARCHES 
To predict the number of processors needed to assure a 

near-linear speedup in a parallel depth-first search. we will 
derive the bounds on computational efficiency. The results in 
this section indicate the relationship among the number of itera­
tions required in a parallel depth-first search. the number of pro­
cessors used. and the complexity of the problem to be solved. 

2.1~ Model of Emcienc:y Analysis 
In analyzing the performance bounds. a-synchronous model 

is assumed. that is. all processors must finish the current itera­
tion before proceeding to the next iteration. This performance 
results form a lower bound to that of asynchronous models. 

The paraJlel computational model used here consists of a 
set of processors connected to a shared memory. In each itera­
tion. Il).Ultiple subproblems are selected and decomposed. The 
newly generated subproblems are tested for feasibility. elim­
inated by (exact or approximate) lower-bound tests and domi­
nance tests: and inserted into the active list(s) if not eliminated. 
In this model eliminations are performed after branching instead 
of after selection as in lbaraki · s algorithm [.S J to reduce the 
memory space required. 

We have proved that. for best-first searches. the perfor­
mance is not largely affected by whether the active subproblems 
are kept in a single shared list or multiple lists [23.15]. How­
ever. for depth-first searches. the performance will be problem­
dependent when multiple lists are used. In this paper the perfor­
mance bounds are derived under the assumption that one list is 
used and that the nodes with tbe smallest heuristic values are 
selected in each iteration. 

Since subproblems are decomposed synchronously and the 
bulk of the overhe-ad is on branching operations. the number of 
iterations. which is the number of times that subproblems are 
decomposed in each processor. is an adequate measure in both the 
serial arid parallel models. The speedup between using k 1 and k2. 
k 2>k 1 , processors is thus measured by the ratio of the number 
of iterations when k 1 processors are used to that when k2 proces­
sors are used. Once the optimal solution is found. the time to 
drain the remaining subproblems from the list(s) is not 
accounted for. since this overhead is negligible as compared to 
that of branching operations. 

The results proved in this section show the performance 
bounds of parallel depth-first OR-tree searches for solving 
optimization problems. The proofs of these theorems require the 

following definitions on essential nodes. A node expanded in a 
serial depth-first search is called an essential node, othe-rwise it is 
called a non-essential node. The speedup of a parallel depth-first 
search depends on the number of essential nodes selected in each 
iteration. An iteration is said to be perfecr if the number of 
essential nodes selected is equal to the number of processors. oth­
erwise it is said to be imperfect. The incumbent at any given 
time in the search process is the best feasible solution obtained at 
that time. The incumbent is continuously updated until an 
optimal solution is found. We denote Tb(k.E) and Tik.E) as the 
number of iterations required to find a single optimal (or subop­
timal) solution using k. k~l. processors in a best-first and 
depth-first search. respectively. where E is an allowance function 
specifying the allowable deviation of a suboptimal value from 
the exact optimal value. When an approximate solution is 
sought. i.e. E> 0. during the search of an OR-tree. an active node 
Pi is terminated if 

E~O. z~O (2) 

where z is an incumbent obtained at that time. 

2.2. Parallel Depth-First Searches 
The following theorem shows that the performance of 

parallel depth-first searches depends on the problem complexity 
and the number of distinct incumbents found during the search 
process. 

Theorem t: For a parallel depth-first OR-tree search with k pro­
cessors. E=O. and a generalized heuristic: function of b(Pi) -(path 
number. level number), then 

I Tb(!~0)-1 +l),.;T.(k,O;,. I Td~·O) + k;t [(c+ll-h-c] I (3) 

where b is the height of the OR-tree, c is the number of the dis­
tinct incumbents obtained during the serial depth-first search. 
and T b'( 1.0) is the number of essential nodes in a serial best-first 
search with lower bounds less chan the optimal-solution value. 
Proof: The sequence of iterations obtained during a serial depth­
first search can be divided into (c+l) subsequences according to 
the c distinct monotonically decreasing incumbents obtained. 
Let the c feasible solutions and their corresponding parents be 
denoted by F1 ..... Fe. and P1 ..... Pc. Further. assume that 
F1 ••••• Fe are obtained in t.be i1"th •.... ic"th iterations. respectively. 
Hence iterations from 1 to i1 belong to the first subsequence. and 
iterations from ij+l to ij+! belong to the (j+lYth subsequence. 

We now consider the j"th 1 ~j~c. subsequence. Let 0 min(x) 
be the level with the :..ninimum level number in which some 
active essential nodes. whose heuristic values are between h(Pj-1) 
and h(Pi). reside in the x'th iteration. For levels less than 
0 min(x). all active nodes. whose heuristic values are between 
h(Pr1) and h(P). are non-essential. We show that Iteration x is 
imperfect only if all essential nodes. whose heuristic values are 
between h(P1_ 1) and h(PJ). in 0 mm(x) are selected for expansion. 
Suppose that Iteration .x is imperfect. the selected non-essential 
node must have heuristic value larger than h(PJ). because other­
wise this node would have to be eliminated by the feasible solu­
tion Fr1 (F0 is the initial feasible solution obtained by a heuris­
tic method). Thus after Iteration X is carried out. 0 min(x) must 
be increased by at least one. Consequently. after at most h 
imperfect iterations. F;. must be found. 

During the last subsequence of iterations. since the optimal 
solution has been generated. all iterations are imperfect only if 
less than k nodes are selected in each iteration. In other words. 
an imperfect iteration implies that all currently active nodes are 
selected and expanded. and only descendants of these nodes can 
be active in the next iteration. Hence no active node remains 
after at most h imperfect iterations in the last subsequence. The 
previous analysis shows that at most (c+lJoh . imperfect 

• Dominance tests wHI not be discussed in this paper due to space limitation. 



iterations can appear in a parallel depth-first search. Since at 
least one node in each iteration in the parallel case belongs to ~1 . 
the set of nodes expanded in the serial depth-first 
search [10, 15]. the upper bound of Tct(k.O) can be derived as 

( ) "- ,T,(t.O)-(c+l)oh ( '- I Td k.O ...., k + c+lrh 

In the above discussion. the expansion of the root is counted in 
each of the (c+l) subsequences. Since the root is only expanded 
once. the above upper bound should be compensated by the addi­
tional number of times that the root is expanded (Eq. (3)). 

The lower bound on Td(k.O) can be proved easily because 
all essential nodes in a serial best-first search with lower bounds 
less than the optimal solution must be e'xpanded in the parallel 
depth-first search. 0 

For problems such as integer programming and 0-1 knap­
sack problems. all feasible solutions are located in the bottom­
most level of the OR-tree. In this case the following corollary 
shows that all essential nodes of a serial depth-first search must 
be expanded in a parallel depth-first search. and a tighter lower 
bound is obtained. 

Corollary 1: In searching an OR-tree using a parallel depth-first 
search and a heuristic function of (path number. level number). 
if E = 0 and all feasible solutions are in Level h. then 

,T,(I.:)-I + 11<; T,(k.e) (4) 

where his the maximum number of levels of the OR-tree. 
Proof: The proof is omitted due to the space limitation [13, 10}. 

The bounds in Theorem 1 are tight in the sense that we can 
construct examples to achieve the lower- and upper-bound of 
computational times. These degenerate cases occur rarely. 
Although c. the number of distinct incumbents. is unknown 
until the solution is found. c is usually small and can be 
estimated when integral solutions are sought. It has been 
observed that c is less than 10 for vertex-cover problems with 
less than 100 vertices. For most integer programming problems. 
c===l. In these cases the range on Td(k.O) is tight. and a near­
linear speedup can be achieved in a large range of k. 

Let w be Td(l.O)/h. w can be viewed as the .. average 
width·· of an 0~-tree. which onlv consists of essential nodes. 
Eq. (3) can be rewritten as . 

Trl(l.O) ~ k•w (5) 
T"(k,O) w+(c+tJ(k !) 

From Eq. (5). it is easy to see that if w >> k and c is small. then 
the speedup is close to k: whereas if w<<k. then the lower­
bound speedup is close to w/(c+l). 

~n Table 1. the theoretical bounds derived above are com­
pared with the simulation results of parallel depth-first searches 
to solve two 35-obja::t knapsack problems. In generating the 
knapsack problems. w(i). the weights. were chosen randomly 
between 0 and 100 with a unform distribution. and the profits 
were set to 'Je p(i)- (w(i) + 10). This assignment is intended to 
increase the complexity of the randomly generated problems. 
The results demonstrate that the bounds on parallel depth-first 
searches are tight. hence its performance can be predicted quite 
accurately. Table 1 also shows that the speedup depends 
strongly on w. In Case 1 w~2023. and a near-linear speedup of 
0.88k is achieved with 256 processors. In Case 2 w~ 188. and a 
speedup of 0.29k is obtained with 256 processors. Note that 
when the nu.n.1ber of processors is large. the number of essential 
nodes in each imperfect iteration of the parallel depth-first 
search is usually larger than one. In contrast to the upper bound 
in Eq. (3). which was derived with the assumption of one essen­
tial node in each imperfect iteration. Td(k.O) may be much 
smaller than the upper bound. Simulations have also revealed 

I ~~~~r ~:.,e; ~~;.~~ ;:,;:~ 

l l790 ~ 790 70790 1.000 
2 35395 35630 35787 1.987 
4 _!7698 18044 18285 3.923 
8 8849 8884 9534 7.968 

16 4425 _4460 5159 15.872 
32 2213 2247 2971 31.504 

_64 l!O< _1_1_43 1811_ 61.934 
128 554 592 1330 119.578 
256 2''7 316 05' 

Case2 

~ ~; 1 6582 1.000 
2 3488 1.887 
4 1642 1940 1978 3.3~ 
8 821 1161 1211 5.669 

16 411 777 82' 8.471 
32 206 584 635 11271 
64 10: 485 539 13.5!fr 

128 5: 219 491 
256 21 90 467 ;~:~33 

Table 1. Comparisons between theoretical bounds and simulation 
results on parallel depth-first searches for knapsack 
problems with 35 objects. CT>(I.O)=T,(I.O). During 
depth-first searches. c-22 in Case 1 and c-12 in Case 2.) 

that for a number of OR-tree search problems. Td(k.O) may be 
very close to Tb(k.O). 

Analogous to the proof of Theorem 1. the upper bound on 
Tik.E). e>O. can be derived. To find the lower bound on 
Tik.E). let f0 be the optimal-solution value and Mll\"'Tb(E) be the 
minimum number of nodes to be expanded in the approximate 
best-first search. !\tUNTb(E) represents the number of nodes 
whose lower bounds are less than f,/(l+E). since these nodes 
must be expanded in the best case. MINTb(e) may be estiinated 
from the distribution on the number of subproblems with 
respect to lower bounds. From the above analysis. we get 

I

MINT,(e)-1 I"'T( )"-IT,(I.e) k-1[( '-h ]I (6) k +1 -.;::: d k.E "<:: --k--+-k- c+lr -c 

2.3. Coping With General Parallel-to-Parallel Anomalies 
Some results on coping with serial-to-parallel anomalies 

have been published elsewhere [10. 11. 15]. We now present 
results on coping with parallel-to-parallel anomalies of depth­
first OR-tree searches based on the performance bounds derived 
in the last section. When comparing the efficiency between using 
k 1 and kz processors. 1 ~k1 <k2 • a k 2/k1-fold speedup (ratio of 
the number of iterations in the two cases in our model) is 
expected. However. simulations have shown that the speedup 
can be (a) less than one (called a detrimental anomlliy) [6. 17. 9]: 
or (b) greater than k 2/k 1 (called an acceleration anomaly) [6. 9]: 
or (c) between one and k2/k 1 (called a deceleration ano­
maly) [6. 22. 17. 9]. So far. all known results on parallel OR­
tree searches showed a near-linear speedup for only a small 
number of processors. 

Anomalies are studied with respect to the assumption that 
all idle processors are used to expand active subproblems. In 
fact. detrimental anomalies cannot happen if some processors can 
be kept idle in the presence of active subproblems. The number 
of processors to be kept idle is problem. dependent and is very 
difficult to find without first solving the problem. 

Some anomalies on parallel depth-first OR-tree searches are 
illustrated here. A single list of subproblems is assumed. The 
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behavior of using multiple lists is analogous to that of a central­
ized list. An example of an acceleration anomaly with an 
approximate depth-first or best-first search is shown in Figure 
la. When three processors are used, tbe optimal solution is 
found in the second iteration. and P4 and P5 are eliminated. If 
two processors are used. subtrees T 4 and T5 have to be expanded. 
T(2.0.t)ff(3,0.1) will be much larger than 3/2 if. T4 and T5 are 
very large. Figure lb illustrates a detrimental anomaly under 
an approximate best-first or depth-first search with E=O.l. 
When two processors are used. f(P5 ), the optimal solution, is 
found in the fourth iteration. Assuming that the lower bounds 
of nodes in T 3 are between 8.2 and 9. all nodes in T 3 will be 
eliminated by lower-bound tests with P8 since [9/(t+E)]<8.2. 
When three processors are used. P3 is expanded in the third itera­
tion. P5• P6 • and P7 are generated and will be selected in the next 
iteration. If T 3 is large. T(2,E) < T(3.E) will occur. A detrimen­
tal anomaly may occur even when lower-bound tests are inac­
tive and is illustrated in Figure 1c. A similar example can be 
derived for acceleration anomalies. 

In the last section. we have derived the performance 
bounds with respect to depth-first OR-tree searches. From these 
results, we can develop the relative efficiency between using k 1 
and k 2• 1 <k1 <k2, processors. First, we derive a sufficient condi­
tion to assure the monotonic increase in computational efficiency 
with respect to the number of processors. To simplify the 
sufficient condition, the following bounds on Tct(k.O) are used. 

T>~t.O) .; Ta(k.O).; I T•(:.o) + (c+tl-h I· 
Corollary 2:'' Let rd = T>(I.O)tr.(I.O) <; !. In a parallel 
depth-first search that satisfies the assumptions of Theorem 1. 
T•(k2.0) <; To(k 1.0) when 

and (7) 

where c is the number of the distinct incumbents obtained dur­
ing the serial depth-first search. 

From Corollary 2. we can conclude that the existence of 
parallel-to-parallel detrimental anomalies in depth-first searches 
depends on Tb'(l.O), rct'· and c. If rct'==t. cis small. and Tb'(l.O) 
is very large. then Eq. ( 7) will be satisfied. Our simulation 
results reveal that for some problems, such as the o-t knapsack 
and vertex-cover problems. Tct(l.O) is close to Tb'(t.O), hence 
rct'==l. Moreover. if the feasible-solution values must be 
integers. then c is often small. For this kind of problems. detri­
mental anomalies can be prevented for parallel depth-first 
searches when Tb'(t.O) is large and k2 is relatively small. How­
ever. the range of parallel processing within which no detrimen­
tal anomalies occur for depth-first searches is smaller than that 
for best-first searches [13]. 

From Theorem 1, we can also derive a necessary condition 
for acceleration anomalies with respect to k1 and k2 processors. 

Corollary 3:'' In a parallel depth-first search tbat satisfies the 
assumptions of Theorem I. Tct(k1.0)!Tct(k2.0) > k 2/k1 only if 

IT.<t.ol-T>(!.O) )> lk2-t-(k1-!)[(c+!l-h-cl) I <k1 <k2 (8) 

If all solutions are located at the bottommost level of the OR­
tree. then the corresponding necessary condition is simplified by 
Corollary 1 as 

I ) k,-1 
(c+1)-h-c > k

1
_

1 
(9) 

Obviously. the necessary condition in Eq. (8) is readily 
satisfied. and Tct(k1.0)ffct(k2,0) may be much greater than k2/k 1. 

·• The proof is omitted due to space limiution and can be found else­
where [13, to]. 

(a) Acceler•tioa anomalies with 
lcwer-bouad tests. 
! 11(2,0.1) 3 Td(2,0.1) .1 
""'I';r.f.ir.rr > "!~ ~ > "!' 

(b) DetrimeataJ anomalies with 
approxiDl.lte lower-bound tesu. 
Tb(J.O.J) > Tb(2,0.1); 
TiJ,O.I) > Td(2,0.I). 

(c) Detrimental anomdies without lower-bound tesu in a depth-ftrst 01' best-
lint seardl. !(4,0)•.5, T<.5,0)oo6. , 
(Number inside !lade is the evaluation OTdn- wing four proc=sors; number 
outside node is the evaluation order using Dve processon.) 

Figure 1. &amples of anomalies. 

Usually. if k 1 and k 2 are dose to each other and his large. then 
acceleration anomalies may occur quite often. 

When a suboptimal solution is sought. the following corol­
lary shows the required sufficient conditions. 

Corollary 4: .. In parallel depth-first searches that satisfy the 
assumptions of Theorem 1 with the exception that e>O, 
Td(k2,e) ~ Td(k 1.E) when 

Td(I.E) (c+!)k1k2 k, (!O) 
--- ~ and rct>-. t<k1 <k2 

h rdk2 k 1 k2 

where rd- MINT.(E)tf.{I.E). Td(k1.E)tr.(k2.E) > k2/k1 when 

IT•(I.e)-MINT.(<)) > lk,-1-(c+l)(k1-!Joh) (II) 

If all feasible solutions are located at the bottommost level of 
the OR-tree. the necessary condition t.o allow acceleration 
anomalies is the same as that stated in Eq. (9). Further. a 
weaker sufficient condition to eliminate detrimental anomalies 
can be derived from Corollary 1. 

T.O.e) (c+!)k 1k2 

--h-- > kz- kt 
(12) 

3. ORDERED DEPTH-FIRST SEARCH FOR EVALUATING 
LOGIC I'ROGRAMS 

In our previous paper {12] we have developed an optimal 
search strategy to evaluate logic pro5:rams modeled as 
AND/OR-trees using the heuristic information p(x), the success 
probability of a subgoal (or clause) x, and c(x), the estimated 
overhead of evaluating the subgoal (or clause). The heuristic 
information to guide the search is defined as follows. 

! .. 



<I> ( ) - p(x) 
ax -CTiT 

<l>,(x)= I - p(x) 
c(x) 

( x is descendant 
of an OR-node) 

(x is descendant 
of an AND-node) 

(!3) 

(14) 

The logic program is first transformed from the AND/OR-tree 
representation into a two-level AND/OR-tree. The root of the 
transformed tree is an OR-node and represents the selection of 
clauses. and its descendants are AND-nodes and represent 
different solution trees in the logic program. The descendents of 
the OR-node are ordered according to decreasing values of ~0• 
and the descendants of the AND-nodes are ordered according to 
decreasing values of cit a. 

Although the above strategy minimizes the expected search 
time. there are two implementation problems. first. the 
transformed AND/OR-tree significantly expands the number of 
nodes in the original AND/OR-tree. In fact. the number of 
potential solution trees is a hyper-exponential function of the 
height of the tree. To apply the above search strategy on the ori­
ginal AND/OR-tree. a global list is required to maintain the 
order of all possible solution trees. and the storage overhead is 
prohibitively large {12]. Second, if two solution trees T 1 and T2 
have nearly equal 4>a or 4>0 , then exchanging the search order of 
T 1 and T2 may not significantly improve the expected search 
overhead. As an example. suppose that the success probabilities 
and the estimated overheads of all solution trees rooted at a non­
terminal node are uniformly distributed between 0.01 and 0.99 
and 1 and 10 units of cost, respectively. and that there are a mil­
lion possible solution trees from this node. Suppose further that 
two solution trees can be viewed as having nearly equal c~t. or 4'0 

if their difference is less than 0.001. Then. approximately. every 
thousand solution trees have nearly equal 41a or 4t0 • Obviously. 
it is unnecessary to store the exact order of all solution trees. 

In this section we will address two problems. First. given 
an ordered depth-first search strategy and assuming that all 
sibling nodes in the AND/OR-tree are independent, what is the 
order to search the nodes in each level of the AND/OR-tree to 
minimize the expected search time? Second. for a logic program 
with shared variables and clauses, how should the subgoals and 
clauses be ordered to m.inimize the average search cost of a 
depth-first search? 

3.1 Assumptions 
In a logic program. if there are n dauses whose heads match 

(sub-)goal A. then they can be ordered according to the given 
heuristic values. Likewise, if there are m subgoals in the body 
of a clause B. 8 :- 8 1 ..... Bm• then the m subgoals can also be 
ordered. 

The assumptions made in the search strategy are described 
here. 
( 1) For a given representation of the AND/OR-tree. a depth-first 

search is used. When nodes in each level are ordered accord­
ing to the heuristic values. the search is called an ordered 
depth-first search. 

(2) A producer-consunrer model is used to bind values to vari­
ables. A variable is a producer if it has not been bound to 
any value. otherwise, it is a consumer. For each variable not 
defined in the head. only its i.eftmost occurence can be the 
producer, as a depth-first ooarch is used. All other 
occurences of this variable in this clause are consumers. For 
example. in the clause A(x.y):-B(x.z)C(z.y)D(x.y). variable 
z in subgoal B must be a producer. while variable z in 
subgoal C is a consumer. Depending on whether a variable 
defined in the head is a produceT or a consumer. the variable 
in the corresponding subgoal will be a producer or a consu­
mer. For example. if x is a producer in A. then x in 8 is a 
producer. while x in Dis a consumer. We use a subscript"+" 
to indicate that the mode of a variable is a producer and a 
·-· to indicate that its mode is a consumer. As an example. 

A(x •. y_) :- B(x+.z+)C(z_.y_)D(x_,y_). When a variable in a 
subgoaJ is a consumer. it is necessary to verify in this 
subgoal whether the subgoal is TRUE or FALSE for such a 
binding of value. In contrast. when a variable in a subgoal 
is a producer. it is necessary to find a binding of value to the 
variable such that this subgoal is TRUE. 

(3) The probability of a subgoal to return TRUE and the aver­
age minimum overhead to determine whether a subgOal is 
TRUE or FALSE are independent of the bound values. 

(4) The overhead to test whether a subgoal in a clause is TRUE 
or FALSE for a given binding of values to variables or to 
generate a binding of values to variables is assumed to be 
independent of other subgoals in this clause. provided that 
the modes of its variables are unchanged. Likewise. the 
overhead to verify the head of a clause is independent of 
other clauses with the same head when the modes of its 
variables are unchanged. These assumptions are valid when 
results in one subgoal or clause are passed to other subgoals 
or clauses through the binding of values to variables. 

(5) The probability that a subgoal in a clause is TRUE for a 
given binding of values to variables is assumed to be 
independent of other subgoals in this clause. Similarly. the 
probability that the bead of a clause is TRUE is independent 
of other clauses with the same head. These assumptions are 
not valid in general' logic programs because subgoals have 
shared clauses and variables. but are made here to simplify 
the model. 

3.2. Optimal Ordering of Depth-First Searches in AND/OR­
Trees 

In this section we discuss a special case in the optimal ord­
ering of depth-first searches for AND/OR~trees. assuming that 
the success probabilities and expected overheads of all nodes are 
independent of each other. and that a node. once evaluated. will 
not be evaluated again. This special case exists in a logic pro­
gram when it does not have any logic variables and shared 
clauses. For each node in the AND/OR-tree. suppose that it has 
n descendent nodes. then there are n! possible evaluation orders 
for a depth-first search. Our objective is to select the optimal 
order of descendents for each node in the AND/OR-tree such 
that the average overhead to verify the root to be TRUE or 
FALSE is minimized. 

Various heuristic functions can be used to arrange the order 
of descendent nodes. Examples include the success probability, 
the lower bound on cost. and the number of immediate descen­
dents. The following theorem shows that 4ta and ~o (for AND­
nodes and OR-nodes. respectively) are the heuristic functions to 
order the search such that the expected search cost is minimized. 

Lemma 1: Suppose that node K is an OR-node (resp. AND-node) 
with n (resp. m) immediate descendent AND-nodes (resp. OR­
node) ordered as Kt• .... Kn (resp. K1 ..... Km)• and K; is searched 
before Ki+l in a depth-first search. Let Pi and C; be the success 
probability and search cost of node K;. and qi=(l-J'i). If all p;s 
and C;S are independent of each other and p/c; < Pi+1/c;+l (resp. 
q/ci < qi+J/ci+l). l~i~n. then the expected search cost can be 
reduced when Ki+l is searched before K;. 
Proof: Let C and C' be the expected costs of searching the descen­
dents of node K in the order K1 ..... Kn and that in the order with 
K; and K;+t interchanged. Assume that node K is an AND node. 
Then 

C = f. I IT q; /·c, and (15) 
lr.:::l J=l 

c· = k ltH·c, + ~~H·(c;+I + q;.,c;) + ,f, ltH·c, (! 6 ) 

Subtracting Eq. (15) from (16) yields 

C'- c = IITqk )·(p;C;+l- Pi+tC;) > 0 
k=l 

1 ' ! 1-: f· 



The proof when node K is an OR-n~de is analogous. 0 

Some special cases of this ordering strategy have been 
observed by Simon and others [21. 3. I]. 

Theorem 2: Assume that a depth-first search is used to search an 
AND/OR-tree. that the probabilities of success and search costs 
of all sibling nodes are independent of each other. and that a 
node. once evaluated. will not be evaluated again. The ordered 
sequence in which all OR-nodes. xis• are ordered by decreasing 
p(x)/c(xi) and all AND-nodes. y,s. are ordered by decreasing 
q(y,)/c(yi) will minimize the expected search cost over all possi­
ble ordered sequences. where p(x). q(x). and c(x) are the success 
and failure probabilities and average search cost for node x. 
Proof: Without loss of the generality. assume that the root (in 
Level 0) is an OR-node and that each OR-node (resp. AND-node) 
has n Cresp. m) immediate descendent AND-nodes (resp. OR­
nodes). For the n AND-nodes (resp. m OR-nodes). there are n! 
(resp. m!) possible oredered sequences. St• .... Snt (resp. St ..... Smt). 
Let c/AND (resp. ci;OR) be the minimum expected cost of the j'th 
AND-node (resp. OR-node) in sequence Si over all possible 
ordered sequences of descendents of this node. Let Cr.OR be the 
minimum expected cost of a depth-first search of the root over 
all poSsible ordered depth-first searches of the given AND/OR­
tree. Since the expected search cost of a node .is the cost of 
searching the subtree rooted at this node to return TRUE or 
FALSE. it is independent of the search order of other sibling 
nodes. Hence, if all nodes in the k'th level have been ordered 
optimally. then this optimal order remains unchanged when 
determining the optimal order in levels smaller than k. That is. 
the principle of optimality is satisfied. The minimum expected 
cost of the root r can be found from a dynamic programming 
formulation. 

(17) 

(18) 

where p~ and q~ are. respectively. the success and failure proba­
bilities of the k'th node in the i"th ordered sequence S1• c.;'_0 a can 
be evaluated in a similar fashion as in Eq .. (17). Eq's (17) and 
(18) can be solved by a bottom-up evaluation. 

For any nonterminal OR-node (resp. AiXD-node). K. since 
all its immediate descendents K 1 ••••• Kn (resp. K 1 ••••• Km) are 
independent of each other. then from Lemma 1 and applying 
adjacent pairwise interchanges. the optimal search order should 
satisfy p(Ki)/c(Ki) > p(Ki+1)/c(Ki+t) (resp. q(Ki)/cCKi) > 
q(K,.1)/c(K,.1)). 0 

The above ordering strategy only holds when all nodes are 
independent. In general, a logic program has shared variables 
and shared clauses. Hence. the subgoals and clauses have depen­
dent search costs and swccess probabilities. Moreover. a subgoal 
may be searched more than once because a given binding of 
values to variables may succeed with this subgoal but fail with 
other subgoals. In the next section. we will discuss a heuristic: 
method to find an efficient search order. 

3.3. Ordered Depth-First Search of Logic Programs 
To find an appropriate order of depth-first search in a logic 

program. the main problem is to develop a function to compute 
the expected search cost and success probability of a clause or a 
subgoal. assuming that the costs and success probabilities of all 
its immediate descendents in the AND/OR-tree representation 
are known. The difficulty lies in the shared variables and clauses 
in different subgoals of a logic program. The search cost of a 
subgoal may depend on the modes of its variables and cannot be 
evaluated as in Eq. (15). For a subgoal with a producer variable. 
it is necessary to generate one (or all) binding of value for the 

given variable: whereas a subgoal with a consumer variable has 
to test whether the given binding is TRUE. The latter cost is 
usually larger than the former one. The cost functions are more 
complicated when there are multiple variables. Here. a subgoal 
can have a combination of producer and consumer variables. 

Owing to the distinction between producers and consumers 
and that a clause may be used with their variables set in 
different modes, the success probabilities and costs must be 
defined for all combinations of modes of variables. For example. 
there are four success probabilities and four expected search 
costs for clause with bead A(x.y), namely. PA(x+·Y+). PA(x .... y_), 
PA(x_.y ... ). PA(x_,y_), cA(x .... y ... ). cA(x .... y_), cA(x_.y ... ). and 
cA(x_.y_), where a subscript'+. indicates that a variable is a pro­
ducer. and·-· indicates that it is a consumer. Let L be the set of 
variables in a subgoal. and L+ and L_ be the subsets of producer 
and consumer variables. For a clause with head A(L+.L_), all 
variables in L_ have been bound (called a binding-set) before 
this clause is searched. whereas all variables in L+ must be 
bound after the subtree rooted at clause A has been searched. 

In Figure 2 we have shown a Prolog program to query 
granddaughter(•.•). In Table 2 the average search costs for vari­
ous modes of variables X and Y in granddaughter are shown. 
For different modes, the orders in which the depth-first search 
should be performed may be different. We have shown the 
order that minimizes the search cost for two of these combina­
tions of modes. The structures for the other two combinations 
are different. The values in Table 2 iJJustrate that the difference 
in costs between the best and the worst orders can be a factor of 
one to seven. 

For node A(L). PA(L+.L-) is defined as the probability to 
successfully generate a binding-set of L+ under the condition 
that the given binding-set of L_ is TRUE. namely. 

PA(L •. L_)=pA(L_)pA(L.JL) (19) 

mother(theresa.martha). 
motherCjane,martha ). 
mother{michael.mary ). 
mother(susan.jane). 
m.other(edward.jane). 
wife(john.martha). 
wife( paul.mary). 
wife(michael.jane). 
female( theresa). 
female( susan). 
female(X):-wife(_.X). 
father(X.Y):-mother<X.Z).wife(Y.Z). 
parent( X. Y):-mother(X. Y). 
parent(X.Y):-father(X.Y). 
grandparent(X.Y):-parent(Z.Y).parent(X.Z). 
granddaughter(X.Y):-female(Y).grandparent(Y .X). 

Figure 2. Minimum-cost Prolog program on family tree with 
granddaughter(-.+) or granddaughter(-.-) as the goal. 

Modesoj Minimum Maximum Mean Standard 
X.Yin Avg. Avg. A\.·g. Deviation 

I "randdaul7hter Cost Cost Cost 
20.6 97.8 46.9 28.9 

-.+ 14.1 97.9 47.4 31.6 
+.- 20.1 130.8 81.6 36.0 

i +.+ 11.5 20.6 16.6 4.4 

Table 2. Average Costs of evaluating granddaughter(X.Y) in 
Figure 2 for all combinations of bindings of variables 
and all possible solutions returned. (Each traversal of 
a subgoal or clause has unit cost. Each producer vari­
able oilly produces one binding at a time.) 

! 



PA(L_) is the probability that the binding-set of Lon A is true. 
PA(L+ I L) is defined as n/(n+l ). where n is expected number of 
binding-sets of L+ in subgoal A for a given binding-set of L_. In 
this case we are approximating the distribution on the number of 
distinct binding-sets of L+ for a given binding-set of L_ as a 
geometric distribution with parameter p. For such a geometric 
distribution. its expected value is p/( 1-p). which implies !hat 
p=n/(n+1 ). In the special case when all variables in L are 
producers. then PA(L+) = m/(m+O. where m is the total number 
of generated binding-sets. 

For A(L+.L_), its expected cost. cA(L+,L_), is defined as the 
expected cost of generating a successful binding of variables in 
L+. given the binding of variables in 1._. If all variables in L are 
consumers. then cA(L_) is- the expected cost of testing whether a 
binding-set is TURE. 

For clarity. we illustrate a heuristic method to compute the 
various costs. In this method all probabilities are assumed to be 
independent. For a clause A(x.y) :- B(x.z).C(z.y) with known 
costs and probabilities for subgoals 8 and C. the expected cost of 
A can be computed by modeling the test process as an absorbing 
:\1arkov chain [26]. If one solution is sought, then the absorbing 
Markov chain in Figure Ja is used. The two sink nodes (So and 
s 1) represent the states of success and failure. After a finite 
number of steps. the process must enter one of these absorbing 
states. To find the expe<;:ted cost. we need to calculate the 
expected number of times that the process is in transient states~ 
and s3. In this example P. the transition matrix. Q. one of its 
submatrices denoting the process in the transient states. and R. 
another submatrix denoting the transitions from the transient 
states to the absorbing states. are 

I 0 0 0 
0 

p = 0 q, 

p, 0 

0 0 

0 P2 

q, 0 

-1° q,l R- 0 p, (20) 

Let ni be the expected total number of times that the pro­
cess is in state si. and M;[ni] be the mean of ni when the chain is 
started in S;. From the theory of absorbing :\tfarkov chains (26]. 
N = {M,(n1Jl =(I- Qr1• N is called the fundcurumtal mmrix. In 
our example 

N= (21) 

As a result. the expected cost is (c2+p2c3)/(1-p2q3 J. where c; is 
the cost associated with states;- If B is searched before C. then 
A has expected cost 

( ) 
c8 (x+.z+) + p8 (x.,...z+l-cc(z_.y +) 

c A x •. y + = _;:.--:_;_7 :...::--,;-.:.,-....::.-,..:..;_ 
1 Ps(x+.z+)•qc(:z_.y.,..) 

If subgoal Cis searched before B. then A has expected cost 

'( l __ '.::.'(:..'..;•..:·Y:..•:._l_+.,....:.p..:'o.c(_z+;-·.::.Y_:,•,..l•_c::.'(.:_x..;•-·'-_l 
c~ x.,...y.,.. -
- 1 - PcCz+•Y .>-qs(x.,...z_) 

(22) 

(23) 

Comparing cA and c_~~,'. the order with the smaller ~.:ost is used. 
Expected costs of clause A with variables in other rnoc!es can be 
computed similarly. 

\Vhen all solutions in a subgoal have to be found. the pro­
cess can also be modeled as an absorbing Markov chain. Figure 
3b shows the absorbing Markov chain for the above exan.-ple. 

To compute the success probability of a clause. if b;_1 is the 
probability that the process starting in transient state si ends up 
in absorbing state sj. then from the theory of absorbing Markov 
chains. lbi) = B = :"JXR. In our example. b2.o = p2p3/(1-p2q 3). 

and b2.1 = q2/( 1-p2q 3). If subgoal B is searched first. then the 
success probability of node A is 

•• 

Figure 3. Example to compute the search cost and probability 
using an absorbing Markov chain. 

(24) 

In general. if a subgoal has k variables, then 2c combina­
tions of probabilities and costs corresponding to all combinations 
of modes of the variables have to be found. 

The above example illustrates the use of an absorbing Mar­
kov chain to order the search of descendents of an A::\"0-node. 
which represents the evaluation of a clause. In contrast. to order 
the descendents of an OR-n·ode, which represents the selection of 
multiple clauses with the same head. it is observed that once a 

· descendent of an OR-node has been searched for a given 
binding-set. it will not be searched again. Unlike descendents of 
AND-nodes. there is no backtracking involved for a given 
binding-set. According to Theorem 2. descendents of an OR-node 
should. therefore. be searched in decreasing order of ratios of 
success probability to cost. The cost and probability of an OR­
node can be computed in a similar fashion as in Eq. (15) when it 
has at least one consumer variable. When all its variables are 

. producers. the average cost is taken as the average cost of each of 
its descendents weighted by the fraction of the total number of 
binding-sets that can be generated. 

The basic idea in a systematic method to determinate an 
appropriate ordering of the subgoals and clauses is to associate 
with each subgoal and clause a table of the expected costs and 
probabilities for all combinations of modes of variables. and to 
use the appropriate costs and probabilities depending on the 
modes set for the variables. The best or<;Jer with the minimum 
expected cost is chosen from all possible permutations of descen­
dents. The number of permutations may be large. In this case 
heuristic information, such as the number of variables in a 
subgoal. can be used to eliminate inefficient candidate permuta­
tions. Note that the cost of each node in the AND/OR-tree 
representation depends only on the costs and probabilities of its 
descendents. provided that the descendents only depends on each 
other through shared variables. Here. the selection of the best 
order in a given level does not influence the computation of costs 
in levels above. That is. the computation of the minimum cost 
satisfies the principle of optimality. and the optimal order can be 
found by dynamic programming. In practice. subgoals are gen­
erally dependent on each other through shared clauses. which 
results in over-estimation of the costs. The proposed scheme is 
still applicable as a heuristic method to arrange the order in the 
search process. Statistic sampling has to be used to estimate the 
cost and probability of a node after the order of its descendents 
is determined. This reduces the accumulation of errors as nodes 
in higher levels of the AND/OR-tree are ordered. 

A final point on the ordering of nodes in the AND/OR-tree 
representation of logic programs is that different orders may be 
found depending on the modes of the variables. Either an ·aver­
age' order may be used or multiple program statements may be 
generated for different cases to reflect the preferred order. 

4. CONCLUSIONS 
In this paper we have studied the computational efficiency 

of parallel and ordered depth-first searches to solve optimization 

. :-



and decision problems. The performance bounds and conditions 
to cope with anomalies in searching optimization problems 
represented as OR-trees have been derived and verified by simu­
lations. Speedups have been found to be related to the problem 
complexity and the number of incumbents obtained during the 
search process. For a problem with a high complexity and a 
small number of incumbents. such as integer programming prob­
lems. a near..:linear speedups can be achieved with respect to a 
large number of processors. 

An ordered depth-first search strategy has been studied 
with respect to decision problems represented as Al\iD/OR-trees. 
When the success probabilities and costs of sibling nodes are 
independent of each other. and a node. once searched. will not be 
searched again. the sibling nodes should be ordered according to 
ratios of probability and cost to minimize the ex:petted total 
search cost. Due to shared clauses and variables in a Prolog pro­
gram and that backtracking is allowed. it is difficult to find the 
optimal depth-first search order. An absorbing Markov chain to 
model the effects of backtracking and a dynamic programming 
method to order the search have been developed. 
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