
HOW GOOD ARE PARALLEL AND ORDERED
DEPTii-FIRSr SEARCHES?

Guo-lie Li and Benjamin W. Wah
Department of Electrical and Computer Engineering

and the Coordinated Science Laboratory
University of Illinois at Urbana-Champaign

1101 W. Springfield Avenue
Urbana, IL 61801

ABSTRACI'
Parallel depth-first searches are widely used to solve com­

binatorial optimization and decision problems in artificial intelli­
gence and operations research. These problems are represented
by OR-trees and AND/OR-trees. The performance of parallel
depth-first searches may be difficult to predict due to the non­
determinism and anomalies of parallelism. In this paper we have
derived the performance bounds of parallel depth-first searches
with respect to optimization problems represented as OR-trees
and have verified these bounds by simulations. These bounds
provide the theoretical foundation to determine the number of
processors to assure a near-linear speedup. The conditions to
cope with parallel-to-parallel anomalies are also investigated.
For decision problems represented by AND/OR-trees. such as
evaluating logic programs, we have studied an ordered depth­
first search that rearranges nodes in each level of the AND/OR
tree to minimize the expected search cost.

1. INTRODUCTION
Combinatorial-search problems can be classified into two

types. The first type is decision problems that decide whether at
least one solution exists and satisfies a given set of con­
straints [21]. Theorem-proving. expert systems. and evaluating
a logic program belong to this class. The second type is combina­
torial extremum-search or optimization problems that are
characterized by an objective function to be minimized or max­
imized and a set of constraints to be satisfied. Practical problems
such as finding tbe shortest path. planning, finding the shortest
tour of a traveling salesman, job-shop scheduling. packing a
knapsack. vertex cover. and integer programming belong to this
class.

The non-terminal nodes in a search tree (or graph) can be
classified as AND-nodes and OR-nodes. An AND-node
represents a problem (or subproblem) that is solved only if all
its descendant nodes have been solved. while an OR-node
represents a problem (or subproblem) that is solved only if any
of its immediate descendants is solved. Based on these two kinds
of nodes. a combinatorial search can be classified into an AND
tree. OR-tree, and AND/OR-tree search [25]. Note that a general
datatlow graph contains AND-nodes and OR-nodes that relate
the descendant nodes. as we11 as other nodes that relate the
ascendant nodes.

In this paper we will concentrate on evaluating problems
that arise in nondeterministic computations, namely, those prob­
lems that are represented as OR-trees or AND/OR-trees. As an
AND-tree represents deterministic computations and all nodes in
it must be evaluated. it will not be discussed here [14]. Due to
space limitation, we will only present results on the depth~first
search strategy. Results on other strategies with respect to OR­
trees can be found elsewhere [15. 16].

An OR-tree is a state-space tree in which all non-terminal
nodes are OR-nodes. while an AND/OR-tree is a problem-

This research ~~o·as supported by National Science Foundation Grants OMC S5-
!GI649.

International Conference on Pil.ra!lel Processing, lqS6.

reduction representation that consists of AND-nodes and OR­
nodes. Many AND/OR-tree search procedures. such as AO".
sss·. and dynamic programming. can be formulated as a general
branch-and-bound (B&B) proc<dure [8. 19]. which is a well­
known OR-tree search method. Likewise, evaluating a logic pro­
gram can be represented as an OR-tree or AND/OR-tree
search [7].

Both combinatorial OR-tree and AND/OR-tree search pro­
cedures can be characterized by four constituents: a branching
rule. a selection rule. an elimination rule. and a termination con­
dition. The first two rules are used to decompose problems into
simpler subproblems and to appropriately order the search. The
last two rules are used to to eliminate unnecessary subproblems.
Appropriately ordering the search and restricting the region
searched are key ideas behind any search algorithms.

The rules to guide the search and to prune unnecessary
searches may differ for optimization and decision problems. In
optimization problems. a lower bound of the objective value for
each nonterminal node can be used to guide the search and to
prune nodes that cannot lead to a better solution. Dominance
tests. such as a-(3 prunirig. can also be adopted as elimination
rules. In decision problems. it was found that the ratio of the
success probability of a subproblem to the estimated overhead of
evaluating the subproblem is useful to guide the
search [21. 1. 12]. The elimination rules are more restricted in
decision problems. such as evaluating a logic program. Pruning a
subproblem with a smaller success probability or a larger search
cost may remove a possible (and possibly a unique) solution. In
this case only when a terminal node is found to be true or false.
AND-pruning or OR-pruning rules can be applied [12].

There are three basic selection strategies. namely. depth­
first. breadth-first. and best-first searches. A generalized heuris­
tic function can be used to unify these three kinds of search stra­
tegies and resolve ambiguities in the heuristic function [4. 10].
To resolve the ambiguity on the selection of subproblems. dis­
tinct heuristic values must be defined for the nodes to allow ties
to be broken. A path number can be used to define an unambi­
guous heuristic function. The path nwnber of a node in a tree is
a sequence of (h+1) integers representing the path -from the root
to this node. where b is the maximum number of levels of the
tree [10, 15]. For example. the path numbers of nodes A. B. C.
and Din Figure lc are 0000.0100.0200. and 0300. respectively,
Note that the nodes having equal path numbers never coexist
simultaneously in the search process. For a depth-first search.
the generalized heuristic function is defined as

h(P;) =(path number.level number) (t)

Although a best-first search expands fewer nodes than a
depth-first search. it requires a secondary memory to maintain
the large number of active nodes, hence the total time, including
the time spent on data transfers between the main and secondary
memories, to solve a problem may be longer than that required
by the depth-first search. Simulations have shown that the best
OR-tree search strategy depends on the accuracy of the
problem-dependent lower-bound function [24]. Very inaccurate
lower bounds are not useful to guide the search, while very

1

accurate lower bounds will prune most unnecessary expansions.
In both cases the number of subproblems expanded by depth!.
first and best-first searches will not differ greatly. and a depth­
first search is better as it requires less memory space.

Extensive studies have been conducted on OR­
parallelism [2. 12, 15. 18]. but very few studies have been done
on analyzing the speedups and efficiency of OR-parallelism. Due
to the nondeterminism. combinatorial OR-tree and A~D/OR-tree
searches are quit-e different from conventional deterministic
numerical computations. Simulation results have revealed that
using more processors in parallel depth-first searches might
degrade the performance. even when the communication over­
head is ignored [10]. The prediction of performance and
methods to cope with anomalous behavior are important prob-­
lems to be studied in designing multiprocessors for parallel
depth-first searches and will be addressed in this paper.

To take advantage of the search efficiency of best-first
searches while avoiding their memory overhead. an informed
depth-first search can be used [20]. In this strategy best-first
search is performed locally and depth-first search globally. A
special case is one in which all sibling nodes are ordered accord­
ing to heuristic values of the siblings (a more accurate definition
will be given in Section 3). We will show that this ordered
depth-first strategy is very effective to evaluate logic programs
represented as AND/OR trees.

2. PARALLEL DEPTH-FIRST OR-TREE SEARCHES
To predict the number of processors needed to assure a

near-linear speedup in a parallel depth-first search. we will
derive the bounds on computational efficiency. The results in
this section indicate the relationship among the number of itera­
tions required in a parallel depth-first search. the number of pro­
cessors used. and the complexity of the problem to be solved.

2.1~ Model of Emcienc:y Analysis
In analyzing the performance bounds. a-synchronous model

is assumed. that is. all processors must finish the current itera­
tion before proceeding to the next iteration. This performance
results form a lower bound to that of asynchronous models.

The paraJlel computational model used here consists of a
set of processors connected to a shared memory. In each itera­
tion. Il).Ultiple subproblems are selected and decomposed. The
newly generated subproblems are tested for feasibility. elim­
inated by (exact or approximate) lower-bound tests and domi­
nance tests: and inserted into the active list(s) if not eliminated.
In this model eliminations are performed after branching instead
of after selection as in lbaraki · s algorithm [.S J to reduce the
memory space required.

We have proved that. for best-first searches. the perfor­
mance is not largely affected by whether the active subproblems
are kept in a single shared list or multiple lists [23.15]. How­
ever. for depth-first searches. the performance will be problem­
dependent when multiple lists are used. In this paper the perfor­
mance bounds are derived under the assumption that one list is
used and that the nodes with tbe smallest heuristic values are
selected in each iteration.

Since subproblems are decomposed synchronously and the
bulk of the overhe-ad is on branching operations. the number of
iterations. which is the number of times that subproblems are
decomposed in each processor. is an adequate measure in both the
serial arid parallel models. The speedup between using k 1 and k2.
k 2>k 1 , processors is thus measured by the ratio of the number
of iterations when k 1 processors are used to that when k2 proces­
sors are used. Once the optimal solution is found. the time to
drain the remaining subproblems from the list(s) is not
accounted for. since this overhead is negligible as compared to
that of branching operations.

The results proved in this section show the performance
bounds of parallel depth-first OR-tree searches for solving
optimization problems. The proofs of these theorems require the

following definitions on essential nodes. A node expanded in a
serial depth-first search is called an essential node, othe-rwise it is
called a non-essential node. The speedup of a parallel depth-first
search depends on the number of essential nodes selected in each
iteration. An iteration is said to be perfecr if the number of
essential nodes selected is equal to the number of processors. oth­
erwise it is said to be imperfect. The incumbent at any given
time in the search process is the best feasible solution obtained at
that time. The incumbent is continuously updated until an
optimal solution is found. We denote Tb(k.E) and Tik.E) as the
number of iterations required to find a single optimal (or subop­
timal) solution using k. k~l. processors in a best-first and
depth-first search. respectively. where E is an allowance function
specifying the allowable deviation of a suboptimal value from
the exact optimal value. When an approximate solution is
sought. i.e. E> 0. during the search of an OR-tree. an active node
Pi is terminated if

E~O. z~O (2)

where z is an incumbent obtained at that time.

2.2. Parallel Depth-First Searches
The following theorem shows that the performance of

parallel depth-first searches depends on the problem complexity
and the number of distinct incumbents found during the search
process.

Theorem t: For a parallel depth-first OR-tree search with k pro­
cessors. E=O. and a generalized heuristic: function of b(Pi) -(path
number. level number), then

I Tb(!~0)-1 +l),.;T.(k,O;,. I Td~·O) + k;t [(c+ll-h-c] I (3)

where b is the height of the OR-tree, c is the number of the dis­
tinct incumbents obtained during the serial depth-first search.
and T b'(1.0) is the number of essential nodes in a serial best-first
search with lower bounds less chan the optimal-solution value.
Proof: The sequence of iterations obtained during a serial depth­
first search can be divided into (c+l) subsequences according to
the c distinct monotonically decreasing incumbents obtained.
Let the c feasible solutions and their corresponding parents be
denoted by F1 Fe. and P1 Pc. Further. assume that
F1 ••••• Fe are obtained in t.be i1"th •.... ic"th iterations. respectively.
Hence iterations from 1 to i1 belong to the first subsequence. and
iterations from ij+l to ij+! belong to the (j+lYth subsequence.

We now consider the j"th 1 ~j~c. subsequence. Let 0 min(x)
be the level with the :..ninimum level number in which some
active essential nodes. whose heuristic values are between h(Pj-1)
and h(Pi). reside in the x'th iteration. For levels less than
0 min(x). all active nodes. whose heuristic values are between
h(Pr1) and h(P). are non-essential. We show that Iteration x is
imperfect only if all essential nodes. whose heuristic values are
between h(P1_ 1) and h(PJ). in 0 mm(x) are selected for expansion.
Suppose that Iteration .x is imperfect. the selected non-essential
node must have heuristic value larger than h(PJ). because other­
wise this node would have to be eliminated by the feasible solu­
tion Fr1 (F0 is the initial feasible solution obtained by a heuris­
tic method). Thus after Iteration X is carried out. 0 min(x) must
be increased by at least one. Consequently. after at most h
imperfect iterations. F;. must be found.

During the last subsequence of iterations. since the optimal
solution has been generated. all iterations are imperfect only if
less than k nodes are selected in each iteration. In other words.
an imperfect iteration implies that all currently active nodes are
selected and expanded. and only descendants of these nodes can
be active in the next iteration. Hence no active node remains
after at most h imperfect iterations in the last subsequence. The
previous analysis shows that at most (c+lJoh . imperfect

• Dominance tests wHI not be discussed in this paper due to space limitation.

iterations can appear in a parallel depth-first search. Since at
least one node in each iteration in the parallel case belongs to ~1 .
the set of nodes expanded in the serial depth-first
search [10, 15]. the upper bound of Tct(k.O) can be derived as

() "- ,T,(t.O)-(c+l)oh ('- I Td k.O, k + c+lrh

In the above discussion. the expansion of the root is counted in
each of the (c+l) subsequences. Since the root is only expanded
once. the above upper bound should be compensated by the addi­
tional number of times that the root is expanded (Eq. (3)).

The lower bound on Td(k.O) can be proved easily because
all essential nodes in a serial best-first search with lower bounds
less than the optimal solution must be e'xpanded in the parallel
depth-first search. 0

For problems such as integer programming and 0-1 knap­
sack problems. all feasible solutions are located in the bottom­
most level of the OR-tree. In this case the following corollary
shows that all essential nodes of a serial depth-first search must
be expanded in a parallel depth-first search. and a tighter lower
bound is obtained.

Corollary 1: In searching an OR-tree using a parallel depth-first
search and a heuristic function of (path number. level number).
if E = 0 and all feasible solutions are in Level h. then

,T,(I.:)-I + 11<; T,(k.e) (4)

where his the maximum number of levels of the OR-tree.
Proof: The proof is omitted due to the space limitation [13, 10}.

The bounds in Theorem 1 are tight in the sense that we can
construct examples to achieve the lower- and upper-bound of
computational times. These degenerate cases occur rarely.
Although c. the number of distinct incumbents. is unknown
until the solution is found. c is usually small and can be
estimated when integral solutions are sought. It has been
observed that c is less than 10 for vertex-cover problems with
less than 100 vertices. For most integer programming problems.
c===l. In these cases the range on Td(k.O) is tight. and a near­
linear speedup can be achieved in a large range of k.

Let w be Td(l.O)/h. w can be viewed as the .. average
width·· of an 0~-tree. which onlv consists of essential nodes.
Eq. (3) can be rewritten as .

Trl(l.O) ~ k•w (5)
T"(k,O) w+(c+tJ(k !)

From Eq. (5). it is easy to see that if w >> k and c is small. then
the speedup is close to k: whereas if w<<k. then the lower­
bound speedup is close to w/(c+l).

~n Table 1. the theoretical bounds derived above are com­
pared with the simulation results of parallel depth-first searches
to solve two 35-obja::t knapsack problems. In generating the
knapsack problems. w(i). the weights. were chosen randomly
between 0 and 100 with a unform distribution. and the profits
were set to 'Je p(i)- (w(i) + 10). This assignment is intended to
increase the complexity of the randomly generated problems.
The results demonstrate that the bounds on parallel depth-first
searches are tight. hence its performance can be predicted quite
accurately. Table 1 also shows that the speedup depends
strongly on w. In Case 1 w~2023. and a near-linear speedup of
0.88k is achieved with 256 processors. In Case 2 w~ 188. and a
speedup of 0.29k is obtained with 256 processors. Note that
when the nu.n.1ber of processors is large. the number of essential
nodes in each imperfect iteration of the parallel depth-first
search is usually larger than one. In contrast to the upper bound
in Eq. (3). which was derived with the assumption of one essen­
tial node in each imperfect iteration. Td(k.O) may be much
smaller than the upper bound. Simulations have also revealed

I ~~~~r ~:.,e; ~~;.~~ ;:,;:~

l l790 ~ 790 70790 1.000
2 35395 35630 35787 1.987
4 _!7698 18044 18285 3.923
8 8849 8884 9534 7.968

16 4425 _4460 5159 15.872
32 2213 2247 2971 31.504

_64 l!O< _1_1_43 1811_ 61.934
128 554 592 1330 119.578
256 2''7 316 05'

Case2

~ ~; 1 6582 1.000
2 3488 1.887
4 1642 1940 1978 3.3~
8 821 1161 1211 5.669

16 411 777 82' 8.471
32 206 584 635 11271
64 10: 485 539 13.5!fr

128 5: 219 491
256 21 90 467 ;~:~33

Table 1. Comparisons between theoretical bounds and simulation
results on parallel depth-first searches for knapsack
problems with 35 objects. CT>(I.O)=T,(I.O). During
depth-first searches. c-22 in Case 1 and c-12 in Case 2.)

that for a number of OR-tree search problems. Td(k.O) may be
very close to Tb(k.O).

Analogous to the proof of Theorem 1. the upper bound on
Tik.E). e>O. can be derived. To find the lower bound on
Tik.E). let f0 be the optimal-solution value and Mll\"'Tb(E) be the
minimum number of nodes to be expanded in the approximate
best-first search. !\tUNTb(E) represents the number of nodes
whose lower bounds are less than f,/(l+E). since these nodes
must be expanded in the best case. MINTb(e) may be estiinated
from the distribution on the number of subproblems with
respect to lower bounds. From the above analysis. we get

I

MINT,(e)-1 I"'T()"-IT,(I.e) k-1[('-h]I (6) k +1 -.;::: d k.E "<:: --k--+-k- c+lr -c

2.3. Coping With General Parallel-to-Parallel Anomalies
Some results on coping with serial-to-parallel anomalies

have been published elsewhere [10. 11. 15]. We now present
results on coping with parallel-to-parallel anomalies of depth­
first OR-tree searches based on the performance bounds derived
in the last section. When comparing the efficiency between using
k 1 and kz processors. 1 ~k1 <k2 • a k 2/k1-fold speedup (ratio of
the number of iterations in the two cases in our model) is
expected. However. simulations have shown that the speedup
can be (a) less than one (called a detrimental anomlliy) [6. 17. 9]:
or (b) greater than k 2/k 1 (called an acceleration anomaly) [6. 9]:
or (c) between one and k2/k 1 (called a deceleration ano­
maly) [6. 22. 17. 9]. So far. all known results on parallel OR­
tree searches showed a near-linear speedup for only a small
number of processors.

Anomalies are studied with respect to the assumption that
all idle processors are used to expand active subproblems. In
fact. detrimental anomalies cannot happen if some processors can
be kept idle in the presence of active subproblems. The number
of processors to be kept idle is problem. dependent and is very
difficult to find without first solving the problem.

Some anomalies on parallel depth-first OR-tree searches are
illustrated here. A single list of subproblems is assumed. The

L l

behavior of using multiple lists is analogous to that of a central­
ized list. An example of an acceleration anomaly with an
approximate depth-first or best-first search is shown in Figure
la. When three processors are used, tbe optimal solution is
found in the second iteration. and P4 and P5 are eliminated. If
two processors are used. subtrees T 4 and T5 have to be expanded.
T(2.0.t)ff(3,0.1) will be much larger than 3/2 if. T4 and T5 are
very large. Figure lb illustrates a detrimental anomaly under
an approximate best-first or depth-first search with E=O.l.
When two processors are used. f(P5), the optimal solution, is
found in the fourth iteration. Assuming that the lower bounds
of nodes in T 3 are between 8.2 and 9. all nodes in T 3 will be
eliminated by lower-bound tests with P8 since [9/(t+E)]<8.2.
When three processors are used. P3 is expanded in the third itera­
tion. P5• P6 • and P7 are generated and will be selected in the next
iteration. If T 3 is large. T(2,E) < T(3.E) will occur. A detrimen­
tal anomaly may occur even when lower-bound tests are inac­
tive and is illustrated in Figure 1c. A similar example can be
derived for acceleration anomalies.

In the last section. we have derived the performance
bounds with respect to depth-first OR-tree searches. From these
results, we can develop the relative efficiency between using k 1
and k 2• 1 <k1 <k2, processors. First, we derive a sufficient condi­
tion to assure the monotonic increase in computational efficiency
with respect to the number of processors. To simplify the
sufficient condition, the following bounds on Tct(k.O) are used.

T>~t.O) .; Ta(k.O).; I T•(:.o) + (c+tl-h I·
Corollary 2:'' Let rd = T>(I.O)tr.(I.O) <; !. In a parallel
depth-first search that satisfies the assumptions of Theorem 1.
T•(k2.0) <; To(k 1.0) when

and (7)

where c is the number of the distinct incumbents obtained dur­
ing the serial depth-first search.

From Corollary 2. we can conclude that the existence of
parallel-to-parallel detrimental anomalies in depth-first searches
depends on Tb'(l.O), rct'· and c. If rct'==t. cis small. and Tb'(l.O)
is very large. then Eq. (7) will be satisfied. Our simulation
results reveal that for some problems, such as the o-t knapsack
and vertex-cover problems. Tct(l.O) is close to Tb'(t.O), hence
rct'==l. Moreover. if the feasible-solution values must be
integers. then c is often small. For this kind of problems. detri­
mental anomalies can be prevented for parallel depth-first
searches when Tb'(t.O) is large and k2 is relatively small. How­
ever. the range of parallel processing within which no detrimen­
tal anomalies occur for depth-first searches is smaller than that
for best-first searches [13].

From Theorem 1, we can also derive a necessary condition
for acceleration anomalies with respect to k1 and k2 processors.

Corollary 3:'' In a parallel depth-first search tbat satisfies the
assumptions of Theorem I. Tct(k1.0)!Tct(k2.0) > k 2/k1 only if

IT.<t.ol-T>(!.O))> lk2-t-(k1-!)[(c+!l-h-cl) I <k1 <k2 (8)

If all solutions are located at the bottommost level of the OR­
tree. then the corresponding necessary condition is simplified by
Corollary 1 as

I) k,-1
(c+1)-h-c > k

1
_

1
(9)

Obviously. the necessary condition in Eq. (8) is readily
satisfied. and Tct(k1.0)ffct(k2,0) may be much greater than k2/k 1.

·• The proof is omitted due to space limiution and can be found else­
where [13, to].

(a) Acceler•tioa anomalies with
lcwer-bouad tests.
! 11(2,0.1) 3 Td(2,0.1) .1
""'I';r.f.ir.rr > "!~ ~ > "!'

(b) DetrimeataJ anomalies with
approxiDl.lte lower-bound tesu.
Tb(J.O.J) > Tb(2,0.1);
TiJ,O.I) > Td(2,0.I).

(c) Detrimental anomdies without lower-bound tesu in a depth-ftrst 01' best-
lint seardl. !(4,0)•.5, T<.5,0)oo6. ,
(Number inside !lade is the evaluation OTdn- wing four proc=sors; number
outside node is the evaluation order using Dve processon.)

Figure 1. &les of anomalies.

Usually. if k 1 and k 2 are dose to each other and his large. then
acceleration anomalies may occur quite often.

When a suboptimal solution is sought. the following corol­
lary shows the required sufficient conditions.

Corollary 4: .. In parallel depth-first searches that satisfy the
assumptions of Theorem 1 with the exception that e>O,
Td(k2,e) ~ Td(k 1.E) when

Td(I.E) (c+!)k1k2 k, (!O)
--- ~ and rct>-. t<k1 <k2

h rdk2 k 1 k2

where rd- MINT.(E)tf.{I.E). Td(k1.E)tr.(k2.E) > k2/k1 when

IT•(I.e)-MINT.(<)) > lk,-1-(c+l)(k1-!Joh) (II)

If all feasible solutions are located at the bottommost level of
the OR-tree. the necessary condition t.o allow acceleration
anomalies is the same as that stated in Eq. (9). Further. a
weaker sufficient condition to eliminate detrimental anomalies
can be derived from Corollary 1.

T.O.e) (c+!)k 1k2

--h-- > kz- kt
(12)

3. ORDERED DEPTH-FIRST SEARCH FOR EVALUATING
LOGIC I'ROGRAMS

In our previous paper {12] we have developed an optimal
search strategy to evaluate logic pro5:rams modeled as
AND/OR-trees using the heuristic information p(x), the success
probability of a subgoal (or clause) x, and c(x), the estimated
overhead of evaluating the subgoal (or clause). The heuristic
information to guide the search is defined as follows.

! ..

<I> () - p(x)
ax -CTiT

<l>,(x)= I - p(x)
c(x)

(x is descendant
of an OR-node)

(x is descendant
of an AND-node)

(!3)

(14)

The logic program is first transformed from the AND/OR-tree
representation into a two-level AND/OR-tree. The root of the
transformed tree is an OR-node and represents the selection of
clauses. and its descendants are AND-nodes and represent
different solution trees in the logic program. The descendents of
the OR-node are ordered according to decreasing values of ~0•
and the descendants of the AND-nodes are ordered according to
decreasing values of cit a.

Although the above strategy minimizes the expected search
time. there are two implementation problems. first. the
transformed AND/OR-tree significantly expands the number of
nodes in the original AND/OR-tree. In fact. the number of
potential solution trees is a hyper-exponential function of the
height of the tree. To apply the above search strategy on the ori­
ginal AND/OR-tree. a global list is required to maintain the
order of all possible solution trees. and the storage overhead is
prohibitively large {12]. Second, if two solution trees T 1 and T2
have nearly equal 4>a or 4>0 , then exchanging the search order of
T 1 and T2 may not significantly improve the expected search
overhead. As an example. suppose that the success probabilities
and the estimated overheads of all solution trees rooted at a non­
terminal node are uniformly distributed between 0.01 and 0.99
and 1 and 10 units of cost, respectively. and that there are a mil­
lion possible solution trees from this node. Suppose further that
two solution trees can be viewed as having nearly equal c~t. or 4'0

if their difference is less than 0.001. Then. approximately. every
thousand solution trees have nearly equal 41a or 4t0 • Obviously.
it is unnecessary to store the exact order of all solution trees.

In this section we will address two problems. First. given
an ordered depth-first search strategy and assuming that all
sibling nodes in the AND/OR-tree are independent, what is the
order to search the nodes in each level of the AND/OR-tree to
minimize the expected search time? Second. for a logic program
with shared variables and clauses, how should the subgoals and
clauses be ordered to m.inimize the average search cost of a
depth-first search?

3.1 Assumptions
In a logic program. if there are n dauses whose heads match

(sub-)goal A. then they can be ordered according to the given
heuristic values. Likewise, if there are m subgoals in the body
of a clause B. 8 :- 8 1 Bm• then the m subgoals can also be
ordered.

The assumptions made in the search strategy are described
here.
(1) For a given representation of the AND/OR-tree. a depth-first

search is used. When nodes in each level are ordered accord­
ing to the heuristic values. the search is called an ordered
depth-first search.

(2) A producer-consunrer model is used to bind values to vari­
ables. A variable is a producer if it has not been bound to
any value. otherwise, it is a consumer. For each variable not
defined in the head. only its i.eftmost occurence can be the
producer, as a depth-first ooarch is used. All other
occurences of this variable in this clause are consumers. For
example. in the clause A(x.y):-B(x.z)C(z.y)D(x.y). variable
z in subgoal B must be a producer. while variable z in
subgoal C is a consumer. Depending on whether a variable
defined in the head is a produceT or a consumer. the variable
in the corresponding subgoal will be a producer or a consu­
mer. For example. if x is a producer in A. then x in 8 is a
producer. while x in Dis a consumer. We use a subscript"+"
to indicate that the mode of a variable is a producer and a
·-· to indicate that its mode is a consumer. As an example.

A(x •. y_) :- B(x+.z+)C(z_.y_)D(x_,y_). When a variable in a
subgoaJ is a consumer. it is necessary to verify in this
subgoal whether the subgoal is TRUE or FALSE for such a
binding of value. In contrast. when a variable in a subgoal
is a producer. it is necessary to find a binding of value to the
variable such that this subgoal is TRUE.

(3) The probability of a subgoal to return TRUE and the aver­
age minimum overhead to determine whether a subgOal is
TRUE or FALSE are independent of the bound values.

(4) The overhead to test whether a subgoal in a clause is TRUE
or FALSE for a given binding of values to variables or to
generate a binding of values to variables is assumed to be
independent of other subgoals in this clause. provided that
the modes of its variables are unchanged. Likewise. the
overhead to verify the head of a clause is independent of
other clauses with the same head when the modes of its
variables are unchanged. These assumptions are valid when
results in one subgoal or clause are passed to other subgoals
or clauses through the binding of values to variables.

(5) The probability that a subgoal in a clause is TRUE for a
given binding of values to variables is assumed to be
independent of other subgoals in this clause. Similarly. the
probability that the bead of a clause is TRUE is independent
of other clauses with the same head. These assumptions are
not valid in general' logic programs because subgoals have
shared clauses and variables. but are made here to simplify
the model.

3.2. Optimal Ordering of Depth-First Searches in AND/OR­
Trees

In this section we discuss a special case in the optimal ord­
ering of depth-first searches for AND/OR~trees. assuming that
the success probabilities and expected overheads of all nodes are
independent of each other. and that a node. once evaluated. will
not be evaluated again. This special case exists in a logic pro­
gram when it does not have any logic variables and shared
clauses. For each node in the AND/OR-tree. suppose that it has
n descendent nodes. then there are n! possible evaluation orders
for a depth-first search. Our objective is to select the optimal
order of descendents for each node in the AND/OR-tree such
that the average overhead to verify the root to be TRUE or
FALSE is minimized.

Various heuristic functions can be used to arrange the order
of descendent nodes. Examples include the success probability,
the lower bound on cost. and the number of immediate descen­
dents. The following theorem shows that 4ta and ~o (for AND­
nodes and OR-nodes. respectively) are the heuristic functions to
order the search such that the expected search cost is minimized.

Lemma 1: Suppose that node K is an OR-node (resp. AND-node)
with n (resp. m) immediate descendent AND-nodes (resp. OR­
node) ordered as Kt• Kn (resp. K1 Km)• and K; is searched
before Ki+l in a depth-first search. Let Pi and C; be the success
probability and search cost of node K;. and qi=(l-J'i). If all p;s
and C;S are independent of each other and p/c; < Pi+1/c;+l (resp.
q/ci < qi+J/ci+l). l~i~n. then the expected search cost can be
reduced when Ki+l is searched before K;.
Proof: Let C and C' be the expected costs of searching the descen­
dents of node K in the order K1 Kn and that in the order with
K; and K;+t interchanged. Assume that node K is an AND node.
Then

C = f. I IT q; /·c, and (15)
lr.:::l J=l

c· = k ltH·c, + ~~H·(c;+I + q;.,c;) + ,f, ltH·c, (! 6)

Subtracting Eq. (15) from (16) yields

C'- c = IITqk)·(p;C;+l- Pi+tC;) > 0
k=l

1 ' ! 1-: f·

The proof when node K is an OR-n~de is analogous. 0

Some special cases of this ordering strategy have been
observed by Simon and others [21. 3. I].

Theorem 2: Assume that a depth-first search is used to search an
AND/OR-tree. that the probabilities of success and search costs
of all sibling nodes are independent of each other. and that a
node. once evaluated. will not be evaluated again. The ordered
sequence in which all OR-nodes. xis• are ordered by decreasing
p(x)/c(xi) and all AND-nodes. y,s. are ordered by decreasing
q(y,)/c(yi) will minimize the expected search cost over all possi­
ble ordered sequences. where p(x). q(x). and c(x) are the success
and failure probabilities and average search cost for node x.
Proof: Without loss of the generality. assume that the root (in
Level 0) is an OR-node and that each OR-node (resp. AND-node)
has n Cresp. m) immediate descendent AND-nodes (resp. OR­
nodes). For the n AND-nodes (resp. m OR-nodes). there are n!
(resp. m!) possible oredered sequences. St• Snt (resp. St Smt).
Let c/AND (resp. ci;OR) be the minimum expected cost of the j'th
AND-node (resp. OR-node) in sequence Si over all possible
ordered sequences of descendents of this node. Let Cr.OR be the
minimum expected cost of a depth-first search of the root over
all poSsible ordered depth-first searches of the given AND/OR­
tree. Since the expected search cost of a node .is the cost of
searching the subtree rooted at this node to return TRUE or
FALSE. it is independent of the search order of other sibling
nodes. Hence, if all nodes in the k'th level have been ordered
optimally. then this optimal order remains unchanged when
determining the optimal order in levels smaller than k. That is.
the principle of optimality is satisfied. The minimum expected
cost of the root r can be found from a dynamic programming
formulation.

(17)

(18)

where p~ and q~ are. respectively. the success and failure proba­
bilities of the k'th node in the i"th ordered sequence S1• c.;'_0 a can
be evaluated in a similar fashion as in Eq .. (17). Eq's (17) and
(18) can be solved by a bottom-up evaluation.

For any nonterminal OR-node (resp. AiXD-node). K. since
all its immediate descendents K 1 ••••• Kn (resp. K 1 ••••• Km) are
independent of each other. then from Lemma 1 and applying
adjacent pairwise interchanges. the optimal search order should
satisfy p(Ki)/c(Ki) > p(Ki+1)/c(Ki+t) (resp. q(Ki)/cCKi) >
q(K,.1)/c(K,.1)). 0

The above ordering strategy only holds when all nodes are
independent. In general, a logic program has shared variables
and shared clauses. Hence. the subgoals and clauses have depen­
dent search costs and swccess probabilities. Moreover. a subgoal
may be searched more than once because a given binding of
values to variables may succeed with this subgoal but fail with
other subgoals. In the next section. we will discuss a heuristic:
method to find an efficient search order.

3.3. Ordered Depth-First Search of Logic Programs
To find an appropriate order of depth-first search in a logic

program. the main problem is to develop a function to compute
the expected search cost and success probability of a clause or a
subgoal. assuming that the costs and success probabilities of all
its immediate descendents in the AND/OR-tree representation
are known. The difficulty lies in the shared variables and clauses
in different subgoals of a logic program. The search cost of a
subgoal may depend on the modes of its variables and cannot be
evaluated as in Eq. (15). For a subgoal with a producer variable.
it is necessary to generate one (or all) binding of value for the

given variable: whereas a subgoal with a consumer variable has
to test whether the given binding is TRUE. The latter cost is
usually larger than the former one. The cost functions are more
complicated when there are multiple variables. Here. a subgoal
can have a combination of producer and consumer variables.

Owing to the distinction between producers and consumers
and that a clause may be used with their variables set in
different modes, the success probabilities and costs must be
defined for all combinations of modes of variables. For example.
there are four success probabilities and four expected search
costs for clause with bead A(x.y), namely. PA(x+·Y+). PA(x y_),
PA(x_.y ...). PA(x_,y_), cA(x y ...). cA(x y_), cA(x_.y ...). and
cA(x_.y_), where a subscript'+. indicates that a variable is a pro­
ducer. and·-· indicates that it is a consumer. Let L be the set of
variables in a subgoal. and L+ and L_ be the subsets of producer
and consumer variables. For a clause with head A(L+.L_), all
variables in L_ have been bound (called a binding-set) before
this clause is searched. whereas all variables in L+ must be
bound after the subtree rooted at clause A has been searched.

In Figure 2 we have shown a Prolog program to query
granddaughter(•.•). In Table 2 the average search costs for vari­
ous modes of variables X and Y in granddaughter are shown.
For different modes, the orders in which the depth-first search
should be performed may be different. We have shown the
order that minimizes the search cost for two of these combina­
tions of modes. The structures for the other two combinations
are different. The values in Table 2 iJJustrate that the difference
in costs between the best and the worst orders can be a factor of
one to seven.

For node A(L). PA(L+.L-) is defined as the probability to
successfully generate a binding-set of L+ under the condition
that the given binding-set of L_ is TRUE. namely.

PA(L •. L_)=pA(L_)pA(L.JL) (19)

mother(theresa.martha).
motherCjane,martha).
mother{michael.mary).
mother(susan.jane).
m.other(edward.jane).
wife(john.martha).
wife(paul.mary).
wife(michael.jane).
female(theresa).
female(susan).
female(X):-wife(_.X).
father(X.Y):-mother<X.Z).wife(Y.Z).
parent(X. Y):-mother(X. Y).
parent(X.Y):-father(X.Y).
grandparent(X.Y):-parent(Z.Y).parent(X.Z).
granddaughter(X.Y):-female(Y).grandparent(Y .X).

Figure 2. Minimum-cost Prolog program on family tree with
granddaughter(-.+) or granddaughter(-.-) as the goal.

Modesoj Minimum Maximum Mean Standard
X.Yin Avg. Avg. A\.·g. Deviation

I "randdaul7hter Cost Cost Cost
20.6 97.8 46.9 28.9

-.+ 14.1 97.9 47.4 31.6
+.- 20.1 130.8 81.6 36.0

i +.+ 11.5 20.6 16.6 4.4

Table 2. Average Costs of evaluating granddaughter(X.Y) in
Figure 2 for all combinations of bindings of variables
and all possible solutions returned. (Each traversal of
a subgoal or clause has unit cost. Each producer vari­
able oilly produces one binding at a time.)

!

PA(L_) is the probability that the binding-set of Lon A is true.
PA(L+ I L) is defined as n/(n+l). where n is expected number of
binding-sets of L+ in subgoal A for a given binding-set of L_. In
this case we are approximating the distribution on the number of
distinct binding-sets of L+ for a given binding-set of L_ as a
geometric distribution with parameter p. For such a geometric
distribution. its expected value is p/(1-p). which implies !hat
p=n/(n+1). In the special case when all variables in L are
producers. then PA(L+) = m/(m+O. where m is the total number
of generated binding-sets.

For A(L+.L_), its expected cost. cA(L+,L_), is defined as the
expected cost of generating a successful binding of variables in
L+. given the binding of variables in 1._. If all variables in L are
consumers. then cA(L_) is- the expected cost of testing whether a
binding-set is TURE.

For clarity. we illustrate a heuristic method to compute the
various costs. In this method all probabilities are assumed to be
independent. For a clause A(x.y) :- B(x.z).C(z.y) with known
costs and probabilities for subgoals 8 and C. the expected cost of
A can be computed by modeling the test process as an absorbing
:\1arkov chain [26]. If one solution is sought, then the absorbing
Markov chain in Figure Ja is used. The two sink nodes (So and
s 1) represent the states of success and failure. After a finite
number of steps. the process must enter one of these absorbing
states. To find the expe<;:ted cost. we need to calculate the
expected number of times that the process is in transient states~
and s3. In this example P. the transition matrix. Q. one of its
submatrices denoting the process in the transient states. and R.
another submatrix denoting the transitions from the transient
states to the absorbing states. are

I 0 0 0
0

p = 0 q,

p, 0

0 0

0 P2

q, 0

-1° q,l R- 0 p, (20)

Let ni be the expected total number of times that the pro­
cess is in state si. and M;[ni] be the mean of ni when the chain is
started in S;. From the theory of absorbing :\tfarkov chains (26].
N = {M,(n1Jl =(I- Qr1• N is called the fundcurumtal mmrix. In
our example

N= (21)

As a result. the expected cost is (c2+p2c3)/(1-p2q3 J. where c; is
the cost associated with states;- If B is searched before C. then
A has expected cost

()
c8 (x+.z+) + p8 (x.,...z+l-cc(z_.y +)

c A x •. y + = _;:.--:_;_7 :...::--,;-.:.,-....::.-,..:..;_
1 Ps(x+.z+)•qc(:z_.y.,..)

If subgoal Cis searched before B. then A has expected cost

'(l __ '.::.'(:..'..;•..:·Y:..•:._l_+.,....:.p..:'o.c(_z+;-·.::.Y_:,•,..l•_c::.'(.:_x..;•-·'-_l
c~ x.,...y.,.. -
- 1 - PcCz+•Y .>-qs(x.,...z_)

(22)

(23)

Comparing cA and c_~~,'. the order with the smaller ~.:ost is used.
Expected costs of clause A with variables in other rnoc!es can be
computed similarly.

\Vhen all solutions in a subgoal have to be found. the pro­
cess can also be modeled as an absorbing Markov chain. Figure
3b shows the absorbing Markov chain for the above exan.-ple.

To compute the success probability of a clause. if b;_1 is the
probability that the process starting in transient state si ends up
in absorbing state sj. then from the theory of absorbing Markov
chains. lbi) = B = :"JXR. In our example. b2.o = p2p3/(1-p2q 3).

and b2.1 = q2/(1-p2q 3). If subgoal B is searched first. then the
success probability of node A is

••

Figure 3. Example to compute the search cost and probability
using an absorbing Markov chain.

(24)

In general. if a subgoal has k variables, then 2c combina­
tions of probabilities and costs corresponding to all combinations
of modes of the variables have to be found.

The above example illustrates the use of an absorbing Mar­
kov chain to order the search of descendents of an A::\"0-node.
which represents the evaluation of a clause. In contrast. to order
the descendents of an OR-n·ode, which represents the selection of
multiple clauses with the same head. it is observed that once a

· descendent of an OR-node has been searched for a given
binding-set. it will not be searched again. Unlike descendents of
AND-nodes. there is no backtracking involved for a given
binding-set. According to Theorem 2. descendents of an OR-node
should. therefore. be searched in decreasing order of ratios of
success probability to cost. The cost and probability of an OR­
node can be computed in a similar fashion as in Eq. (15) when it
has at least one consumer variable. When all its variables are

. producers. the average cost is taken as the average cost of each of
its descendents weighted by the fraction of the total number of
binding-sets that can be generated.

The basic idea in a systematic method to determinate an
appropriate ordering of the subgoals and clauses is to associate
with each subgoal and clause a table of the expected costs and
probabilities for all combinations of modes of variables. and to
use the appropriate costs and probabilities depending on the
modes set for the variables. The best or<;Jer with the minimum
expected cost is chosen from all possible permutations of descen­
dents. The number of permutations may be large. In this case
heuristic information, such as the number of variables in a
subgoal. can be used to eliminate inefficient candidate permuta­
tions. Note that the cost of each node in the AND/OR-tree
representation depends only on the costs and probabilities of its
descendents. provided that the descendents only depends on each
other through shared variables. Here. the selection of the best
order in a given level does not influence the computation of costs
in levels above. That is. the computation of the minimum cost
satisfies the principle of optimality. and the optimal order can be
found by dynamic programming. In practice. subgoals are gen­
erally dependent on each other through shared clauses. which
results in over-estimation of the costs. The proposed scheme is
still applicable as a heuristic method to arrange the order in the
search process. Statistic sampling has to be used to estimate the
cost and probability of a node after the order of its descendents
is determined. This reduces the accumulation of errors as nodes
in higher levels of the AND/OR-tree are ordered.

A final point on the ordering of nodes in the AND/OR-tree
representation of logic programs is that different orders may be
found depending on the modes of the variables. Either an ·aver­
age' order may be used or multiple program statements may be
generated for different cases to reflect the preferred order.

4. CONCLUSIONS
In this paper we have studied the computational efficiency

of parallel and ordered depth-first searches to solve optimization

. :-

and decision problems. The performance bounds and conditions
to cope with anomalies in searching optimization problems
represented as OR-trees have been derived and verified by simu­
lations. Speedups have been found to be related to the problem
complexity and the number of incumbents obtained during the
search process. For a problem with a high complexity and a
small number of incumbents. such as integer programming prob­
lems. a near..:linear speedups can be achieved with respect to a
large number of processors.

An ordered depth-first search strategy has been studied
with respect to decision problems represented as Al\iD/OR-trees.
When the success probabilities and costs of sibling nodes are
independent of each other. and a node. once searched. will not be
searched again. the sibling nodes should be ordered according to
ratios of probability and cost to minimize the ex:petted total
search cost. Due to shared clauses and variables in a Prolog pro­
gram and that backtracking is allowed. it is difficult to find the
optimal depth-first search order. An absorbing Markov chain to
model the effects of backtracking and a dynamic programming
method to order the search have been developed.

ACKNOWLEDGEMENTS
The authors would like to thank Mr. Mark Gooley for gen­

erating the results in Figure 2 and Table 2.

REFERENCES ·

{1} J. Barnett, ··optimal Searching from AND Nodes." Proc.
In.t'l Joint Con{. on Artificial Intelligence. pp. 786-788,
William Kaufman. Inc .. Los Altos. CA. 1983.

[2] A. Ciepielewski and S. Haridi. ··Execution of Bagof on the
OR-Parallel Token Machine:· Proc. lnt'l Con{. Fifth Gen­
eration Computer Systems. pp. 551-560. ICOT and North­
Holland. 1984.

[3] M. Garey. '"Optimal Task Sequencing with Precedence
Constraints:· Discrete Mathematics. val. 4. no. 1. pp. 37-
56. 1973.

[4] T. lbaraki. "'Theoretical Comparisons of Search Strategies
in Branch-and-Bound Algorithms."" Int'l]. of Computer
and Information Sciences. vol. 5. no. 4. pp. 315-343.
Plenum Press. 1976.

(5] T. lbaraki. "Computational Efficiency of Approximate
Branch-and-Bound Algorithms:· Math. of Oper. Research.
val. 1. no. 3. pp. 287-298. Inst. of Management Sciences,
1976.

[6] M. Imai and T. Fukumura. ··A Paralleli2ed Branch-and­
Bound Algorithm Implementation and Efficiency:· Sys­
tems, Computers, Controls. vol. 10. no. 3. pp. 62-70.
Scripta Publishing. June 1979.

[7] R. Kowalski. Logic for Problem Solving, North-Holland,
1979.

(8] V. Kumar and L. N. Kanal ... A General Branch and Bound
Formulation for Understanding and Synthesizing And/Or
Tree Search Procedures:· ArtificUd lntelli.ger'I,C$. val. 21.
no. 1-2. pp. 179-198, North-Holland. 1983.

[9] T. H. Lai and S. Sahni. "Anomalies in Parallel Branch­
and-Bound Algorithms.'' Comm. of the ACM. val. 27. no.
6, pp. 594~02. ACM. June 1984.

[10] G.-J. Li and B. W. Wah. "Computational Efficiency of
Parallel Approximate Branch-and-Bound Algorithms.··
Proc.Int'l Con.f. on. Parallel Processing. pp. 473-480. IEEE.
!984.

[11] G.-J. Li and B. W. Wah, .. How to Cope with Anomalies in
Parallel Approximate Branch-and-Bound Algorithms.··
Proc. NaLiorud Con.f. on Artificial Intelligence. pp. 212-
215. AAAI. 1984.

[12] G.-J. Li and B. W. Wah. "'MANIP-2: A ~ulticomputer
Architecture for Evaluating Logic Programs."· Proc. Int"l
Con{. on Parallel Processing. pp. 123-130. IEEE. June
1985.

[13]

[14]

[15]

[!6]

[I 7]

[18]

[19]

[20]

[21]

[22]

. [23]

[24]

[25]

[26]

G.-J. Li, Parallel Processing of Com.biruztorial Search Prob­
lems, Ph.D. Dissertation. Purdue L"niversity. W. Lafayette.
IN. Dec. 1985.

· G.-J. Li and B. W. Wah. "'Optimal Granularity of Parallel
Evaluation of AND-Trees:· Proc. 1986 Fall Joint Com­
puter Conference. ACM-IEEE. Nov. 1986.
G.-J. Li and B. W. Wah. ··coping with Anomalies in Paral­
lel Branch-and-Bound Algorithms.'" Trans. on Computers.
vol. C-35. no. 6, pp. 568-513, IEEE. June 1986.
G.-1. Li and B. W. Wah. Computatioruzl Efficiency of Com­
bin.atorial OR-Tree Searches, to appear in IEEE Trans. on
Software Engineering. 1986.
J. Mohan ... Experience with Two Parallel Programs Solv­
ing the Traveling-Salesman Problem:· Proc. 1983 lnt"l
Con{. on Parallel Processing. pp. 191-193. 1983.
T. Moto-oka. H. Tanaka. H. Aida. K. Hirata. and T. Maru­
yama. ""The Architecture of a Parallel Inference Engine
(PIE)," Proc. Irtt"l Con{. on Fifth Generation Compuzer
Systems, pp. 479-488. ICOT and North-Holland, 1984.
D. Nau. V. Kumar. and L. J<.anal. "'Qeneral Branch and
Bound and its Relation to A and AO :· Artificial Intelli­
gence. val. 23. no. 1. pp. 29-58. ;'\;orth-Holland. 1984.
J. Pearl. Heuristics: Intelligent Search Strategies for Com­
puter Problem Solving. Addison-Wesley. 1984.
H. A. Simon and J. B. Kadane. ""Optimal Problem-Solving
Search: AU-or-None Solutions:· ArtificiallnteUigence. vol.
6. no. 3. pp. 235-247. North-Holland. 1975.
B. W. Wah andY. W. E. Ma. ""MANIP-A Parallel Com­
puter System for Implementing Branch and Bound Algo­
rithms." Proc. 8th Annual Symp. on Computer Architec­
ture. pp. 239-262. ACM. 198!.
B. W. Wab andY. W. E. Ma. "MANIP-A Multicomputer
Architecture for Solving Combinatorial Extremum-Search
Problems:· Trans. on Computers. vol. C-33. no. 5. pp.
377-390. IEEE. May 1984.
B. W. Wah and C. F. Yu. "Stochastic Modeling of
Branch-and-Bound Algorithms with Best-First Search."
Trans. on Software Engineering. vol. SE-11. no. 9. pp.
922-934. IEEE. Sept. !985.
B. W. Wab, G.-J. Li. and C. F. Yu. "Multiprocessing of
Combinatorial Search Problems:· Ccmputer. vol. 18. no. 6.
pp. 93-108. IEEE. June1985.

· J. G. Kemeny and J. L. Snell. Finite Markov Chains, D.
Van Nostrand Company. Inc .. New York. NY. 196.5.

.,
.•

