
Proc. COMPCON, San Francisco, CA, IEEE, March 1988

PROLOG AT THE UNIVERSITY OF ILLINOIS'

M. M. Gooley L. V. Kale D. A. Padua B. Ramkuma.r U. S. Reddy D. C. Sehr W. W. Shu B. W. Wah

UniYersity of !Jlinois at Urbana-Champaign

Ab,tract. This paper pn··umta a brief' description of' rour
logic programming reSearch projecta under way at the
Unlveraity or Illlnola at Urbana-Champalgn. Three of
these projecta deal with tho deaign of Prolog intet>pretera
and compilers. The other project deala with the deaign of
languages that combine then functional programming and
the }ogle programming paradigma and with the tl'anafoz-..
matlan or programa written Jn these languages.

Introduetlon

The logic programming language Prolog was developed
about fourteen years ago by A. Colmera.uer and P. Roussel
[Rous75J. Prolog in particular, and logic programming
languages in general are today the subject of increasing
interest on the part of many research groups. This paper
presents a brief description of four of the logic: programming
research projects under way at the University of IJlinois at
Urbana-Champaign. The first three section of the paper
describe projects dealing with the. design of Prolog inter·
preters and compilers emphasizing efficiency and parallelism.
The first project deals with the use of heuristics to reduce the
search space. The second project concentrates on efficient
OR-parallel execution of standard sequential Pr~log pro
grams. The third project studies the use of both AND and OR
parallelism. The last project presented here deals with tbe
design of languages that combine the functional programming
and the logic programming paradigms and with the transfer·
mation of programs written in these languages.

Heuristic guiding and pruning

We have performed an extensive survey o(computera,
!rom both the h:!.rdware and software perspectives, to sup·
port artificial intelli~ence processing {\V:";Li86a., V.'oLiS~b,

•The worlc o(L. V. Kale', D. Ramicurna.r, and W. W. Shu wu support.ed in
p:Lrt by the th• Na.Uona.l Scie.ac:e Founda.tion under C:ut NSF-CCR-
8700988. 'Ihe Work oC D. A. Padua and D. C. Sehr wu supported ill put
by the National Science Foundation. u11.der Gu.nt NSF-MIP-3tl0110, the
Depa.rtmellt of Energy under Gra:nt DOE DE-FGOZ-35ER25001, ud a
douation (:om IBM Corporation t.o the Center for SupercomputiD(
Reseazch and Development D. C. Sehr holds a. fellowship from the Office
o(Na.val Resea.rc.h. 'Ihe worlc of U. S. Reddy wu supported in put by the
N'a.tioD.al Aerouutia and Space Admini.st.ration unda- Grant. NAG 1~13.
T';.e wor~ olD. W. W:~.h and~{.)..i. GtJul~:y w:u supported in put by the
N:~otional Atrooautics u.d Space Administration under Grant. NCC :!-·Hll.

\Vah87, \VaLi88}. 'Ve !,:n·c tound that the execution of Pro
lag programs is inefficient due to redundant searches. Our
research on efficient execution of Prolog programs is centered
around two themes: reducing the search space through heuris
tic guiding and pruning, and efficient execution of Prolog prcr
grams by parallel processing (LiWa86eJ.

In heuristic guiding, we have studied two related prob
lem:r: the identification of attributes that can be used to guide
the evaluation of Prolog programs, and the static reordering
of programs at compile time to reduce redundant searches.

In identifying attributes to guide the search, we model
the evaluation of a Prolog program 33 the search of an AND
OR tree. An attribute that has been found to be useful to
characterize the merit of evaluating a subtree is the ratio of
success probability of the subtree to the corresponding over
head (cost) of evaluation (LiWaSSj. If a depth-first search is
used and aU nodes in the search tree are independent, then an
optimal search strategy to minimize the expected total cost is
to reorder the descendents of AND nodes by increasing the
ratios of success probability to cost and to reorder OR nodes
by decreasing the ratios of success probability to cost
[LiWa86d). In a best-first search, the AND-OR tree has to be
transformed so that all OR nodes are in the top part. of the
search tree and all AND nodes are in the lower part. An
optimal strategy to search the transformed tree is to search
all OR nodes by decreasing ratios o(success probability to
cost and all AND nodes by increasing rar.ios of success proba·
bility to cost [LiW aSS{. It should be noted that when the
search tree is transformed a.s described above, ita size is
increased by an exponential order.

In practice, nodes in the .A.ND-OR eearch tree are depen
dent and may be traversed more than once due to backtrack·
ing. V{e study the effects of backtracking by modeling the
evah.:~eion o(subgoals in a clause and c:lauses with t.he same
h.~ad a! an a.bsorbinlt Markov Chain [Ll\VaSS!. Such an
approach is heuristic in nature because nodes in the search
tree may be dependent, while nodes in the l\1ariwv Chain are
independent and sat.isfy the memoryless property. The
evaluation of success probabilities and costs is recursive.
That is, the success probabilities and costs in the lower part
of the search tree are evaluated first. This will provide suc·
cess probabilities and casts to clauses that cal! these subgoals,
and their success probabiliLies and casts can then be
evaluated.

Based on the technique described above, to approximult:
the merit of evaluating a clause or subgoal, we have studied
the static reordering of Prolog subgoals and clauses to
minimize the expected total cost [GoWa88J. Two major
problems have been addressed. First, it is necessary to define
the equivalence of results when the executlon order is
changed. Equivalence can be thought of as what is acceptable
to the users as an equivalent solution set. We have defined
four classes o! equivalence: reflexive, set, tree, and ine
quivalent executions. In reflexive equivalence, the results in
the solution set are obtained in the same order; this can only
be achieved through minimal or no reordering. In set
equivalence, the same set of results are obtained but possibly
in a different order. In tree equivalence, a superset of subset
of solutions may be generated, while in inequivalence, any
result can be generated. Reordering may result in set, tree,
or inequivalent executions. Our objective is to maintain set
equivalence in the presence of side effects and control predi
cates. The second problem addressed in this research is the
ch&l'acterba.tion of restrictions on reordering and the develop-.
ment of methods to detect these restrictions. Restrictions on
reordering are governed by fixity, semi-fixity, and control
predicates. We have designed a new system of calling modes
for Prolog, geared to reordering, and a system for inferring
them automatically. We have developed an approach that
used multiple versions of the same clause in different modes,
each with different order oC execution. We improved the
Markov-Chain method for determining a good goal order for
Prolog clauses, and U:!!!ed it as the basis for a reordering sys
tem, showing how it could be guided by information about
modes and restrictions to generate reordered Prolog pro-
grams that behaved correctly.

In heuristic guiding, we have studied the detection of
ndundant evaluations in a Prolog program, the abstraction
of previous evaluations by explanation-based learning, and
the storage of previous solution sets by caching [WaLi88].

In parallel processing of logic programs, we are
currently simulating a parallel processing system that evalu
ates Prolog programa baaed on the Markov-Chain method
described above, the maintenance or equivalence of solution
sets, and the automatic detection Q(precedence order of exe-o
cution. The architectural model assumed is a multiprocessing
system. with a hybrid of tightly coupled m.rlltiprocessors and
loosely CQUpled distributed computers [Li85,LiWa85}. The
objective here is to develop methods to coordinate the search
in a distributed fashion, Vlithout vi~lating precl!dence while
maintaining equivalence uf r~tJlt:, and invtlltigate strategies
to avoid detrimental <i.nomalies in paralleijsm (LiWa86cJ.

OR-paralleliam in the presenc.e of side-efl'ec.ta

The goal of this project is the design and implementa
tion of a Prolog compiler that accepts standard sequential
Prolog as input language and produces efficient code for a
parallel processor. The translation of sequential programs
into equivalent pMa.llel versions has several advantages. The
programmer's task is simplified since there is no longer the

ueed to deal with parallelism explicitly, and sequential pro
grams can be easily ported between different clasaea of
rnachinea. Research on this same compiling strategy for FOR
TRAN and other languages was pioneered at the University of
Illinois many years ago. Techniques developed at Illinois are
used today in the FORTRAN compilers or many supercomput
ers and minisupercomputers.

In the early stages of this project we decided to take
advantage of OR-parallelism only, and leave to the project
described in the next section the study of the interaction
between .AND and OR-parallelism. OR-parallelism wa.a chosen
because it seemed more likely to achieve good speedups on
conventional multiprocessors. The reason for this is that,
under OR-parallelism, the target parallel program can be
organized in such a way that therct is littl8 interaction
between the different processes cooperating in the aeMch for
solutions. Also, restricting the work to only one form or
parallelism will allow us to concentrate more on the quality
of the analysis and code generation phases. We hope that the
outcome of this work will be a compiler capable o! generating
very efficient parallel code in a reasonable time.

The project is orgubed into three phases. During the
first phase, an interpreter was written. During the second
phase we will explore different strategies and assess their per·
formaoce potential, and during the third phaa:e we will write
the compiler based on the techniques a.nd measurements
obtained during the first two phases,

The central structure in the interpreter or target para!·
Iel program is a representation of an evolving OR-tree whose
root corresponds to the input query. In this tree, each node
represents a set of bindings and a conjunction of goala. Each
descendant of a node corresponds to a successful unification
of ita leftmost goal with a different clause. The clause used
for gen-erating a node will be called its originaJing clau4e.
The bindings produced by the unification become the bind·
ings o! the new node. Also, the query of a node is the query of
its parent with the leftmost goal replaced by the rigM-hand
side of the originating clause. A node containing an empty
query ia called a su~~cn, and a node whose leftmosG goal can·
not be unified with any clauae is called a failure.

The target parallel program consists of several cooperat
ing processes. Assume first that there a.re no goais with
side-effects in the Prolog program. Under this assumption,
execution proceeds aa follows. When execution starts, the
OR-i.ree is just the root node containing the user input query.
One of the cooperating processes grabs thi1' node while the
:)thers remain idle. The process then tries to unify thE left
most goal with every clause in ita procedure. A child node is
created for every successful unification. The binding set 2Jld
the query of each child node are also computed as described
above, and both items are stored in the child node. Execu·
tion terminates if all the children of the root node a.re
successes, or it no unification is possible, i.e. the root is a.
failure. Otherwise there will be some children that a.re ready
nodu, i.e. nodes that are neither successes nor failures a.nd
whose children have not been generated.

After processing the root, the search of the OR-tree
proceeds in a similar way. At any given time, there may be
several ready nodes in the evolving OR-tree which gives the
opportunity for parallelism by having each of several
processes work on a different ready node. The work on each
of these nodes is the same as the one described for the root
node. Execution terminates when no ready nodes remain.

When predicates with side-effects such as assert,
retract, and write are present, the processes have to
perform the action corresponding to these predicates before
generating the child node. In our system, predicates with
side-effects other than cut are evaluated one at a time and in
the order specified by the Prolog program. This is achieved
by linking the nodes of the evolving OR-tree in post-order to
form the scheduling queue. Processes look for work in this
queue, and predicates with side-effects other than cut are
evaluated only when they are the leftmost goal of the left
most ready node in the scheduling queue.

The three most important issues with respect to this
work are scheduling, how to handle different simultaneous
bindings to the same variable, and how to correctly process
the side-effect predicates. We decided to concentrate, at least
at the beginning on the scheduling and side-effect issues
which have not been studied as extensively as the multiple
bindings issue. In the current version of the interpreter, we
have implemented some of the models described in the litera
ture [HaCH87,Warr87J with the purpose of studying their
behavior before selecting one or trying to· design a new
scheme.

Next we discuss briefiy the algorithms we use to handle
the predicates with side-effects. The main idea of these algc>a
rithms is easy to describe. The details, however, are lengthy,
and cannot be presented here due to space limitations. They
can be found in [Ko.PSSS].

Executing a cut is done by deleting from the scheduling
queue the nodes between the cut node and the parent of its
frame. This is a constant time operation in our system.
When the children of a ready node, say N, are generated, the
identification of N is inserted in a list associated with the prc>a
cedure of the leftmost goal of N. When a. clause is asserted
into a procedure, this list is used to insert an additional child
for all the appropriatE" nodes in the list. Similarly, when a
new node is added to the tree, its identification is inserted
into a. list associated to its originating clause. This list. is used
to handle retract.

An important issue is the interaction between schedul·
ing, oarbage collection and the processing of assert,
retract, and cut. The major difficulty is that care has to be
given to the scheduling and the garbage collection algorithms
to avoid redundant and useless work. For example, when a
subtree is cut from the 0R-tree1 a process working in that
subtree should be redirected towards another part of the tree
to avoid wasting computation. Also, it may not be beneficial
to garbage collect subtrees removed by cut, since the cut
itself could later be removed by another cut.

The REOUCE-OU proeeae model

The main motivation behind this research is a premise
that massively paril.llel machines will be available in near
future. We thea need to extract maximal paraUelism from
given logic programs. This is particularly important !or
many combinatorially explosive AI computations. As a conse.
quence, we cannot rely solely on AND or OR parallelism, but
must pursue both sources of parallelism in concdrt.

We found that the A.ND-oa trees, which are a usual
representation ot logic computations, are not adequate for
representing parallel computations. Firstly, as the binding
information is spread through the tree-, the nodes don't
represent independent subproblems. Secondly, the tree hides
an important form oC parallelism, as there is only one OR

child-node for every literal of an AND node [KaWa84J. The
REDUCE-OR procese model [Kale87a] is based on the
REDUCE-OR trees which we developed as a representation of
Iogie computations suitable for parallel interpretation.

We will use a simple example to illustrate the baaic
operation of the model. Fjgure 1 depicts a data join graph
(DJC: a Corm of data dependence graph), for a. clause. I is the
input value given to this clause. Assume that p,q and r are
non-deterministic, and return multiple solutions. As the
graph indicates, p computes values for X that q and r can use
in parallel. The ROPM starts a new instance ot q and r as
soon as a X value is returned from p. Every Y value returned
from q is paired with each Z value that has been returned by
r and that shares the same X value as an ancestor. (Similar,
symmetric, pairing happens when a Z value arrives from r)
For every new pair so formed, a new instance of s process is
started to compute a T value. Thus, if p returns two X
values, and q and r each give 3 values for every X value, the
ROPM will form 9 Y-Z pairs for each X value, and may have 18
a processes running in parallel at a. time. In contrast, the
AND-OR process model (AOPM) [ConeS3J can have only one
instance of s running at a time. A pure OR process model will
of course miss the parallelism between q and r. The AOPM
does execute alternate clauses for p in parallel. Similarly, for
each X value, it will have 3 processes each for q and r running
in parallel. But as i~ deals with one binding for each \'ariable
at a. time, it misses the parallelism between multiple
instances of a conaumer literals. We call this consumer
instance panllclism. We find that it is an important source
of parallelism in AI computations where the generate-and
test paradigm prevails. In an 8-quecns program, admittedly
a toy example, the ROPM oLtains about 26,400 parallel
actions in contrast tc; 4,544 obtained by a pure OR model, and
just 1 obtained by AOPM. (The AOPM can get the sa. me degree

0

Figure 1; The Operation of ROPM

of parallelism by rewriting the Logic program).

We have shown in [Kale87b] that ROPM is complete and
that it produces more parallelism than most proposed
models. This 1maximal parallelism' comes at a price. The
ROPM has to do much more book-keeping than the AOPM,
say. As a simple example of the complexities involved, notice
that theY values and z values coming from q and r (in Figure
1) have to appropriately distinguished to ensure that a solu
tion Cor q(xl,Y} is not paired with a solution Cor r(x2,Z). For
a model suc:h as the AOPM, this is no problem because lt
allows only one X value to be alive at a time. The challenge
is then to develop techniques and algorithms that control the
overhead in ROPM. In fact, we a.im at reducing the overhead
to the extent that even on computations where ROPM gen
erates the same parallelism as AOPM, it should be as efficient
as AOPM (and within a small factor of sequential compiled
execution). We intend to achieve that by following the vener
able dictum: pay the overhead !or a feature only when you
use it (whieb is, of course, easier said than done).

Consequently, we are focusing on optimizations to our
basic algorithm. One o.ptimb:ation deals with the consistency
problem mentioned above. Instead of requiring a full rela
tional join of the XYZ values kept in relations at the p and q
ares, it allows us to access only the consistent values, by
maintaining a few additional pointers. Many 'such optimia:a
tions are under investigation. The other techniques involve
dynamically trading a part of our a.sset, the parallelism, for a
reduction in overhead. These may lead to a tunable process
model, which generates more or less parallelism depending on
the runtime conditions in the parallel system. Throttling
techniques whieh take over when the system memory starts
to overflow are also being developed.

A major source of improvement will come from static
analysis of given programs. Logie Programming is a very
high level language, and our process model is also a more gen•
eral one in that it attempts to handle different kinds or paral
lellam at once. In any particular clause the full generality of
the basic algorithms is not usually needed. Compilation gives
us an opportunity to handle each clause and each call
differently, and static analysis should provide information
useful to simplifying code for individual clauses. The kind of
information we have found useful includes: a bound on the
number of 1embedded' variables returned by a call, the vari
ables that a given variable 1depends on~ at a given point in
the program, etc.

An interprP.ter fur the ROPM baa been implemented. It
runs en a::. ALLWiT rx;; (a shared memory machine), and on
an Intel hypercube with 32 nodes. (The ROPM is implemented
as a message passing system. A shared memory system pro.
vides additional opportunities for optimizations, and
simplifies load distribution). It also runs on ORACLE, a mul
tiprocessor simulation system that can simulate a variety of
architectures. Related ongoing research includes
(1) Message-selection strategies, which significantly affect
many performance metrics including the memory usage;
(2} load-balancing strategies for message-passing systems
(3) An 'operating system, (called the chare kerne~ that can

support many types or parallel symbolic computations includ
ing Logic programming,

Functional logic programming
The functional logic programming project at University

or Illinois is involved in the investigation or languages that
combine functional programming and logic programming
paradigms into a unified framework. Our position, explained
in [Redd85], is tha> Iogie progr4mming means perCorming
computations based on the notion oC 1olving tor variables.
The notion of solving is not limited to predicates, it can be
applied to functional expressions as well. The operational
mechanism used for solving for va.riablea in functional exprea
sions is called narrowing [Fay79, HulJSO, ReddBSJ. Narrowing
essentially involves performing !unction application using
unification for parameter passing, rather than pattern match·
in g.

For example, consider a function (or appending liata,
defined by the equations

append(nil, Y} -> Y
append(A.X, Y) -> A.append(X,Y)

In a conventional implementation of functional programming,
such a definition can only be used for evaluating applications
or append to ground (variable-free) terms. But, in a.n imple
mentation using the narrowing mechanism, append can also
be applied to nonground terms. The variables in the argu
ment terms are instantiated by unifying the arguments with
the formal parameter terms on the left hand sides or the
definition equations. For example, the evaluation of the !unc
tion application append(L, M) can be unified with the left
hand sides oC both the equations. Each such evaluation yields
a pair or results <st e> where s is a substitution on the ini
tial expression, and e the result ol evaluation using the substi
tution. For the expreasion append(L, M}, the first step of
evaluation produces two such pairs:

1. substitution: L -+-nil, result: M
2. substitution; L -+ A.X, result: A.append(X, M)

Further evaluation oC t.he second result term again yields two
pairs:

2.1. substitution: L - A.nil, result.: A.M
2.2. substitution: L- A.A'.X, result: A.A'.M

This then makes up the narrowing search space, and. travers
ing it. in a complete manner produces all possible solutions.
Using baektracking to traverse the search space, though
incomplete, provides an operationally viable method to
enumerate the solutions, one by one. Each "solution" answers
the question "for what instantiation of the variables does the
initial expression reduce to a value, and what is its value
under that instantiation?"

A functional logic language based on these ideas, called
Scope, is being used as the lp~c.ification languag~ in the
FOCUS program derivation system discussed later. In addi
tion to the usual functional programming constructs, it

contains 4 constructs which facilitate the introduction of logi ..
cal variables in expressions and solving for them. These are

1. if p then e
2. e; e'
3. forsome(X) e
4. unionover(X) s

where p is boolean valued expression, e, e1 are any exprcs ..
sions, and s is a set-valued expression. (The terminology
"set" is historical jTurn81], but these are in reality multisets,
i.e., with possible duplicates). The first expression denotes
the value of e if the expression p is true, and is undefined oth·
erwise. The second construct denotes the choice of e and e'.
If any one of them is defined, then it denotes the value of the
defined expression. If both of them are defined, hut have
different values, then the expression is erroneous. The third
construct, similar to ~xistential quantification in predicate
logic, means the value of e for some instantiation oC X that
makes e defined. Again, if e has different values for different
instantiations of X, then the expression is erroneoua. The
fourth construct yields a set of values rather than a single
value. It yields the union of all set values of s !or all instan
tiations of X. The formal semantics of this language together
with a set of examples illustrating its use may be found in
[Redd87aj.

The second aspect of our research is in using the nar
rowing mechanism for transforming specifications into
efficient programs. We are constructing an interactive pro·
gram transformation •ystem called FOCUS [Redd87bj for
this purpose. Most programs that ca.n be expressed
abstractly and concisely using the logical features of Scope
have poor performance. (For example, maximum of a list
can be expressed as its largest elem·ent, a.nd sort of a list ca.n
be expressed as an ordered permutation of it). The FOCUS
system allows the user to use such programs aa Specifications
and transform them step by step into efficient programs.

The FOCUS system structures program derivations as
trees, and uses a tree editor called XTED for its user inter
face. The program specification is entered in the root node of
the derivation tree. Then nodes are created for each function
that the user wishes to transform. Selecting a function to
transform (together with its specification) is calJed focusing.
A tree .structure follows from the fact that in transforming a
fUnction, subsidiary foci may be needed for transforming its
:subexpressions. Focusing is also performed on properties of
functions which need to be proved and then used in transfor
mations. A number of tra~:oformation and deduction opera·
tions are provided tc.o manipulate expressions and to prove
theorems. The most often used transformation operations
are simplification (evaluation without instantiation of any
variables), e:rpatuion {evaluation with instantiation), and
recursing or application-introduction (replacing instances of
function specifications by function applications, or invoking
inductive hypotheses). The deduction operations closely
correspond to natural deduction inference rules.

The use of the FOCUS system operations ensures that
the derived programs are equivalent to the original

specifications. Moreover, the system also documents all th<!
derivation activity performed in each focus node. Such a
documentation is called a derivation script. When a
specification is altered, the scripts off all the nodes are
replayed to redo the derivation automatically. In this use,
the FOCUS system acts much like a compiler, except that the
optimizations performed are no' preprogrammed by the
compiler-writer, but programmed by the user himself in ear·
Her derivation effort. The user is alerted to the situations
where the replay Orea.k6 (i.e., where the old script is not appli
cable to the new specification or where it produces
significantly different results from the earlier derivation).
These situations are then handled by rederiva.tion. Replaying
is also used to modify a derivation. The system keeps track
of the dependencies between focus nodes. \Vhen the deriva·
tion of a node is changed, the scripts of the other dependent
nodes are replayed. Using the replay facility, changes can be
propagated through entire programs semi-automatically.
Thus, the FOCUS syatem supports the aulomation-Oasecl
40/luu~re development paradigm widely recognized to be the
future software technology [Balz83J.

[Balz83J

[Cone83J

[Fay79J

[GoWa88J

[HaCH87J

[Hull80J

[Kale87aJ

[Kale87bj

Reference•

R. Balzer, E. Cheatham, and C. Green. "
Software techaology ia the 1990's: Using a new
paradigm," Computer, Vol. 16, No. 11, Nov.
1983, pp. 39-45.

J. S. Conery. "The And/OR Process Model for
Parallel Interpretation of Logic Problems'\
Ph.D. Thesis, University or California, June
1983.

M. Fay. "First order unification in an equational
theory," Fourth Workshop on Automated Deduc·
tion, pp. 161-167, 1979.

M. M. Gooley and B. W. Wah. '"Efficient Reord·
ering of Prolog Programs", to appear in Proc. of
4th International Conference on Data Engineer·
ing, Los Angeles, California, Feb. 1988.

B. Hausman, A. Ciepielewski, and S. Haridi.
"OR-parallel Prolog made efficien~ on shared
memory multiprocessors," Proc. of the 1981
International Symposium on Logic Programming,
San Francisco, California, 1987

J.-M. HuJlot. "'Canonical forms and unification,"
Conference on Automated Deduction, 19801 pp.
318-334.

L. V. Kale. "Parallel execution of Logic Pro·
grams: the REDUCE-OR process model", Proc. of
Fourth International Conference on Logic Pro·
gramming1 May 1987.

L. V. Kale. "'Completeness' and 'Full ParaHel
ism1 of Parallel Logic Programming Schemt!s'" 1

Proc. of the 1981 Symposium on Logic Program·
ming, San Francisco, Calirornia.

(KaPS88j L. V. Kale, D. A. Padua, and D. C. Sehr ... oR
parallelism in standard sequential Prolog," forth ..
coming.

[KaWa84j L. V. Kale and D. S. Warren ... A Class of Archi
tectures for Prolog Machine", Proc. of lhe
Conference on Logic Programming, Uppsala,
Sweden, July 1984, pp. 171-182.

[Li85J

[LiWa85J

[LiWa86aJ

(LiWa86bJ

[LiWa86eJ

(Redd85J

[Redd87aj

[Redd87bJ

[Rous75J

[TurnS![

[Wab87J

[WaLi86aJ

[WaLi86bJ

[WaLi88J

G. J. Li. "Parallel Processing of Combinatorial
Search Problems", Ph.D. Thesis, School of
Electrical Engineering, Purdue University, Dec.
1985.
G.-J. Li and B. W. Wab. ''MANIP-2: A Multi
computer Architecture for Evaluating Logie Pro-
grams", Proc. of International Conference on
Pc.rallel Processing, Aug. 1985, pp. 123-130.

G.-J. Li and B. W. Wab. ..Coping with
Anomalies in Parallel Braneh-and-Bound Algo
rithms", IEEE TransacUoru on Computer•, Vol.
C-34, No. 6, June 1986, pp. 568-573.

G.-J. Li and B. W. Wab. "How Good are Paral
lel and Ordered Depth-First Searches7", Proc. of
Interna.tiona.l Conference on Parallel Procusing,
Aug. 1988, pp. 992-999.

G.-J. Li and B. W. Wah. ''Multiproeesoing of
Logic Programs", Proc. of International Confer·
ence on Systetn61 Man and Cv6ernetics, Oct.
1986, pp. 583-567.

U. S. Reddy. "Narrowing as the operational
semanties of functional programs," Symposium
on Logic Programming, Boston, Mass., 1985.

U. S. Reddy. "Functional logic languages, Part
I," in Graph Reduction., J. H. Fasel and R. M.
Keller (eds.), Springer-Verlag Lecture Notes in
Computer Science, Vol. 279, pp. 401-425, 1987.

U. S. Reddy. The FOCUS program derivation
system: project report, University of lllinois,
1987.

P. Roussel. Prolog, manuel de refef-cnce et
d'Uti/isation, Univ. of Marseilles, France, 1075.

D. A. Turner, KRC Language Manua~ Univer·
sity of Kent, UK, 1981.

B. \V. Wah. "Guest Editor's Introduction: New
Computers for Artificial Intelligence Processing",
CtJmputer, Vol. 20, No.1, Jan. 1987, pp. 10-lb.

B. W. Wab and G.-J. Li. "A Survey of Special
Purpose Computer Architectures for AI'',
SIGART Newsletter, April1986, pp. 28-46.

B. W. Wah and G.-J. Li. "Tutorial in Comput..
ers for Artificial IntelJigence Applications"J IEEE
Computer Society Pre.sB, Ma.y 1986.

B. W. Wah and G.-J. Li. "Design of Multipro
cessing Systems for Artificial Intelligence Appli·
cations", to appear in Transactions on System,

[Warr87J

Man, and Cybernetics, 1988.

D. H. D. Warren. "OR-parallel execution models
of Prolog," Proc. of the 1987 International Joint
Conference on Theory and Practice of Software
Development, Pisa., Italy, Springer-Verlag, 1987,
pp. 243-259.

