Proc. COMPCON, San Francisco, CA, IEEE, March 1988

PROLOG AT THE UNIVERSITY OF ILLINOIS’

M. M. Gooley L.V.Kalé D, A. Padua B.Ramkumar U.S. Reddy D.C.Sehr W.W.Shu B.W.Wah

University of Hlinois at Urbana-Champaign

Abstraet. This paper urewants a brlel deaeription of four
logie programming research projects under way at the
Unlversity of Iilincis at Urbana~-Champalgn. Three of
these projects deal wlth the design of Prolog Interpreters
and compilers. The other project deals with the design of
languages that combine then functional programming and
the logic programming paradigms and with the transior-
mation of programa written in these languages.

Introduction

The logic programming language Prolog was developed
about fourteen years ago by A. Colmerauer and P. Roussel
[Rous73]. Prolog in particular, and logic programming
languages in general are today the subject of increasing
interest on the part of many research groups. This paper
presents a briel description of four of the logic programming
research projects under way at the University of Illinois at
Urbana-Champaign. The frat three section of the paper
describe projects dealing with the design of Prolog inter-
preters and cornpilers emphasizing efficiency and parallelism,
The fArst project deals with the use of heurisiics to reduce the
search space. The second project concentrates on cfficient
OR-paralle] execution of standard sequential Prolog pro-
grams. The third project studies the use of both AND and OR
parallelism. The last project presented here deals with the
design of languages that combine the functional programming
and the logic programming paradigms and with the transfor-
mation of programs written in these languages,

Heuristic guiding and pruning
We have performed an extensive survey of computers,
frem lLoth the hardware and software perspectives, to sup-
port artificial intelligence processing [WaLi86a, WaLiseh,

L)

The work of L. V. Kal€, B. Ramkumar, agd W. W, 3hy was supperted io
part by the the Naticoal Science Foundation under Grant NSF-CCR~-
8700688, The Work of D. A, Padua apd D. C. Sehr was supported in part
by the National Scisnce Foundation under Grant NSF-MIP-8410110, the
Department of Energy under Grant DOE DE-FGO2-85ER25001, and a
donation from 18M Corporation to the Center for Supercomputing
Research and Development. D. C. Sehr holds a fellowship from the Office
of Naval Research. The work of U. S. Reddy was supported ic part by the
National Aeroaautios and Space Administration voder Grant NAG 1-8132.
The work of B. W. Wab and M. M. Guoley was supported iz part by the
Natiooal Aeronautics and Space Administration under Grant NCC 2-481.

Wzh87, Wali88]. We huve found that the execution of Pro-
log programs is inefficient due to redundant searches. Our
research on efficient execution of Prolog programs is centered
around two themes: reducing the search space through heuris-
tic guiding and pruning, and efficient execution of Prolog pro-
grams by parallel processing [LiWag6e].

In heuristic guiding, we have studied two related prob-
lems: the identification of attributes that ean be used to guide
the evaluation of Prolog programs, and the static reordering
of programs at compile time to reduce redundant searches.

In identifying attributes to guide the search, we model
the evaluation of a Prolog program as the search of an AND-
OR tree. An attribute that has been found to be useful to
characterize the merit of evaluating a subtree is the ratio of
success probability of the subtree to the corresponding over-
head {cost) of evaluation [LiWa85). If a depth-first search is
used and all nodes in the search tree are independent, then an
optimal search strategy to minimize the expected total cost is
to reorder the descendents of AND nodes by increasing tha
ratios of success probability to cost and to reorder OR nodes
by decreasing the ratios of success probability to cost
[LiWag6d], In a best—frst search, the AND-OR tree has to be
transformed so that all OR nodes are in the top part of the
gearch tree and all AND nodes are in the lower part. An
optimal strategy to search the transformed tree is to search
a]ll OR nodes by decreasing ratios of success probability to
cost and all AND nodes by increasing ratios of success proba-
bility ta cost [LiWa85), It should be noted that when the
search tree is transformed as described abave, its size i3
increased by an exponential order,

In practice, nodes in the AND-OR cearch tree are depen-
dent and may be traversed more than once due to backtrack-
ing. We study the effzcts of backtracking by modeling the
evaluztion of subgoals in a clause and clauses with the same
head a¢ an absorbing Markov Chain [LiWa85). Such an
approach is heuristie in nature because nodes in the search
tree may be dependent, while nodes in the Markov Chain are
independent and satisfy the memoryless praperty. The
evaluation of success probabilities and costs is recursive,
That is, the success probabilities and costs in the lower part
of the search tree are evaluated first. This will provide suc-
cess prababilities and costs to clauses that call these subgoals,
and their success probabilities and costs can then be
evaluated.



Based on the technique described above, to approximalte
the merit of evaluating a clause or subgoal, we have studied
the static reordering of Proleg subgoals and clauses to
minimize the expected total cost [GoWaB8]. Two major
problems have been addressed. First, it is necessary to define
the equivalence of results when the execution order is
changed. Equivalence can be thought of as what is acceptable
to the users as an equivalent solution set. We have defined
four classes of equivalence: reflexive, set, tree, and ine-
quivalent executions. In reflexive equivalence, the results in
the scjution set are obtained in the same order; this can only
be achieved through minimal or ne reordering. In set
equivalence, the same set of results are obtained but possibly
in a different order. In tree equivalence, a superset of subset
of solutions may be generated, while in inequivalence, any
result can be generated. Reordering may result in set, tree,
or inequivalent executions. Qur objective i3 to maintain set
equivalence in the presence of side effects and control predi-
cates, The second problem addressed in this research is the
characterization of restrictions on reardering and the develop-
ment of methods to detect these restrictions, Reatrictions on
reordering are governed by fixity, semi-fixity, and control
predicates, We have designed a new system of calling modes
for Prolog, geared to reordering, and a system for inferring
them automatically,. We have developed an approach that
used multiple versions of the same clause in different modes,
each with different order of execution. We improved the
Markov-Chain method for determining a good goal order for
Prolog clauses, and used it as the basis for a reordering sys-
tem, showing how it could be guided by information about
modes and restrictions to generate reordered Prolog pro-
grams that behaved correctly.

In heuristic guiding, we have studied the detection of
redundant evaluations in a Prolog program, the abstraction
of previous evaluations by explanation-based learning, and
the storage of previous solution sets by caching [WaLi88].

In parallel processing of jlogic programs, we are
cyrrently simulating a parallel processing system that evalu-
ates Prolog programsa based on the Markov-Chain method
described above, the maintenance of equivalence of solution
sets, and the automatic detection of precedence order of exe-
cution. The architectural model assumed is a multiproceasing
system with a hybrid of tightly coupled multiprocessors and
loogely coupled distributed computers [Li85,LiWa85l. The
objective here iz to develop methods to coordinate the search
in a distributed fashion, without vislating precedence while
maintaining equivalence uf results, and investigate strategies
to aveid deirimental anomalies in parallelism [LiWa88¢).

On;pa:alleliam in the presence of side—effecta

The goal of this project is the design and implementa-
tion of a Prolog compiler that accepts standard sequential
Prolog as input language and produces efficient code for a
parallel processer. The translation of sequential programs
into equivalent parallel versions has several advantages. The
programmer’s task is simplified since there is no longer the

need to deal with parallelism explicitly, and sequential pro-
grams can be easily ported between different classes of
machines. Research on this same compiling strategy for FOR-
TRAN and other languages was pioneered at the Univarsity of
Illincia many years ago. Techniques developed at llinois are
used today in the FORTRAN compilers of many supercomput-
ers and minisupercomputers.

In the early stages of this project we decided to take
advantage of OR-parallelism only, and leave to the project
described in the next section the study of the interaction
between AND and OR-parallelism. OR-parallelistn was chosen
betause it seemed more likely to achieve good speedups on
conventional mulitiprocessors. The reason for this is that,
under OR-parallelism, the target parallel program can be
organized in such a way that there is little interaction
between the diflerent processes cooperating in the search for
solutions. Also, restricting the work to only one form of
parallelism will allow us to concentrate more on the quaiity
of the analysis and code generation phases. We hope that the
outeome of this work will be a compiler capable of generating
very efficient paraliel code in a reasonable time,

The project is organized into three phases. During the
firat phase, an interpreter was written. During the second
phase we will explore different strategies and assess their per-
formance potential, and during the third phase we will write
the compiler based on the techniques and measurements
obtained during the first two phases,

The central structure in the interpreter or target paral-
lel program i3 a representation of an ¢volving OR-iree whose
root corresponds to the input query. In this tree, each node
represents a set of bindings and a conjunction of goals. Each
descendant of a node corresponds to a successiul unification
of its leftmost goal with a different clause, The clause used
for generating a node will be called its originating clauae.
The bindings produced by the unificaticn become the bind-
ings of the new node, Also, the query of s node is the query of
its parent with the leftmost goal replaced by the right-hand
side of the originating clause, A node containing an empty
query is called a success, and a node whose leftmost goal can-
not be unified with any clause is called a faslure.

Tha target parallel program consists of saveral cooperat-
ing processes. Assume frst that there are no goals with
side-effects in the Prolog program. Under this assumption,
execution proceeds as follows, When execution starts, the
OR-iree ig just the root node containing the user input query,
One of the cooperating processes graba this node while the
others remain idle. The process then tries to unify the left-
most goal with every clause in its procedure. A child node is
created for every successful unification. The binding set and
the query of each child node are also computed as deseribed
above, and both items are stored in the child node. Execu-
tion terminates if all the children of the root node are
successes, or if no unification is possible, i.e. the root is a
failure. Otherwise there will be some children that are reqdy
nodes, i.e. nodes that are neither successes nor failures and
whose children have not been generated.



After processing the root, the gearch of the OR~tree
proceeds in a similar way. At any given time, there may be
several ready nodes in the evolving OR—-tree which gives the
opportunity for parallelism by having each of several
processes work on a different ready node. The work on each
of these nodes is the same as the one deseribed for the root
node, Execution terminates when no ready nodes remain,

When predicates with side-eflects such as assert,
retract, and write are present, the processes have to
perform the action corresponding to these predicates before
generating the child node. In our system, predicates with
side—eflfects other than cut are evaluated one at a time and in
the order specified by the Prolog program. This is achieved
by linking the nodes of the evalving OR~tree in post—crder to
form the scheduling queue. Processes look for work in this
queue, and predicates with side-effects other than cut are
evaluated only when they are the leftmost goal of the left.
most ready node in the scheduling queue.

The three most important issues with respect to this
work are scheduling, how to handle different simuitanecus
bindings to the same variable, and how to correctly process
the side—eflfect predicates. We decided to concentrate, at least
at the beginning on the scheduling and side-effect issues
which have not been studied as extensively as the multiple
bindings issue. In the current version of the interpreter, we
have implemented some of the models described in the litera~
ture [HaCHS87,Warr87] with the purpose of studying their
behavior before selecting one or trying to- design a new
schemae.

Next we discuss briefly the algorithms we use to handle
the predicates with side-effects. The main idea of these algo-
rithms is easy to deseribe. The details, however, are lengthy,
and cannot be presented here due to space limitations. They
can be found in [KaPS88].

Executing a cut is done by deleting from the scheduling
queue the nodes between the cut node and the parent of ita
frame, This is a constant time operation in our system.
When the children of a ready node, say /N, are generated, the
identification of /¥ is inserted in a list aysociated with the pro-
cedure of the leftmost goal of N, When a clause is asserted
into a procedure, this list is used to insert an additional child
for all the appropriate nodes in the list. Similarly, when a
new node is added to the tree, its identification is inserted
into a list associated to its originating clause. This list is used
to hazndle retract,

4

An important issue is the interaction between schedui-
ing, sarbage collection and the processing of assert,
retract, and cut. The major difficulty is that care has to be
given to the scheduling and the garbage collection algorithms
to avoid redundant and useless work. For example, when a
subtree is cut from the OR-tree, a process working in that
subtree should be redirected towards another part of the tree
to avoid wasting computation, Also, it may not be beneficial
to garbage collect subtrees removed by cut, since the cut
itsell could later be removed by another cut.

'S

The REDUCE—OQR process model

The main motivation behind this research is a premise
that massively parallel machines will be available in near
future, We then need to extract maximal parailelism from
given logic programs, This is particularly important for
many combinatorially explosive Al computations. As a conse-
quence, we cannot rely solely on AND or OR parallelism, but
must pursue both sources of parallelism in concert.

We found that the AND-OR trees, which are a usual
representation of logic computations, are not adequate for
representing parallel computations. Firstly, as the binding
information is spread through the tree, the nodes don't
represent independent subproblemas. Sacondly, the tree hides
an impartant form of parallelism, as there is only one OR
child~node for every literal of an AND node [KaWa84). The
REDUCE-OR process model [Kale87a] is based on the
REDUCE~OR trees which we developed as a representation of
logie computations suitable for parallel interpretation.

We will use a simple example to illustrate the basic
operation of the model. Figure 1 depicts a data join graph
(pJG: a form of dats dependence graph), for a clause. 1is the
input value given to this clause. Assume that p,q and r are
non-deterministic, and return multiple solutions. As the
graph indicates, p computes values for X that q and r can use
in parallel. The ROPM starts a new instance of g and r as
soon as a X value is returned from p. Every Y value returned
from q is paired with each Z value that has been returnad by
r and that shares the same X value as an ancestor. (Similar,
symmetrie, pairing happens when a 2 value arrives from r}
For every new pair so formed, a new instance of 8 process is
started to compute a T value. Thus, if p returns two X
values, and q and r each give 3 values for every X value, the
ROPM will form 9 Y-Z pairs for each X value, and may have 18
3 procesges tunning in parallel at a time. In contrast, the
AND-OR process model {AOPM) [ConeR3] can have only one
instance of s running at a time. A pure OR process model will
of course miss the parallelism between q and r. The ACPM
does execute alternate clauses for p in parallel, Similarly, for
each X value, it will have 3 processes each for q and r running
in parallel. But as it deals with one binding for each variable
at a time, it misses the parallelism between multiple
instances of a consumer literals. We call this consumer
instance parallelism. We find that it is an important source
of parallelism in Al computations where the generate—and-
test paradigm prevails. In an 8-queens program, admittedly
a toy example, the ROPM obtains about 26,400 parallel
actions in contrast tc 4,544 obtained by a pure OR model, and
just 7 obtained by AOPM. (The AOPM can get the same degree

Figure 1: The Operation of ROPM



of paralleliam by rewriting the Logic program}.

We have shown in [Kale87b] that ROPM is complele and
that it produces more parallelism than most proposed
moedels, This ‘maximal parallelism’ comes at a price. The
ROPM has to do much more book-keeping than the AOPM,
say. As a simple example of the complexities involved, notice
that the Y values and Z values coming from g and r (in Figure
1) have to appropriately distinguished to ensure that a solu-
tion for q{x1,Y)} is not paired with a solution for r(x2,z). For
a model such as the AOPM, this is no problem because it
allows anly one X value to be alive at a time. The challenge
is then to develop techniques and algorithms that control the
overhead in ROPM. In [act, we aim at reducing the overhead
to the extent that even on computations where ROPM gen-
erates the same parallelism as AOPM, it should be as efficient
as AOPM (and within a small factor of sequential compiled
execution). We intend to achieve that by following the vener-
able dictum: pay the overhead for a feabure only when you
use it (which is, of course, easier said than done).

Consequently, we are {ocusing on optimizations to our
basic algorithm. One optimization deals with the consistency
problem mentioned above. Instead of requiring a full rela~
tional join of the XYZ values kept in relations at the p and q
arcs, it allows us to access only the consistent values, by
maintaining a few additional pointers. Many such optimiza-
tions are under investigation. The other techniques involve
dynamically trading a part of our asset, the parallelism, for a
reduction in overhead, These may lead to a tunable process
maodel, which generates more or less paralleliam depending on
the runtime conditions in the parallel aystem. Throttling
tachniques which take aver when the system memory starts
to overfliow are also being developed.

A major source of improvement will come from static
analysis of given pregrams. Logic Programming is a very
high level language, and our process model is also & more gen-
eral one in that it attempts to handle different kinds of paral-
lellsm at once. In any particular clause the full generality of
the basic algorithma is not usually needed. Compilation gives
us an opportunity to handie each clause and each call
differently, and static analysis should provide information
useful to simplifying code for individual clauses. The kind of
information we have found useful includes: a bound on the
aumber of ‘embedded’ variables returned by a call, the vari-
ables that » given variable ‘depends on’ at a given point in
the program, ete.

An interpreter for the ROPM has been implemented. It
runs o az ALLIANT FX/s (a shared memory machine), and on
an Intel hypercube with 32 nodes. (The ROPM is implemented
as 3 message passing system. A shared memory system pro-
vides additional opportunities for optimizations, and
simpiifies load distribution). It also runs en ORACLE, a mul-
tiprocessor simulation system that can simulate a variety of
architectures. Related ongoing research includes
(1) Message—selection strategies, which significantly affect
many performance metrics including the memory usage;

{2) load~balancing atrategies for message~passing systems
{3) An ‘operating system’ (called the chare kernel) that can

support many types of parallel symbolic computations includ-
ing Logic programming.

Functional logic programming

The lunctional logie programming project at University
of lllinois is involved in the investigation of languages that
combine functional programming and logic programming
paradigms into a unified framework. Our position, explained
in [Redd85], ia that logic programming means periorming
computations based on the notion of solving for variables.
The notion of solving is not limited to predicates, it can be
applied to functional expressions as well. The operational
mechanism used for solving for variables in functional expres-
sions is called narrowing [Fay79, Huli80, Redd85]. Narrowing
essentially involves performing funection application using
unifiestion {or parameter passing, rather than pattern match-
ing.

For example, consider a function for appending lists,
defined by the equations

append(nil, Y} -> Y
append(A.X, Y) -> A.append(X,Y)

In a conventional implementation of functional programming,
such a definition can only be used for evaluating applications
of append to ground (variable-iree) terms, But, in an imple
mentation uaing the narrowing mechanism, append can also
be applied to neonground terms, The variables in the argu-
ment terms are instantiated by unifying the arguments with
the formal parameter terma on the left hand asides of the
definition equations. For example, the evaluation of the func-
tion application append(L, M) can be unified with the left
hand sides of both the equations, Each such evaluation yields
a pair of results < a, e>> whera s is a substitution on the ini-
tial expression, and e the result of evaluation using the substi-
tution. For the expression append(L, M), the first step of
evaluation produces tweo such pairs:

1, subatitution: [, ~ nil, result: M
2. substitution: L — A.X, result: A.append(¥, M)

Further evaluation of the second result term again yields two
pairs:

2.1, substitution: I, — A.nil, result; A M

2.2. substitution: L — A.A’K, result: ALA"M

This then makes up the narrowing search space, and travers-
ing it in a complete manner produces all possible solutions.
Using backtracking to traverse the search space, though
incomplete, provides an operationally viable method 1o
enumerate the solutions, one by one. Each "solution” answers
the question "for what instantiation of the variables daes the
initial expression reduce to a value, and what is its value
under that instantiation?”

A [functional logic ianguage based on these ideas, called
Secope, is being used as the gpecification languege in the
FOCUS program derivation system discussed later. In addi-
tion to the usual functional programming construects, it



contains 4 construcis which facilitate the introduction of logi-
cal variables in expressions and solving for them. These are

1.ifp then s
2.e;¢e

3. {orsome{X) e
4. unionover(X) s

where p is boolean valued expression, e, e are any expres-
slons, and s Is a set-valued expression. {The terminclogy
"set" is historical {Turn8l], but these are in reality multisets,
i.e., with possible duplicates), The frst expression denotes
the value of e il the expression p is true, and is undefined oth-
erwise. The second construct denotes the cholce of e and e,
If any one of them is defined, then it denotes the value of the
defined expression, If both of them are defined, but have
different values, then the expression is erroneous. The third
construct, similar to existential quantification in predicate
logic, means the value of e for some instantiation of X that
makes e defined. Again, il e has different values for different
instantiations of X, then the expression is erroneous. The
fourth construct yields a set of values rather than a single
value. It yields the union of all set values of s for all inatan-
tiations of X. The formal semantics of this Janguage together
with a set of examples illustrating its use may be found in
{Redd87aj. .

The second aspect of our research is in using the nar-
- rowing mechanism for (lransforming specifications inte
efficient programs. We are constructing an interactive pro-
gram transformation system called FOCUS [Redd87b] for
this purpose. Most programs that can be expressed
abstractly and concisely using the logical features of Scope
have poor performance. {For example, maximum of a list
can be expressed as its jargest element, and sort of a list can
be expressed as an ordered permutation of it). The FOCUS
system allows the user to use such pregramas as apecifications
and transform them step by step into efficient programs.

The FOCUS system structures program derivations as
trees, and uses a tree editer called XTED for its user inter-
face. The program specification is entered in the root node of
the derivation tree. Then nodes are created for each function
that the user wishes to transform. Selecting a function to
wransform {together with its specification) is called focusing.
A tree structure follows from the fact that in transforming a
function, subsidiary foci may be needed for transforming its
subexpressions. Focusing is also performed on properiies of
functions which need to be proved and then used in transfor-
mations. A number of transformation and deduction opera-
tions are provided to manipulate expressions and to prove
theorems. The most often used transformation operations
are simplification (evaluation without instantiation of any
variables), ezponsion (evaluation with instantiation), and
recursing or applicalion-introduction (replacing instances of
function specifications by function applications, or Invoking
inductive hypatheses). The deduction operations closely
correspond to natural deduction inference rules,

The use of the FOCUS system operations ensures that
the derived programs are equivalent to the original

Y

gpecifications. Moreover, the system also documents all the
derivation activity performed in each focns node. Such a
documentation is called a derivatfon seript,. When a
specification is altered, the scripts off ail the nodes are
replayed to redo the derivation automatically. In this use,
the FOCUS gystem acts much like a compiler, except that the
aptimizations performed are not preprogrammed by the
compiler—writer, but programmed by the user himself in ear-
lier derivation effort. The user is alerted to the situations
where the replay breaks (i.e., where the old script i3 not appli-
cable to the new specification or where it produces
significantly different results from the earlier derivation).
These situations are then handled by rederivation. Replaying
is also used to modify a derivation. The system keeps track
of the dependencies between focus nodes. When the deriva-
tion of a node is changed, the scripts of the other dependent
nodes are replayed. Using the replay facility, changes can be
propagated through entire programs semi-automatically.
Thus, the FOCUS system supports the asufomation-based
software development paradigm widely recognized to be the
future software technology [Balz83].

References
R. Balzer, E. Cheatham, and C. Green,
Software technology in the 1990’s: Using a new
paradigm,” Computer, Vol, 18, No. 11, Nov.
1983, pp. 39-45.

J. 8. Conery. "The And/OR Process Model for
Parallel Interpretation of Logic Problems”,
Ph.D. Thesis, University of California, June
1983.

M. Fay. "First order unification in an equational
~ theory,”" Fourth Workshop on Automated Deduc-
tion, pp. 161-167, 1979.

M. M. Gooley and B, W. Wah, "Efficient Reord-
ering of Prolog Programs", to appear in Proc. of
4th International Conference on Data Engineer-
ing, Los Angeles, California, Feb, 1988,

B. Hausman, A. Ciepielewski, and S. Harndi.
"OR~parallel Prolog made efficient on shared
memory multiprocessors,” Proc. of the 1987
International Symposium on Logic Programming,
San Franeiaco, Californta, 1987

J.-M. Hullot. "Canonical forms and unification,”
Conference on Automated Deduction, 1980, pp.
318-334.

L. V. Kalé, "Parallel execution of Logic Pro-
grams: the REDUCE-OR process model”, Proc. of
Fourth International Conference on Logic Pro-
gramming, May 1987,

L. V. Kalé. "Completeness’ and 'Full Parailel-
istn’ of Parallel Logic Programming Schemus”,
Proc. of the 1987 Symposium on Logic Program-
ming, San Francisco, California.

{Balz83]

[Cone83]

[Fay79|

[GoWas8|

[HaCHST)

[Hullgo|

[Kale87a]

[Kale87b|



[K=PS88]

[KaWa84]
(Li8s]
[LiWag8]
[LiWag6a]
[LiWas6b]
[LiWaB6¢]

[Redd8s]

[ReddB7aj

[Redd87b]

[Rous75}
[Turn8i]
[Wah87}
[WaLig6aj

[WaLis6bi

(WalLisg]

L. V. Kalé, D. A, Padua, and D. C. Sehr. "OR~
parallelism in standard sequential Prolog,” forth-
coming.

L. V. Kalé and D. 8. Warren. "A Class of Archi-
tectures for Prolog Machine", Proc. of the
Conference on Logic Programming, Uppsala,
Sweden, July 1984, pp. 171-182,

G. J. Li. "Parallel Processing of Combinatorial
Search Problems”, Ph.D. Thesis, School of
Electrical Engineering, Purdue University, Deec.
1985.

G.-J. Li and B. W. Wah. "MANIP~2: A Multi-
computer Architecture for Evaluating Logic Pro-
grams", Proc. of Internabionel Conference on
Parallel Procesaing, Aug. 1985, pp. 123-130.

G-J, 1i and B. W. Wah. "Coping with
Anomalies in Parsllel Branch-and-Bound Algo-
rithms", JEEE Transactions on Computers, Vol.
C-34, No. 6, June 1986, pp. 568-573.

G.~J. Li and B. W. Wah. "How Good sre Paral-
lel and Ordered Depth-First Searches?”, Proc. of
International Conference on Parailel Processing,
Aug. 1988, pp. 992-999.

G.-1. Li and B. W. Wah. "Multiprocessing of
Logic Programs", Pro¢. of International Confer-
ence on Syiterns, Man and Cybernetics, QOct.
1988, pp. 563-567.

U. 8. Reddy. "Narrowing as the operational
semanties of functional programs,” Symposium
on Lagic Programming, Boston, Mass., 1985,

U. 5. Reddy. "Functional logic languages, Part
L" in Graph Reduction, J. H. Fasel and R. M.
Keller (eds.), Springer-Verlag Lecture Notes in
Computer Science, Vol. 279, pp. 401425, 1987,
U. S. Reddy. The FOCUS program derivation
system: project report, University of Illineis,
1987,

P. Roussel. Prolog, manuel de refefence et
d'Utilisation, Univ. of Maraseilles, France, 1975.

D. A. Turner, XRC Language Manual, Univer-
sity of Kent, UK, 1981.

B. W. Wah. "Guest Editor’s Introduction: New
Computers for Artificial Intelligence Processing”,
Computer, Vol. 20, No. 1, Jan, 1987, pp, 10-15.
B. W, Wah and G.-J. Li. "A Survey of Special
Purpose Computer Architectures for AI",
SIGART Newsletter, April 1988, pp. 288,

B. W. Wah and G.-J, Li. "Tutorial in Comput~
ers for Artificial Intelligence Applications”, IEEE
Computer Saciety Press, May 1986.

B. W, Wah and G.-J. Li. "Design of Multipro-
cessing Systems for Artificial Intelligence Appli-
cations”, to appear in Transaciions on System,

[Warr87]

Man, and Cybernetics, 1988.

D. H. D. Warren. "OR-parallel execution models
of Prolog," Proc. of the 1987 Internationa! Joint
Cenference on Theory and Practice of Software
Development, Pisa, Italy, Springer~Verlag, 1987,
pp. 243-259,



