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Ab,tract. This paper pn··umta a brief' description of' rour 
logic programming reSearch projecta under way at the 
Unlveraity or Illlnola at Urbana-Champalgn. Three of 
these projecta deal with tho deaign of Prolog intet>pretera 
and compilers. The other project deala with the deaign of 
languages that combine then functional programming and 
the }ogle programming paradigma and with the tl'anafoz-.. 
matlan or programa written Jn these languages. 

Introduetlon 

The logic programming language Prolog was developed 
about fourteen years ago by A. Colmera.uer and P. Roussel 
[Rous75J. Prolog in particular, and logic programming 
languages in general are today the subject of increasing 
interest on the part of many research groups. This paper 
presents a brief description of four of the logic: programming 
research projects under way at the University of IJlinois at 
Urbana-Champaign. The first three section of the paper 
describe projects dealing with the. design of Prolog inter· 
preters and compilers emphasizing efficiency and parallelism. 
The first project deals with the use of heuristics to reduce the 
search space. The second project concentrates on efficient 
OR-parallel execution of standard sequential Pr~log pro
grams. The third project studies the use of both AND and OR 
parallelism. The last project presented here deals with tbe 
design of languages that combine the functional programming 
and the logic programming paradigms and with the transfer· 
mation of programs written in these languages. 

Heuristic guiding and pruning 

We have performed an extensive survey o( computera, 
!rom both the h:!.rdware and software perspectives, to sup· 
port artificial intelli~ence processing {\V:";Li86a., V.'oLiS~b, 
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\Vah87, \VaLi88}. 'Ve !,:n·c tound that the execution of Pro
lag programs is inefficient due to redundant searches. Our 
research on efficient execution of Prolog programs is centered 
around two themes: reducing the search space through heuris
tic guiding and pruning, and efficient execution of Prolog prcr 
grams by parallel processing (LiWa86eJ. 

In heuristic guiding, we have studied two related prob
lem:r: the identification of attributes that can be used to guide 
the evaluation of Prolog programs, and the static reordering 
of programs at compile time to reduce redundant searches. 

In identifying attributes to guide the search, we model 
the evaluation of a Prolog program 33 the search of an AND
OR tree. An attribute that has been found to be useful to 
characterize the merit of evaluating a subtree is the ratio of 
success probability of the subtree to the corresponding over
head (cost) of evaluation (LiWaSSj. If a depth-first search is 
used and aU nodes in the search tree are independent, then an 
optimal search strategy to minimize the expected total cost is 
to reorder the descendents of AND nodes by increasing the 
ratios of success probability to cost and to reorder OR nodes 
by decreasing the ratios of success probability to cost 
[LiWa86d). In a best-first search, the AND-OR tree has to be 
transformed so that all OR nodes are in the top part. of the 
search tree and all AND nodes are in the lower part. An 
optimal strategy to search the transformed tree is to search 
all OR nodes by decreasing ratios o( success probability to 
cost and all AND nodes by increasing rar.ios of success proba· 
bility to cost [LiW aSS{. It should be noted that when the 
search tree is transformed a.s described above, ita size is 
increased by an exponential order. 

In practice, nodes in the .A.ND-OR eearch tree are depen
dent and may be traversed more than once due to backtrack· 
ing. V{e study the effects of backtracking by modeling the 
evah.:~eion o( subgoals in a clause and c:lauses with t.he same 
h.~ad a! an a.bsorbinlt Markov Chain [Ll\VaSS!. Such an 
approach is heuristic in nature because nodes in the search 
tree may be dependent, while nodes in the l\1ariwv Chain are 
independent and sat.isfy the memoryless property. The 
evaluation of success probabilities and costs is recursive. 
That is, the success probabilities and costs in the lower part 
of the search tree are evaluated first. This will provide suc· 
cess probabilities and casts to clauses that cal! these subgoals, 
and their success probabiliLies and casts can then be 
evaluated. 



Based on the technique described above, to approximult: 
the merit of evaluating a clause or subgoal, we have studied 
the static reordering of Prolog subgoals and clauses to 
minimize the expected total cost [GoWa88J. Two major 
problems have been addressed. First, it is necessary to define 
the equivalence of results when the executlon order is 
changed. Equivalence can be thought of as what is acceptable 
to the users as an equivalent solution set. We have defined 
four classes o! equivalence: reflexive, set, tree, and ine
quivalent executions. In reflexive equivalence, the results in 
the solution set are obtained in the same order; this can only 
be achieved through minimal or no reordering. In set 
equivalence, the same set of results are obtained but possibly 
in a different order. In tree equivalence, a superset of subset 
of solutions may be generated, while in inequivalence, any 
result can be generated. Reordering may result in set, tree, 
or inequivalent executions. Our objective is to maintain set 
equivalence in the presence of side effects and control predi
cates. The second problem addressed in this research is the 
ch&l'acterba.tion of restrictions on reordering and the develop-. 
ment of methods to detect these restrictions. Restrictions on 
reordering are governed by fixity, semi-fixity, and control 
predicates. We have designed a new system of calling modes 
for Prolog, geared to reordering, and a system for inferring 
them automatically. We have developed an approach that 
used multiple versions of the same clause in different modes, 
each with different order oC execution. We improved the 
Markov-Chain method for determining a good goal order for 
Prolog clauses, and U:!!!ed it as the basis for a reordering sys
tem, showing how it could be guided by information about 
modes and restrictions to generate reordered Prolog pro-
grams that behaved correctly. 

In heuristic guiding, we have studied the detection of 
ndundant evaluations in a Prolog program, the abstraction 
of previous evaluations by explanation-based learning, and 
the storage of previous solution sets by caching [WaLi88]. 

In parallel processing of logic programs, we are 
currently simulating a parallel processing system that evalu
ates Prolog programa baaed on the Markov-Chain method 
described above, the maintenance or equivalence of solution 
sets, and the automatic detection Q( precedence order of exe-o 
cution. The architectural model assumed is a multiprocessing 
system. with a hybrid of tightly coupled m.rlltiprocessors and 
loosely CQUpled distributed computers [Li85,LiWa85}. The 
objective here is to develop methods to coordinate the search 
in a distributed fashion, Vlithout vi~lating precl!dence while 
maintaining equivalence uf r~tJlt:, and invtlltigate strategies 
to avoid detrimental <i.nomalies in paralleijsm (LiWa86cJ. 

OR-paralleliam in the presenc.e of side-efl'ec.ta 

The goal of this project is the design and implementa
tion of a Prolog compiler that accepts standard sequential 
Prolog as input language and produces efficient code for a 
parallel processor. The translation of sequential programs 
into equivalent pMa.llel versions has several advantages. The 
programmer's task is simplified since there is no longer the 

ueed to deal with parallelism explicitly, and sequential pro
grams can be easily ported between different clasaea of 
rnachinea. Research on this same compiling strategy for FOR
TRAN and other languages was pioneered at the University of 
Illinois many years ago. Techniques developed at Illinois are 
used today in the FORTRAN compilers or many supercomput
ers and minisupercomputers. 

In the early stages of this project we decided to take 
advantage of OR-parallelism only, and leave to the project 
described in the next section the study of the interaction 
between .AND and OR-parallelism. OR-parallelism wa.a chosen 
because it seemed more likely to achieve good speedups on 
conventional multiprocessors. The reason for this is that, 
under OR-parallelism, the target parallel program can be 
organized in such a way that therct is littl8 interaction 
between the different processes cooperating in the aeMch for 
solutions. Also, restricting the work to only one form or 
parallelism will allow us to concentrate more on the quality 
of the analysis and code generation phases. We hope that the 
outcome of this work will be a compiler capable o! generating 
very efficient parallel code in a reasonable time. 

The project is orgubed into three phases. During the 
first phase, an interpreter was written. During the second 
phase we will explore different strategies and assess their per· 
formaoce potential, and during the third phaa:e we will write 
the compiler based on the techniques a.nd measurements 
obtained during the first two phases, 

The central structure in the interpreter or target para!· 
Iel program is a representation of an evolving OR-tree whose 
root corresponds to the input query. In this tree, each node 
represents a set of bindings and a conjunction of goala. Each 
descendant of a node corresponds to a successful unification 
of ita leftmost goal with a different clause. The clause used 
for gen-erating a node will be called its originaJing clau4e. 
The bindings produced by the unification become the bind· 
ings o! the new node. Also, the query of a node is the query of 
its parent with the leftmost goal replaced by the rigM-hand 
side of the originating clause. A node containing an empty 
query ia called a su~~cn, and a node whose leftmosG goal can· 
not be unified with any clauae is called a failure. 

The target parallel program consists of several cooperat
ing processes. Assume first that there a.re no goais with 
side-effects in the Prolog program. Under this assumption, 
execution proceeds aa follows. When execution starts, the 
OR-i.ree is just the root node containing the user input query. 
One of the cooperating processes grabs thi1' node while the 
:)thers remain idle. The process then tries to unify thE left
most goal with every clause in ita procedure. A child node is 
created for every successful unification. The binding set 2Jld 
the query of each child node are also computed as described 
above, and both items are stored in the child node. Execu· 
tion terminates if all the children of the root node a.re 
successes, or it no unification is possible, i.e. the root is a. 
failure. Otherwise there will be some children that a.re ready 
nodu, i.e. nodes that are neither successes nor failures a.nd 
whose children have not been generated. 



After processing the root, the search of the OR-tree 
proceeds in a similar way. At any given time, there may be 
several ready nodes in the evolving OR-tree which gives the 
opportunity for parallelism by having each of several 
processes work on a different ready node. The work on each 
of these nodes is the same as the one described for the root 
node. Execution terminates when no ready nodes remain. 

When predicates with side-effects such as assert, 
retract, and write are present, the processes have to 
perform the action corresponding to these predicates before 
generating the child node. In our system, predicates with 
side-effects other than cut are evaluated one at a time and in 
the order specified by the Prolog program. This is achieved 
by linking the nodes of the evolving OR-tree in post-order to 
form the scheduling queue. Processes look for work in this 
queue, and predicates with side-effects other than cut are 
evaluated only when they are the leftmost goal of the left
most ready node in the scheduling queue. 

The three most important issues with respect to this 
work are scheduling, how to handle different simultaneous 
bindings to the same variable, and how to correctly process 
the side-effect predicates. We decided to concentrate, at least 
at the beginning on the scheduling and side-effect issues 
which have not been studied as extensively as the multiple 
bindings issue. In the current version of the interpreter, we 
have implemented some of the models described in the litera
ture [HaCH87,Warr87J with the purpose of studying their 
behavior before selecting one or trying to· design a new 
scheme. 

Next we discuss briefiy the algorithms we use to handle 
the predicates with side-effects. The main idea of these algc>a 
rithms is easy to describe. The details, however, are lengthy, 
and cannot be presented here due to space limitations. They 
can be found in [Ko.PSSS]. 

Executing a cut is done by deleting from the scheduling 
queue the nodes between the cut node and the parent of its 
frame. This is a constant time operation in our system. 
When the children of a ready node, say N, are generated, the 
identification of N is inserted in a list associated with the prc>a 
cedure of the leftmost goal of N. When a. clause is asserted 
into a procedure, this list is used to insert an additional child 
for all the appropriatE" nodes in the list. Similarly, when a 
new node is added to the tree, its identification is inserted 
into a. list associated to its originating clause. This list. is used 
to handle retract. 

An important issue is the interaction between schedul· 
ing, oarbage collection and the processing of assert, 
retract, and cut. The major difficulty is that care has to be 
given to the scheduling and the garbage collection algorithms 
to avoid redundant and useless work. For example, when a 
subtree is cut from the 0R-tree1 a process working in that 
subtree should be redirected towards another part of the tree 
to avoid wasting computation. Also, it may not be beneficial 
to garbage collect subtrees removed by cut, since the cut 
itself could later be removed by another cut. 

The REOUCE-OU proeeae model 

The main motivation behind this research is a premise 
that massively paril.llel machines will be available in near 
future. We thea need to extract maximal paraUelism from 
given logic programs. This is particularly important !or 
many combinatorially explosive AI computations. As a conse. 
quence, we cannot rely solely on AND or OR parallelism, but 
must pursue both sources of parallelism in concdrt. 

We found that the A.ND-oa trees, which are a usual 
representation ot logic computations, are not adequate for 
representing parallel computations. Firstly, as the binding 
information is spread through the tree-, the nodes don't 
represent independent subproblems. Secondly, the tree hides 
an important form oC parallelism, as there is only one OR 

child-node for every literal of an AND node [KaWa84J. The 
REDUCE-OR procese model [Kale87a] is based on the 
REDUCE-OR trees which we developed as a representation of 
Iogie computations suitable for parallel interpretation. 

We will use a simple example to illustrate the baaic 
operation of the model. Fjgure 1 depicts a data join graph 
(DJC: a Corm of data dependence graph), for a. clause. I is the 
input value given to this clause. Assume that p,q and r are 
non-deterministic, and return multiple solutions. As the
graph indicates, p computes values for X that q and r can use 
in parallel. The ROPM starts a new instance ot q and r as 
soon as a X value is returned from p. Every Y value returned 
from q is paired with each Z value that has been returned by 
r and that shares the same X value as an ancestor. (Similar, 
symmetric, pairing happens when a Z value arrives from r) 
For every new pair so formed, a new instance of s process is 
started to compute a T value. Thus, if p returns two X 
values, and q and r each give 3 values for every X value, the 
ROPM will form 9 Y-Z pairs for each X value, and may have 18 
a processes running in parallel at a. time. In contrast, the 
AND-OR process model (AOPM) [ConeS3J can have only one 
instance of s running at a time. A pure OR process model will 
of course miss the parallelism between q and r. The AOPM 
does execute alternate clauses for p in parallel. Similarly, for 
each X value, it will have 3 processes each for q and r running 
in parallel. But as i~ deals with one binding for each \'ariable 
at a. time, it misses the parallelism between multiple 
instances of a conaumer literals. We call this consumer 
instance panllclism. We find that it is an important source 
of parallelism in AI computations where the generate-and
test paradigm prevails. In an 8-quecns program, admittedly 
a toy example, the ROPM oLtains about 26,400 parallel 
actions in contrast tc; 4,544 obtained by a pure OR model, and 
just 1 obtained by AOPM. (The AOPM can get the sa. me degree 
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Figure 1; The Operation of ROPM 



of parallelism by rewriting the Logic program). 

We have shown in [Kale87b] that ROPM is complete and 
that it produces more parallelism than most proposed 
models. This 1maximal parallelism' comes at a price. The 
ROPM has to do much more book-keeping than the AOPM, 
say. As a simple example of the complexities involved, notice 
that theY values and z values coming from q and r (in Figure 
1) have to appropriately distinguished to ensure that a solu
tion Cor q(xl,Y} is not paired with a solution Cor r(x2,Z). For 
a model suc:h as the AOPM, this is no problem because lt 
allows only one X value to be alive at a time. The challenge 
is then to develop techniques and algorithms that control the 
overhead in ROPM. In fact, we a.im at reducing the overhead 
to the extent that even on computations where ROPM gen
erates the same parallelism as AOPM, it should be as efficient 
as AOPM (and within a small factor of sequential compiled 
execution). We intend to achieve that by following the vener
able dictum: pay the overhead !or a feature only when you 
use it (whieb is, of course, easier said than done). 

Consequently, we are focusing on optimizations to our 
basic algorithm. One o.ptimb:ation deals with the consistency 
problem mentioned above. Instead of requiring a full rela
tional join of the XYZ values kept in relations at the p and q 
ares, it allows us to access only the consistent values, by 
maintaining a few additional pointers. Many 'such optimia:a
tions are under investigation. The other techniques involve 
dynamically trading a part of our a.sset, the parallelism, for a 
reduction in overhead. These may lead to a tunable process 
model, which generates more or less parallelism depending on 
the runtime conditions in the parallel system. Throttling 
techniques whieh take over when the system memory starts 
to overflow are also being developed. 

A major source of improvement will come from static 
analysis of given programs. Logie Programming is a very 
high level language, and our process model is also a more gen• 
eral one in that it attempts to handle different kinds or paral
lellam at once. In any particular clause the full generality of 
the basic algorithms is not usually needed. Compilation gives 
us an opportunity to handle each clause and each call 
differently, and static analysis should provide information 
useful to simplifying code for individual clauses. The kind of 
information we have found useful includes: a bound on the 
number of 1embedded' variables returned by a call, the vari
ables that a given variable 1depends on~ at a given point in 
the program, etc. 

An interprP.ter fur the ROPM baa been implemented. It 
runs en a::. ALLWiT rx;; (a shared memory machine), and on 
an Intel hypercube with 32 nodes. (The ROPM is implemented 
as a message passing system. A shared memory system pro. 
vides additional opportunities for optimizations, and 
simplifies load distribution). It also runs on ORACLE, a mul
tiprocessor simulation system that can simulate a variety of 
architectures. Related ongoing research includes 
( 1) Message-selection strategies, which significantly affect 
many performance metrics including the memory usage; 
(2} load-balancing strategies for message-passing systems 
(3) An 'operating system, (called the chare kerne~ that can 

support many types or parallel symbolic computations includ
ing Logic programming, 

Functional logic programming 
The functional logic programming project at University 

or Illinois is involved in the investigation or languages that 
combine functional programming and logic programming 
paradigms into a unified framework. Our position, explained 
in [Redd85], is tha> Iogie progr4mming means perCorming 
computations based on the notion oC 1olving tor variables. 
The notion of solving is not limited to predicates, it can be 
applied to functional expressions as well. The operational 
mechanism used for solving for va.riablea in functional exprea
sions is called narrowing [Fay79, HulJSO, ReddBSJ. Narrowing 
essentially involves performing !unction application using 
unification for parameter passing, rather than pattern match· 
in g. 

For example, consider a function (or appending liata, 
defined by the equations 

append(nil, Y} -> Y 
append(A.X, Y) -> A.append(X,Y) 

In a conventional implementation of functional programming, 
such a definition can only be used for evaluating applications 
or append to ground (variable-free) terms. But, in a.n imple
mentation using the narrowing mechanism, append can also 
be applied to nonground terms. The variables in the argu
ment terms are instantiated by unifying the arguments with 
the formal parameter terms on the left hand sides or the 
definition equations. For example, the evaluation of the !unc
tion application append(L, M) can be unified with the left 
hand sides oC both the equations. Each such evaluation yields 
a pair or results <st e> where s is a substitution on the ini
tial expression, and e the result ol evaluation using the substi
tution. For the expreasion append(L, M}, the first step of 
evaluation produces two such pairs: 

1. substitution: L -+-nil, result: M 
2. substitution; L -+ A.X, result: A.append(X, M) 

Further evaluation oC t.he second result term again yields two 
pairs: 

2.1. substitution: L - A.nil, result.: A.M 
2.2. substitution: L- A.A'.X, result: A.A'.M 

This then makes up the narrowing search space, and. travers
ing it. in a complete manner produces all possible solutions. 
Using baektracking to traverse the search space, though 
incomplete, provides an operationally viable method to 
enumerate the solutions, one by one. Each "solution" answers 
the question "for what instantiation of the variables does the 
initial expression reduce to a value, and what is its value 
under that instantiation?" 

A functional logic language based on these ideas, called 
Scope, is being used as the lp~c.ification languag~ in the 
FOCUS program derivation system discussed later. In addi
tion to the usual functional programming constructs, it 



contains 4 constructs which facilitate the introduction of logi .. 
cal variables in expressions and solving for them. These are 

1. if p then e 
2. e; e' 
3. forsome(X) e 
4. unionover(X) s 

where p is boolean valued expression, e, e1 are any exprcs .. 
sions, and s is a set-valued expression. (The terminology 
"set" is historical jTurn81], but these are in reality multisets, 
i.e., with possible duplicates). The first expression denotes 
the value of e if the expression p is true, and is undefined oth· 
erwise. The second construct denotes the choice of e and e'. 
If any one of them is defined, then it denotes the value of the 
defined expression. If both of them are defined, hut have 
different values, then the expression is erroneous. The third 
construct, similar to ~xistential quantification in predicate 
logic, means the value of e for some instantiation oC X that 
makes e defined. Again, if e has different values for different 
instantiations of X, then the expression is erroneoua. The 
fourth construct yields a set of values rather than a single 
value. It yields the union of all set values of s !or all instan
tiations of X. The formal semantics of this language together 
with a set of examples illustrating its use may be found in 
[Redd87aj. 

The second aspect of our research is in using the nar
rowing mechanism for transforming specifications into 
efficient programs. We are constructing an interactive pro· 
gram transformation •ystem called FOCUS [Redd87bj for 
this purpose. Most programs that ca.n be expressed 
abstractly and concisely using the logical features of Scope 
have poor performance. (For example, maximum of a list 
can be expressed as its largest elem·ent, a.nd sort of a list ca.n 
be expressed as an ordered permutation of it). The FOCUS 
system allows the user to use such programs aa Specifications 
and transform them step by step into efficient programs. 

The FOCUS system structures program derivations as 
trees, and uses a tree editor called XTED for its user inter
face. The program specification is entered in the root node of 
the derivation tree. Then nodes are created for each function 
that the user wishes to transform. Selecting a function to 
transform (together with its specification) is calJed focusing. 
A tree .structure follows from the fact that in transforming a 
fUnction, subsidiary foci may be needed for transforming its 
:subexpressions. Focusing is also performed on properties of 
functions which need to be proved and then used in transfor
mations. A number of tra~:oformation and deduction opera· 
tions are provided tc.o manipulate expressions and to prove 
theorems. The most often used transformation operations 
are simplification (evaluation without instantiation of any 
variables), e:rpatuion {evaluation with instantiation), and 
recursing or application-introduction (replacing instances of 
function specifications by function applications, or invoking 
inductive hypotheses). The deduction operations closely 
correspond to natural deduction inference rules. 

The use of the FOCUS system operations ensures that 
the derived programs are equivalent to the original 

specifications. Moreover, the system also documents all th<! 
derivation activity performed in each focus node. Such a 
documentation is called a derivation script. When a 
specification is altered, the scripts off all the nodes are 
replayed to redo the derivation automatically. In this use, 
the FOCUS system acts much like a compiler, except that the 
optimizations performed are no' preprogrammed by the 
compiler-writer, but programmed by the user himself in ear· 
Her derivation effort. The user is alerted to the situations 
where the replay Orea.k6 (i.e., where the old script is not appli
cable to the new specification or where it produces 
significantly different results from the earlier derivation). 
These situations are then handled by rederiva.tion. Replaying 
is also used to modify a derivation. The system keeps track 
of the dependencies between focus nodes. \Vhen the deriva· 
tion of a node is changed, the scripts of the other dependent 
nodes are replayed. Using the replay facility, changes can be 
propagated through entire programs semi-automatically. 
Thus, the FOCUS syatem supports the aulomation-Oasecl 
40/luu~re development paradigm widely recognized to be the 
future software technology [Balz83J. 
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