
REDUNDANCY DETECTION 
IN LOGIC PROGRAMS IS UNDECIDABLE 

Zheng Zhou Benjamin W. Wah 

Department of Electrical 
and Computer Engineering 

University of Massachusetts 
Amherst, MA 01003 

zhou@umvlsi.ecs.umass.edu 

Coordinated Science Laboratory 
University of Illinois at Urbana-Champaign 

1101 West Springfield Avenue 
Urbana, IL 61801 

wah%aquinas@uxc.cso.uiuc.edu 

ABSTRACT 
Redundancy detection is one of the major tech­

niques in reducing the complexity of a logic program. 
For recursive and non-recursive function-free inference 
rules, redundancy detection has been proved to be 
decidable and NP-complete. However, redundancies 
in inference rules with functions, which are more com­
mon in logic programs, have not been explored com­
pletely. This paper formally defines and represents 
these redundancies based on domain theory, then 
proves that redundancy detection in recursive or non­
recursive inference rules with functions is undecidable. 
The proof is done by mapping the problem to Hilbert's 
Tenth Problem. Our work, therefore, completes the 
exploration of complexities of redundancy detection in 
logic programs. 

INDEX TERMS: Decidability, Hilbert's Tenth 
Problem, logic program, redundancy detection. 

I. INTRODUCTION 
In recent years, logic languages like Prolog have 

been widely used in artificial intelligence applications, 
such as natural languages understanding, abstract prob­
lems solving, and database retrievals. Researchers 
have found inefficient execution oflogic programs due 

Research supported by N a tiona! Aeronautics and 
Space Administration Contract NCC 2-481. 

IEEE Computer Software and Applications 
Conference, 1990 

0730-3157/90/0000/0593$01.00 © 1990 IEEE 
593 

to unification and automatic backtracking. These han­
dicaps are caused by the separation of logic and control 
in logic programs: the knowledge about problems and 
assumptions are explicitly described and stated as logi­
cal axioms, and the control strategy is simple and 
inefficient Consequently, great emphasis has been 
placed on providing more efficient control features for 
logic programming systems in order to improve its per­
formance [9). Two general methods can be applied. 
(1) Reorder clauses and predicates in a logic program 

to find the successes or failures as early as possible, 
hence reducing the cost of evaluation. 

(2) Prune redundant execUlions of identical predicates. 
We have studied the first method, which can be 

considered as the restrUcturing of an AND/OR graph 
so that successes or failures can be asserted as quickly 
as possible [6, 7). Consider the search of a conjunction 
of subgoals. Owing to the simple control strategy, 
which traverses a search tree from left to right and 
depth first, it may traverse a large sub graph, only to fail 
on a later goal. By reordering clauses and subgoals 
using statistics collected in the logic program so that 
inexpensive goals with high failure probabilities are 
searched first, the average total search cost can be 
reduced. For logic programs that search large data­
bases, reordering predicates and clauses results in 
significant improvement in performance. However, for 
programs that are algorithmic in nature, dependencies 
and side effects within the program significantly res­
trict the amount of reordering that can be performed. 

The second method for improving performance 
can also be explained in terms of searching an 
AND/OR graph. If a subgoal appears more than once 
as nodes in an AND/OR graph, then all occurrences 



except the first are redundant and should be detected 
and pruned. This implies that we need an efficient 
method for identifying redundancies and recalling pre­
vious results obtained for the redundant subgoals. A 
simple method for dynamically storing previously gen­
emted results is the extension table [5,11]. Note that 
an extension table stores instances of previously gen­
emted predicates, but not rules for eliminating redun­
dant predicates. This approach is similar to a combina­
tion of forward and backward chaining. A similar idea 
has been used in dominance tests of dynamic program­
ming algorithms for removing redundant computations 
[I]. 

There are two solutions to redundancy deteCtion 
and elimination. First, redundancies can be detected 
and eliminated at run time. We have implemented a 
run-time detection system, which detects all potentially 
redundant subgoals by inserting a specially defined 
built-in predicate into users' programs so that the infer­
ence engine can automatically check whether or not a 
subgoal has a solution obtained before and stored in the 
extension table. Whenever a redundant predicate is 
found, it is looked up in the extension table to deter­
mine if the predicate has been evaluated before with 
the same bindings. Experimental results with a recur­
sive implementation of the generation of Fibonacci 
numbers indicate that exponential speedup in execution 
time and exponential reduction in memory space can 
be obtained. However, results with other problems, 
such as the Eight-Queens and the Tower-of-Hanoi 
problems, are not satisfactory. The reason lies in the 
large overhead in searching the extension table, and 
this overhead outweighs the benefit More efficient 
implementations of the extension table, such as using 
hashing techniques, can improve the performance. 
However, performance is still limited by the size of the 
extension tables to be searched. 

Another solution for redundancy detection and 
elimination is to analyze the. program at compile time 
and detect and eliminate the redundancies in the logic 
program, based on static information such as syntacti­
cal structures and universal relations. Obviously, if 
redundant execution can be detected at compile-time, 
then expensive one-by-one matching at run-time can be 
avoided. 

Whatever detection methods we are using, it is 
necessary to first decide whether all potential redun­
dant executions can be detected. Aho, Sagiv and VII­
mans' pioneering work [2] on equivalence detection 
among relational expressions tells us that redundancies 
in function-free nonrecursive inference rules (with no 
function symbols in arguments) are decidable and that 
its detection is NP-complete. Naughton proved that 

594 

redundancies in function-free recursive inference rules 
are undecidable [I 0]. These results can be summarized 
in Table 1. 

Table I. Summary of Current Results 

Decidability of Redundancy Detection 
RECURSION FUNCTION FUNCTION-FREE 

Recursive ? Undecidable 
Nonrecursive ? Decidable 

(NP-Complete) 

In this paper we explore the decidability of 
redundant execution in a logic program composed of 
recursive and nonrecursive inference rules with func­
tions. We assume that the reader is familiar with the 
basic concepts of logic programming languages [9]. In 
Section 2, redundancy is defined and classified. Sec­
tion 3 introduces the concepts of domains and informa­
tion systems and discusses the properties of interval 
representations. In Section 4 we prove that redundancy 
detection for inference rules with functions, at least for 
arithmetic functions, is undecidable. Conclusions are 
drawn in Section 5. 

II. REDUNDANT EXECUTION AND 
MONOTONIC OPERATIONS 
A query (or a subgoal) in a logic program may 

have more than one successful binding found by back­
tracking. These bindings make up a solution set for 
this subgoal. The same subgoal occurring in two dif­
ferent places in a logic program does not imply that the 
two solutions sets are identical because they may have 
different environments defined by given or known 
bindings to variables stated in the subgoal. In addition, 
the order of subgoals appearing in a program can also 
affect their solution sets. This dynamic behavior 
renders the detection of redundancies very difficult. To 
understand the problem, we first formally define redun­
dant execution in a logic program. 

Definition 2.1. In evaluating a logic program, if a 
predicate 0 appears more than once. say 0 1 and 0 2

, 

and every solution found for 0 2 is always a solution of 
0 1, i.e., solution set S(02) is a subset of S(01

), then 0 2 

is completely redundant with 0 1
; if only some of the 

solutions found for 0 2 are included in the solution set 
of 0 1

, then 0 2 is partially redundant with 0 1
• 

Assuming that 0 1 is evaluated before 0 2
, then 

partial redundancy can be further classified into the fol­
lowing two cases. 
(I) S(01) is a proper subset of S(02

), i.e., S(01
) c 

S(02). 



{2) S(G1) and S(G2) each have some solutions that are 
not shared by the other, i.e., S(G1)nS(G2

) * 0 and 
S(G1 }--S(G2

) * 0 and S(G2}--S(G1
) * 0. 

All the relationships between S(G1
) and S(G2

), 

namely, complete redundancy and partial redundancy, 
can be represented in the Venn diagrams shown in Fig­
ure I. 

88 
No Redundancy 

Complete Redundancy 

Partial Redundancy (I) Partial Redundancy (2) 

Figure I. Redundancy representations in solution sets. 

The definition above explicitly indicates that the 
decidability of redundancy detection is equivalent to 
the decidability of the relations among solution sets in 
a logic program. Generally, S, the solution set of a 
given query with n arguments, is composed of an· n­
tuple, (a1, a2 , ••• ,a,), where a1 is a ground term 
bounded to the i'th argument and is a member of 
domain o,. Hence, s is a subset of 01 XDzX ... xor 
and the relation between two solution sets, S 1 and S , 
can be mapped to the relation between two correspond­
in/ argument domains, Dl and of. For example, 
S ~S 1 must have Dr ~D l. This property implies that 
our redundancy detection will be under the monotone 
assumption; that is, the output ranges of all functions 
represented in the form of queries should be monotonic 
in their input domains. Formally, we have the follow­
ing definition (based on Ullman's definition). 

Definition 2.2 [13]. Let f(D 1, ••• , Dm) be a function 
whose arguments and results are each relations, and 
S1 =Dlx···xo;., and S2 =Drx···xD~ be two 
assifnmcnts of relations to the relation variables of f. 
If S ~ S2 , that is, each relation D/ is a subset of the 
corres~nding relation D[, then f is nwnotone for S 1 

and S , and f(S 1
) ~ f(S2). 

As we have known, monotone functions are 
quite common, since almost all basic relational opera­
tors like union, selection and projection are monotone, 
so are all basic arithmetic operations like addition, sub-

595 

traction, and multiplication. 
Our definition of redundancy based on the inclu­

sion of solution sets is applicable to the more general 
cases. It also suggests an ideal redundancy pruning 
system to be an integration of compile-time analysis 
and run-time checking. Compile-time analysis can 
detect some decidable redundancies by detecting the 
inclusion of solution sets, while run-time checking can 
prune individual redundant execution using the exten­
sion table. Such an integration provides a potentially 
effective methodology for efficient execution of logic 
programs. 

III- DOMAINS AND THEIR 
REPRESENTATIONS 
In the previous section, we have defined a 

domain to be the set of all bindings such that the 
defined predicate is true. Obviously, a domain is 
closely related to the computation in a given program. 
A formal definition should be derived from this 
inherent connection. Scott's information system is a 
suitable representation and is used here to define a 
domain based on its "possible elements" [12]. 

An information system consists of three com­
ponents: a set of tokens, a consistent predicate, and an 
entailment relation. Tokens are units of information 
which may be valid for a computation. In a logic pro­
gram, tokens are terms (ground or non-ground) that 
appear in the corresponding arguments of predicates. 
The result of a computation is to find a Herbrand 
Model for the given logic program P [9]; that is, it 
needs to find not only its Herbrand Universe UP, but 
also the true value subset of its Herbrand Base UP. 
Thus, a solution should, at least, satisfy the syntacuc 
requirements of the elements of UP, which have been 
given in the form of ground terms and expressions 
composed of functions on the arguments. This is why 
we can use them as basic information units in our 
information system. For a set of tokens, all its ele­
ments should be kept consistent. This can be imple­
mented by some particular predicates, but in our dis­
cussion, we assume that these consistencies are found 
by enumerating all ground terms and some given 
expressions. Thus, the entailment relation between a 
set of tokens and a token is obvious. 

Larsen and Winskel' s definition of information 
system [8) is selected as the formal definition in this 
paper. Their definition is different from Scott's origi­
nal one in that it does not assume a distinguished ele­
ment D. in the token sets. However, all their theorems 
are isomorphic. 

Definition 3-1 [8). An Information System is defined 
as a structure (A, Con,=>), where A is a token set, Con 
is a set of finite subsets of A. i.e .. the set of the con­
sistent sets, and => is a subset of Con x A, i.e., the 
entailment relation. It satisfies the following condi­
tions. 



<1>. (X c Y e Con) -> (X e Con) 
<2>. (a e A)-> ((a} e Con) 
<3>. (X=>a)-> (Xu (a} e Con) 
<4>. (X e Con & a e X) -> (X=>a) 
<5>. (X,Y e Con & bE Y. X;>e)-> {X=>e). 

An infonnation system detennines a family of 
subsets of tokens, called its elements. Intuitively. an 
element of an information system is the set of tokens 
that can be asserted about a possible computation. This 
set of tokens can be viewed as the information content 
of the computation. The tokens should not contradict 
each other, and should be closed under entailment 

Definition 3.2 [8]. The elements, /A/, of an informa­
tion system (A,Con,=>) are those subsets X of A which 
are 

<1>. consistent: (X c X)-> (X e Con) 
<2>. closed: (X (;:X & X=>a) -> (a e X). 

Larsen and Winskel have proved that a closed 
family composed of all elements will form a con­
sistently complete, algebraic complete partial order 
(CPO), i.e., a domain. Their theorem is as follows. 

Theorem 3.1 [8]. Let A= (A, Con,=>) be an informa· 
tion system. Its elements, /A/. ordered by inclusion, 
form a domain, i.e. a consistently complete, algebraic 
complete partial order. Its finite elements are of the 
form: X= (ae AIX=>a}, where X e Con, and the least 
element of /A/ is 0. 

As a direct application of an information system, 
we can define an information system for logic program 
P. 
Theorem 3.2. For an argument of a given predicate in 
a logic program, let (a) the token set, A, be composed 
of all possible terms appearing in that argument, (b) the 
consistent sets, Con, be subset of tokens appearing in 
that position, and (c) an entailment relation, =>, be 
defined by enumerating all members of set ConxA. 
The resulting information system (A, Con, =>) satisfies 
all five properties given in Definition 3.1. 
Proof. The theorem can be proved easily by showing 
that our defined (A, Con,=>) satisfies all properties of 
an information system. 0 

According to this theorem, it is easy to define by 
obscrvati<Jn the domain of an argument of a logic pro­
gram. This is shown in lhe following example. 

Example 3.1. Given the following logic program, 
<1>. Fib(!,!). 
<2>. Fib(2,1). 
<3>. Fib(N,A) :- Fib(N-1, A 1), Fib(N-2, A2 ), A is 

At+A2. 
the first argument of predicate Fib has an information 
system (A1 , Con" => 1), where A1 ={I, 2, N, (N-1), 
(N-2)}; Con, contains all possible subset of A~o since 
they are all consistent; =>1 is an entailment relation 
such as {1, 2, (N-1)) => 1 I. The domain generated 

596 

from A is (D" ~::). where D1 is [ [ 1}. [2). [(N-1)}, 
[(N-2)}. {1,2}. {1,(N-1)} ..... [1,2,(N-l),(N-2))}. 
i.e., all possible subsets of A. 

From the example above, we find that the form 
of representation of a domain is not elegant in that it is 
ineffective and inconvenient for determining the inclu­
sion between two domains, i.e., determining lhe order 
berween domains. Since an·argument may be either a 
value in the numerical space, such as integers and 
reals, or a symbol string in the nonnumerical space, 
such as names of people and objects, these terms all 
have valid representations in logic programming 
languages. Note that the difference between numerical 
and nonnumerical space is based on the operations that 
can be defined on them. 

For a domain in the numerical space (assume 
that it is real), a possible form is an interval. A simple 
transformation is stated below. 

A set of nwnbers can form a chain-CPO, i.e. a partially 
ordered set U such that every directed subset (or 
equivalently, every chain) ofU has a least upper bound 
and a least element. Thus a subset can be represented 
as an interval by using its largest element, x. and the 
least element, x.: [xb, x.j. 

After this transformation, the original order of 
elements within lhe domain can be preserved. We can 
prove that this transformation is an approximable map­
ping between two infonnation systems, (A, Con A, =>) 
and (A', Con A', =>'), where A' is a set of intervals 
corresponding to the numerical sets in A. An approx­
imable mapping satisfies the following properties. 

Definition 3.3 [8]. Let A = (A, ConA. =>A) and B = 
(B, Cons. =>s) be information systems. An approxim· 
able mapping r: A -> B is a relation r (;: ConA x Cons 
such that 

<1>. 0 r0, 
<2>. (X r Y & X r Y') -> X r (YuY') for all X e 

ConA andY, Y' e Cons. 
<3>. (X =>A X' & X r Y & Y =>s Y')-> X' r Y' for 

all X, X' e ConA andY, Y' e Cons. 

The intuitive interpretation of an approximable 
mapping is that information X in A entails information 
Y in B. An approximable mapping among information 
systems will have a corresponding mapping among 
these domains. The following result has been given by 
Larsen and Winskel. 

Theorem 3.3 [8]. Let r: A -> B be an approximable 
mapping. Then lrl: !AI -> IBI given by 

lrl(x)=u{YIXc:;x, X r Y) 
is a continuous function between lhe domains !AI and 
IBI ordered by inclusion. 

Based on this theorem, we can prove the follow· 
ing theorem 



Theorem 3.4. For a given subset X of domain D in 
numerical space, we can construct a corresponding 
subsetJ of intervals which corresponds to a set in X. 
This subset of intervals preserves the original order, 
i.e., the largest set in X corresponds to the largest inter­
val inJ. 
Proof. First, we can prove that our defined transforma­
tion from sets to intervals implies that the mapping 
from a domain of a set of sets to a domain of a set of 
intervals satisfies the definition of lrl in Theorem 3.3. 
This is true since a given set x can be mapped to lrl(x), 
an interval which contains all points appearing between 
its smallest and largest elements. Thus, this mapping is 
a continuous function. 

Second, since this mapping is order preserving, it 
keeps the original order in the mapped domain, i.e., the 
largest sets in X correspond to the largest intervals in J. 

0 

We have formally defined the concept of 
domains in a logic program, and have proved that an 
interval representation can replace the ineffective form 
using sets without losing any information on the order 
of sets in the original domain. We should note that It ,;; 
! 2 in the domain composed of intervals must have Xt ,;; 
X2 in the domain composed of the original number 
sets, but It = !2 does not imply Xt = X2• 

IV. REDUNDANCY DETECTION AND 
HILBERT'S TENTH PROBLEM 
From the discussion above, a domain, D, in a 

real field generated by a set of arguments appearing in 
an argument of a predicate can be represented by an 
interval [a, b], where a and b are the minimum and 
maximum values in D. In general, the terms in an 
argument of a predicate are polynomials with some 
given real values, i.e., bases. Thus, we should first find 
out the maximum and minimum values for each poly­
nomial in this set. Consequently, the maximum and 
minimum values for the whole domain can be decided, 
and the order between two polynomials is defined 
based on their extreme values. Determining the 
extreme value in a polynomial is, therefore, a funda­
mental problem. 

For a gl ven polynomial defined on a real set, can 
we always determine its extreme value? We classify 
this problem into two cases based on whether the size 
of the set is finite or infinite. For a finite discrete set. 
we can always find out the extreme value of the given 
polynomial by a finite number of comparisons, so the 
problem is decidable. For an infinite continuous set in 
a closed interval, the polynomial also has extreme 
values, because a polynomial in a continuous function 
always has the extreme values in a closed interval. 
Thus, it is also a decidable problem. How about the 
extreme value in an infinite discrete set? This is a 
common case~ but no direct answer has been given in 
the literature. 

597 

The relevant problem is Hilbert's Tenth Prob­
lem, which asks whether a given (multivariate) polyno­
mial with integral coefficients has integral roots. The 
problem has been proved to be undecidable [4]. There­
fore, if we can map our extrema-finding problem to 
Hilbert's Tenth Problem, then redundancy detection in 
inference rules with functions is also undecidable. To 
simplify our discussion, we consider a simple case in 
which a domain is generated by two polynomials based 
on a constant If we cannot find an algorithm to decide 
its extreme values, then the general case must be obvi­
ously undecidable. 

Suppose we are given an arbitrary polynomial 
P(xt •... , xn) with integral coefficients. Consider the 
basis element ( 1}. and the two polynomials Q(x) = 
x+l, and R(x" ... , Xn) = P2(xt, ... , Xn). An easy argu­
ment shows 

<1>. that all positive integers are in the closure, 
<2>. that no negative integers ore in the closure, 
<3>. and that only integers can be in the closure. 

Thus the minimum element in the closure is 
either 0 or I. The decision can be transformed to 
deciding whether P has integral solutions (or roots), 
which is a new lemma to Hilbert's Tenth Problem [3]. 

Theorem 4.1. The minimum element in closure 
[l,Q,R] is 0 if and only if P has integral roots. 
Proof. To prove the if pan, suppose P is a polynomial 
of n variables, with integral roots x" ... , Xn· That is, 
P(xt •... , xn) = 0, where x; is a positive integer. Since 
:':~ is in the ~os~re ~f [l,Q.R], so is R(x" ... , xn) = 
P"(Xt, ... , xn)- 0 0- 0. 

To prove the only-if part. let 0 be in the closure. 
Since 0 cannot be obtained from Q(x) for any x, it must 
be obtained from R(x1, ••• , Xn) for some positive 
integers Xt •... , Xn in closure [I,Q,R]. Hence, for some 
Xt, ... , Xn• we have 

0 = R(Xt, ... , Xn) = p2(Xt, ... , xn)• 

But then P(xt, ... ,xn) = 0. (All X; are integers by. a sim­
ple argument showing that all elements of a closure are 
integers.) 0 

Thus if we can decide which of (0,1] is the 
smallest element in closure [ l,Q,R}, we can decide 
Hilbert's (undecidable) Tenth Problem. We can prove 
similarly about finding the maximum. Hence, there is 
no algorithm for finding the extreme values in the 
domain generated by finite polynomials given some 
bases. This is stated formally in the following 
theorem. 

Theorem 4.2. Redundancy detection in inference rules 
with functions is undecidable. 



V. CONCLUSIONS 
In this paper we study the decidability of redun­

dancy detection in logic programs, which are com­
posed of inference rules with functions in their argu­
ments. We formally define redundancies based on the 
solution sets in logic programs, and represent solution 
sets in well-defined domains. We prove that redun­
dancy detection in inference rules with functions is 
undecidable. Our theoretical results complete the pre­
viously unknown properties· of redundancy detection of 
logic programs. Except for non-recursive inference 
rules, redundancy detection is undecidable in general. 
Although our results reveal the inherent difficulty of 
efficient execution of iogic programs through redun­
dancy detection, special redundant cases can still be 
detected and pruned, as Naughton has found [10]. 
Tradeoffs between compile-time analysis of decidable 
cases and run-time checking of undecidable cases can 
still be made. 

ACKNOWLEDGMENTS 
We would like to thank Dr. L. Pitt, Dr. J. 

Benaloh and Dr. S. Cook for their help and suggestions 
in this paper. 

REFERENCES 

[I] A. V. Abo, J. E. Hopcroft, and J.D. Ullman, The 
Design and Analysis of Computer Algorithms, 
Addison-Wesley, Reading, MA, 1974. 

[2] A. V. Aha, Y. Sagiv, and J. D. Ullman, 
"Equivalence Among Relational Expressions," 
SIAM J. Computing, val. 8, no. 2, pp. 218-246, 
1979. 

[3] J. Benaloh and S. Cook, Private Communcation, 
1989. 

[4) M. Davis, "Hilbert's Tenth Problem is Unsolv­
able," American Mathematical Monthly , val. 
80, no. 3, pp. 233-269, 1973. 

[5] S. W. Dietrich, "Extension Tables: Memo Rela­
tions in Logic Programming," Proc. Symp. on 
Logic Programming, pp. 264-272, IEEE, 1987. 

[6) M. M. Gooley and B. W. Wah, "Efficient 
Reordering of Prolog Programs," Proc. 4th lnt'l 
Conf on Data Engineering, pp. 71-75, IEEE, 
Los Angeles, CA, Feb. 1988. 

[7) M. M. Gooley and B. W. Wah, "Efficient 
Reordering of Prolog Programs," Trans. on 
Knowledge and Data Engineering, vol. I, no. 4, 
pp. 470-482, IEEE, Dec. 1989. 

[8] K. G. Larsen and G. Winskel, "Using Informa­
tion Systems to Solve Recursive Domain Equa­
tions Effecitively;• Lecture Notes in Computer 
Science, vol. 173, pp. 109-129, 1984. 

[9] J. W. Lloyd, Foundations of Logic Program· 
ming, Springer-Verlag, 1984. 

59& 

[10] J. F. Naughton, "Optimizing Function-Free 
Recursive Inference Rules," Report No. STAN­
CS-86-1114, Department of Computer Science, 
Stan ford University, Stanford, CA, 1986. 

[II] E. Sciore and D. S. Warren, "Integrating Data 
Bases," Expert, pp. 3844, IEEE, 1988. 

[12) D. Scott, "Domains for Denotational Seman­
tics," Lecture Notes in Computer Science, val. 
140,pp.577-613, 1982. 

[13] J. D. Ullman, Principals of Database Systems, 
2nd Edition, Computer Science Press, 1988. 


