INTELLIGENT MAPPING OF COMMUNICATING PROCESSES
IN DISTRIBUTED COMPUTING SYSTEMS

Arthur leumwananonthachai, Akiko N. Aizawa,
Steven R. Schwartz, Benjamin W. Wah and Jerry C. Yan

ABSTRACT

In this paper we prescnt TEACHER 4.1, a system for
designing automatically heuristics that map a set of communi-
cating processes on a real-time distributed computing system.
The problem of optimal process mapping is NP-hard and
involves the optimal placement of processes on the distributed
system and the optimal routing of messages from one computer
to another. The design of efficient and robust heuristics is often
ad hoc and is gunided by inwiton and experience of the
designers. In this paper we develop a statistical method to
explore systematically the space of possible heuristics for pro-
cess mapping. The method operates under a specificd time
constraint and intends to get the best possible heuristics while
trading between the solution quality and the cxecution time of
the process mapping heuristics, Our prototype for process
mapping is extended from post-game analysis, a sysiem that
uses a set of user-specified rules for generating new mappings.
It tunes parameters of these rules and proposes new heuristics
for process mapping. Simulations show that there is significant
improvement in performance through systematic and automatic
exploration of the space of heuristics.

KEYWORDS AND PHRASES. Distributed computing sys-
tem, heuristics, generatc-and-lest, loosely coupled computers,
process mapping, sequential selection, time consiraints.

1. INTRODUCTION

In real-time computing systems, the efficient scheduling of
resources is essential in order to mect resource constraints and
processing requirements. In such systems, applications exe-
cuted have somewhat predictable behavior and are often
analyzed beforchand. Many formulations of this problem are
NP-hard, and optimal mappings are often found in an exponen-
tial amount of time and/or space., Heuristics can be applied, but
their design is usually ad hoc and depends on the problem
instance to be solved and the experience of the designers. Qur
goal in this paper is to develop a statistical method for explor-
ing systematically the space of possible mapping heuristics.,
Our method operates under specified Lime consiraints and
intends to get the best heuristics while trading between the
solution quality of the heuristics and its execution time.

Arthur Iewmnwananonthachai, Akiko N. Aizawa, Sweven R, Schwanz, and
Beni'{anﬂn W. Wah {contact author, wah@aquinas.csl.uive.edi) are with Center
for Reliable and High-Perforrnance Computing, Coordinated Scicnce Laboratory,
University of Dlincis at Urbana-Champaign, 1101 West Springlicld Avenue,
Urbana, IL 61801, A, N, Aizawa is curcently on leave [rom National Center for
Science Information System, Tokyo, Japan, Jorry C. Yan is with Sterling Federal
Systems, Inc. and can be reached et MS$244-4, NASA Ames Research Centor,
Moffett Field, CA 94035,

This rescarch was slln\?ported in part by National Aeronantics and Space
Administration Grant NCC 2-481 and in part by National Science Foundation
Grant MIP 88-10584.

Proceedings Supercomputing 91, Albuguergue, NM.

The target problem we study is the mapping of a set of
communicating processes derived from an application on a net-
work of loosely coupled computers. Its objective is to deter-
mine the mapping of the processes on the given system so that
the completion time of the application is minimized, We
assume that a process cannot be partitioned at run time, that the
mapping is static, that a process is not replicated and executed
in multiple computers, that the system is scheduled for one
application at a time, and that the processing behavior of the
application can be reproduced easily at design time.

One method that finds efficient mappings is the post-game
analysis system developed by Yan and Lundstrom [13, 14].
Given a set of communicating processes and a set of input data,
the system incrementally changes the process mapping using
mnformation collected in previous rums. Based on a set of
designer-supplied rules, it (a) formulates multiple optimization
subgoals, based on actual timing data gathered during program
execution, (b) proposes possible new mappings, and (c) priori-
lizes and resolves conflicting proposals. The key of the design
is that the target application is simulated and its mapping incre-
mentally improved, without employing any abstract program
models or any single objective function.

The mappings proposed by post-game analysis can be
improved because the rules for proposing and for evaluating
mappings are derived based on the experience of the designers.
Moreover, these rules do not adapt to conditions of the comput-
ing system, such as its hardware configuration, average work-
load per processor, and mix of computation and communication
of processes. In this paper, we extend post-game analysis by
developing a set of meta-rules, which systematicslly generate
and test new rules for proposing and for evaluating mappings.
As there are infinitely many possible rules to be used in post-
game analysis and it is impossible o test each of them, our
mela-rules propose a limited set of rules and test them under
given time constraints. We develop a statistical model for trad-
ing between the number of new rules to be generated and the
amount of tests to be performed on the ones generated.

The system studied here is extended from TEACHER
(which stands for TEchniques for Auwtomatic Creation of
HEuRistics). Previous versions of this system has been applied
on learning (a) new dominance relations for dynamic program-
ming algorithms [15], (b) good selection and decomposition
heuristics for combinatorial searches [7], (c) good parameters
for depth perception in stereo vision [11], and (d) new neural
network configurations [12]. The current version (version 4) is
focused on resource scheduling under time constraints in the
generation of new heuristics.

2. PROCESS MAPPING PROBLEM

There have been a number of studies for finding good map-
pings for a set of communicating processes on a network of
computers. The objective often used is the completion time of
the set of processes. Approaches to solving this problem can
be classified into static and dynamic.

Static strategies are generally deterministic and are applied
at design time. These strategies can further be classified as cost
based and graph based. Cost-based methods employ simplistic
objective functions to evaluate merits [6], while graph-based
methods employ graph-theorctic techniques [3]. The general
forms of these problems are NP-hard, and their abstract models
do not capture adequately the problem bechavior. Minimization
of actual execution time is not guasranteed.

In contrast, dynamic strategies are non-deterministic and
are applied at run time. They are based on partial and probably
out-of-date information gathered dynamically. Examples of
this approach include load sharing, Ioad balancing, bidding pro-
tocols, and Bayesian decision theory, Results developed are
generally restricted to independent jobs. One major problem
with this approach is that it is very difficult to characterize
analytically the behavior of interacting processes. The interac-
tions between the computation time of the processes, the time
spent while waiting for messages from other processes (or wait-
ing time!), and the time spent while waiting for the processor to
be available (or contenton time') are too complex to be
predicted accurately and studied in advance. This leads to
simplified objective functions and models that ignore cither the
waiting or contention times and characterize workload on a
computer by the number of active processes.

Post-game analysis is a method that has heen successful in
addressing some of the difficulties discussed above. This
method iteratively refines the current mapping of processes on
a network of computers using information collected in between
program executions. The processes are executed (or simulated)
first using a random mapping. Based on data collected during
program execution, heuristics (or rules) are applied to propose
changes to this mapping in hoping that the execution tite will
be reduced. Each heuristic represents an independent line-of-
reasoning concerned with one particular optimization subgoal
for reducing program execution time. It is used to propose
“‘actions”’ that are partial descriptions of the transformations
needed in order to reduce execution time. The actual transfor-
mations needed are generated based on these proposals. The
program is then executed (or simulated) using the new map-
ping. The entire process is repeated again until no new changes
are proposed by the heuristics. To aid in experimenting with
different machine architectures, a simulation package called
AXE was developed [13]. AXE allows flexible specification of
software and hardware, and simplifics the collection of statis-
tics during the simulation.

The type of architectures that post-game analysis is
designed for are known as ensemble architectures. They con-
sist of homogeneous and regularly connected processing ele-
ments {or sites). Each site is autonomous, and has its own pro-
cessor, local memory large enough to hold any number of
processes, and operating system that handle sending, receiving,
and routing of all messages. Examples of architectures

1. The contenmion time depends on the processor scheduling strategy, while the
wailing time depends on the routing strategy.

meodeled include Hypercube multicomputers and distributed
systems connected by local area networks.

Each distributed program is represented as a collection of
autonomous processes that are created either at compile time or
at run time. The processes communicate by messages and have
no shared data. This model encompasses programs using
divide-and-conquer strategy, blackboard problem-solving para-
digms, and programs utilizing pipelining.

The key to improving the performance of the post-game
analysis is on the development of heuristics that assess
improvements achieved and migration actions to be taken next.
Currently, the designer must supply rules for proposing and
evaluating mapping decisions. Using meta rules, we can sys-
tematically and automatically propose new rules that may lead
to better mappings in less time. Moreover, these meta rules can
propose rules that generate mappings adapted to the architec-
ture configuration, the mix between communication and com-
putation of processes, and the application characteristics. In the
following sections, we describe our proposed modification to
post-game analysis.

3. GENERATE-AND-TEST FRAMEWORK UNDER
RESOURCE CONSTRAINTS

The problem of finding a set of heuristics that maximize
the performance of the mappings generated by post-game
analysis can be expressed as a search through the space of pos-
sible hevristics. The search is characterized by an objective to
be optimized and a set of constraints to be satisfied.

Informally, the objective function of such a search is to
maximize the quality of the heuristics; that is, to perform the
best tradeoff between the quality of the mapping of a given
problem instance and the time spent by the post-game analysis
in deriving the mapping. This objective has to be specified by
the users. Examples of objectives include maximizing the
average or worst case of a function of quality and time. Since
there is no good model on how the heuristics affect the objec-
tive function, we cannot compute but can only measure the
objective-function value based on the heuristics and the prob-

. lem descriptions. Likewise, there are no well-defined con-

straints that define the search space of the heuristics. Conse-
quently, this search is considered to have an ill-defined objec-
tive as well as ill-defined constraints.

Due to the large heuristic space and the large amount of
time required for the evaluation of « heuristic set, it is impracti-
cal to enumerate the objective values of all heuristics. A com-
mon approach to solving this kind of problems is to ask
knowledgeable experts select a set of good heuristics. How-
ever, the set of possible heuristics in this problem is extremely
large, and parameters that affect their performance may be
dependent and unknown to the experts. On the other hand, per-
forming naive experimentation by computers is not feasible, as
the search space is too large.

A desirable solution is to employ expert knowledge in
griding the search for better heuristics, and utilize high-speed
compuiers 1o perform computation-intensive experiments. The
generate-and-test framework studied in this paper uses expert
knowledge (in the form of meta-rules) to generate new heuris-
tics (in the form of rules used in post-game analysis) and util-
izes high-speed computers to test the quality of the heuristics
using benchmark test cases.

3.1. Possible Solution Methods

The solution to the problem discussed above lies in finding
an efficient and automated method for generating and evalnat-
ing heuristics,

The problem of discovering new heuristics was first
addressed by Pear] {9], who expleres the paradigms that heuris-
tics are discovered by consulting simplified models-of the prob-
lem domain. Pearl’s scheme involves systematic relinement
and deletion of comstraints from the original problem
specification until a semi-decomposable medel is identified.
The solution to the latter constitutes a heuristic to the former.

Many paradigms for machine leaming can be applied as
well. Machine leaming strategics studied in the lterature
include rote learning, learning by instruction, leaming by
deduction, learning by analogy, and learning by induction [8].

In order 1o select the learning paradigm for our problem,
the characteristics of the problem must be studied. The key
characteristics for the process mapping problem are:

e Knowledge-lean domain: there is littde knowledge for gen-
erating good candidate heuristics;

o Explicit feedback: the effect of applying a heuristic on a test
case can be assessed quickly;

» Scalability: performance of heuristics scale reasonably well
between small and large test cases;

» Large solution space and limited resources.

Due to these characteristics, leamning by induction, and in
particular, learning by experimentation, is particularly suitable
for learning new heuristics. In this domain, resource schedul-
ing is very important in the learning process. Note that other
learning methods, such as learning by deduction and learning
by analogy, do not work well for knowledge-lean problems.

In this paper we focus on studying the generate-and-test
mechanism under a fixed time constraint. The major problem
addressed is on the scheduling of resources for systomatically
exploring the space of possible heuristics so that the best
heuristics can be obtained when time is exceeded. The tradeoff
is on the number of heuristics to test and the amount of testing
performed on each within the time limit. Qur heuristics genera-
tor is somewhat primitive at this point and can be enhanced in
the future through Pearl’s method [9].

3.2. Generate-and-Test Framework

This framework is an application of a generate-and-test
strategy to search an ill-defined scarch space under resource
constraints (see Figure 3.1). It consists of three main parts: the
candidate generator gencrates new candidates to be con-
sidered, the evaluator applies the candidate to the target prob-
lem and records the performance of this candidate, and the
scheduler makes decisions about the best way to use the
resources. A candidate is a point within the search space,
which in this case is a sct of heuristics for the post-game-
analysis system.

To avoid spending a large amount of time on poor candi-
date, the evaluation process is divided nto small sub-tests
caHed quanta. This allows the system lo perform additional
tests on candidates only if they demonsirale some merits during
previous quanta. During a quanmum of time, lesls are por-

aSet of Best Candidates
Resource o N
Constraints # : Test t
e et w o Database !
Evaluation | . /’
Criteria Scheduler —_—————- .
- ~ ==~ Candidate !
. 1 Peol '
Test Instance VYep-- x* u
@ €] -
Performance .
Record Candidate
Active Candidate Generation

—_——t e

i Domain |
knowledge:
M ”
Figure 3.1. Generate-and-Test Framework.

Evaluator

formed on the candidate selected using test cases randomly
generated or supplied by the users. There are two possibilities
here: either choose relatively small test cases so that they can
be tested fully within the quantum of time, or choose large test
cases dictated by the application requirements to actually test
the candidate. In the latter case, the evaluation of the candidate
on the test case within the quantum may not be completed. Its
advantage is that the candidate is tested under realistic condi-
tions; however, its drawback is that if the evaluation of the test
case is not completed at the end of the assigned quantum, it is
difficult to assess which candidate to test next. Since in the
process mapping problem candidates scale reasonably well
between ‘smail and large test cases, we test the candidate
selected using small test cases and update the statistical
behavior of the candidate at the end of the quantum.

In other application domains, the behavior of candidates
may not scale well. For example, in designing an artificial
neural network for an application [12], it may not be possible to
assess the quality of a configuration at the end of a quantum, as
the network is too large to be tested fully. Itis also not possible
to test the patterns on a small network and generalize the net-
work to a larger one. Consequently, the decision made at the
end of a quantum are heuristic rather than statistical, and may
be prone to errors.

At the end of a quantum, a decision is made by the
scheduler to perform one of the following actions: (1) select the
next candidate to test from the candidate pool, (2) generate a
new candidate to be placed in the candidate pool and possibly
remove an existing one from the pool, and (3) select a set of
best candidates and stop learning when time is expended. The
decision between choices (1) and (2) is made based on the
current performance of the candidates in the pool and how
much evaluation has been done on e¢ach. One simple method
for determining when to generate new candidates for the pool is
to simply generate new ones whenever existing ones have been
evaluated to within a statistical confidence.

If the decision is made to pursue choice (1) or (3), then the
candidate is sclected based an evaluation criterion. This con-
sists of two parts: the goodness and the guidance functions.

The goodness function is an estimator of the value of the
objective function. It is used for selecting a candidate in the
pool that most likely performs the best if the learning process
were to be stopped at this time. It is needed because candidates
may not be fully evaluated to within a statistical confidence
when Jearning is terminated.

The guidance function is used for selecting the candidate to
test in the next quantum if learning were to be confinued, Its
goal is to choose the candidate that will maximize the probabil-
ity that the candidates with the highest objective values also
have the highest goodness values. The choice is not always to
select the most promising candidate to test becausc a candidate
may show less promise with the limited tests performed but
will become better with more tests. Moreover, with limited
resources, it may be necessary to explore more candidates early
in the learning process and focus on a limited set of promising
ones as time is running out. A statistical model that addresses
this radeoff is shown in Section 4.

If the decision is made to pursue choice {2), then a new
candidate has to be generated. The candidate generator must be
intelligent in guiding the generation of new and hopefully
better candidates. It should use past performance of existing
candidates in the pool as well as any domain knowledge it has,
This part of the framework can be incrementally improved
using higher-level learning strategics such as learning by
deduction, learning by explanation, and relaxation methods [9].
Generate-and-test is not applicable to improving the candidate
generator because the overhead of testing a new meta-rule
could be extremely high. We assume that candidate generation
is driven by a fixed set of meta-rules in this paper. The learn-
ing of new meta-rules will be studied in the future,

4. STATISTICAL SELECTION FOR FINDING THE
BEST CANDIDATE UNDER TIME CONSTRAINTS

The problem of finding the best candidate by performing a
series of tests has traditionally been known as the sequential
selection problem. The following section details what work
has been done with this problem in the past and the difficultics
that have been encountered. We also describe our proposed
approach to address these problems and demonstrate the effec-
tiveness of our technique.

4.1. Problem Formulation

In our case we are faced with chosing the best candidate
from a pool of candidates, each of which is associated with a
set of performance values. This problem is [onmally stated as
follows: given a set of populations consisting of normally dis-
tributed mumbers with unknown means and variances, selecl the
one with the highest population mean by testing a cerlain
number of samples from these populations.* In our case, the
populations are candidate heuristics, and the numbers compris-
ing the elements of the populations are the performance values
associated with applying the heuristic to a problem instances.?
Making one pick from a population is analogous to tesling the
candidate on one problem instance. The goal is to chose the
candidate with the highest mean® within a given number of
1ests.

2. Population mean and variance are properties of a(}mpulaiion. They can be
represented by the sample mean and variance if limited samples are drawn from

4.2. Related Methods

Two naive approaches for this problem are: (1) the
randomiround-robin method, which takes samples from each
population in tum, and (2) the greedy method, which takes
samples from the population that currently has the maximum
sample mean. However, there are problems with both methods.
The problem with round-robin is that the number of picks made
from each population is the same. In our case, it seems
unnecessary to demand we test the worst candidate just as
much as the best, ignoring how initial tests may quickly
demonstrate the disparity in performance between them. On
the other hand, the greedy method considers only candidates
that look good at the current stage and might discard the best
candidate at an early stage. This could result in poor perfor-
mance.

Work related to this area was pioneered by Bechhofer in
1954 [1]. The result of his method allowed the tester to deter-
mine the minimum amount of picks necessary to know which
population is the best to within a certain degree of confidence.
Many extensions have been proposed by researchers to accom-
modate various tradeoffs and other goals of selection. Some
papers deal with the case of an unequal number of samples {2].
Optimal algorithms 1o this problem do not exist.

The major problem with applying these traditional methods
1o our case 15 that the emphasis in the past has been on the stop-
ping criteria for testing a finite set of populations rather than on
finding the best population within a given time constraint. The
tracitional sequential selection problem dictates that at each
time step all the populations are sampled once. Following this,
a measure is calculated to determine if the desired degree of
confidence has been attained or if testing should continue,
None of the previous methods have considered the case where
there are possibly more populations than total testing time
allowed, or when one knows a priori how many picks can be
made. Both of these conditions are highly relevant in our case,
because we know our deadlines and have far more options than
we could possibly pursue.

4.3. Proposed Approach

In this section we first propose an overall guidance strategy
that combines individual guidance strategies. Folowing this
we discuss a minimum-risk guidance strategy to overcome the
worst-case scenario of the greedy method while maintaining
the desirable property of avoiding extensive tests on inferior
candidates.

4.3.1. Multistage Testing

Due to the limited available testing time, we formulate the
overall guidance strategy, G(T), as a series of stages,
Gt guk;) , where { ranges from 1 to the number of stages.
Each stage is charterized by a triplet consisting of (a) #;, the
duration of the stage, (b) g;, the particular guidance strategy to
be used for the stage, and (¢) k;, the number of candidates to be

the population or if the population is infinite in size.

3. A problem instance {or test case) is represented by the specification of the set
of communicating processes to be mapped, the hardware on which the processes
are mapped, the input values to the distributed processes, and the set of initial
rzndom mappings for the processes. The performance of a problem instance is
averaged over the set of initial random mappings.

4. The highest mean is used as the objective here. As discussed in Section 5.1,
other objectives may be specified.

Cadidae strtegy:
g, : Round-Robin 8., Miimum Risk
Guidance Function
Candidalz numbers
X, : @ sy tha cn i with 4 picks cach k, =01k,
Time disration:
=0T 1, =057
Stage 1 Stage2
6 st L g

Top 10% candidaes ftert | -+ Bugther Testing

Figure 4.1. Multistage Testing Procedure.

considered for testing during this stage. The resulting combi-
nation gives an overall testing strategy that takes into account
limited resources like testing time, and can deal with situations
in which there are so many candidates that it would be impossi-
ble to test them all just once.

The parameter values for each stage are calculated heuristi-
cally based on knowledge of the problem. Factors that affect
these settings include the size of each population, the total
amount of testing time, and the number of possible candidates,
Currently, we have focused on two-stage testing. The first
stage consists of a round-robin strategy, and the second is a
minimum-risk procedure of our own design. The two-stage
procedure is jHustrated in Figure 4.1. Intuitively, the two
stages correspond to coarse initial testing 1o weed out unworthy
candidates followed by a careful evaluation to select the best.

Our heuristic for setting the stage parameters is to spend
the first 75% of the time performing round-robin tests at 4 tests
per candidate, G ((0.757, RR , 0.75T /4). The number of candi-
dates is then selected accordingly. The second stage then
selects a subset of the best performers for continued experimen-
tation. The size of this subset is set to allow each remaining
candidate to be tested o within a statistical confidence. Initial
strategies tested in the second stage include (1) round-robin,
(2) greedy; and (3) minimum risk (see next section).

Methed (2) is based on an estimation of population means,
and method (3) is based on an estimation of both the population
means and population variances. Thus these methods rely on a
small amount of a priori test results from the first stage. We
have made all stages explicit in order to study the performance
tradeoffs necessary for providing a robust solution.

4.3.2. Minlmum Risk Guidance Strategy

‘We propose the minimum-risk guidance strategy to over-
come the worst-case problems of the greedy method without
losing the desirable property of avoiding cxtensive tesis on
infenior candidates. We define a risk function that is expressed
as the expected square-error loss of the mean of cach popula-
tion, weighted by the probability of selection caleulated using a
joint ¢#-distribution. This guidance strategy selects the next can-
didate so that the weighted risk is locally minimized.

Formally, our minimum-risk guidance is defined as fol-
lows. Let m be the number of populations. For population i,
let p; be its population mean, G; be its population standard

deviation, X; be its sample mean, §; be its unbiased sample
standard deviation, and n¥ be the number of samples tested in
stage k. If L;, the estimation loss for population i, is expressed
using the squared-error function, then

L, X) = (i —-X, P (4.1)

When the candidate with the currently maximum sample
mean is selected in stage k, the expected estimation loss (or
risk) is expressed using the following equation.

m

ELL* (s, X1 = ¥ P} EILi(X1 @d.2)

i=]

where P} represents the likelihood that population i is the best.
Because o;'s are unkmown in our case, the variable
ey — X;/(Syf =T) has Student’s ¢ distribution with degree of
freedom (¥ — 1) and variance (1+ 2/(n! —3)), n¥ > 3. This
leads to the following equation.

o Ty = 3|1 2 | s? 4.3
E‘[L,-(}.l;,X;)]—E i +n‘,-‘—3 * @.3)
Eq. 4.3 shows that m'lcertam? about O; increases the risk of
estimation by the factor 2/ (nf — 3). P} is also defined using ¢
distribution as follows,

Y ¥ — U
Pz F, a1, ——— dF,|n*—1, ———L— (44
! 1} '[u o/ n.-—] ’[’ o/ AT “@4)
where F,(v, x) is the cumulative distribution function of the
distribution.

The policy to be taken in stage k is the one which, under
the constraint that only one of #% can be increased by 1, minim-
izes Eq. 4.3 in stage (k+1). In the special case when we know
the *‘best” population, the choice of this strategy is_simple:
only the *‘best” population is tested, because P;=1 if X; is the
‘'best’’ one, and 0 for other populations.

The actual value of P} is calculated based on the informa-
tion we currently have in stage k. We use unbiased estimators
X; and §; for p; and ©;, respectively. This implies that we need
at least four samples from each population in order to apply this
guidance strategy.

4.4. Experimental Results

In this section we present some Monte Carlo simulation
results to show the usefulness of our guidance strategies. Dis-
tributions of populations are generated from the distributions of
target problems studied in Section 6. To avoid biasing our
judgement of candidate quality, we select a random problem
instance from our problem set for testing.

Figures 4.2 and 4.3 show the Monte Carlo simulation
results of the rank of the selected population averaged over 100
iterations for each guidance method. Rank 100 is the best. In
Figure 4.2, T'= 533 time units and for two-stages methods, £, =
0.75T. Round-robin search (RR) is used i the first stage, and
one of minimum-risk (MR), round-robin, and greedy (GR)
searches is used in the second stage. They are compared with
one-stage round-robin. All two-stage methods perform better
than the one-stage round-robin method. In Figure 4.3, we set T
equal to 160 units and #, to 40 units. In this case, the one-stage
round-robin search performs very poorly.

rank
count
100 — second. GG,

second:MR

SeC?M:ZER

7 roun{t_i?o H
first:RR
80

1./

60 — stage-I (75%)

50

100 200 300 400 500
number of tests

Figure 4.2. Average rank of selected candidate for T = 533
time units and ¢; = 0.757.

3uk:
100 —
second:GR
90 —

second:RR

so—{ /.
70 1-stage round robin,
60 — stage-] (25%)
- - stage-TI (75%)_
e it et e
50 T ; i
50 100 150

mumber of tests

Figure 4.3, Average rank of selected candidate for T = 160
time units and #; = 0.257.

A greedy search in the second stage seems to perform
better than a minimum-risk search. The reason for this is that
in our problem the variances of populations are relatively small
and the statistical estimation of the population means is rather
accurate. Hence, a greedy method has less chance to get into
the wrong direction, Information on the percent deviation from
the value of the best as a function of time also demonstrates
this tendency.

Figure 4.4 shows an example in which the greedy method
performs poorly. In this case, ten normally distribuled popula-
tons are generated: nine of these have small variances (N(0.02,
0.035)), and one has a better sample mean but a much larger

Q T T v T

&
10
15 F
20 |
25 F
30

PL L sttt
T e

% Deviation from best

35 b
YRR (T/10)" wm=e

40 “RR (1} /Greedy" ----
"RR {2} /Greedy" -——

45 r "RR (4)}/Greedy” --—- 1

"RR {(4)/Min-risk" ----

0 50 100 13%C 200 250 3200 35C 400
Time (T}

Figure 4.4. Example when greedy selection fail.

50

variance (N(0.04, 0.2)). The minimum-risk method is found to
be superior in identifying early in the process the best candi-
date, while the other methods are misled by the distributions
with small variances.

From these results, we select strategy G(T) =
{G1(0.75T, RR, 0.75T /4), G 3(0.25T, MR, ky} for cur current
implementation discussed in Section 6.

5. LEARNING HEURISTICS FOR POST-GAME
ANALYSIS

In this section, we present our implementation of the
generate-and-test framework discussed in Section 3 for finding
new heuristic candidates. We first discuss formally our objec-
tive of the framework, namely, the kind of heuristic candidates
we are seeking, and briefly discuss the heuristics used in post-
game analysis, the performance evaluator, and the candidate
generator.

5.1. Objective of Learning Process

The objective of our learning process is to develop a good
heuristic that lead to better process mappings. There are two
conflicting factors that affect the goodness of a heuristic: its
execution time (or cost), and the quality of its solution, and a
tradeoff on them must be performed. The following two boun-
dary cases are unrealistic: (a) unlimited time for the heuristic to
execute and hence the best mapping, (b) zero time for the
heuristic to execute and hence zero cost.

We select an objective to be used in our learning process.
Tts specification depends on the application requirements. Let
c(hv), t(h,v), and q(h,v) be the cost, execution time, and
quality of the heuristic candidate k and target mapping problem
v under consideration. Each of these three values are averaged
over a set of initial random mappings.

We first define ¢ (h,v) as a piecewise contimious function
with a discontinuity at f,,,, where f,,, is the maximum time
that a heuristic is allowed to execute before a penalty is
imposed. Hence,

1(h") St

tCh,v) > to.’ 5.1

1
cthv) = {c, (2 (4,) —] + 1

where ¢, is the relationship between cost and execution time
when 1., is exceeded. The reason for choosing ¢, is to

avoid the degenerate case when ¢ (k,v) and #(h,v) are both
Zerocs.

We define g (#,v), the quality of a heuristic candidate for
mapping problem v averaged over a set of initial random map-
pings as the reciprocal of the completion time of the processes
meapped on the distributed system averaged over a set of initial
random mappings using heuristic k. That is, the quality is
higher when the processes mapped complete sooner.

(L), the objective of our learning process L, is to find a
heuristic that maximizes the average quality-cost ratios, that is,

_ g (h,v)
QW) = mfxg‘, vy (5.2)

Noie that we choose the average quality-cost ratio to max-
imize in Eq. 5.2. This implies that we place equal weights on
each problem instance.® Note that the information on the set of
representative problem instances and their weights on the finel
performance must be supplied by the system designers.

5.2. Representing Post-Game Heuristics as Frames

The original rules used in post-game analysis are coded as
programming constructs that are not easy to modify by the
learning system. To simplify the modification of these rules,
they are represented as frames in our implementation.

There are three types of heuristics in post-game analysis,
which represent the three stages of the system. The first type of
heuristics is used in the performance-evaluation stage for gen-
erating proposals based on independent optimization subgoals.
The second type of heuristics is used in the priority-assessment
stage for determining the order in which sites and processes are
processed based on proposals related to them. The final type of
heuristic is used for checking the feasibility of a move created
from the highest-priority site and process.

One basic need for all three types of heuristics is to be able
to represent expressions. An expression defines the relation-
ship between the result and values of various variables. In this
case, each expression is stored in the form of an expression
tree. Bach intermediate node represents an operator angd each
leaf node represents a variable or constant. The set of operators
include arithmetic, relational, and logical operators, and addi-
tional pre-defined functions. It is evaluated by a2 post-order
traversal of the expression tree. At each intermediate node, the
children are evaluated first, then the values from the children
are combined using the specificd operator. Note that the logical
operators are evaluated with shert-circuit evaluation.

Each proposal-generation heurisiic is represenied as a
record composed of four fields.

» Reason field specifies the motivalion behind the heuristic.

e Quantifier field specifies the scope of the heuristic.

e Condition field is an expression specifying the condition in
which proposals are generated,

s Action list specifies the proposals 1o be generated. Each
action is a record containing the action type, parameters for
the proposal, and an expression specilying the weight of the
proposal.

Each heuristic is applied according to its quantifier field. The

condition expression is evaluated for cach subject specilied by

the quantifier. When the expression returns a non-zero value,
each action in the action list generates a proposal. Each propo-
sal has a weight computed by evaluating the weight expression,

There are two priority-assessment heuristics, each of which
can be represented by an expression. One heuristic specifies
the priotity of each process, and the other specifies the priority
of each site. The two expressions are used to compare two
processes or two sites to determine their relative importance.
These partial orders are used to determine the order in which
moves are considered.

Feasibility heuristics can be represented as a cellection of
expressions. Each expression represents a condition in which
the move would be infeasible. For each move considered by
post-game analysis, an expression is evaluated. If any expres-
sion retirn a non-zero value, then the corresponding move is
rejected.

Becanse heuristics are represented as frames, they can be
read in from & data file. For this learning framework, a set of
heuristics is used to represent a candidate, a point within the
search space. Each set of heuristics is stored in a file which can
be casily assimilated by post-game analysis.

5.3. Candidate Evalvator

This component is used to evaluate the performance of
heuristic candidates on problem instances. The performance of
each candidate is found by using the heuristic candidate to find
the mapping for all problem instances in the test database.® As
the performance of each heuristic candidate evalvated on the
same problem with different initial mappings can vary widely,
it is necessary to test each problem instance encugh to get a
good confidence on the value of the average performance. This
is done by testing each test case until the 95% confidence inter-
val (based on the Student’s ¢-distribution) of the average perfor-
mance across the different initial mappings are within 5% of
the average value.

The results from each evaluation of a heuristic candidate
for a problem instance with an initial mapping are recorded and
used to compute the performance. In our implernentation, we
collect the cost of the best mapping found, the amount of CPU
time used by post-game analysis, the number of post-game
iterations, the number of moves done, and the amount of
improvements of the best mapping over the initial mapping.

The evaluator evaluates each candidate one guanfun at a
time. Depending on the size of the quantum, one or more prob-
lem instances can be solved with respect to a number of initial
random mappings. With a small quantum size, more candi-
dates can be examined; however, the assessment of the perfor-
mance of the candidate tested at the end of a quantum may be
difficult. With a large quantum size, more accuraie assessment
can be made on the candidate tested; however, the maximum
number of quanta is reduced, as the total learning time is fixed.
Tradeolls on the quantum sizes are discussed in Section 6.

5.4. Candidate Generator

The generation of new post-game heuristics is a difficult
problem. First, 2 heuristic 15 composed of both numeric and
symbolic parts. It is much more difficult to manipulate sym-
bolic rules than numeric values. In addition, the set of possible
heuristics is ill-defined. It is possible that the current set of
heuristics, which was designed manually, might be missing

some important and unknown components. It would require a
substantial amount of domain knowledge 1o discover them in
an automated fashion. At present, we only consider the exist-
ing heuristics and transform them into new ones by a few well-
defined operators.

Due to the limited amount of time available for learning,
the candidate generator should utilize the performance of previ-
ous candidates in generating new ones. Currenily, we have
investigated two methods: random and greedy. In a random
approach, a new candidate is generated by a random perturba-
tion from the current candidate. In a greedy one, the generator
tries to follow the direction of the greatest improvement in per-
formance, based on performance of candidates already gen-
erated, We plan to explore other methods of candidate genera-
tion in the fature.

QOur current implementation is based on a rule-based sys-
tem. Tt is flexible enough to allow additional domain
knowledge, new operators, and new rules to be added incre-
mentally, Tt consists of a set of assertions called the working
space and a set of rules. A rule consists of twa parts: a list of
conditions and a list of actions, When all conditions within a
rule are met, the rule fires, and all actions within the action list
are attempted. A condition can be either a pattern or a fune-
tion. A pattemn is considered met by finding a unification
between the pattern and an assertion within the working space,
while a function is considered met when it retums a non-zero
value. Variable assignments and wildcards can be used in pat-
terns and functions. There are three types of actions: delete an
existing assertion used in the condition part from the working
space, add a new assertion to the working space, and execule
some functions. Actions can use values of variablices assigned
in the condition part of the rule.

There are presently four operators for transforming a candi-
date, i.e., moving it from one point to anocther point in the
heuristics space. Three operators apply to proposal generation
heuristics: change the threshold of the conditional expression,
remove an existing heuristic, and duplicate an existing heuristic
with a different threshold value. The other operator sclects
each priority-assessment expression from one of the six possi-
ble combinatons. Each operation can be specified as
(OF , H , 8), where OP is the operator, H is the heuristic sub-
ject to the operator, and & is the parameter set of the operator.
We plan to add additional operators in the future and include
probabilistic uncertainties in the feasibility heuristics.

A transformation, T(C;, C;), is a sequence of operations
{(OP, H,, 8}, k=1, -+, that wansform a point in the
heuristics space, C;, into another point, C;. In other words,
candidate C; is created by applying transformation 1'(Cy, Cj) 1o
candidate ;. Two transformations, {(QP, f},81}} and
{(OP%, HZ, 8}), are said to be similar if OP} = OPZ, for all k.
If, in addition to this, H} is also the same as /7 for all k, then
the two transformations are said to be in the same direction.

Let Relate (C) be the set of all candidates C; such that the
distance between C and C; in the heurislics space, i.e., the
number of operations to transform C into C;, is less than some
predefined constant . The operations carried out in the
meta-rules for candidate generation can be divided mto three
stages. They are described briefly as follow.

(1) Given a candidate as a starting point, find Cy,, the best
candidate that a new candidate can be created from.

Table 6.12. Test of Normal Diswribution with tn,,, = 600
seconds. A total of 100 candidates, each with 20
points, were tested. At o = (.2, Kolmogorov-
Smimov test with 20 samples requires the value to
be less than 0.23, while Geary Test at o = 0.05
requires the value to be greater than 0.915 [4].

Test - Min Avg_=L Max | # Fail/Tot
Kolmogorov-Smirnov || 0.079 | 0.142 | 0.252 1100
(a=02,KS8<0.23)

Geary Test 0.784 1 0,943 | 1.049
{o=0.05,G>0915)

27/100

Table 6.1b. Test of Normal Distribution with £, . = 180 seconds.

Test Min | Avg || Max | # Fail/Tot
Kolmegorov-Smirnov ([0.051 | 0,136 || 0.220 0/100
(a=02,K8<023)

Geary Test 0.840 { 0.977 || 1.106 | 15/100
{c=0.05 G>0915)

s Let ¢, be the candidate with the highest difference in
performance from C,, smong all candidates in the set
defined by Relate (Cin.)

s If C .y has better performance than C,., then use Cp as
Cino. As a result, C,, after this step will have equal or
worse performance as Cp,.

s If no candidate in Relate (C,,.) has performance among the
top 2/3 of all candidates, then use Cp,,, the incumbent can-
didate with the highest performance, as C;,..

(2) Find tansformation with the highest performance
increase.

s Base on C ., found in step (1), find T = T{Crppn s Cine 1
the transformation that causes the greatest increase in per-
formance within the heuristics space around C,,...

(3) Generate the new candidate by applying one of the fol-
lowing cases.

s If there are no existing candidates in the same direction as
Tews then Co,, = Apply (T .y, . Cine). Finish.

s If there are very few points in the neighborhood of C,,,.
then C,,,, = Apply(Random Operations, C;,.). Finish.

s If there are many points in the neighborhood of C,,,, then
find T similar to T,,, such that there are no candidates in
the same direction as T, and set C,,, = Apply(T,C,,.).
Finish.

6. EXPERIMENTAL RESULTS

To verify our method for learning heuristics for post-game
analysis, we train the post-game system using a target problem
based on a divide-and-conquer paradigm. In this problem, each
nede does some computation for a random ameount of time and
sends a message to each of its child nodes to start computation.
It then waits until it receives results from its descendents before
reporling to its parent. There are a total of 105 processes that
are mapped to a 3-by-3 mesh architecture. 20 problem

Table 6.2. Result of Learning for Different £, Time allowed
for leamning is 400 quanta for the first stage and 133
quanta for the second stage. (Total time = 533).

Average Average
tuax || Orig. | Performance|| Post-Game |Mapping Prob.
(sec)|| Perf. |(1300*Q (L)| Exec. Time | Comp, Time

(orig=62.30) | (orig=1598.57)
20 || 0.1425 | 0.6965 14.81 188075
30 (] 0.3066 | 0.7074 24.99 163607
40 1104291 | 0.7722 24.99 1636.07
50 i 0.4962 | 0.7881 24.99 1636.07
60 (] 0.5479 | 0.7913 24.99 1636.07
70 1| 0.6039 { 0.7955 3238 1622.93
90 || 0.6900 | 0.8061 37.17 1395.16
120][0.7356 | 0.8137 37.17 1595.16
0.8176 (best) 37.17 1595.16
180} 0.7888 08141 (3 4038 1595.72
0.8194 (best) 57.75 1587.90
300 11 0.8087 0.8183 (3) 4209 1594.94
0.8235 (best) 96,12 1567.05
450 11 0-8140 555533 3775 1587.90
600 |{ 0.8167 | 0.8290 96,12 1567.05
900 |[{ 0.8182 | 08317 96.12 1567.05
o 11 0.8182 0.8332 (best) 96.12 1567.05
’ 0.8195 (14) 59.51 1592.65

rank

100 - NA. -/v ------------------ — —

. : s -C - ‘U V -
3

80—t
|
Tl
: —— guanium=]
5‘ qumtum=2

60 — : - === quanium=4
:
Al
M|

40 T | |

-0 200 400 600
time constraints

Figure 6.1. Performance of heuristics learned as a function of
quanium size and leaming time allowed.

Table 6.3. Result of applying heuristics learning t a
distributed blackboard program. Each candidate in
the table corresponds to the candidate with the best

Note 1. If our learning framework does not find the actual best
candidate for a given t,... then the best candidate is
shown in first row, and the actual result on the second
row with the rank of the candidate indicated in
parenthesis.

Note 2. The execution time taken by post-game analysis
averaged over all problem instances tested using the
original heuristics of Yan and Lundstrom [14] is 62.30
secs. The average completion time of the mappings
found by the original heuristics is 1595.57 sces.

instances with CPU times drawn from the same distribution are
included in the test set.

The 20 problem instances are evaluated for 100 different
candidate heuristics. Each set of 20 points is then tested for
normality using both the Kolmogorov-Smimov Test and the
Geary Test [4]. The results summarized in Table 6.1 demon-
strate the validity of the assumption.

The time limit for the first learning experiment is 533 time
units, where each time unit corresponds to the time for evaluat-
ing a candidate over one problem instance with 31 initial ran-
dom mappings. We choose one quantum of evaluation to be
equivalent to one time unit. Cur system use the 2-stage selec-
tion method discussed in Section 4. The first stage uses 75% of
the total time and tests as many candidates as possible such that
each candidate is tested in four time quanta. The second stage
uses the minimum-risk-selection method to evaluate the top
10% of the candidates from the first stage undl time runs out.
Using this strategy, 100 candidates can be tested, In contrast, if
each candidate were evaluated in 20 time quanta, then only 26
candidates can be test in the time limit. The initial candidate

petformance for a particnlar value of f,,,. The
corresponding £ ., is listed in the first column.
Average Average
Candidate Post-Game | Mapping Problem
(an) Exec. Time Comp. Time
original 1056.17 29655.22
Loy = 20 60.77 35718.67
Fonax = 30,40,50,60 113.57 31063.76
b =7 594.17 30083.52
tmax = 90,120,180 1254.08 2927945
Eoax = 300 182.56 30454.57
max = 450,600,900,00 1310.04 30056.83

pool consists of 24 predefined heuristic sets. The candidate
generator creates new candidates as old ones are tested.

The result in Table 6.2 shows the tradeoffs between the
performance of the target mapping problem and the execution
time of the heuristic candidate. Recall that ¢, is the threshold
beyond which a lincar cost is associated with the mapping cost
(c,=1 in Eq. (5.1)). We apply our learmning system to learn new
heuristics using the objective of quality-cost ratio defined in
Eq. (5.2) for each given f.,,. We also exhanstively evaluate
the 100 candidates and rank them. The results in Table 6.2
show that in most cases our selection method finds the best can-
didate, We have also indicated the rank of the candidate found
in case we did not find the best one. Using the qualitycost
measure, our system consistently produces better heuristics
than than the original heuristics of Yan and Lundstrom [14].

Table 6.2 also shows for each f,,, the time required by
post-game analysis to find the mapping and the resulting com-
pletion time of the target problem. These results indicate that
there is & tradeoff between these two quantities. It is important
to choose the heuristic candidate that best fits the application
requirements. An automated system for learning heuristics is

essential here, as it shows alternatives to nsers and allows them
to make a better choice.

A second experiment was performed to measure the effects
of varying the quantum size and the time lmit. Figure 6.1 dep-
icts the results for various learning times and 3 quantum sizes.
The graph shows the trend of increasing performance of candi-
dates selected at the end of leaming period when the duration
of learning increases. This is true for all quantum sizes. The
fluctuation in performance decreases as the quantum size
increases because more tests can be performed in a larger quan-
tum and there is less chance for eror. However, the perfor-
mance for the same learning duration decreases as the guantum
size increase because less candidates can be tested.

A third experiment was carried out to demonstrate the gen-
erality of the heuristics learned. We apply the candidates that
provide the best performance for various f.,,,'s to a problem
instance of mapping 115 processes in a disiributed blackboard
program on a 3-by-3 mesh architecture. This program has a
very different behavior from the divide-and-conquer program
used to learn the heuristics. The performances over 31 random
initial mappings are shown in Table 6.3.

Resulis in Table 6.3 show that the general trend of candi-
date performance follows the same pattern as the performance
of the original test database. The only exceptions are the candi-

date for Iy, = 300, and for r,,, = 450, 600, 900, and =. From

these limited experiments, gencralization of learning results
seems possible at least to a limited extent, Further experimen-
tation on generalization will be carried out in the future.

7. FUTURE WORK

Future work on this research include (a) the application of
our learning system to a varisty of target mapping problems,
(b} the refinement of meta-rules in the candidate generator, (<)
the normalization of results when test cases are not identically
distributed, (d) studying the effect of using different heuristics
under different resource conditions, (&) the dynamic learning of
heuristics during run time based on past profile, and (f) the
detection of conditions in which perfurmance is not improved
with increased learning and the methods to cope with them.

REFERENCES

[1] R. E. Bechhofer, ‘A Single-Sample Multiple Decision
Procedure for Ranking Means of Normal Populations
with Known Variances,' Ann. Math. Statist., vol. 25,
no. 1, pp. 16-39, Institute of Mathematical Statistics,
Ann Arbor, MI, March 1954,

[2] 1. O, Berger and I. Deely, **A Bayesian Approach to
Ranking and Selection of Related Means With Altema-
tives to Analysis-of-Variance Methodology,” J. of the
American Statistical Association, vol. 83, no, 402, pp.
364-373, American Staiistical Association, June 1988,

3] S. H. Bokhari, “*On the Mapping Problem,”” Trans. on
Computers, vol. C-30, no. 3, pp. 207-214, IEEE, Mar.
1981,

[4] 1. L. Pevore, Probability and Statistics for Enginecring
and the Sciences, Brooks/Cole Publishing Company,
Monterey, CA, 1982

[5]

[6]

[7}

[8]

9]

(10]

(i1]

{12]

[13]

{14]

[131

E. J. Dudewicz and J. O. Koo, The Complete Categor-
ized Guide to Statistical Selection and Ranking Pro-
cedures, American Sciences Press, Inc., Columbus, OH,
1982,

V. M. Lo, ““Heuristic Algorithms for Task Assignment
in Distributed Systems,” Trans. on Computers, vol. C-
37, no. 11, pp. 1384-1397, IEEE, Nov, 1988.

M. B. Lowrie and B. W. Wah, ‘‘Learning Heuristic
Functions for Numeric Optimization Problems,”” Proc.
Computer Software and Applications Conf., pp. 443-
450, IEEE, Chicago, IL, Oct. 1988.

R. 8. Michalski, **Understanding the Nature of Learn-
ing: Issues and Research Directions,”” in Machine
Learning: An Artificial Intelligence Approach, ed. R. 5.
Michalski, J. G. Carbonell, and T. M. Mitchell, vol. II,
Morgan Kaufmann, Los Altos, CA, 1986.

1. Pearl, “*On the Discovery and Generation of Certain
Heuristics,” The Al Magazine, pp. 23-33, AAAL
Winter/Spring 1983.

K. Ramamritham, J. A. Stankovic, and W. Zhao, “*Dis-
tributed Scheduling of Tasks with Deadlines and
Resource Requirements,”” Trans. on Computers, vol.
C-38, no. 8, pp- 1110-1123, IEEE, Aug. 1989,

8. R. Schwartz, Resource Constrained Parameter Tun-
ing Applied to Stereo Vision, M.Sc. Thesis, Department
of Electrical and Computer Engineering, University of
Tilinois, Urbana, IL, August 1991,

B. W. Wah and H. Kriplani, ‘‘Resource Consirained
Design of Artificial Neural Networks,” Proe. Int'l Joint
Conf. on Neural Networks, vol. 11, pp. 269-279, IEEE,
June 1990,

1. C. Yan, Post-Game Analysis--A Heuristic Resource
Management Framework for Concurrent Systems,
Ph.D. Dissertation, Dept. Flec. Eng., Stanford Univ.,
Dec. 1988.

J. C. Yan and S. F. Lundstrom, ‘“The Post-Game
Analysis Framework--Developing Resource Manage-
ment Strategies for Concurrent Systems,” Trams. on
Knowledge and Data Engineering, vol. 1, no. 3, IEEE,
Sept. 1989.

C. E. Yu and B. W. Wah, *‘Learning Dominance Rela-
tions in Combinatorial Search Problems,”’ Trans. on
Software Engineering, vol. SE-14, no. 8, pp. 1155-
1175, IEEE, Aug. 1988.

N

