
AUTOMATED PARAMETER TUNING IN STEREO VISION
UNDER TIME CONSTRAINTS

Steven R. Schwartz Benjamin W. Wah

Motorola, Inc. University of Illinois

ABSTRACT
This paper presents a method for tuning parameters under a

fixed time constraint for a general binocular stereo-vision algo-
rithm. A major difficulty in stereo vision, as well as in other
vision algorithms, lies in adjusting the large variety of parame-
ters for maximizing performance. This effort is usually per-
formed by human experts with a minimum of formal guidelines.
To automate this process, we develop TEACHER 4.2, a
generate-and-test system that systematically generates new
parameter values by analyzing the results of previous tests, and
that performs limited and controlled tests on the candidates gen-
erated using high-speed computers. The system is modeled as a
statistical selection problem operating under a given time con-
straint. It divides the time allowed into stages, where promising
parameter-value sets found in one stage are passed to the next
stage for further testing, and selects the parameter-value set
deemed best by the final stage as the result. We show experimen-
tally that our system can find new parameter-value sets which in
some cases are better than the ones originally found by extensive
hand-tuning and commonly used heuristics. Our experiments
further show that different parameter values may be required
under different objectives and performance constraints. Our sys-
tem provides an automated tool for generating new parameters
that can be part of an adaptive stereo-vision system, capable of
adapting to changing algorithm specifications as well as chang-
ing goals and target domains.

KEYWORDS AND PHRASES. Depth perception, generate-
and-test, time constraint, statistical allocation, stereo vision.

1. INTRODUCTION
Stereo vision entails the extraction of 3-D knowledge of a

scene from the corresponding 2-D projections. Algorithms for
stereo vision generally requires the tuning of a large number of
parameters, serving purposes such as detection of thresholds and
the configuration of image preprocessing stages. Traditionally,
these parameters are tuned by designers using specific training
images: the experts propose new parameter-value sets to be
tested on training images until satisfactory performance is
obtained. This process can be automated by designing an intelli-
gent parameter generator and by relying on high-speed comput-
ers to test the parameter-value sets proposed on selected training
images.

hhhhhhhhhhhh
Steven R. Schwartz is with Motorola, Inc., Mail Drop IL 27 G79, 1501 W. Shure
Drive, Arlington Heights, IL 60004 (schwartz@marble.rtsg.mot.com). Benjamin
W. Wah is with the University of Illinois, Center for Reliable and High
Performance Computing, Coordinated Science Laboratory, 1308 West Main Street,
MC255, Urbana, IL 61801 (b-wah@uiuc.edu).

This research was supported partially by National Aeronautics and Space
Administration Contract NCC 2-481, National Science Foundation Grant MIP 88-
10584, and Sumitomo Electric Industries, Yokohama, Japan.

Proceedings of 4th International Conference on Tools with Artificial Intelligence,
November 10-13, 1992.

This paper presents an intelligent parameter-tuning frame-
work and analyzes a statistical method for systematically explor-
ing the parameter space. The objective is to find the stereo-
vision parameters that maximize the average performance over a
database of test images. There are three main reasons for this
approach. 1) The relationship between the parameters and the
algorithm performance is unknown without running tests. 2)
Small test images that reflect realistic application domains are
available. 3) Last, there is little knowledge available for creating
new parameter-value sets. As it is difficult to evaluate all possi-
ble parameter-value sets, our method proposes a limited set of
parameter values and selectively evaluates them by a given dead-
line. As the process is incremental, it allows the results from
previous tests to be used as the starting point for further parame-
ter tuning.

The central aspect of our approach is a statistical method for
trading between the number of new parameter-value sets to gen-
erate, and the number of tests to perform on the existing ones.
Our approach consists of some initial empirical tests for deter-
mining the scheduling of the time allowed, the division of the
total time into stages, and the assignment of the testing strategy
in each stage. The testing strategy is used to determine the
parameter-value set to test next based on results of previous tests.
A rule base creates new parameter values to be tested, using
knowledge on past test results to determine how specific parame-
ter values should be modified.

The results presented in this paper extends our previous
work on population-based learning of heuristics using a
learning-by-example paradigm [9]. TEACHER (which stands
for TEchniques for Automated Creation of HEuRistics) is a sys-
tem we developed for population-based learning, and has been
applied for finding new heuristics for process mapping, load
balancing, and combinatorial search.

2. BACKGROUND
The purpose of stereo vision is to determine the depth of the

visible portions of a scene. This is known as the 21⁄2−D sketch
[4]. By using a model database, however, an approximation of
the 3-D sketch can be obtained from the 21⁄2−D sketch. The final
purpose, of course, is to use this information for 3-D object
recognition or image understanding.

The general procedure for discrete binocular stereo vision
can be summarized in five steps. 1) Obtain two images from dif-
ferent viewpoints. 2) Extract the tokens, or scene features, from
each image for use in matching. (This information is known as
the primal sketch.) [4] 3) Determine the correspondence between
tokens found in each image. (This results in the disparity map.)
4) Translate disparity values into depth values. (This results in
the depth map.) 5) Interpolate over the depth map as necessary
for the desired resolution of depth information.

Using the general algorithm as outlined above, the steps
most suited for computer tuning are (2) and (3). Accordingly,
this paper focuses on this area.

Under the above general view of the stereo matching pro-
cedure, the computational goals fall into three conflicting areas:
1) speed of matching, 2) density of matches, and 3) accuracy of
matches. Note that in most vision applications the objective is
ill-defined; that is, the user may not know the precise perfor-
mance trade-off that is necessary, but rather that certain require-
ments must be met.

Related work that attempts to address some of the above
problems falls under the category of adaptive stereo vision. Two
prominent approaches in this area include the use of metaparam-
eters and the use of iterative refinement. An example of the
former can be seen in Weng, Ahuja, and Huang’s work on two-
view matching [10]. Here, the detection of edges for use in the
matching stage is performed in two steps. The first step calcu-
lates the intensity gradient over the entire image and then uses a
histogram of the resulting values to set edge-detection thres-
holds. The fraction of the edges that are earmarked for detection
is fixed beforehand. There are two drawbacks to this approach.
First, the tunable parameters are merely heuristic parameters
abstracted by one level and must be set through experimentation.
Second, it is necessary to gather statistics during run-time in
order to use meta-parameters, and the statistical distribution is
assumed constant or is changing slowly.

Another example of metaparameters is seen in Tanaka and
Kak’s work on rule-based stereo matching [8]. Here, the control
parameters are embedded in the system in the form of rules. The
matching strategy dynamically shifts among four different
approaches as necessary. Although the combination of these
methods under central control improves robustness, there is now
the overhead of coordinating them. The basic problems of meta-
parameters are again present here, namely, run-time decision
overhead and the need for tuning the metaparameters.

Another area of adaptive stereo vision is in the iterative
refinement of the parameters. An example is the work of
Takahashi and Tomita [7]. The focus here is in calculating
stereo-camera parameters from the two images alone. These
parameters are those related to camera position and orientation,
which are sometimes subject to drift over time. Although the
algorithm must be invoked periodically, it still requires run-time
computation. Additionally, it depends on the existence of an
analytically correct solution. This is appropriate in the case of
finding the camera parameters, but oftentimes the search
methods for these parameters will be ill-defined. In this case,
intelligent or expert experimentation is the best available tool.

The implementation of the above approaches raises a variety
of questions. First, we need to determine the heuristic com-
ponents of the vision algorithm. Questions that we need to
answer include the following. How much detail should be
extracted for each token in a pass of the matching algorithm?
How many channels are necessary? What parameters should be
used to extract the proper number of tokens? The answers to
these questions may involve explicit assumptions about the
characteristics of the tokens and the specific implementation.

Second, we need to determine the parameter values used in
the vision algorithm. Table 1 lists some typical parameters that
must be tuned in a general token-based stereo matching algo-
rithm. The last column shows sample values considered in the
specific algorithm implemented in this paper (to be described in
Section 5.1). It is obvious that it is impossible to test all combi-
nations of parameter values, as they have a continuous range.

Third, the application domain is knowledge-lean and has lit-
tle information available for guiding the search of the appropriate
parameters. Hence, it is difficult to design an expert system for
guiding the testing of alternative parameter-value sets.

Table 1. Stereo Algorithm Parameter List
ii

Parameter Rangeii
≥1Number of Channels — aids matching density by

refining the search region and by obtaining
increasingly dense depth estimates.ii

0.1−5.0Blurring Kernel Size (in pixels) — width (σ) of the
Gaussian filter used to select the strength of
detected edges; this, along with the edge-detection
thresholds, controls the density of edges detected in
a particular channel.ii
High Threshold (in ∂ intensity/∂ pixel) — upper
limit of gradient strength for hysteresis of edge
thresholding.

1 − 255

ii
0 − 255Low Threshold (in ∂ intensity/∂ pixel) — lower

limit on gradient strength allowed for edge
classification.ii

1 − 200Initial Search Window (in pixels) — size of
region to initially consider for a match.ii
Similarity Thresholds — used to determine if
tokens are a match

1 − 50Gradient (in ∆ ∂ intensity/∂ pixel) — difference
in gradient magnitude

J. J ≤ 30Orientation (in degrees) — difference in edgel
orientation

± 1 − 3Vertical Position (in pixels) — difference in
vertical positioniicc

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

To address the issues raised above, our focus in this paper is
on testing alternative parameter-value sets in a controlled
manner, without relying on specific domain knowledge of the
application. This is accomplished by starting with some initial
parameter values. Each unique set of values is considered a
separate entity that could possibly lead to an improvement. The
system decides how many new entities to create, how to create
them, and how to schedule the available testing time based on a
statistical model. It is important to note that, as the available
time is finite, it is necessary to schedule tests appropriately.
Details of this approach are presented in the following sections.

3. GENERATE-AND-TEST METHOD
In this study, we assume that the objective function of the

vision application is specified by the users, and is expressed as a
heuristic parametric function of the time taken to match the
tokens in the scene and the quantity and accuracy of the matched
tokens. By varying the objective function and by finding param-
eter values that optimize the objective function, we attempt to
find a good combination that results in the ‘‘best’’ performance.

The parameter-tuning problem we study is unique because
the parameter values are continuous and unbounded. Hence, it is
impossible to test the performance for all possible combinations
of parameter values. In tuning the performance of the vision
algorithm, we propose a generate-and-test method that searches
the domain of parameter values and finds parameter-value sets
that improves the objective function. Such a method has been
found to be useful for discovering new heuristics in knowledge-
lean application domains [9]. To make the search more efficient,
we can use expert knowledge for generating new parameters and
high-speed computers for evaluating the quality of the proposed
parameters against test images from the target domain. As the
domain searched is unbounded, we can only measure relative
improvement of the parameter-value sets found but cannot pin-
point the optimal set.

Set of Best Candidate(s)

Evaluator

Resource
Constraints

Evaluation
Criteria

Performance
Record

Test Candidate

Active Candidate

Candidate
Pool

Domain
Knowledge

Image
Database

New
Candidate

(Choose 1, 2, or 3)

Scheduler

Candidate
Generator

3

1

2

Figure 1. Generate-and-test framework

We apply a generate-and-test framework for searching the
ill-defined space under a given time constraint (see Figure 1). As
mentioned earlier, a candidate refers to a particular parameter-
value set of interest. The set of all candidates currently under
consideration for testing is called the candidate-pool; the set of
images used for testing the candidates is called the test-database.

The three main parts that comprise the core of the framework
are the candidate generator, the candidate evaluator, and the
resource scheduler. The candidate generator creates new candi-
dates for consideration; the candidate evaluator tests the candi-
dates on the test images and records their performance; and the
resource scheduler determines which candidate will be tested
next. Our focus in this paper is placed on the resource scheduler.

To avoid spending a large amount of time on poor candi-
dates, the evaluation process is divided into small subtests called
quanta. This allows the system to perform additional tests on
candidates only if they demonstrate some merit during prior
quanta. During one quantum of time, tests are performed on the
selected candidate using test images from a database supplied by
the user, with a goal of finding the candidate with the greatest
average performance. Of course, the ideal situation is to find a
candidate that performs the best in all cases. This, however, is
impractical or impossible to verify unless all candidates are
evaluated over the exact same set of test images representing the
application domain. This would imply that all candidates
(including the worst) must be evaluated to an equal degree.

At the end of each quantum, the scheduler selects one of the
following actions to perform (see Figure 1). 1) Select the next
candidate to test from the candidate pool. 2) Generate a new
candidate to be placed in the pool. 3) If the deadline has been
reached, select a set of the best candidates and terminate testing.

The decision between choices (1) and (2) is made based on
the current performance of the candidates in the pool and the
amount of evaluation that has been performed on each. One sim-
ple method for deciding when to generate new candidates is to
generate them whenever existing ones have been evaluated to
have a performance value known to within a statistical
confidence level. (Another approach is discussed in Section 5.4.)

If the decision is made to pursue choices (1) or (3), then the
candidate(s) are selected based on an evaluation criterion, con-
sisting of the goodness function and the guidance strategy.

The goodness function is an estimator of the value of the
objective function. It is used to select from the pool the candi-
date that most likely performs the best. It is needed because can-
didates may not be fully evaluated to within a statistical
confidence when testing is terminated.

The guidance strategy is used, if testing is continued, to
select the candidate to be evaluated during the next quantum.
The goal of the guidance strategy is to choose a candidate that
maximizes the probability that the candidates with the highest
objective values also have the highest goodness values. It is not
always best to select the most promising candidate to test
because a candidate may show less promise when limited tests
have been performed but might appear better with more tests.
Moreover, with limited resources, it might be necessary to
explore more candidates early in the generate-and-test process
and focus on a limited set of promising ones as time runs out.
This trade-off is discussed in Section 4.

If the decision is made to pursue choice (2), then a new can-
didate must be generated. The generator should be intelligent in
creating new, and ideally better, candidates. To this end, it
should use the past performance of existing candidates as well as
any available domain knowledge.

4. STATISTICAL GUIDANCE STRATEGIES
In the generate-and-test framework described in Section 3,

we are faced with choosing the best candidate from a pool of
candidates. Each candidate in this pool has an associated set of
performance values obtained by testing it on the images from the
database. A statistical formulation of this problem can be
expressed as follows: given a set of populations consisting of
normally distributed numbers (with unknown means and vari-
ances), select the one with the highest population mean by test-
ing a certain number of samples from these populations.1 In this
case, the performance values of a parameter-value set are associ-
ated with applying the candidate to the given test images.2 Mak-
ing one pick from a population is analogous to testing the candi-
date on one image. The goal here is to choose the candidate with
the highest mean3 within a fixed and known number of tests.

The goal of selecting the best candidate can be reduced to
designing a guidance strategy that tells which candidate to test
next, so that the likelihood of selecting the best candidate is max-
imized. Of course, the ideal goal is to find a guidance strategy
that always finds populations with higher means than those
selected by other strategies. Unfortunately, the populations that
are selected for testing depend on the values of the samples made
so far. Therefore, the best information available to judge a gui-
dance strategy is the distribution of the population means found
by that strategy. Different guidance strategies can be compared
based only on this information.

Existing guidance strategies can be classified as static or
dynamic. Static guidance strategies have a selection sequence
that is determined ahead of time. One simple strategy of this
type is the round-robin strategy which takes samples from each
population in turn. Its drawback is that it tests the worst candi-
date as much as the best, ignoring how initial tests may quickly
demonstrate the disparity in performance between the two. In
contrast, dynamic guidance strategies select the candidate for
hhhhhhhhhhhhhhhhhhhhh
1. Population mean and variance are properties of a population. They can be
estimated by the sample mean and variance if limited samples are drawn from the
population or if the population is infinite in size.

2. A test image is randomly drawn from the image database.

3. The highest mean is used as the objective here. Other objectives, such as the
maximum of a population, may be used instead.

testing based on known sample values. An example of this is the
greedy method which samples the population that currently has
the maximum sample mean. The problem with dynamic stra-
tegies is that they might be misled by dynamic information
obtained early in the search process, and discard the best candi-
date at an early stage.

4.1. Statistical Selection Strategies
The problem of finding the best candidate by performing a

series of tests is known traditionally as the selection problem in
statistical inference. These problems can be classified into two
types. The first type was first studied by Stein in 1948 [6] and is
called the stopping problem. It deals with finding the minimum
number of tests in order to know which population among a
finite number of populations is the best to within a certain degree
of confidence. This result and subsequent extensions cannot be
applied in our case because they considered a finite number of
populations and an unbounded amount of time.

The second type was pioneered by Bechhofer in 1954 [1]
and is called the allocation problem. It focuses on allocating a
fixed number of tests among a given finite number of populations
so that the probability of selecting the population with the max-
imum mean is maximized. Recent work in this area are predom-
inantly on multistage methods in which the number of tests
allowed are divided into stages, and promising populations
selected in one stage are passed to the next stage for further test-
ing. The allocation of tests can be static, which is determined a
priori based on statistical distributions of populations, or can be
dynamic, which is based on means and variances estimated dur-
ing testing.

Results in the second type do not apply in our case because
they deal with a finite and given number of populations before
selection begins; our objective in this paper, on the other hand, is
to find a population with a large mean value but not necessarily
the one with the largest mean, as there are infinitely many popu-
lations to start. However, existing statistical algorithms can be
applied if the time allowed were divided into two parts: the first
part is used for determining a finite number of populations to be
tested in the second part, and the second parts assigns tests
according to algorithms developed in statistical allocation.

In the next section, we present a multistage testing procedure
that uses the first stage to determine a finite number of popula-
tions to be tested in the remaining stages. This procedure has
been applied successfully in TEACHER 4.1 for finding better
heuristics for mapping a set of communicating processes on a
distributed-memory multicomputer system [3].

4.2. Multistage Testing
A good guidance strategy must take into account the trade-

off between the number of populations that can be tested and the
accuracy of the sample-mean values of these populations. (Sam-
ple mean is important because it is used to select the best popula-
tion at the end.) We formulate a general guidance strategy,
G (T), composed of a series of stages. Each stage is represented
by Gi(gi ,ti ,ni), where i ranges from 1 to m, the number of stages.
Each stage is characterized by a triplet {gi , ti , ni}. The particular
guidance strategy to be used for stage i is gi; the duration of the
stage is ti; and the number of candidates to be considered for
testing during that stage is ni . This multistage testing procedure
(see Figure 2) can accommodate both static and dynamic gui-
dance strategies. Under this method, the early stages correspond
to coarse initial testing used to weed out unworthy candidates,
and the latter stages correspond to more careful scrutiny of the
better candidates. Only the candidates that have the top ni +1
sample-mean values at the end of stage i are carried over into

0
Stage 2Stage 1

1

2

2

1
+

2

Time

(guidance strategy)

(duration of stage)

(number of
candidates in stage)

1

1

g

t

n

Stage m
T

t t

g

t

n

t

g

1
t

n

2 m

m

m

Figure 2. The multistage testing procedure

stage i +1 for further testing. Also, only the top candidate is
selected at the end of the last stage.

The goal now is to find the strategy parameters comprising
the best guidance strategy. The parameter values must be
selected based on the characteristics of the given problem. Fac-
tors that affect these values include: 1) the size of each popula-
tion, 2) the distribution of each population, 3) the total testing
time, 4) the number of possible populations, and 5) the distribu-
tion of the population means of the populations as a whole.

In our previous work, we had analyzed a two-stage testing
procedure for finding new heuristic parameter-value sets for
mapping a set of communicating processes on a distributed-
memory computer system [3]. In analyzing the testing procedure
there, we made three general assumptions. 1) Each population
was assumed to be normally distributed, and that sample values
in a population were independent and identically distributed
(i.i.d.). 2) The mean of each population was assumed to be
drawn from a known distribution f µ , and that the values of all
population means were i.i.d. Each population was also assumed
to have an infinite number of samples. 3) The standard deviation
of each population was assumed to be drawn from a known dis-
tribution f σ , and that the values of all population standard devia-
tions were i.i.d. We further assumed that the mean and standard
deviation of each population were independent.

The same assumptions are made in the stereo-vision problem
studied in this paper. To justify these assumptions, we verified
them using the empirical cumulative distribution function for the
population means and the population variances of 85 candidate
parameter-value sets of the vision problem. In all these tests, a
normal distribution was found to have a good fit.

We have studied and evaluated four testing procedures [3]:

g single-stage round-robin algorithm, where a predetermined
number of populations are sampled a constant number of times
in the time4 allowed;

g two-stage round-robin algorithm, where analysis aims at
finding the division of time between the first and the second
stage and the parameters of the round-robin algorithm in each
stage;

g two-stage round-robin/greedy algorithm, which uses (as
heuristics) the same division of time found analytically for the
two-stage round-robin algorithm; and

g two-stage round-robin/minimum-risk algorithm, which is simi-
lar to the last algorithm except that it selects populations for
testing in the second stage based on a risk function (defined as
the expected squared-error loss of the estimated mean of each
population).

For the last two testing procedures, performance analysis can be
formulated but is too difficult to be solved in closed forms.

hhhhhhhhhhhhhhhhhhhhh
4. The time constraint is expressed as the total number of samples drawn,
assuming that each draw takes unit time.

We have applied the four testing procedures described above
for the stereo-vision application. To estimate the statistical
parameters of the vision application, we assume that the initial
10% of the total time allowed is assigned to presample the popu-
lations. During this period, the system evaluates as many
parameter-value sets as possible and collect performance data in
terms of sample means and sample standard deviations. Each
parameter-value set is evaluated on four different test images to
assure a reasonable confidence in its statistical performance
values. The parameters of the selection process are then deter-
mined based on our previous analysis [3].

5. IMPLEMENTATION DETAILS
The stereo-vision algorithm used here is a general binocular

token-matching algorithm. It operates on two images (hereafter
referred to as the left and right images) consisting of a rectangu-
lar array of square pixels. The raw-image input data are in the
form of grayscale maps (8 bits per pixel). Average training
images in the database are of the size 128×128 pixels, but larger
images are easily accommodated by partitioning them into
smaller ones so that their processing times are less than one
quantum. The matching of corresponding features in the images
occurs on a medium level. The tokens that are matched consist
of edge pixels or edgels, but this can easily be extended to
include segments, corners, or other features. The edgel extrac-
tion is done using an enhanced version of the Canny edge detec-
tor [2]. This algorithm employs hysteresis for greater edge con-
tinuity and retains mid-processing information to be used for
matching. It was selected over other methods such as the Lapla-
cian of a Gaussian (LoG) because of the hysteresis, as well as the
greater flexibility it allows in terms of adjusting the edge-
detection parameters. The parameters necessary for the edge-
detection stage are: 1) the width of the Gaussian blurring kernel,
2) the high-gradient threshold for edge detection, and 3) the
low-gradient threshold for edge detection.

The information retained for each edgel includes its position,
its X- and Y-directional gradients, and the chain of edgels to
which it is connected. (The latter is used for matching extended
contours.) In addition, the position of each edgel is found with
subpixel resolution.

The token-matching stage is based on iterative depth
refinement as is discussed in Section 2. For this, the necessary
parameters include the edge-detection parameters for each chan-
nel as well as the number of channels.

There are now a variety of parameters available for tuning.
For this implementation only a few were selected. The choice
for the initial subset was made regarding the impact and function
that the parameter had on the performance. Table 1 shows the
value ranges for the parameters. Note that the unit of ‘‘pixel’’ as
used in the table is a distance measure equal to the width of one
pixel. (Pixels are assumed to be square.)

Of the parameters listed, the number of channels, the blur-
ring factor for each channel, and the edge-detection-gradient
thresholds have been selected for actual parameter-tuning imple-
mentation. These have the greatest effect on performance and
are useful for verifying performance intuitively. For a typical
candidate, the number of channels varied from one to five, and
the σ of the blurring kernel varied from 0.1 to 5.0. The other
parameters were assigned values selected manually, and held
constant throughout the experimentation.

The final form for a candidate can be viewed as a set of tri-
plets, each giving the parameters for a particular channel. For
example, the expression {(σ1, lt 1, ht 1), (σ2, lt 2, ht 2)} repre-
sents the parameters comprising a two-channel candidate.

5.1. Objective Function
The particular objective function that the user defines will

indirectly determine the type of candidates that the system finds
to perform well. The desired form of the objective function
should only be a function of the stereo-vision algorithm parame-
ters and should return a measure of quality. However, because
this relationship is unknown, the objective function is expressed
as a function of intermediate values gathered by performing tests
on the candidate. The view taken in formulating it was that a
fixed amount of time is allowed for completion of the algorithm.
Exceeding (and even approaching) this limit penalizes the fitness
of a candidate. Other aspects considered were to maximize both
the density and accuracy. Density is measured in terms of the
fraction of the image for which corresponding edgels were
found. Accuracy, on the other hand, is measured by probing the
resulting disparity map and by comparing the values with hand-
calculated disparities. For the test images in our database, ten
points were measured per image. The accuracy used in the
objective function is the normalized average disparity error with
0 error mapping to 1, and an error of e max pixels or more map-
ping to 0. (The value of e max used for this system was varied to
simulate the effect of different application requirements.) The
objective function then is a product of density (in matches per
square pixel), normalized accuracy, and the time-penalty func-
tion. The penalty function as a function t, the time for the test,
t 0, the time limit, and q, a parameter of the penalty function, is
shown as follows.

p (t) =
1 + e q (t − t 0)

1 + e − q t 0
hhhhhhhhhhh (1)

The final objective function is the average quality of the can-
didate measured over each test image in the database. The qual-
ity measure over one image, i, with parameter-value set, P, is
Q (i, P). This is a function of three intermediate test results
which are each functions of the image and the algorithm parame-
ters. The three components are d (i, P), the density of disparity
measurements, a (i, P), the average accuracy of disparity meas-
urements, and t (i, P), the time to process the image, where

Q (i , P) = d (i, P) × a (i, P) × p (t (i, P)) . (2)

The objective function, O (P), now takes the following
form, where P is the set of candidate parameters and B is the set
of the N images in the database.

O (P, B) = Qavg =
N
1hh

i ∈B
Σ Q (i , P) . (3)

The objective function stated here is really one in a family of
possible objectives. By varying components such as t 0, q, and
e max, users can make the system search for particular parameter-
value sets for different applications. This kind of information is
of interest because it shows how the system focuses towards dif-
ferent classes of candidates under different system requirements.
Further, users may not be very clear in the beginning on the qual-
ity of results they wish to get. By finding new parameter-value
sets based on different objectives, users can determine subjec-
tively the best parameter-value set when testing is completed.

5.2. Image Database
The training image database was obtained as a series of

black and white photographs with a standard camera. These
images were taken in outdoor daytime conditions and consisted
primarily of building scenes. This was done to ensure that the
database covered a specific class of images (daytime and edge-
oriented), yet had the complex properties inherent in real-world

scenes (as opposed to those of synthetic images).

The images were digitized with a Sharp 24-bit color scanner
at roughly 85 dpi and then quantized to 256 gray levels. The size
of the images after digitization was 256×256 pixels. For training
purposes, however, the images were broken into 4 pieces each,
thereby making each test image 128×128 pixels. For the pur-
poses of stereo matching, the stereo images were hand-rectified
and mounted to ensure a straight epipolar line. Accuracy points
were measured by finding correspondences manually on
magnified copies of the images. Accuracy measurements made
this way are precise to within one pixel.

5.3. Candidate Generation
Initially, some sample parameter-value sets (or candidates)

are specified by the user. As testing progresses, however, the
system needs to be able to create its own candidates. The gen-
eration of new candidates is handled by using rules to represent
expert knowledge in this area. Due to the limited time available
for testing, the candidate generator should refer to the perfor-
mance of previous candidates when generating new ones.
Currently, two methods have been integrated: random and
greedy. In the random approach, a new candidate is generated
by a random perturbation from one of the existing candidates.
The candidate used as a basis for this perturbation must lie in the
top third of the existing candidates. This is employed as a hedge
against stagnation in a local maximum on the objective-function
surface. In the greedy approach, the generator tries to follow the
‘‘direction’’ of the greatest improvement in performance, based
on the performance of candidates already generated. This allows
existing good transformations to be followed. The direction is
expressed as a vector of the delta values between the parameters
of the two candidates. Details of the rules used are described in
the reference [5].

6. EXPERIMENTAL RESULTS
This section presents a verification of the effectiveness of the

methods described in the previous sections. The results were
generated from actual runs of different durations and with dif-
ferent objective-function formulations. (Both actual runs and
simulated runs are presented.) Before performing the experi-
ments in the actual runs, the candidate pool was seeded with
seven candidates that were generated manually (see Table 2).
All experiments started with these candidates to show the dif-
ferent types of candidates that could be discovered as the avail-
able time and the objective function were modified. From these
initial candidates, the rules in the candidate generator were
applied to generate new candidates as necessary. At the end of
each run, all of the candidates were fully evaluated over all of the
images in the database. (Here, the database consisted of 30
128×128 images.) This full evaluation allows judging the perfor-
mance of the system by giving insight into the performance/time
trade-off. This performance loss is the difference between the
best found under the guided system and the best found by
exhaustive tests. The time gain is the amount of time saved by
using a guidance strategy rather than blind exhaustive tests. The
full evaluation corresponds to finding the values of the objective
function for the given candidates.

During actual tests, the testing strategy that was used was a
two-stage round-robin/minimum-risk strategy. The division of
time between the two stages was equal. This fraction was deter-
mined heuristically from experiments using a simulator on a
variety of problems, and appears to be fairly robust. Presampling
was performed for 10% of the available time to determine the
mean and standard deviation of the population means, and the
standard deviation of each population (assumed constant for all

Table 2. Hand-tuned Seed Candidates (numbers in each row
indicate parameters used for the channel).

iii
Candidate Channel Low High

number width threshold thresholdii
1 1.3 2.0 5.0iii
2 0.6 2.0 5.0iii

0.9 2.0 5.03 0.6 2.0 5.0iii
1.8 2.0 5.04 1.5 2.0 5.0iii
2.4 2.0 5.0
1.7 2.0 5.05
1.0 2.0 5.0iii
3.0 2.0 5.0
1.0 2.0 5.06
0.4 2.0 5.0iii
1.8 2.0 5.0
1.3 2.0 5.0
0.8 2.0 5.07

0.6 2.0 5.0iiicc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

populations). These parameters were then used to determine the
number of candidates to be tested in each of the two stages. Dur-
ing the available presampling time, tests were taken from as
many candidates as possible while still ensuring that 4 tests were
performed on each selected candidate.

Results from a combination of actual and simulated runs are
combined to present a full picture, because it is very time-
consuming to perform extensive tests on candidates whose indi-
vidual test times can range from 1 to 2 minutes on a Sun 4 IPC
workstation. For 200 candidates tested on 30 images, the total
testing time can last up to 7 days. For this reason, it can be
beneficial to perform additional simulations using the results
recorded from the actual tests, if the simulation results are close
to the observed ones. As simulation can take less than an hour to
complete, it clearly results in a great time savings. The problem
with simulation, however, is that candidates are not generated
during testing but rather selected from the existing pool of candi-
dates already generated beforehand. Nevertheless, empirical evi-
dence has shown that simulation performance is very close to
that of actual tests. Some justification for this conclusion can be
found by comparing the results in Table 3 for real tests (those
with candidate generation) and the results in Table 4 (those with
simulations).

For the actual (nonsimulated) tests of the system, three
objective functions were tested for three different durations. The
parameters of the objective functions that were used, as well as
the test durations, are presented in Table 3. Each entry of this
table lists the identity of the best parameter-value set that was
found, as well as its performance, i.e., the value of the objective
function after 30 tests. The parameter-value set for each channel
is encoded in the form {channel width}-{low threshold}-{high
threshold} with separate channels separated by a "/". The
number in parentheses at the end of the candidate name indicates
that this was the nth candidate generated to be tested.

Simulation results for the case of a fixed duration and dif-
ferent objectives (modeled using different e max’s and t 0’s) are
shown in Table 4. Here, two of the parameters comprising the
objective function are shown on different axes of the table. Each
entry in the table shows the identity of the best candidate as well
as its performance value. The duration for these tests was 400
quanta. Due to the limited space, other simulation results are not
presented [5].

Table 3. Performance from Actual Tests
iii

Objective Total Duration (in # of tests)iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Parameters 200 400ii

t 0 = 60 2.4-2.0-5.0/
1.7-2.0-5.0/
1.3-0.5-2.2 (22)

2.4-2.0-6.6/
1.5-1.7-5.0/
1.0-2.0-5.0 (18)

e max = 5 0.0369 0.0416iii
t 0 = 60 1.3-0.5-4.3/

1.5-2.0-4.8 (29)
2.4-2.5-5.0/
1.7-2.0-5.0/
1.0-1.6-5.0 (140)

e max = 2.5 0.0143 0.0251iii
t 0 = 45 1.6-1.4-2.5/

0.7-4.0-8.3 (30)
3.0-2.0-5.0/
1.4-2.1-2.1/
1.1-1.7-2.2 (109)

e max = 5 0.0284 0.0430iii
t 0 = 30 2.4-2.0-5.0/

1.4-2.0-6.2/
1.0-2.0-5.0 (48)

1.8-0.6-5.0/
1.7-4.0-4.9/
1.3-2.0-5.0/
0.9-0.7-5.6 (134)

e max = 2.5 0.0199 0.0200iiicc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Table 4. Performance from Simulations with Various Objectives
ii

t 0 Error Cut-off (e max)ii
2.5 5 10ii

2.4-2.0-5.0/
1.7-2.0-5.0/
1.0-2.0-5.0 (22)

1.5-2.3-2.7 (24) 1.5-2.3-2.7
(24)5

0.0163 0.0225 0.0342ii
2.3-2.0-5.0/
2.3-1.0-4.3/
1.0-2.0-3.7 (156)

3.1-1.2-5.8/
1.1-4.6-4.6/
0.8-1.1-3.7 (122)

1.5-2.3-2.7 (24)

10

0.0146 0.0225 0.0350ii
2.2-0.7-3.6/
1.5-2.4-3.1/
1.0-2.2-5.0 (34)

2.7-2.7-7.2/
1.7-2.0-5.0/
1.0-2.0-3.7 (85)

3.0-2.0-5.0/
1.4-2.1-2.1/
1.1-1.7-2.2 (109)20

0.0167 0.0264 0.0408ii
2.4-2.0-3.8/
1.7-2.7-4.0/
0.6-1.5-4.5 (94)

2.4-3.2-7.9/
1.7-2.0-5.0/
1.0-2.9-3.7 (121)

2.7-2.7-7.2/
1.7-2.0-5.0/
1.0-2.0-3.7 (85)40

0.0173 0.0344 0.0424ii
2.4-2.0-5.0/
2.1-2.0-5.4/
1.0-0.5-5.2 (69)

2.4-1.0-6.4/
1.7-2.0-5.0/
1.0-2.0-3.7 (104)

2.8-2.0-5.0/
1.3-3.5-4.6/
0.6-2.5-6.1 (39)60

0.0266 0.0392 0.0456iic
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

As seen in Table 4, the objective function is important in
determining the solution found. The difference in the results for
various t 0 and e max demonstrates the purposes of the objective
function: the ability to express the designer’s goals and to guide
the search in an automated fashion. As expected, spending more
time generally produces better solutions.

As stated in Section 5, it was assumed that the populations
were normally distributed. Although this cannot be guaranteed
for all possible candidates, the performance values of typical
candidates fit the normal assumption well. To verify this fact
empirically, one hundred different candidate parameter-value
sets were evaluated over 30 test images. Each set of 30 points
was then tested for normality using both the Kolmogorov-
Smirnov test and the Geary test. Normality for a total of 327
candidates, each with 30 points, t 0 = 30 seconds, and e max = 2.5,
were then verified at 95% confidence level (not shown due to
space limitation).

It was also assumed in Section 5 that the population means
themselves were i.i.d., i.e., the mean from each population came
from the same distribution and was independent of the others.
This is not true, however, because newly generated candidates
are based on previous ones. Therefore, a dependence is almost
guaranteed. Nevertheless, the empirical evidence demonstrates
that this fact has little bearing on the actual performance.

Figure 3 shows a coke-can scene obtained from NASA,
Ames Research Center. It is shown here to demonstrate sample
performance on a relatively simple scene. The set of images
consists of the stereo pair, the left and right edge-maps found on
the original final channel, and those found on the discovered final
channel after 200 tests with t 0 = 30, and e max = 5 (which define
the objective function). The original parameter-value setting
processed the scene in 62.23 seconds, using candidate number 5
in Table 2, whereas the discovered parameters took only 51.64
seconds, using the parameter-value set 2.2-2.0-7.0/1.6-3.8-
3.8/1.3-3.0-3.6 (41). In addition, it is noticeable from Figures 3e
and 3f that the edges matched are slightly improved: the string in
front of the coke can was better identified by the new parameter-
value set learned.

A number of other stereo images have been tested; they are
not shown due to space limitation. Our experiments generally
found parameter-value sets that improve both the accuracy of the
tokens matched as well as the computational time for processing
the images. In all cases, the computer-tuned parameters per-
formed faster and resulted in a 15% to 30% improvement as
measured by the objective function.

REFERENCES
[1] R. E. Bechhofer, ‘‘A Single-Sample Multiple Decision Pro-

cedure for Ranking Means of Normal Populations with
Known Variances,’’ Ann. Math. Statist., vol. 25, no. 1, pp.
16-39, Institute of Mathematical Statistics, Ann Arbor, MI,
March 1954.

[2] J. Canny, ‘‘A Computational Approach to Edge Detection,’’
Trans. on Pattern Analysis and Machine Intelligence, vol.
PAMI-8, no. 6, pp. 679-698, IEEE, Nov. 1986.

[3] A. Ieumwananonthachai, A. Aizawa, S. R. Schwartz, B. W.
Wah, and J. C. Yan, ‘‘Intelligent Process Mapping Through
Systematic Improvement of Heuristics,’’ J. of Parallel and
Distributed Computing, vol. 15, pp. 118-142, Academic
Press, June 1992.

[4] D. Marr, in Vision, W. H. Freeman and Co., New York, NY,
1982.

[5] S. R. Schwartz, Resource Constrained Parameter Tuning
Applied to Stereo Vision, M.Sc. Thesis, Dept. of Electrical
and Computer Engineering, Univ. of Illinois, Urbana, IL,
Aug. 1991.

[6] C. Stein, ‘‘The Selection of the Largest of a Number of
Means, Abstract,’’ Ann. Math. Statist., vol. 19, p. 429, 1948.

[7] H. Takahashi and F. Tomita, Self-Calibration of Stereo
Cameras, pp. 123-128, IEEE, 1988.

[8] S. Tanaka and A. C. Kak, ‘‘A Rule-Based Approach to
Binocular Stereopsis,’’ TR-EE 88-33, Purdue Univ., West
Lafayette, IN, July 1988.

[9] B. W. Wah, ‘‘Population-Based Learning: A New Method
for Learning from Examples under Resource Constraints,’’
Trans. on Knowledge and Data Engineering, vol. 4, no. 5,
pp. 454-474, IEEE, Oct. 1992.

[10] J. Weng, N. Ahuja, and T. S. Huang, Two-View Matching,
pp. 64-73, IEEE, 1988.

(a) Original right channel 3. (b) Original left channel 3.

(c) New right channel 3. (f) New left channel 3.

(e) 3-D edges originally. (f) 3-D edges after tests.

Figure 3. Example for illustrating improvements found by the automated parameter tuning method. (The original pair of stereo
images were processed using parameter-value set 5 defined in Table 2; the new pair of images were processed using the parameter-
value set 2.2-2.0-7.0/1.6-3.8-3.8/1.3-3.0-3.6. The authors would like to thank Dr. B. Sridhar at NASA, Ames Research Center, for pro-
viding the original test images.)

