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Abstract
The scheduling of tasks for applications with dynamic

behavior traditionally rely on externally observable met-
rics such as the number of active processes. This paper
presents a new scheduling strategy based on the observa-
tion that it may be possible to capture the near-term re-
source requirements of active tasks by expressions involv-
ing task parameters. Run-time evaluation of these expres-
sions yields estimates of task behavior that are valid over
a short, future interval of time. The heuristics proposed,
which when used in conjunction with information supplied
by pro�ling, can be used to annotate the source program
with such expressions. Preliminary simulation results show
that the use of near-future estimates in a dynamic schedul-
ing strategy for divide-and-conquer algorithms consistently
improves over traditional dynamic strategies. The perfor-
mance of this strategy approaches that of the best-known
deterministic strategy while incurring an overhead of the
same order as other dynamic strategies.

1 Introduction
The divide-and-conquer algorithmic technique is a pow-

erful problem solving paradigm. There are two methods
for executing a divide-and-conquer algorithm in parallel.
Static (deterministic) approaches [1] are used when the
set of tasks and their precedence relationships are known
a priori. Dynamic strategies, which are used to solve a
problem when its task requirements are not known in ad-
vance, can be further divided into two subclasses. Strate-
gies in the �rst subclass address scheduling in a dedicated
system, where all tasks that a�ect system load are con-
trollable. The second kind of dynamic strategies are used
in multitasked systems whose load is in
uenced by tasks
and factors, some of which are beyond the control of the
resource-management strategy.

The paper addresses the execution of dynamic divide-
and-conquer algorithms on dedicated multicomputer sys-
tems using the �rst kind of dynamic strategies. These
strategies either (i) use no information about the resource-
requirement patterns of active tasks; (ii) use information
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contained in externally observable metrics, such as the
number of tasks [2] and the number of unexecuted requests
for resident tasks [3]; or (iii) use some internal measures of
tasks that are conveyed through annotations to the source
code [4], or through scheduler directives [5]. The �rst two
levels of information are appropriate only for computations
that exhibit predictable patterns of resource requests. This
may not be true for the applications considered; hence, dy-
namic strategies that use these levels of information are not
expected to perform well.

The approach taken in the paper attempts to use in-
formation in the third category above. Although it is in-
tractable to correctly predict (a priori) the behavior of an
application over its entire lifetime, it may be possible to
capture the near-future behavior of tasks by expressions
of task parameters. Run-time evaluation of these expres-
sions constructed at compile-time yields estimates of task
behavior that are valid for a short, future interval of time.

We propose a set of systematic heuristics that analyze
the task description, and that can be used in conjunction
with pro�ling information about the behavior of the tasks
to estimate the near-future task requirements as expres-
sions of task parameters. The estimation heuristics ab-
stract away variations in resource requests that are caused
by local variables of the task, but preserve di�erences cap-
tured in the task parameters. They build on the work
of Sarkar [6, 7], who uses pro�ling-based compile-time es-
timates of average task behavior to partition and sched-
ule applicative programs. Our approach of capturing the
internal behavior of applications through these estimates
of near-term behavior contrasts with the annotation ap-
proach adopted by Hornig [4], who uses user-supplied com-
plexity measures of the entire task to decide on the parti-
tioning of Lisp-like programs; and the approach of Ngai, et
al.[5] who derive estimates of measures like the message-
wait time on the basis of best-case analyses.

2 Estimation of Near-Future Task Be-

havior
The notion of a task that we use is an indivisible unit

of computation that does not have any precedence con-
straints after it has started execution. Consequently, we
do not estimate factors such as communication wait times,
or time spent waiting for CPU control after the precedence
relationships have been satis�ed. The near-future behav-
ior of an executing task is determined primarily by its task
description and the current context of the task. In imper-



ative programs, uncertainty in behavior arises due to (i)
di�erent paths being taken at conditional statements in the
program segment describing the task; (ii) di�erent number
of iterations of the loop blocks; and (iii) di�erent invoca-
tions of functions resulting in di�erent behaviors. This sec-
tion presents heuristics that analyze the program segment
describing the task, and which can be used in conjunction
with pro�le information to alleviate uncertainty in task
behavior. Due to the inherent intractability of program
analysis, the behavior estimation of all program structures
is not possible through pure analysis alone. Pro�le infor-
mation captures the average-case behavior of the program
structure, and is used to provide the base estimate that
can be further improved heuristically.

2.1 Programming Model
A divide-and-conquer algorithm can be represented as

a set of interacting objectswhose methods are de�ned using
an imperative language. During execution, object creation
and method invocation take place by message passing. A
resident scheduler object is responsible for the manage-
ment of objects resident on a processor. The scheduler
objects periodically exchange their estimates of the local
load. On receiving a message, an object can do one or
more of the following operations: (i) compute a function,
(ii) create a new object, or (iii) invoke the method of a
di�erent object and wait for a response.

An object does not occupy the CPU continuously dur-
ing its lifetime. The periods of inactivity in the object's
lifetime correspond to the time when it is waiting for one
of its requests to return with a response, or is waiting for
some other object to invoke one of its methods. In the
mapping of the algorithmic description to our notion of
a task, we model each period of activity of the object as
a separate unit of indivisible computation. Each trigger
message (a response or a method-invocation message) cor-
responds to the satisfaction of a precedence constraint in
the general task graph.

The dependence of a task on multiple trigger messages
(as might happen when a task has multiple predecessors,
all of which must �nish executing before the task can com-
mence) is modeled by negligible periods of activity after
the reception of all but the last trigger message. A corre-
sponding situation exists for the case when a task needs to
send messages to all its successors.

The choice of an object-oriented representation allows
the analysis to be restricted to the level of code-blocks
contained in a public method of the object. Since the
computation performed by the task can be represented us-
ing a wide variety of program structures, the estimation
heuristics should handle any general program.

2.2 Heuristics for Behavior Estimation
For the sake of clarity, we limit the following discussion

to estimating near-future execution-times. The initial rep-
resentation of the program segment is assumed to be the
traditional control 
ow graph (CFG). We are interested in
CFGs only at the level of schedulable units in a method.
We assume that nodes of a CFG represent basic blocks,
where a mapping exists between program statements and
basic blocks. We further assume that the execution times
of primitive operations are available. As is in other code
analysis and optimization techniques, we assume that the

CFG is reducible. Node splitting is a standard approach for
transforming an irreducible CFG into a reducible one.

A reducible CFG has a unique depth-�rst spanning tree
and hence a unique interval structure that can be com-
puted easily [8]. The intervals identify the loops in the
program and are de�ned as below.

Interval. An interval with header h is a set I of nodes
in the graph such that (i) I is a single-entry region with
entry node h, and (ii) all circuits in the interval contain h.
In other words, I � fhg is circuit-free.

A derived graph I(G) can be de�ned by considering
each interval of the original graph G to be a single node.
It is now possible to repeat the process on I(G) to obtain
I2(G) and so on. For a reducible graph G, there exists
some k such that Ik(G) is the trivial 
ow graph consisting
of a single node. Thus, interval structuring allows a hier-
archical interpretation of the program for the purpose of
behavior estimation.

We also use the notion of a control-dependence graph
(CDG) derived from the control-dependence relationship
de�ned by Ferrante et al. [9]. A node Y in the CFG is
control-dependent on a predicate X if X has at least two
exits. Following one of the exits from X always results in
Y being executed, while taking another exit may result in
Y not being executed.

Our proposed method assesses the execution time for
each interval in terms of estimates for the intervals con-
tained within it. A single node is a trivial interval. It-
s execution-time estimate corresponds to interval Ik(G).
Pro�le information provides the base estimate for each in-
terval. Applicable heuristics from the set described below
are then used to improve the accuracy of the estimate. The
execution time of each interval is expressed as the sum of
the execution times of each contained subinterval, weighted
by the statement count of the subinterval. We associate
a branch probability with each conditional statement,
and a loop countwith each loop block. The latter denotes
the number of iterations of the loop body. The statement
count is computed from the branch probabilities and loop
counts using the CDG, by adding the contribution of each
loop to the statement count. The contribution of a loop is
evaluated as below.

1. Identify nodes in the CFG that lie on some path that
includes the exit-predicate of the loop and the back-
edge to the interval header.

2. Construct a CDG using these nodes and the edges on
the path.

3. Assign contributions to statement counts based on
the set of control dependencies for each node:

� control-independent nodes: loop count.

� control-dependent nodes: (statement count of
parent)�(branch probability).

A pseudo-edge from each interval exit to the interval header
ensures that there exists at least one loop that every node
lies on. Figure 1 shows a CFG and the contribution of loop
L2 to the statement counts of the graph nodes.

The estimation method assumes that a similar tech-
nique has been used on the CFG of the function body to
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Figure 1: Example showing computation of State-
ment Counts.

obtain the execution-time estimate of any function calls in
the interval. The information required from pro�ling is:

� for each conditional statement, the average probabil-
ity of associated control conditions; and

� for each contained loop, the average loop count in one
execution of the interval.

The following de�nitions are required before the esti-
mation heuristics can be described.

Predicate function. This is a function in terms of
the variables that appear in the predicate expression. It is
obtained by rewriting the expression such that all variables
appear on one side of the Boolean operator, and the other
side has only constants.

Global variables. These refer to the task variables in
whose terms the estimate is expressed. They are a subset
of all the task variables that have well-de�ned values at
the time the estimate expression is evaluated.

t-global variables. These are local variables that
propagate the e�ect of the global variables in the CFG.
They belong to one of the following types:

� an initial assignment to a global variable or a con-
stant;

� a subsequent use in a loop predicate that contains
only global variables and constants (in addition to
this variable);

� all intervening de�nitions of the variable involving on-
ly constants, global variables, and this variable.

The estimation heuristics provide better information
(than that obtained by pro�ling alone) about the branch
probabilities, the loop counts, and the execution-time esti-
mates of functions. Table 1 gives an overview of the heuris-
tics along with the conditions under which they apply. A
detailed description of each heuristic follows.

HEURISTIC 1 (Identifying active nodes in the
CFG). Given the set of global variables, a predicate n-
ode in the CFG is said to be evaluatable if it contains
only global variables and constants. The CDG identi�es
the active nodes given a particular control edge (the value
that the predicate evaluates to) from the predicate. These
are nodes that will execute if execution proceeds along the
selected control edge. Thus, the active nodes correspond-
ing to di�erent control conditions of evaluatable predicates

Table 1: Heuristics for Behavior Estimation in Pro-
grams (H1 is for conditional program structures and
estimating branch probabilities; H2 and H3 are for
loops based on loop counts; H4-H6 are for function-
call program structures).

Condition Description

H1 Evaluatable predi-

cates in CDG.

Range of control condition i-

denti�es active nodes.
H2 Constants, glob-

al and t-global vari-

ables in predicate;

associative op-

erations on t-global

variables in loop.

Relate di�erence in predicate

function for one iteration of

the loop to required di�er-

ence. Solve constraint equa-

tion.

H3 Loop-operations on

t-global

variables are non-

associative.

Use pro�le information re-

garding sequence of execu-

tion to relate loop count with

net di�erence in the predicate

function.
H4 Compute estimate in terms of

formal parameters of callee;

transform to variables of

caller.
H5 Recursive:

depth a�ected only

by global variables.

Set up recursive cost expres-

sion; solve using some heuris-

tic.
H6 Local variables af-

fect depth of recur-

sion.

Use Sarkar's heuristic to ob-

tain estimate for external in-

vocation of function.

can be identi�ed at the point when the task executes the
expression that contains the estimate.

Statement counts of nodes corresponding to each con-
trol condition are computed by taking the branch proba-
bility of that condition to be 1, and 0 for all other values of
the predicate. Since all predicate nodes in the graph are
unlikely to be evaluatable, multiple estimates (in terms
of di�erent sets of global variables) may be required to
capture the task behavior. In the absence of any evaluat-
able predicates, pro�le information regarding the branch
probability of the predicate node is used to compute the
statement counts.

HEURISTIC 2 (Computing loop counts for as-
sociative operations). If a loop predicate (predicates
de�ning exit from the loop) contains t-global variables then
the loop count is a�ected by the values of the global vari-
ables. An expression for the loop count can be written in
terms of the global variables if all the operations in the
loop body that de�ne the value of t-global variables are
associative. Associative operations are de�ned as below.

Associative Operations. A set of operations are de-
�ned as associative if the �nal value of the t-global variable
on application of an arbitrary sequence of these operations
is independent of the order in which the operations are ap-
plied. Examples of sets of associative operations include
f+;�g, f�;�g and fpow(�; x), logx(�)g.

Given a loop that satis�es the above conditions and has
one exit predicate, the loop count is estimated by relating
the di�erence in the predicate function for one execution
of the loop to the net required di�erence. The required
di�erence is evaluated by examining the initial value of



the predicate function (de�ned on entry to the loop body)
and the value of the function that would cause an exit from
the loop. The loop count is estimated as follows.

net di�erence in predicate function

estimated di�erence due to one iteration of the loop

The e�ects of the interval nodes on the predicate func-
tion is hierarchically evaluated in a manner similar to the
behavior estimation of the subinterval, and is weighted by
the statement counts of the nodes that lie on the loop (a
loop-count of unity is assumed for this purpose). For a
loop that has multiple exits, the loop counts for each ex-
it are estimated as above, and the overall loop count is
estimated by the minimum of the individual loop counts.

HEURISTIC 3 (Estimating loop counts for non-
associative operations). The above heuristic cannot be
applied when the loop body contains non-associative op-
erations on the t-global variables that appear in the loop
predicate. The approach adopted in such circumstances
is to estimate the change in value of the predicate func-
tion for a typical sequence of operations on the t-global
variables. Pro�le information is used to derive the aver-
age number of times a particular operation occurs between
the closest two occurrences of all other operations. Hav-
ing obtained an estimate of the execution sequence, the
predicate-function di�erence for the sequence is obtained
by computing the di�erence that would result from an ap-
plication of this sequence of operations. The loop count is
estimated by relating the change in the predicate function
for one execution of the sequence to the net di�erence in
the predicate function.

HEURISTIC 4 (Estimating behavior of function
calls). If function-call behavior is estimated only on the
basis of pro�le information, all invocations of the function
would have identical behavior. A more informed estimate
is possible when the arguments of the function are simply
expressed in terms of the global variables of the caller func-
tion. First, obtain an estimate of the function behavior in
terms of the formal parameters of the callee function, and
then rewrite this expression so it is in terms of the global
variables of the caller function. The behavior estimation
of the callee function in terms of its formal parameters is
done in a fashion similar to the behavior estimation of a
program segment.

HEURISTIC 5 (Estimating behavior of recur-
sive functions via analysis). Heuristic 4 used in isola-
tion does not su�ce for estimating the behavior of recur-
sive functions. If the depth of recursion is in
uenced by
the global variables, we can analyze the behavior of the
recursive function as below.

1. Set up a recursive cost expression in terms of the glob-
al variables.

2. Map to a set of di�erence equations.

3. Solve the set of di�erence equations along with base
conditions. Exact solutions may not always be pos-
sible; in which case heuristics can be used to obtain
the best-case, average-case, or worst-case behaviors
of the recursion.

HEURISTIC 6 (Estimating behavior of recur-
sive functions via pro�ling). This uses the approach
adopted by Sarkar [6], which distinguishes between the
cost of external and internal calls (from mutually re-
cursive functions) to a recursive function. In our mod-
el, since there can be no recursion at the task level, we
are interested in predicting the cost of only the exter-
nal calls to any member of a mutually recursive function
set fu1; u2; . . . ; ukg. We de�ne the following quantities:
B(j): base cost of uj
E(j): cost of external call to uj
I(j): cost of internal call
tj: total number of calls to uj (pro�led)
ci;j: contribution of function-calls to uj in ui (pro�led)
ij: no. of internal calls made to uj; ij =

P
1�i�k

tici;j

ej: no. of external calls made to uj ; ej = tj � ij
The total computation performed by all the members of

the recursive function set is given by
P

1�j�k
tjBj. Since

all this work is requested by external calls,

X

1�j�k

ejEj =
X

1�i�k

tiBi

Under the assumption that all internal calls (to any func-
tion in fu1; u2 . . . ; ukg) have the same execution-time es-
timate, the following estimate can be derived by simple
algebraic manipulation:

Ej = Bj+I
0
X

1�h�k

cj;h where I 0 =

P
1�j�k

ijBjP
1�j�k

ej:
P

1�h�k
cj;h

The above heuristics do not estimate task behavior of
all program segments with the same accuracy. The toler-
ance of these estimates to inaccuracies will be explored in
Section 4.

3 Dynamic Scheduling using Local In-

formation
This section describes a dynamic scheduling strategy

for divide-and-conquer algorithms that uses estimates of
near-future behaviors of active tasks in the system. We
assume that the execution-time requirements are the only
task behavior of interest. In our programming model, tasks
correspond to unbroken periods of object activity. Tasks
with multiple predecessors decide their own schedulability
after they have received all their trigger messages, while
parent tasks determine the readiness of child tasks that
await only one trigger message. The scheduler uses the
task-behavior estimates in two ways.

� Task placement decisions can be made based on initial
estimates that are conveyed to the scheduler either by
the parent task or by the task itself.

� Estimates from already executing tasks are used to
improve the accuracy of the estimated load on a site.

The scheduler is responsible for the relocation of an
object if the selected site is not the currently occupied
site. The scheduler uses the cost of migration in decid-
ing whether or not to move the object. We assume that
migration cost is low (of the order of a message transfer)



since objects get relocated only at inter-method bound-
aries. This avoids the copying of activation records since
the object is trivially checkpointed. The cost of rerouting
each message to the object at its new site is reduced by
having a shared object-name space that is built on top of
physically distributed memory.

3.1 Execution environment
The processor system consists of a set of processorsP =

fPi : 1 � i � mg. Processor Pi has a speed bi. The
interpretation of speed is that a task T with execution-
time requirement �(T ) on a processor of speed 1 requires
�(T )

bi
time units on processor Pi. Assume that b1 � b2 �

� � � � bm > 0.
Each processor maintains a queue of ready tasks and

associates an estimate E(T ) for every active task T . In ad-
dition, each processor maintains a 2-tuple (R; ts), where R
is the remaining busy time and is the sum of the estimates
E(T ) of all tasks T that are waiting for CPU control. If H
indicates the task that is at the head of the processor queue
and is currently occupying the CPU, then (R(P ) + E(H))
represents the current estimate of how long the processor is
going to remain busy. The start time ts(P ) maintains the
last time instant at which the estimate of the header task
E(H) was updated. A function update estimate(T;P; �)
operates on (R; ts) and is de�ned as below:

if (T == H) then

(E(T );R) = ( �
b
;R+ �

b
)

else if (� 6= 0) then

(E(H); ts) = ( �
b
; current time)

else

(H;R; ts) = (�rst(T );R� �rst(T ); current time)

� is an estimate of the amount of time that task T would
take if it were executing on a processor of speed 1. Storing
only the ratio with respect to the processor speed allows
comparisons to be made across heterogeneous processors
using the absolute values. The third assignment above
corresponds to the completion of the task at the head of
the queue, in which case the �rst element of the queue of
waiting tasks is permitted to next occupy the CPU.

The compensated load measure, L(P; t), of processor
P is de�ned as

L(P; t) = max(0;E(H)� (t� ts(P ))) +R(P )

L(P; t) captures the change in load as a result of the ad-
ditional processing of the task, which is at the head of
the queue, since the last estimate. The expression also
accounts for underestimates.

The true load, W(P; t), on processor P is a function of
many parameters like the CPU requirements of tasks, the
tra�c to secondary memory, system daemons, background
load, etc. Thus, there is an inaccuracy in considering the
system load as being due to the CPU requirement alone.
The actual processor load can be modeled by the following
expression:

W(P ) = L(P ) + Xload

where Xload is an arbitrary random variable that models
the e�ect of the other parameters.

For a divide-and-conquer algorithm executed on the
parallel system de�ned, its partial order < is in the form of

an outin tree [1] (composed of an outtree and an intree with
shared leaves). The Level Algorithm (LA) [10] achieves an
optimal solution in the case of identical processors when
preemption is allowed. The problem Q/pmtn, tree/Cmax

remains an open problem, with LA having the best-known
performance-ratio bound (when compared with the theo-
retical optimal) of

p
m + 1

2
, where m is the number of

processors.
For task T , �(T ) is the execution-time estimate ob-

tained by applying the heuristics discussed in the previous
section, which is available at the time of creation of T .
The error in the estimate is problem dependent and is a
function of the complexity of the program structures, num-
ber of branches in the CFG that depend on local variable
values, etc.

In short, the following assumptions are made in our
simulations.

1. The CPU is considered the only schedulable resource.

2. All processors are capable of executing any task. In
particular, we ignore the cost of communication with
such entities as �les.

3. Tasks obtain control of the processor according to a
�rst-come �rst-served non-preemptive policy.

4. All processors in the system are connected. The hard-
ware cost of communication between any pair of pro-
cessors is assumed to be negligible when compared
to the average task granularity. The software latency
is explicitly accounted for when estimating the task
behavior in terms of primitive operations.

5. Load updates are assumed to propagate to other pro-
cessors with negligible delay.

6. The overhead of the resource-allocation decisions that
include load-queries is amortized among the resource
requirements of the participating tasks.

3.2 The D LPT Heuristic
The scheduling heuristic, D LPT, is adapted from

deterministic scheduling strategies of independent tasks,
and makes scheduling decisions for tasks with Largest-
Processing-Time estimates �rst. Tasks get allocated to
processors where they are likely to complete the earliest.
The scheduling heuristic interprets the behavior estimates
obtained from tasks as an estimate of the execution time
of the task.

The heuristic is described in terms of precondi-
tion:action pairs. It is assumed that L(P; t) is the best
available estimate of the load, W(P; t), on a processor.

When a set of tasks is ready to be scheduled
at time t and fTig is non-empty:

1. Pick T = maxTk2fTig(�(Tk)), Pnew = min1�j�m

(L(Pj; t)+
�(T )

bj
). This chooses the processor on which

the task with the largest processing-time estimate is
likely to complete the earliest.

2. If T does not currently reside on any proces-
sor, assign task T to processor Pnew, and up-
date estimate(T;Pnew; �(T )).



3. If T currently resides on processor Pcur, migrate T to
processor Pnew if the following condition holds:

(L(Pcur ; t) +
�(T )

bcur
)� (L(Pnew; t) +

�(T )

bnew
) � f(�);

where f(�) is an arbitrary, non-decreasing function
of migration overhead � and signi�es the migration
threshold of the strategy. Update the load informa-
tion on whichever processor the task gets assigned to.

When a task T provides an estimate �(T ) at
time t and P is the processor on which T is
currently executing:

1. Update estimate(T;P; �(T )).

2. If �(T ) is 0 (T has completed execution), obtain the
next ready task from the task queue using the local
scheduling policy. (update estimate() takes care of the
changes that need to be made to the load estimates).

When a node becomes idle at time t:

1. Choose the most loaded processor, Pmax =
max1�j�m (L(Pj; t)).

2. Move the ready task T that has the least priority if
the following condition is satis�ed

L(Pmax; t)�
�(T )

bmax

� f(�):

This ensures that a task does not migrate if it would
start executing later at the new location that it would
at the original one.

Note that D LPT is a list schedule (with no unforced
idleness) in the case of identical processors. This allows
us to bound the worst-case performance of D LPT in the
case of identical processors to be within two times the the-
oretical best-length schedule. Our scheduling heuristic dif-
fers in terms of overhead from traditional strategies in that
it keeps track of the estimates from di�erent tasks instead
of aggregating them into a single load measure.

4 Experiments and Results
4.1 Experimentation System

The execution system was simulated in CSIM with
event-trees driving the simulations. The event-trees were
generated from sequential traces of instrumented applica-
tion programs. The application used to drive the simula-
tion was QuickSort. Several instances of the application
program for a set of problem sizes were randomly con-
structed. The number of objects in a particular event-tree
varied from 100 to 2000. The number of tasks (in the
divide-and-conquer task graph) varied from 200 to 5000.

The execution-time estimates were derived using the
method in Section 2 and a set of primitive-operation tim-
ings. The estimation expressions were stored in terms of
the data parameters recorded in the event tree and were
used to compute execution-time estimates of active tasks
in our simulations. An input to the simulator, annotation
overhead, allows variation in the time taken to evaluate an
estimation expression.

In our simulations, we assume that L(P; t) is the best
available estimate of the actual processor load, W(P; t),
which in turn is assumed to be entirely due to execution-
time requirements of tasks. Errors in the load estimate
are, thus, entirely due to errors in the behavior estimates.
Instead of using a random (and arbitrary) error model to
capture the inaccuracies, we have chosen to rely on se-
lective application of some heuristics to produce varying
levels of accuracy in the estimation expression.

Inputs to the simulator include the number of proces-
sors, the speed factors of the processors, the threshold
functions for di�erent scheduling strategies, and the an-
notation overhead. The migration overhead is taken to be
a constant, �, independent of the object size. This constant
is supposed to signify an upper bound of the overhead that
an object-migration in the system would involve.

To compare with D LPT, we also implemented the fol-
lowing scheduling heuristics which schedule ready tasks to:

� a randomly chosen processor;

� a round-robin selection of processors;

� a processor with the largest number of objects weight-
ed by its speed factor [2];

� a processor with the largest number of unexecuted
messages weighted by its speed factor [3].

Due to space limitation, we do not show the performance
for the case of identical processors and the performance
comparison with respect to Horvath et al.'s algorithm [10].

The performance of a strategy was observed with re-
spect to its completion time. An experiment was stopped
when either its sample mean value was within 10% of its
actual mean value with a con�dence of more than 90%, or
when the number of samples tested exceeded 50.

4.2 Application-program estimates
Figure 2 contains the code for QuickSort with pro�ling

counters shown at the beginning of the block whose execu-
tion frequency they measure. To simplify the description,
we assume that only pointers to the subarray are passed.
The entry point in the above program segment is the Ar-
ray::sort() method. The creation of the child objects in
lines 6 and 7 are blocking calls when the parent object
needs to relinquish CPU control. We can, thus, de�ne t-
wo tasks in this program segment: SPLIT consists of the
execution of either the localSort or partition private func-
tions; and COMBINE starts o� at line 8 and models the
return of the sorted subarray from the child objects.

In order to estimate the execution-time requirements of
these two tasks, we need to identify structures that bring
about the uncertainty in their behavior. The branches in
lines 2 and 11, as well as the loops in lines 19-25, 20, 21
capture all the points that would a�ect estimation. Pro�l-
ing the program segment with displayed counters yields the
values of branch probabilities and loop counts as shown in
Table 2. Pro�ling was based on observed object behavior
during 100 runs of QuickSort on random sequences varying
from 1000 to 3000 elements in length.

In order to simplify the process of writing down the es-
timation expressions, we classify the primitive operations
into �ve categories: a) T1: assign, cmp, push, inc; b)
T2: jmp, call; c) T3: ret; d) T4: send, recv; and e) T5:
block. send, recv refer to the constant hardware latencies



void Array::sort(int m, int n) { sr_f 1

/* public interface */

if ((n-m) < GS) 2

localSort(m,n); 3

else { 4

int p = partition(m,n); sr_p 5

Array *leftArr = new Array; 6

Array *rightArr = new Array; 7

future(leftArr->sort(m,p)); 8

rightArr->sort(p+1,n); } } 9

void Array::localSort(int m, int n) { ls_f 10

/* local work */

if (m < n){ 11

int p = partition(m, n); 12

localSort(m, p); 13

localSort(p+1, n); } } 14

int Array::partition(int m, int n) { pt_f 15

/* in-place partitioning */

int x = data[m]; 16

int i = m - 1; 17

int j = n + 1; 18

while (1) { pt_3 19

while (data[++i] < x); pt_1 20

while (data[--j] > x); pt_2 21

if (i < j) 22

swap(i,j); 23

else 24

return(j); } } 25

Figure 2: Code for QuickSort algorithm.

of message communication. The software latency is ac-
counted for in terms of other primitive operations. Note
that send, recv, and block operations are required for the
object-management operations like sending and receiving
messages, and context-switching to another object. Thus,
by varying the relative costs of these �ve kind of opera-
tions, we can create di�erent grain sizes of the computa-
tion, where grain size refers to the ratio of useful work to
the overhead of object management.

Table 3 presents 6 di�erent estimates for the SPLIT
task for one choice of the relative costs of primitive opera-
tions, corresponding to medium-grain operations. (Results
for small-grain and large-grain operations are not shown
due to space limitation.) The estimate level, accurate,
assumes the execution-time estimate to be completely ac-
curate, while the estimate level, average, refers to the
estimate being solely pro�le-based. We obtain the ac-
curate execution time of the program segment by using
the counter values that record the operations taking place
during actual task execution. The four intermediate es-
timates correspond to selective application of the estima-
tion heuristics described in Section 2. The names of the
intermediate estimates indicate the function (partition or
localSort) evaluated using either the estimation heuristics
(evl-) or estimations based on pro�le information (est-).
Thus, evl-part,est-sort corresponds to an estimation
level where the partition function is evaluated using the
heuristics, and the localSort function is estimated using
Sarkar's heuristic. All the estimates are expressions in
terms of the parameter x = (n�m+ 1).

The COMBINE task is quite straightforward (2 recv +
1 send + 1 block), and the estimate is always assumed to
be accurate.
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Table 2: Pro�ling information from QuickSort algo-
rithm.

Parameter Pro�le

Psr =
sr p

sr f
= probability of branch (Lines 4{9)

being taken

0.50

L1 =
pt 1

pt 3
= average number of times inner loop

(Line 20) executes for one execution of outer loop

(Lines 19{25)

2.15

L2 =
pt 2

pt 3
= average number of times inner loop

(Line 21) executes for one execution of outer loop

(Lines 19{25)

2.65

L3 =
pt 3

pt f
= average number of times loop

(Lines 19{25) executes for one execution of Ar-

ray::partition

3.60

Pls =
ls p

ls f
= probability of branch (Lines 11{14)

being taken

0.46

Table 3: QuickSort (SPLIT) behavior using Estima-
tion Heuristics for medium-grain primitive operations.

Medium Grain

Estimate T1; T2; T3 = T ;T4; T5 = 5T

accurate (x�GS) : (22 + 6ls f + 13ls p +

4pt f + 6pt 3 + 4pt 1 +

4pt 2)T
else (32 + 4pt f + 6pt 3 +

4pt 1 + 4pt 2)T

evl-part, evl-sort

(H1;H2; H4; H5)

(x�GS) : (28:25x�0:25+17:44xlogx)T

else (41:25+ 5:25x)T

est-part, evl-sort

(H1;H4; H5)

(x�GS) : (113:61x� 85:61)T

else 126:61T

evl-part, est-sort

(H1;H2; H4; H6)

(x�GS) :
(x>0) : 764:28T

else 28T

else (41:25+ 5:25x)T

est-part, est-sort

(H1;H6)

(x�GS) :
(x>0) : 764:28T

else 28T

else 126:61T

average 445:45T

4.3 Performance Results

The performance of all strategies is measured in terms
of percentage deviation from the Level algorithm. The be-
havior of the strategies was recorded for the following.

Variations in Problem Size. Figure 3 shows the
performance of the di�erent strategies on 5 problem sizes
of QuickSort under realistic conditions using the best esti-
mate generated using the heuristics of Section 2. D LPT
performs consistently better than any of the other heuris-
tics and exhibits a problem-size independent behavior. It
also adapts itself to a non-uniform con�guration better
than a simple strategy such as the number of messages.

Variations in Estimation Accuracy. Figure 4 shows
the e�ect of using di�erent estimates in D LPT. As is ex-
pected, using accurate information results in good perfor-
mance, as does using estimates derived using all the esti-
mation heuristics. The signi�cant di�erence in the behav-
ior of the evl-part, est-sort and est-part,evl-sort

emphasizes the selection of which heuristic to apply. The
partition function exhibits wider variance (in terms of the
data values it handles), and consequently its performance

is more dependent on better estimation of its behavior.
D LPT performs the worst when using number of mes-
sages as a load indicator. In this case, the strategy treats
each task as having the same estimated execution time
(which is not true in this application).

Variations in Annotation Overhead. D LPT with
di�erent estimates and the strategy, which uses the num-
ber of messages as a load indicator, are plotted in Figure 5
for variations in the annotation overhead from 10 to 1000.
An annotation of 10 units corresponds to the complexity
of a single assignment statement. This plot shows the per-
missible annotation overhead that can be tolerated by a
strategy that uses a particular level of behavior estimation
before its performance reaches that of the strategy using
the number of messages.

Though our results are reported only based on recursive
patterns of task generation, we expect the observed trends
to be similar even if the algorithm is written di�erently,
say in an iterative form. This is true because work can be
captured accurately by the behavior estimates.
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