
Designing a Coprocessor for Recurrent Computations
�

Kumar N. Ganapathy and Benjamin W. Wah

Coordinated Science Laboratory

1308, West Main Street

Urbana, IL 61801.

e-mail: fkumar,wahg@manip.crhc.uiuc.edu

Abstract

In this paper, we present the design of an

application-speci�c coprocessor for algorithms that can

be modeled as uniform recurrences or \uniformized"

a�ne recurrences. The coprocessor has a regular ar-

ray of processors connected to an access-unit for in-

termediate storage of data. The distinguishing feature

of our approach is that we assume the coprocessor to

be interfaced to a standard, slow (single-ported) mem-

ory with low bandwidth. Hence, good performance is

achieved by e�ectively exploiting data locality in the

applications by the compiler, and the �nal architecture

is chosen by a tradeo� analysis driven by the mapping

process. Preliminary results indicate that the copro-

cessor has signi�cantly lower clock rates or higher per-

formance than that of existing RISC processors and is

cost-e�ective for executing loop computations.

1 Introduction

In the last decade, application-speci�c architec-
tures have been recognized as a promising approach to
high-performance computing. These special-purpose
processors have high-performance due to a combina-
tion of high degree of pipelining, parallelism and re-
duced memory contention by multiple use of each data
item. The goal of this research is to develop a cost-
e�ective, high performance VLSI coprocessor that is
programmable for an application or an application do-
main. The coprocessor must interface with a front
end that is responsible for data input and control. It
should be characterized by low system cost, a smal-
l size and performance that is signi�cantly better for
target applications than a general purpose computer

�Research Supported by Joint Services Electronics Program

contract N00014-90-J-1270, National Science Foundation grant

MIP 92-18715, and an IBM graduate fellowship grant.

Proc. 5th IEEE Symposiumon Parallel and Distributed Pro-

cessing, December 1993.

of similar cost. Our application-speci�c coprocessor
can be viewed as a back-end system to accelerate loop
computations in high-end workstations, or as a VLSI
pipeline in supercomputers similar to a vector func-
tional unit for accelerating vector instructions.

There have been numerous e�orts to develop gen-
eral purpose systolic computers in the past few years.
These include iWarp [1], Matrix-1, SLAPP, VATA
[2], medium-grain architecture for image and sig-
nal processing [3], and a host of others. However,
most of these designs have powerful processing ele-
ments with large local memories, and high-bandwidth
data interconnect between the processors and the
host/global memory. Hence, the cost of such systems
is very high (in thousands/millions of dollars) due to
expensive hardware and complex designs. In our ap-
proach, we aim at building a simple, resource-limited
VLSI array processor that can be attached to stan-
dard single-ported main memories (with long latencies
for data access), resulting in a system with low cost
and acceptable performance for targeted application-
s. We believe that good performance can be obtained
by sophisticated mapping and analysis by the compil-
er that exploits the hardware e�ectively for the given
set of applications. Hence, there is virtually no pro-
gramming e�ort for the user, as the compiler accepts
a high-level description of the algorithm and generates
address sequences and control programs to carry out
the required computations. This is in contrast to most
existing \class-speci�c" or general-purpose systolic ar-
chitectures where it is the programmer's responsibili-
ty to determine which computations are performed by
which cells, and how data is moved among the cells
and memory.

Recently, there have been e�orts on developing a
systematic approach to partition and map matrix al-
gorithms on mesh-connected arrays [4]. However, our
approach di�ers in trying to extract maximum data
re-use under the constraint of a �xed low-bandwidth
interconnect to main memory in our array proces-

sor. This work also di�ers from traditional work on
systolic-array mapping/partitioning on to �xed pro-
cessor arrays [5, 2] in which only a limited storage in
the processor array is assumed, and only the e�ect
of main-memory latency due to low-bandwidth inter-
connection to main memory is considered. The goals
of our design that are di�erent from other research
e�orts are: (i) combination of hardware and compil-
er methods (Section 4), (ii) reduction in clock rate
for the same throughput (Section 5), and (iii) �xed-
bandwidth interconnect to main memory (Section 2)

The remainder of this paper is organized as follows.
We �rst present our proposed array processor (Sec-
tion 2), describe the target algorithms (Section 3) and
the proposed mapping technique (Section 4), and �-
nally evaluate and discuss our results (Section 5) using
matrix product as an example.

2 Coprocessor Architecture

The architecture proposed in this research is broad-
ly composed of the following components (Figure 1).

Memory (MM). The memory is a standard mem-
ory (usually interleaved) with one memory-access port
for storing all the data (inputs and outputs) involved
in the computations. The time to access the data is
relatively long because of the decoding required as well
as the limited bandwidth (Von-Neumann bottleneck).

Access-Unit (AU). The purpose of the access-unit
is to supply data to the processor array (PA) and mask
the long main-memory latencies. The �xed amount of
storage in the AU is organized as FIFO queues (or
LIFO stacks), and explicit memory addresses (excep-
t for queue or stack numbers) are not used. In each
cycle, the data present at the head of the queues are
sent into the PA or the memory through the output
network (Figure 1), and data from the PA or the mem-
ory are sent into the top of the queues. This implicit
addressing saves on address computations and also al-
lows the AU to be built with a larger number of I/O
ports (as compared to a random access memory like a
cache with explicit addressing).

The AU can also perform more complex operations
such as (i) prefetch data from the main memory into
its queues to hide the memory latency, (ii) reorder the
data before sending them to the PA, and move the
data through the queues at di�erent clock rates for
the queues, (iii) perform indirect addressing of main
memory, where a sequence of addresses obtained from
the memory are subsequently used to access the data

in the main memory. The indirect addressing corre-
sponds to gather-scatter instructions used to process
sparse matrices in a vector supercomputer.

Processor Array (PA). The processor array ob-
tains data items from the head of the queues in the
AU. The PA is I/O bounded and has regular pipelines
of processing elements (PE). For instance, the PEs can
be organized as a linear array, a set of linear arrays, or
a 2-D mesh. Each of the PEs is locally connected and
can only perform near-neighbor communication. The
array organization with a small number of boundary
(I/O) processors reduces the demand on the AU, and
simpli�es the design of the network between the AU
and PA.

The design of the coprocessor includes both the
hardware and the compiler, as good performance is
dependent on the ability of the compiler to exploit ex-
isting hardware, as well as the choice of the hardware
that can be best supported by the compiler. Our de-
sign procedure has two major steps. (i) We �rst de�ne
a model of the architecture in terms of a few parame-
ters (abstract model). (ii) We then arrive at the �nal
architecture by a trade-o� analysis driven by the com-
piler. The architecture is de�ned by the following pa-
rameters: (i) number of PEs (#PE), (ii) local memory
in each PE (l), (iii) bandwidth between the access-unit
and the main memory (BMM), (iv) size of the access
unit (p), and (v) interconnection topology of the PEs
(linear or square). The �nal architecture is obtained
after an analysis of performance versus cost from the
point of view of software, algorithms, technology and
performance constraints.

3 Algorithm Model

A large number of applications in image process-
ing, digital signal processing and other scienti�c appli-
cations that require regular compute-intensive opera-
tions can be modeled as a�ne dependence algorithms.
Nested loops are often the most time-consuming ker-
nels of these programs and are the target of our copro-
cessor based on processor arrays. A large number of
these nested-loop programs can be modeled as a�ne
recurrences. For instance, the following Fortran-like
nested loops can be represented by a system of recur-
rence equations.

DO (j1 = l1; u1 ; j2 = l2; u2 ; � � � ; jn = ln; un)
S1(J) ;
S2(J) ;
...

C

O

N

T

R

O

L

L

E

R

CONTROLLER:

 Memory: Direct/Indirect Addressing
 Queues: Rates of shifting

 Input Network: Which Queue(s)

 Output Network: Which Queue(s)

Needs Memory Addresses
Long Latency

Single (dual) ported

Address decoding

MM:

Limited B/W Limited I/O

Limited B/W Limited I/O

Network:
Conflict resolution

ARRAY

OUTPUT NETWORK

INPUT NETWORK

(MM)
(PA)

ACCESS UNIT (AU)

Addresses

Addresses Queues

AU:
Limited # Stacks/Queues

No Memory Addresses
Fast Single Cycle Access
Multi-ported

PA:
Fine-grained
Bounded I/O
Regularly Interconnected

MAIN MEMORY PROCESSOR

Figure 1: Proposed architecture for solving a class of algorithms modeled by recurrences

St(J) ;
END

The column vector J = [j1; j2; � � � ; jn]T is the index
vector (or index point). Si(J); i = 1; � � � ; t are t as-
signment statements in iteration J having the form

Zi(y(J)) = �
�
Z1(x1(J)); � � � ; Zr(xr(J))

�
; (1)

where 1 � i � r. If all loop bounds li and ui are
a�ne functions of loop variables j1; . . . ; ji�1, and in-
dexing functions y() and xk(); k = 1; � � � ; r, are a�ne
functions of the form AJ+d, then a�ne recurrence eq-
uations (ARE) with a convex polyhedral domain can
be used to model the above program.

Uniform dependence algorithms or uniform recur-
rence equations (URE) form a sub-class of AREs,
where the indexing functions y() and xk() are of the
form J � d (matrix A is the identity matrix now),
and d is a constant vector of n elements. Uniform
dependence algorithms can be found in many scien-
ti�c computations, digital signal processing and other
�elds.

There exist techniques [6] to transform AREs
to UREs where the a�ne dependencies are \uni-
formized." The basic idea is to select a few basic in-

tegral vectors (which are the uniform dependencies)
such that all a�ne dependencies of the ARE can be
expressed as non-negative integer linear combinations
of the basis vectors. This uniformization also removes
the undesirable broadcasts of data in a VLSI PA.

In this article, we focus on algorithms that can be
modeled as uniform recurrences and a�ne recurrences
that can be uniformized. Hence, the starting point
of mapping assumes a convex polyhedral domain and
a set of constant dependence vectors collected into a
matrix called the dependence matrix D.

Example 1. Matrix Multiplication. Consider the
matrix multiplication Z = X:Y of two N�N matrices
X and Y .

DO (i = 1; N ; j = 1; N ; k = 1; N)
z(i; j) = z(i; j) + x(i; k)y(k; j)

END

Eliminating broadcasts and \pipelining" the variables
we get,

DO (i = 1; N ; j = 1; N ; k = 1; N)
X(i; j; k) = X(i; j � 1; k)
Y (i; j; k) = Y (i � 1; j; k)

Z(i; j; k) = Z(i; j; k � 1) +X(i; j; k)Y (i; j; k)
END

The dependence vectors collected into a matrix are

D =

2
4 1 0 0

0 1 0
0 0 1

3
5

y x z

4 Mapping UREs to Processor Array

Architecture

The goal of the mapping or compilation process is
to generate address sequences for the controller in the
access-unit and code sequences that the PEs execute
on receiving the data. The mapping process is broken
down into the following �ve steps.

1. Detect and extract the dependence graph (DG)
from the high-level program.

2. Partition the DG into blocks that can be executed
in a single pass of the data on the processor array.

3. Sequence blocks through the access-unit, i.e.,

which blocks will occupy the access-unit at each
time step.

4. Schedule execution of a single block on the pro-
cessor array.

5. Generate address and code sequences from Steps
3 and 4.

Since the �rst step is well-studied and exists in most
compilers [7], we proceed with the description of re-
maining steps in the mapping process.

4.1 Partitioning

The objective in this step of the mapping process
is to partition the DG into non-overlapping blocks or
chunks that can be processed by the PA in one pass.
This step is necessary because the PA has only a lim-
ited number of PEs and I/O pins. Hence, the DG
is broken down into blocks for which the PA is \full-
sized" and can process them very e�ciently.

In this paper, our approach to partitioning is sim-
ilar to that of Moldovan and Fortes [5] in which, for
an n-D algorithm, we try to �nd n-independent hy-
perplanes to partition the DG into blocks. Hence,
our blocks are \parallelopipeds," and the shape of the

blocks can be described by the partitioning matrix P

consisting of n partitioning vectors.

P = [p1 p2 p3 � � � pn]

The following lemma given without proof presents
the conditions for the validity of a partitioning matrix
P . The idea used here is that all the dependence vec-
tors should cross the partitioning hyperplanes in the
same direction.

Lemma 1. The partitioning of the DG by a parti-

tioning matrix P is valid if and only if P tD � 0 or

P tD � 0, where D is the dependency matrix.

Next, we present a procedure for choosing a good
partitioning vector that results in very little commu-
nication between adjacent dependent blocks.

Let g = rank(D), where D = [d1d2 � � �dk] is the
dependency matrix. Hence, only g of the k depen-
dence vectors are linearly independent. Without loss
of generality, assume that the �rst g columns are lin-
early independent, and let D

0

= [d1d2 � � �dg] be an
n�g matrix consisting of the g linearly independen-
t vectors of D. Let D

0

i be an n�g � 1 matrix de-

rived from D
0

by dropping the i-th column vector,
i.e., D

0

i = [d1 � � �di�1di+1 � � �dg]. The number of par-
titioning hyperplanes needed to partition the DG is g
(since g = rank(D)). Hence, matrix P = [p1 � � �pg] is
chosen such that pi is given by

pti D
0

i = 0; 1 � i � g; and (2)

pti di > 0:

The idea is to choose pi as the basis vector of the left
null space of matrix D

0

i, and invert the sign of the
elements of pi if ptidi < 0. Hence, by construction, the
partitioning matrix P is feasible.

Example 2. For 3-D matrix multiplication, the par-
titioning matrix P is equal to D, as DtD = I3 > 0 (I3
is the 3-D identity matrix).

The choice of partitioning matrix P by the above
procedure results in the minimum amount of commu-
nication between blocks in the partitioned DG. The to-
tal amount of communication c from a (interior) block

is given by c =
Pg

i=1

Q
g

i=1
bi

bi
min(bi; ptidi), where bi is

the size of the block along pi; i.e., two partitioning
hyperplanes perpendicular to pi are placed bi apart.

The complexity of �nding matrix P is

�
k

g

�
O(n:g2),

as there are

�
k

g

�
ways of choosing g independen-

t columns of D, and O(n:g2) is the cost of �nding a
null-space vector of an n�(g � 1) matrix.

4.2 Sequencing blocks through the AU

The execution model of the coprocessor array is as
follows. Initially, p blocks from main memory (MM)
are loaded into the AU to be processed by the PA. As
the execution proceeds, new blocks are fetched from
the MM into the AU, and some of the existing blocks
in the AU are written back to MM. Since the AU is
of limited size, a block of data will have to be fetched
multiple times from the MM, and the goal in this step
is to decide which blocks will be fetched into the AU as
the execution proceeds. The choice of the blocks that
will reside in the AU must be done to reduce the tra�c
between MM and AU; equivalently, data reuse should
be maximized for the blocks in the AU. We can think
of the AU forming a \storage window" (or tile) over
the DG of the algorithm, and the output of this phase
describes how the \storage window" will be moved
over time over the DG in a non-overlapped fashion.
(Otherwise, some computations will be redundant). In
this paper, due to space limitations, we only describe
the block sequencing for the matrix-product example.
The general scheme can be obtained by a simple exten-
sion of the scheme presented for arbitrary dependence
vectors.

Example 3. Consider a 3-D mesh with N1 = N2 =
N3 = 6 and p = 9; i.e., the storage window or tile is
a square of size 3 � 3. Consider the compressed DG
formed by shrinking each block in the DG to a node.
The ordering of the tiles that dictates the block move-
ment is shown in Figure 2. The number of accesses
to main memory (or the I/O complexity) of the above

scheme is given by Q = 2 N3
p
p
+ N2

The above scheme can be proved to be optimal

with respect to the number of accesses to the main
memory. It has been shown that for n-D-mesh DGs,

Q =

�

V
n�1p

S

�
, where S is the size of the limited

memory and Q is the I/O complexity [8].

4.3 Executing a block in the PA

The goal in this step is to map a single block on to
the PA so that it can be executed in a single pass. For
this step, we use the Generalized Parameter Method

(GPM) [9], an optimal parameter-based method we
have developed earlier, to map a given block on to

0.5
p

0.5
p

Tile 6

N = 6m, p = 9

Tile 13

Tile 19

Tile 18

Tile 24

Tile 1

Tile 12

Tile 7

Figure 2: Compressed DG for matrix multiplication.
The shaded area shows the storage window (blocks
in AU). For N = 6m and p = 9, there are 24 tiles,
and the ordering of the tiles de�nes how the data are
brought into the AU.

the processor array for execution. GPM outputs the
space-time description of the block (which data should
be input at each time step) for correct execution. The
next paragraph describes this step informally.

Given a block of the DG, GPM �nds a feasible
space-time mapping of the block and the input-data
distributions. Basically, a data distribution is simi-
lar to a reservation table that describes the utilization
of the processors over di�erent instants of time. The
maximum overlap between adjacent blocks is simply
computed by moving a copy of the data distribution
(or reservation table) over itself until no collisions oc-
cur. The two steps of determining a feasible mapping
using GPM and computing the maximum overlap us-
ing the reservation table are iterated until a suitable
space-time mapping with maximum overlap between
adjacent blocks is found. If B is the size of the block,
the worst-case time for this procedure is O(B2).

Having presented a glimpse at the individual steps
of the mapping process, Figure 3 gives the overview of
the steps involved in the compilation process. There
are two iterative
ows in the mapping process. (i)
Edge e1 represents loops over GPM to derive feasible
data distributions for a given block. Each iteration
of this loop represents a feasible choice for the PA
that can process the individual blocks. (ii) Edge e2
represents loops over di�erent block sizes and shapes
in Step 1.

DG into
BLOCKS

SEQUENCE
BLOCKS

GPM

RES. TABLE

ADDRESS +

Overlap

Data Distribution

Storage Window (Blocks in AU)

Block Shape + Size

Dependence Graph

AU size (p)

#PE,
Mem/PE
Bandwidth

(l)

e

e
2

1
Feasible Space-Time Mapping

Final Space-Time Mapping and

CODE GEN.

Figure 3: Mapping a DG to the PA

5 Results

In this section, we present our preliminary results in
mapping algorithms described by UREs by studying
the problem of 3-D matrix multiplication, a bench-
mark in this class. A lot of digital signal processors
available today are evaluated by their performance on
FIR Filtering (which are equivalent to matrix-vector
multiplications). The DG is an N � N � N cubical
mesh. The results for the matrix-multiplication exam-
ple can be extended directly to other uniform recur-
rences (any DG of an n-D URE can be transformed
into an n-D mesh by a linear transformation, and the
results for 3-D meshes are applicable to n-D meshes
by direct dimension extension). As presented in Sec-
tion 4.1, the 3-D-mesh DG is partitioned into cubical
blocks of size m �m �m.

5.1 Performance Measures

The fundamental metric we use is the performance
of the targeted algorithms on a given amount of silicon
chip area. Hence, completion time and area estimate
in terms of the abstract model parameters is required.

The total area occupied by the array architecture
is the sum of the areas of the processors, AU, con-
troller, and interconnection networks between the AU-
MM and AU-PA.

Area = Areaproc + AreaAU + Areapins +

Areacontroller +Areanetwork (3)

Since the dominant terms are Areaproc and AreaAU ,
as a �rst-order approximation, the area index is given
by

Area Index = #PE(AreaPE + l)| {z }
AreaPA

+3
p
pm

2
+ pm

2| {z }
AreaAU

(4)

where AreaPE is the area of a single PE in memory
words; i.e., it captures the layout cost of a PE, and l

re
ects the local memory per PE. Since the AU holdsp
p�pp blocks of the DG (Figure 2), storage is needed

for (i) pm2 elements of Z, (ii)
p
pm2 elements of X,

(iii)
p
pm2 elements of Y , and (iv) additional

p
pm2

words for the next set of
p
p�pp blocks from MM.

The total completion time Tcompl in PE-cycles for
executing matrix product is given by

Tcompl = max

�
2
p
pm2

BMM

; p tpipe

�
N3

pm3| {z }
All blocks

+
2pm2

BMM

�
N2

pm2
� 1

�
| {z }

XY plane except block (0,0,0)

+
pm2 + 2

p
pm2

BMM| {z }
Load Time: block (0,0,0)

+ max

�
4pm2

BMM

; p tpipe

�
| {z }
Drain Time: block (N,N,N)

(5)

where BMM is the bandwidth between MM-AU in el-
ements per PE-clock. The �rst term in Eq. 5 is the
dominant term and is equal to the product of the time
taken for each window (with

p
p�pp blocks) and the

number of windows over the DG. For each window ofp
p �pp blocks, 2

p
pm2BMM is the time it takes to

fetch the elements of X and Y needed for the nex-
t window, and tpipe is the time to process a block,
which is the sum of the computation time and the
non-overlapped load and drain times. The second ter-
m in the equation models the additional time required
whenever the window returns to the XY plane; this
involves writing and reading pm2 elements of product
matrix Z.

In order to have e�cient processing, the access unit
must be large enough to completely overlap the load-
ing of the inputs of the next window with the process-
ing of the current one. Therefore,

2
p
pm2

BMM

� p tpipe =) p �
�

2m2

BMM tpipe

�2
(6)

The above value of p indicates the size of AU required
to mask the e�ect of long memory latency completely.

Example 4. Let N = 512, m = 8, BMM = 1=5 (5
cycles per word) and #PE = m2 = 64. For a square
array, tpipe = m = 8, and the AU size should be about
409:6K words or 13:1M bits assuming 32 bits/word.
For a linear array, tpipe = m2 = 64, and the AU size
is about 8K words and 256K bits. Although 13M
bits of fast memory in the AU is not possible with the
current technology, 256K bits is very feasible. The
reduction in performance (as explained below) is only
about 8-10% when we move from a square to a linear
array.

5.2 Clock-Rate Reduction

Another useful way of looking at the coprocessor is
to compute the ratio of clock speeds for comparable
performance to a commercial high-speed RISC micro-
processor (say with an arithmetic pipeline). Hopeful-
ly, by exploiting the structure of the algorithm, the
coprocessor should be able to deliver the same perfor-
mance (or throughput) as a RISC processor for much
lower clock speeds. Therefore,

Tcompl �
1

ClockPA
= N3 � 1

ClockRISC

=) ClockRISC

ClockPA
=

N3

Tcompl
(7)

We assume that there are no pipeline stalls, no data-
access penalties (cache misses) and no loop-control
overheads in the RISC processor. Hence, the ratio ob-
tained above represents a lower bound on the possible
reduction in clock rates.

A reduced clock rate is desirable for several reasons.
First and most important, the yield of the coprocessor
will be signi�cantly higher if it is designed for a low
clock rate. For instance, the yield would improve sig-
ni�cantly, with most of the chips on the wafer accept-
able, if the chip is designed for 1-Mhz instead of 50-
Mhz clock rate. In addition, power dissipation is lower
at lower clock rate, which leads to better integration
and lower packaging costs. Hence, reduced clock rates
will lead to signi�cantly lower system cost. This is
intuitively in agreement with existing high-speed pro-
cessors where there is a steep (possibly exponential)
variation in cost (and design time) with clock speed.

5.3 Evaluation

We present a sample of results in exploring the
space of architectures for 2-D-mesh PAs (without
wraparound) and linear PAs with only 2 peripheral
(I/O) processors.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 1e+06 2e+06 3e+06 4e+06 5e+06

Fr
ac

tio
n

of
 A

re
a

O
cc

up
ie

d
by

 P
A

Area Index

N = 10240, B_MM = 1/5

A_pe=100 ,Square
A_pe=1000,Square
A_pe=100 ,Linear
A_pe=1000,Linear

Figure 4: Variation of area occupied by PA as function
of total area.

Figure 4 shows the variation of the fraction of the
total area occupied by the PA as we increase the total
silicon area of the coprocessor. The size of the AU in
Eq. 4 is computed using p from Eq. 6, which is chosen
to overlap memory fetches completely with computa-
tions. The x-axis is the area of the chip in memory
words. Thus, half a million words corresponds to an
area equivalent to 16 million bits of storage, assum-
ing each word is 4 bytes. This is approximately where
the limit of current technology is today. Ape refers
to the cost of a PE again in terms of memory word-
s. Thus, Ape = 100 means each PE takes an area
equivalent to 100 words of memory. Hence, for 500 K
words of total area, only 4% of the total area is oc-
cupied by processors for a linear-array con�guration
with Ape = 100. This shows that most of the chip
area is used by the AU if we design the chip for op-
timal balance, where memory latency is fully masked.
Moreover, for the same total area, the linear array
has more area devoted to processors. The e�ect of in-
creased area of a PE is to lift the entire plot upwards
both for linear and square arrays. Note that although
this �gure is for multiplying matrices with N = 10240
and BMM = 1=5, the same e�ect is observed for other
problem sizes and bandwidths.

Figure 5 shows the reduction in clock rates possi-
ble for N = 10240 with increasing chip sizes. The
x-axis is the area index measured in memory words.
Again, the system is designed at the balance point to
mask memory latency. Figure 5 shows that for about
500 K words of silicon area, the clock rate can be
reduced by a factor of about 175 for a square array
and 160 for a linear array to get the same execution
time as a pipelined RISC processor. Therefore, for a

0

50

100

150

200

0 1e+06 2e+06 3e+06 4e+06 5e+06

R
ed

uc
tio

n
in

 C
lo

ck
 R

at
e

Area Index

N = 10240, B_MM = 1/5, l = 1

Ape=100 ,Square
Ape=5000,Square
Ape=100 ,Linear

Ape=5000 ,Linear

Figure 5: Reduction in clock rates for N=10240 with
increasing chip sizes.

10240� 10240 problem with a latency of 5 cycles per
memory word and clock rate of 1 Mhz, we will get a
performance equivalent to that of a RISC processor
running at 160Mhz (or 6.25 nanoseconds cycle time
which is closer to that of supercomputers than that
of current RISC processors). For a 66Mhz clock rate
(15 ns), we can clock the coprocessor at 400 Khz for
the same performance (which is about 160 MFLOPS),
or at 1 Mhz and get a 2.5 times speedup. The �nal
speed can be chosen from a variety of attractive al-
ternatives depending on the objective of the designer.
As shown in the �gure, the clock-rate reduction sat-
urates as area index increases, indicating diminishing
returns from parallelism. The degradation in perfor-
mance in using a linear array to a square array is at
worst 8% for Ape = 100 and 20% for Ape = 5000.
Therefore, the linear-array con�guration is an attrac-
tive choice for matrix multiplication and other UREs.
Its advantages are constant I/O bandwidth, modular
expandability, and e�cient VLSI layout.

6 Conclusions

We have presented an approach for designing a co-
processor tailored for executing loop computations de-
scribed as uniform recurrences. Our approach uses
provably optimal methods that result in high utiliza-
tion and e�ective data-locality management. We show
(i) that a scalable, linear array of PEs with constant
bandwidth achieves good performance, and (ii) that
we can design the coprocessor with signi�cantly lower
clock rates than an existing RISC processor with com-
parable performance, or get higher performance with
comparable clock rates.

Acknowledgements

We would like to thank Prof. M. C. Loui for many
fruitful discussions which improved the quality and
presentation of this paper greatly.

References

[1] S. Borkar, \iWarp : An integrated solution to high-
speed parallel computing," Proceedings of Super-

computing, (Florida), pp. 330{339, Nov. 1988.

[2] \Special issue on systolic arrays," IEEE Computer,
vol. 20, July 1987.

[3] K. W. Przytula, \Medium grain parallel architec-
ture for image and signal processing," in Paral-

lel Architectures and Algorithms for Image Under-

standing (V. K. P. Kumar, ed.), pp. 95{119, Aca-
demic Press, 1991.

[4] J. H. Moreno and M. E. Figueroa, \A decoupled
access/execute processor for matrix algorithms:
architecture and programming," Application Spe-

ci�c Array Processors, pp. 281{295, IEEE Com-
puter Society Press, 1991.

[5] D. I. Moldovan and J. A. B. Fortes, \Partitioning
and mapping algorithms into �xed size systolic ar-
rays," IEEE Transactions on Computers, vol. C-
35, pp. 1{12, Jan. 1986.

[6] Z. Chen and W. Shang, \On uniformization of
a�ne dependence algorithms," Proc. Fourth Sym-

posium on Parallel and Distributed Processing, p-
p. 128{137, Dec. 1992.

[7] U. Banerjee, Dependence Analysis for Supercom-

puting. Kluwer Academic, 1988.

[8] J.-W. Hong and H. T. Kung, \The I/O complexity:
The red blue pebble game," Proceedings of 13th

annual ACM Symposium on Theory of Computing,
pp. 326{333, May 1981.

[9] K. N. Ganapathy and B. W. Wah, \Synthesizing
optimal lower dimensional processor arrays," Pro-

ceedings of International Conference on Parallel

Processing, CRC Press, Aug. 1992.

