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ABSTRACT

In this paper, we present a new supervised learning method called NOVEL (Nonlinear
Optimization Via External Lead) for training feed-forward neural networks. In general, such
learning can be considered as a nonlinear global optimization problem in which the goal is to
minimize the nonlinear error function that spans the space of weights. NOVEL is a trajectory-
based nonlinear optimization method that combines global and local searches to �nd good local
minima. It relies on an external force to pull a search out of a local minimum in its global
search and employs local descents to locate local minima in its local search. The result is an
e�cient search method that identi�es good basins without spending a lot of time in them. We
have shown improved training and testing results for �ve neural-network benchmark problems
as compared to those of existing minimization and neural-network learning algorithms. For the
two-spiral problem, NOVEL has found a design using only four hidden units and 25 weights.
(The best known design requires nine hidden units and 75 weights.) In short, NOVEL represents
a signi�cant advance in the state-of-the-art in supervised learning of neural networks and general
optimization of continuous nonlinear functions.

1. Introduction

In this paper, we present a new method for supervised learning of feed-forward networks. Supervised
learning involves �nding a mapping function � from a given set of training patterns. This is done by
adjusting weights, W , on links when the topology and the activation function are �xed. In other words,
given a set of training patterns of input-output pairs f(I1; D1); (I2; D2); � � � ; (Im; Dm)g and an error function
�(W; I;D), learning strives to minimize learning error E(W ):

min
W

E(W ) = min
W

mX
i=1

�(W; Ii; Di): (1)

One popular error function is the squared-error function in which �(W; Ii; Di) = (�(Ii;W )�Di)
2. The quality

of a learned network is measured by its error on a given set of training patterns and its (generalization)
error on a given set of test patterns.

In the form represented in (1), supervised learning can be considered as an unconstrained nonlinear
minimization problem in which the objective function is de�ned by (1), and the search space is de�ned by
the space of the weights.1 Unfortunately, the terrain modeled by the error function in its weight space can
be extremely rugged and has many local minima when the activation function is nonlinear.

Many learning algorithms �nd their roots in function-minimization algorithms that can be classi�ed
into local minimization and global minimization. Local minimization algorithms, such as gradient descent

�This research was supported in part by National Science Foundation Grant MIP 92-18715 and in part by Joint Services
Electronics Program Contract N00014-90-J-1270.
Portion of this paper has appeared in a special issue on arti�cial neural networks in IEEE Computer, March 1996.
1Without loss of generality, we consider only minimization problems in this paper.



and Newton's methods, are fast but usually converge to local minima. In contrast, global minimization
algorithms have strategies to help escape from local minima.

Many local minimizationmethods using �rst- and second-order information have been applied to learning
of feed-forward neural networks [2]. Examples include back-propagation (BP), conjugate-gradient and quasi-
Newton's methods. Local minimization algorithms have di�culties when the surface is 
at (gradient close
to zero), or when gradients can be in a large range, or when the surface is very rugged. When gradients
can vary greatly, the search may progress too slowly when the gradient is small and may over-shoot when
the gradient is large. When the terrain is rugged, a local search from a randomly chosen starting point
will likely converge to a local minimum close to the initial point and a solution far worse than the global
minimum.

To overcome the de�ciencies in local-search methods, global minimizationmethods have been developed.
Global minimization methods rely on local search to determine local minima, and focus on bringing the
search out of a local minimum once it gets there. Up to today, general nonlinear minimization algorithms
can at best �nd local minima of a multi-modal function. Only in cases with very restrictive assumptions,
such as Lipschitz condition, algorithms with guaranteed accuracy can be constructed.

Global minimization algorithms can be classi�ed into deterministic and probabilistic. Deterministic
methods include covering, trajectory and penalty methods. These methods do not work well when the
problem has more than a few variables. Probabilistic methods include clustering methods, random search
methods and methods based on stochastic models. Some of these algorithms, e.g. simulated annealing and
genetic algorithms, have been found to work well for some neural-network learning problems. However, all
of them are weak in either the local or the global search. For instance, gradient information useful in local
search is not used in simulated annealing and evolutionary algorithms. On the other hand, gradient descent
algorithms with multi-starts work well in local search but are weak in global search.

We describe in Section 2 NOVEL, a new global minimization method for neural network learning. We
demonstrate NOVEL's superior performance on neural network learning by �nding networks that are smaller
and yet generalize better than networks found by existing algorithms. This is done in Section 3 in which we
compare NOVEL with some of the best global minimization algorithms for solving the two-spiral problem,
and in Section 4 in which we apply NOVEL to solve four other benchmark problems.

2. NOVEL: A New Global Optimization Method

NOVEL is a trajectory-based method that employs local descents to locate local minima and relies on an
external force to pull the search out of local minima. It has three features: exploring the solution space,
locating promising regions, and �nding local minima. In exploring the solution space, the search is guided
by a continuous terrain-independent trace function that does not get trapped by local minima. In locating
promising regions, NOVEL uses local gradient to attract the search to a local minimum. Finally, NOVEL
selects one initial point for each promising local region and uses them as initial points for a descent algorithm
to �nd local minima.

NOVEL is e�cient in the sense that it tries to �rst identify good starting points before applying a
local search. This avoids repeatedly determining unpromising local minima as in multi-start algorithms,
and avoids computationally expensive descent algorithms from random starting points. It is also e�cient
because it provides a continuous means of going from one local region to another.

NOVEL has two phases: global-search phase and local-search phase (see Figure 1). The goal of the
global-search phase is to identify regions containing local minima, whereas the goal of the local-search phase
is to actually �nd the local minima.

In the global-search phase, there are a number of bootstrapping stages. (Three stages are shown in
Figure 1.) The dynamics in each stage is represented by an ordinary di�erential equation that performs
local descent and global exploration driven by a trace function. A stage is coupled to the next stage by
feeding its output trajectory as the trace function of the next stage, with a prede�ned trace function as the
input of the �rst stage. Interpolations are performed when the input trace supplied by the previous stage
is not a continuous function.

In the local-search phase, a traditional descent method, such as gradient descent, conjugate gradient



T (t)

Descent Methods

Apply gradient descent from these points

Global Search Phase
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+Q(T (t);X1(t)) +Q(X1(t);X2(t)) +Q(X2(t);X3(t))

Stage 1
_X1(t) = P (rXf(X1(t)))

_X2(t) = P (rXf(X2(t))) _X3(t) = P (rXf(X3(t)))

Fig. 1: Framework of the NOVEL method. (See Section 2 for an explanation of the equations.)

or Quasi-Newton's method, is applied to �nd local minima. Initial points for the local search are selected
based on trajectories output by the global-search phase. In our experiments, the best solutions in periodic
time intervals were used as initial points.

Assume f(X) with gradient rXf(X) is to be minimized, where X = (x1; x2; � � � ; xn) are variables.
There may be simple bounds like xi 2 [ai; bi], where ai; bi, i = 1; � � � ; n, are real numbers.

Each stage in the global-search phase of NOVEL de�nes a trajectory X(t) = (x1(t); � � � ; xn(t)) that is
governed by the following ordinary di�erential equation:

_X(t) = P (rXf(X(t))) + Q(T (t); X(t)) (2)

where t is the autonomous variable; T , the trace function, is a function of t; and P and Q are general
nonlinear functions. This equation speci�es a trajectory through variable space X. It has two components,
P (rXf(X)) that enables the gradient to attract the trajectory to a local minimum, and Q(T (t)) that allows
the trace function to lead the trajectory out of the local minimum.

P and Q can have various forms. A simple form we have used in our experiments is

_X(t) = ��grXf(X(t)) � �t (X(t) � T (t)) (3)

where �g and �t are coe�cients.
To �nd global minima e�ciently without any knowledge on the terrain, we should design a trace function

that traverses the search space uniformly and search the space from coarse to �ne. After substantial
experimentation, we have designed a non-periodic, analytical trace function as follows:

Ti(t) = � sin

"
2�

�
t

2

�0:95�0:45(i�1)=n
+

2�(i� 1)

n

#
(4)

where i represents the i'th dimension, � is a coe�cient specifying the range, and n is the number of
dimensions. Note that the trace function has di�erent phases in di�erent dimensions, and that the function
traverses the space [�1; 1]n when � = 1.

Given (3), various numerical approaches can be applied to evaluate the ordinary di�erential equation.
We have used both a di�erential-equation solver and a di�erence-equation solver.

A di�erential-equation solver solves (3) as an ordinary di�erential equation. The software package we
have used is the Livermore Solver for Ordinary Di�erential Equations [4] (LSODE) that solves (3) to within
a prescribed degree of accuracy. However, it is usually computationally expensive, especially when the
number of variables is large. Further, it requires the true gradient, meaning that neural-network learning
can only be done in an epoch-wise mode, not in a pattern-wise mode.

The second approach is to discretize (3) and use a �nite di�erence-equation solver. The di�erence
equation derived from (3) is as follows.

X(t + �t) = X(t) + �t[��grXf(X(t)) � �t(X(t) � T (t))] (5)
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Fig. 2: 2-D classi�cation graphs for the two-spiral problem by 3 (�rst column), 4 (second column), 5 (third column) and
6 (fourth column) hidden-unit neural networks trained by NOVEL (upper row) and SIMANN (lower row). Parameters for

NOVEL are �g = 1; �t = 20, and � = 100. Parameters for SIMANN are RT = 0:99;NT = 5n, and the search range is [-2.0,
2.0]. The dots and circles represent the training patterns.

where �t is the step size that speci�es the distance advanced in each step. A large �t causes a large stride
of variable modi�cation, possibly resulting in oscillations. On the other hand, a small �t means a longer
computation time for traversing the same distance. This approach is fast, allowing NOVEL to be applied
in both pattern-wise and epoch-wise training, especially when the problem is large. However, solutions may
be slightly worse than those found by LSODE.

3. Two-Spiral Problem

The two-spiral problem is a di�cult classi�cation problem. Published results on feed-forward networks
include those trained by BP, CASCOR [3], and projection pursuit [5]. The smallest network is believed to
have nine hidden units trained by CASCOR.

In our experiments, we have used feed-forward networks with shortcuts. Each hidden unit is ordered
and labeled by an index, and has incoming connections from all input nodes and from all hidden units with
smaller indexes. This is the same pyramid structure that CASCOR constructs. The activation function is an

asymmetric sigmoidal function f(x) = 1=(1 + e��x), where � is the sigmoid gain. We have �xed the search
range in NOVEL as [�1; 1] in each dimension and have varied � from 1 to 150. The error function E(w)
de�ned in (1) is the total sum of squared error (TSSE) over all training patterns. After some experiments
on four and �ve hidden unit networks, we found that � = 100, �g = 1 and �t = 20 work well.

Our trace always starts from the origin of the variable space. One time unit represents a change from
t = � to t = � + 1. We carried out our experiments on Sun SparcStation 20/71 workstations and executed
all three stages in the global-search phase in each time unit. NOVEL successfully trained �ve hidden-unit
networks in less than 100 time units. Training four hidden-unit networks is more di�cult. After running
NOVEL for 19 hours, we found a solution with TSSE of 4.0. Using this solution as a new starting point
of NOVEL, we found a solution with TSSE of 2.1 and 99% correct after 15 hours. Using this solution as a
new starting point resulted in a solution that is 100% correct after 10 hours. Figure 2 shows how the best
four hidden-unit network found classi�es the 2-D space.

We compare the performance of NOVEL with that of simulated annealing (SIMANN from netlib [1]),
two evolutionary algorithms (GENOCOP by Michalewicz [6] and LICE by Sprave [8]), cascade correlation
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Fig. 3: Training and test errors of the best designs obtained by the various algorithms for solving the two-spiral problem.
There are 18, 25, 33, and 42 weights in the neural network with, respectively, 3, 4, 5, and 6 hidden units.

with multi-starts (CASCOR-MS, based on Fahlman's CASCOR program [3] from random initial points and
random initial weights), gradient descent with multi-starts (GRAD-MS, based on LSODE to do gradient
descents), and truncated Newton's method with multi-starts (TN-MS, based on the truncated Newton's
method obtained from netlib). To allow a fair comparison, we ran these methods and NOVEL for the same
amount of time using the same network structure. For all algorithms, we tuned their parameters and report
the best results we have obtained.

Figure 3 summarizes the results of the best solutions found by each of these algorithms when run under
20 hours of CPU time. The graphs show that NOVEL has the best training and test results for the neural
networks found, followed by SIMANN, TN-MS, CASCOR-MS, and the two evolutionary algorithms. The
two evolutionary algorithms do not work well because genetic operators like mutation and cross-over do not
utilize local gradient information in deciding where to search. Note that further improvement is di�cult
after the time allowed. Figure 2 summarizes the best solutions obtained by NOVEL and SIMANN.

The experimental results show that an algorithm's performance depends on the complexity of the error
function. When the error function is simple, as in optimizing the weights of a three hidden-unit network,
NOVEL as well as other algorithms can �nd good minima. When the error function is complex and the
number of global minima is few, NOVEL performs much better than other algorithms.

Di�erential-equation solver is computationally expensive. To improve the computational overhead, we
can used a di�erence-equation solver instead. In contrast to a di�erential-equation solver, a di�erence-
equation solver can employ pattern-wise training and update the weights after every training pattern has
been presented. This results in an order of magnitude faster, but slightly worse solution quality. For the
two-spiral problem, the fraction of correctly identi�ed patterns are 92.8%, 96.9% and 100% for 4, 5 and 6
hidden-unit networks, respectively.

4. Experimental Results on Other Benchmarks

In this section, we show our results on applying NOVEL on four benchmark problems obtained from
ftp.cs.cmu.edu in directory /afs/cs/project/connect/bench | sonar, vowel-recognition, 10-parity, and
NetTalk problems. They represent classi�cation problems of di�erent complexity and characteristics.

The network topologies used in these experiments are layered feed-forward networks without shortcuts
(to be consistent with what others have used), with the goal of minimizing the total sum of squared errors.
Other setups are similar to those described for the two-spiral problem.

For these problems, we have applied NOVEL with a di�erence-equation solver, TN-MS, SIMANN, and
BP. As found by Dixon [2], TN runs much faster than epoch-wise BP and achieves comparable solutions.
SIMANN is one order of magnitude slower than TN-MS and NOVEL with results of similar quality. For
these reasons, we only report the results for TN-MS and NOVEL with a di�erence-equation solver in Table 1.



Table: 1: Comparison of the best results obtained by NOVEL and truncated Newton's algorithm with multi-starts (TN-MS)
for solving four benchmark problems, where the parameters in one method that obtains the best result may be di�erent from
those of another method. Results in bold font are better than or equal to results obtained by TN-MS.

TN-MS NOVEL TN-MS + NOVEL

Problems # of # of Correct % # of Correct % # time Correct % # time CPU time
H.U. Wts. training test restarts training test units training test units limits

Sonar 2 125 98.1 90.4 454 98.1 94.2 191 98.1 92.3 226 1000 sec
3 187 100 91.3 485 100 92.3 291 100 92.3 315 2000 sec

Vowel 2 55 72.2 50.9 298 72.5 49.1 131 73.5 50.6 203 2 hours
4 99 80.7 56.5 152 82.6 57.8 41 81.2 57.1 168 2 hours

10-parity 5 61 97.2 | 148 98.9 | 51 97.2 | 49 2000 sec
6 73 97.6 | 108 99.8 | 62 97.6 | 44 3000 sec

Pattern-wise BP NOVEL BP + NOVEL

NetTalk 15 3,476 86.3 70.5 13 87.4 72.7 11 89.0 70.4 11 3 hours
30 6,926 92.9 73.1 9 93.2 72.5 4 94.7 72.3 7 4 hours

NOVEL searched in the range [�1; 1], always started from the origin, and used TN in its local-search
phase. TN-MS was run multiple times from random initial points in various search ranges. Both algorithms
were run for the same amount of CPU time.

Table 1 shows the best solutions of both algorithms that achieve the highest percentage of being correct
on test patterns of the sonar problem, given that both have achieved 100% correct in training. Our results
show that NOVEL is 1%-4% better in test accuracy.

We attribute NOVEL's superiority in �nding better solutions to its global-search stage. Since the
function searched is rugged, it is important to identify good basins before committing expensive local
descents into them. However, multi-start algorithm can provide good starting points for NOVEL. Table 1
shows the improved performance of applying NOVEL starting from the best solution found by TN-MS.

On the vowel-recognition problem, NOVEL performs better than TN-MS in training but slightly worse
in testing for two hidden-unit case. On the 10-parity problem, NOVEL has smaller errors in learning than
both TN-MS and TN-MS+TM.

On NetTalk, the number of weights and training patterns are very large, leading us to use pattern-wise
learning when applying BP (as in the original experiments by Sejnowski and Rosenberg [7]). For a similar
reason, we can only use in NOVEL pattern-wise mode in the global-search phase and pattern-wise BP in
the local-search phase. Even so, very few time units could be simulated. To �nd better designs, we took the
best designs obtained by pattern-wise BP and applied NOVEL for 10 time units. Table 1 shows improved
learning but slight worse testing results.
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