DIMACS Series in Discrete Mathematics
and Theoretical Computer Science
Volume 35, 1997

A Discrete Lagrangian-Based Global-Search Method for
Solving Satisfiability Problems

Benjamin W. Wah and Yi Shang

ABSTRACT. Satisfiability is a class of NP-complete problems that model a wide
range of real-world applications. These problems are difficult to solve because
they have many local minima in their search space, often trapping greedy
search methods that utilize some form of descent. In this paper, we propose a
new discrete Lagrange-multiplier-based global-search method for solving satis-
flability problems. We derive new approaches for applying Lagrangian methods
in discrete space, show that equilibrium is reached when a feasible assignment
to the original problem is found, and present heuristic algorithms to look for
equilibrium points. Instead of restarting from a new starting point when a
search reaches a local trap, the Lagrange multipliers in our method provide
a force to lead the search out of a local minimum and move it in the direc-
tion provided by the Lagrange multipliers. One of the major advantages of
our method is that it has very few algorithmic parameters to be tuned by
users, and the search procedure can be made deterministic and the results,
reproducible. We demonstrate our method by applying it to solve an exten-
sive set of benchmark problems archived in DIMACS of Rutgers University.
Our method generally performs better than the best existing methods and
can achieve an order-of-magnitude speedup for some problems. Moreover, our
method can solve some new benchmark problems that cannot be solved by
other local-search methods.

1. Introduction

Satisfiability (SAT) problems belong to an important class of discrete constraint-
satisfaction problems (CSP). Many problems in artificial intelligence, logic, com-
puter aided design, database query and planning, etc., can be formulated as SAT
problems. These problems are known to be NP-complete and require algorithms of
exponential complexity in the worst case to obtain a satisfying assignment.

Generally, a SAT problem is defined as follows. Given a set of n clauses {C1,

Cs, -+, Cn} on m variables = (z1,%2, " ,Tm), T; € {0,1}, and a Boolean
formula in conjunctive normal form (CNF)
(1.1) CiANCa A~ AChH,

This research was supported by National Science Foundation Grant MIP 92-18715.

Proceedings of the DIMAGCS Workshop on Satisfiability Problem: Theory and Applications,
Ding-Zhu Du, Jun Gu, and Panoa Pardalos (ed.}, American Mathematical Society, March 1996.

1001 Mathematics Subject Classification. Primary 03B05, 05-04, 05A05, 05A09, 49M37,
85K 05, 90C10, 90C30, 50C27.

© 1997 American Mathematical Society
365

366 B. W. WAH AND Y. SHANG

find an assignment of values to the variables so that {1.1) evaluates to be true, or
derive its infeasibility if (1.1} is infeasible.

Many search methods have been developed in the past for solving this problem.
These include resolution, constraint satisfaction, and backtracking. These methods
are computationally expensive and are not suitable to apply to large problems.

In addition to the formulation in (1.1), SAT problems can be formulated as
discrete or continuous, constrained or unconstrained, optimization problems. In
Section 2, we present five formulations, show the objective and/or constraints for
each formulation, and discuss approaches for solving each.

SAT algorithms can be classified as incomplete and complete, depending on
whether they can find a random solution or find all solutions. The advantage of
complete algorithms is that they can detect infeasibility when a SAT problem is
infoasible. Iowever, they are generally computationally expensive and are suitable
for relatively small problems. On the other hand, incomplete methods are much
faster, but cannot conclude whether a SAT problem is feasible or infeasible when
no solution is found within a limited amount of time.

Recently, a class of local {incomplete) search methods were proposed, solving
a class of hard SAT problems with size of an order-of-magnitude larger than those
solved by complete methods. A major disadvantage of these methods is that they
require users to set some problem-specific parameters in order to find solutions
efficiently. For this reason, one of our goals in this paper is to design a fast local
search method whose results can be reproduced easily.

In this paper, we formulate a SAT problem as a discrete constrained optimiza-
tion problem with a goal of minimizing N(z) subject to a set of constraints.

n
(1.2) minge o3 N(x) = Z Us{x)
i=1
subject to Us(z) =0 Vvie{l,2,...,n}.

We then apply Lagrange multiplier-based methods to solve this problem.

Traditionally, Lagrangian methods have been developed to solve continuous
constrained optimization problems. By doing descents in the original variable space
and ascents in the Lagrange-multiplier space, equilibrium is reached when optimal
solutions are found. To apply these methods to solve discrete SAT problems, we
need to develop discrete Lagrangian operators that can work on discrete values.
Our algorithm, called Discrete Lagrangian method (DLM), moves a search trajec-
tory out of a local minimum in a direction provided by the Lagrange multipliers,
without restarting the search. We show that equilibrium is reached when a feasible
assignment to the original problem is found. Hence, our method avoids restarts
that may bring a search to a completely new search space, and are more efficient
than solving a continuous formulation of a SAT problem by Lagrangian methods.

This paper is organized as follows. In Section 2, we summarize previous for-
mulations and algorithms to solve SAT problems. We review in Section 3 general
theory for solving continuous constrained optimization problems, and the corre-
sponding discrete optimization formulation and discrete Lagrangian algorithm. In
Section 4, we present issues and alternatives in implementing DLM. We show in
Section 5 experimental results in applying DLM to solve some SAT benchmark
problems from the DIMACS benchmark suite. Finally, concluding remarks are
drawn in Section 6.

LAGRANGIAN-BASED GLOBAL SEARCH FOR SAT 367

2. Previous Work

In this section, we review previous methods for solving SAT problems. We
present various discrete and continuous, constrained and unconstrained, formula-
tions and various algorithms for solving each.

2.1. Discrete Formulations. These can be classified as unconstrained versus
constrained, and complete versus incomplete.

(a) Discrete Constrained Feasibility Formulation. This is the formulation de-
fined in {1.1). Methods to solve it can be either complete or incomplete, depend-
ing on their ability to prove infeasibility. Complete methods for solving (1.1)
include resolution [Rob65, GN8T7], backtracking [Pur83] and consistency test-
ing [Gu89, GW92, Guar]. Aun important resolution method is Davis-Putnam’s
algorithm [DP60]. These methods enumerative the search space systematically,
and may rely on incomplete methods to find feasible solutions. Their disadvantage
is that they are computationally expensive. For instance, Selman et al. [SK93a]
and Gu [GG91, Gu93, Gu94] have reported that Davis-Putnam’s algorithm can-
not handle SAT problems with more than 150 variables, and better algorithms
today have difficulty in solving SAT problems with more than 400 variables.

(b) Discrete Unconstrained Formulation. In this formulation, the goal is to
minimize N (z), the number of unsatisfiable clauses. That is,

(2.1) i N(@) = sz Ui(z)
where U;(z) equals 0 if the logical assignment T satisfies ;, and 1 otherwise. In
this case, N(z) equals 0 when all the clauses are satisfied.

Many local search algorithms were designed for this formulation. These algo-
rithms can deal with large SAT problems of thousands of variables. However, they
may be trapped by local minima in the search space, where a local minimum is a
state whose local neighborhood does not include any state that is strictly better.
Consequently, steepest-descent or hill-climbing methods will be trapped there, and
restarts merely bring the search to another local minimum.

Methods designed for (2.1} are usually incomplete methods, although some
mechanisms like backtracking can make them complete. Incomplete methods are
usually random methods, relying on ad hoc heuristics to find random solutions
quickly. Those that have been applied include multi-start (restart) of descent meth-
ods, stochastic methods such as simulated annealing (SA) [KCDGYV83, Cers5l,
and genetic algorithms (GA) [Hol75, Mic94]. They are discussed briefly as follows.

A pure descent method using multi-starts descends in the space of the objective
function from an initial point, and generates a new starting point when no further
improvement can be found locally. Examples include hill-climbing and steepest de-
scent [Gu89, SG91a, MSL92, SK93a, SK(C93, MJPL92, Gu93, SG94]. For
large SAT problems, hill-climbing methods are much faster than steepest descent
because they descend in the first direction that leads to improvement, whereas
steepest descent methods find the best direction. An example of an objective func-
tion suitable to be searched by descent or hill-climbing methods is (2.1). Pure
descent methods are not suitable when there are constraints in the search space as
formulated in (1.2).

368 B. W. WAH AND Y. SHANG

Recently, some local search methods were proposed and applied to solve large
SAT problems [Mor93, GW93, DTWZ94]. The most notable ones are those
developed independently by Gu and Selman.

Gu developed a group of local search methods for solving SAT and CSP prob-
lems. In his Ph.D thesis [Gu89], he first formulated conflicts in the objective
funetion and proposed a discrete relaxation algorithm (a class of deterministic lo-
cal search) to minimize the number of conflicts in these problems. The algorithms
he developed subsequently focused on two components: methods to continue a
search when it reaches a local minimum, and methods for variable selection and
value assignment. In the first component, he first developed the so-called min-
conflicts heuristic [Gu89] and showed significant performance improvement in solv-
ing large size SAT, n-queen, and graph coloring problems [Gu89, SG90, SG91b,
SG91a, SG94]. His methods use various local handlers to escape from local traps
when a greedy search stops progressing [Gu90, GG91, GG92, Gu92a, GWI2,
Gu92b|. Here, a search can continue without improvement when it reaches a lo-
cal minimum [GG91] and can escape from it by a combination of backtracking,
restarts, and random swaps. In variable selection and value assignment, Gu and his
colleagues have developed random and partial random heuristics [Gu90, SG90,
GG91, SGY1b, SGI1a, GGI2, Gu92c, Gud2a, GWI2, Gud3, Gu94]|. These
simple and effective heuristics significantly improve the performance of local search
algorithms by many orders of magnitude.

Selman developed GSAT [SLM92, SK93a, SKC93, SK93b, Seb94, SKC94]
that starts from a randomly generated assignment and performs local search iter-
atively by flipping variables. Such flipping is repeated until either a satisfiable as-
signment is found or a pre-set maximum number of flips is reached. When trapped
in a local minimum, GSAT either moves up-hill or jumps to another random point.
To avoid getting stuck on a plateau, which is not a local minimum, GSAT makes
side-way moves,

In short, the objective function in {2.1) may have many local minima that trap
local search methods. Consequently, a search in a seemingly good direction may get
stuck in a small local minimum, and will rely on random restarts or hill climbing to
bring the search out of the local minimum. However, both schemes do not explore
the search space systematically, and random restarts may bring the search to a
completely different search space.

Stochastic methods, such as GA and SA, have more mechanisms to bring a
search out of a local minimum, but are more computationally expensive. Selman et
al. [SKC93] reported that annealing is not effective for solving SAT problems. To
the best of our knowledge, there is no successful application of genetic algorithms to
solve SAT problems. In general, stochastic methods are much slower than descent
methods and can only solve small problems.

{c) Discrete Constrained Formulation. There are various forms in this formu-
lation. One approach is to formulate SAT problems as 0-1 integer linear program-
ming (ILP) problems, and apply existing ILP algorithms to salve them [Hoo88,
KKRRS0]. However, this approach is generally computationally expensive.

LAGRANGIAN-BASED GLOBAL SEARCH FOR SAT 369

Another approach is to minimize an objective function N {z), subject ta a set
of constraints, as defined in {1.2) and restated as follows.

minge o,y N(z) = ZUi(’w")
i=1

subject to Ui{z)=0 ¥ie{1,2,...,n}.

This formulation is better than that in {2.1) because the constraints provide another
mechanism to bring the search out of a local minimum. When a search is stuck in a
local minimum, the objective value as formulated in (2.1} is a discrete integer, and
the vicinity of the local minimum may either be worse or be the same. On the other
hand, in formulating the problem as in (1.1}, there is very little guidance given to
the search algorithm as to which variable to flip when a clause is not satisfied.
Our Lagrange multiplier-based method in this paper is based on formulating
a SAT problem as a discrete constrained optimization problem. We show efficient
heuristic algorithms that search in discrete space, while satisfying the constraints.

2.2. Continuous Formulations. In foimulating a discrete SAT problem in
continuous space, we transform discrete variables in the original problem into con-
tinuous variables in such a way that solutions to the continuous problem are binary
solutions to the original problem. This transformation is potentially beneficial be-
cause an objective in continuous space may smooth out some infeasible solutions,
leading to smaller number of local minima explored. Unfortunately, continuous for-
mulations require computationally expensive algorithms, rendering them applicable
to only small problems. In the following, we show two such formulations.

(a) Continuous Unconstrained Formulation.

L

(2.2) min_f(z) = ; cilz),
where F is the set of real numbers, and ¢;(x) is a transformation of clause i
™m
(2.3) ci(z) = [Jeaiiles)
=1
(1 —z;)? ifz;inC;
(2.4) ai,j(a:j) = E? if @; in C;
1 otherwise

Values of = that make f(z} = 0 are solutions to the original problem in {1.1).

Note that the objective is a nonlinear polynomial function. Hence, there may
be many local minima in the search space, and descent methods, such as gradient
descent, conjugate gradient and Quasi-Newton, can be trapped by the local min-
ima [Lue84, Gu92b, Gu92c, Gu93, Gu94]. Global search techniques, such as
clustering methods, generalized gradient methods, Bayesian methods and stochastic
methods, can also be applied; however, they are usually much more computationally
expensive than descent methods.

To overcome the inefficiency of continuous unconstrained optimization meth-
ods, Gu developed discrete bit-parallel optimization algorithms (SAT 14.5 and SAT
14.6) to evaluate continuous objective function [Gu94] and have found significant
performance improvements.

370 B. W. WAH AND Y. SHANG

(b) Continuous Constrained Formulation. This generally involves a heuristic
objective function that indicates the quality of the solution obtained (such as the
pumber of clauses satisfied). One formulation similar to (2.2) is as follows.

(2.5) mingegm f(z) =Y ci(a)
i=1

subject to ¢(x) =0 Vie{1,2,...,n}

where ¢;(x) is defined in (2.3).

The key in this approach lies in the transformation. When it does not smooth
out loeal minima in the discrete space or when the solution density is low, con-
timuous methods are much more computationally expensive to apply than discrete
methods.

Since (2.5) is a continuous constrained optimization problem with a nonlin-
ear objective function and nonlinear constraints, we can apply existing Lagrange-
multiplier methods to solve it. Our experience is that a Lagrangian transformation
does not reduce the mumber of local minima, and continuous Lagrangian methods
are an order-of-magnitude more expensive to apply than the corresponding discrete
algorithms [CW95].

3. Discrete Lagrangian Methods for Solving SAT Problems

As discussed in the last section, we formulate SAT problems as constrained
optimization problems (1.2} and solve them using Lagrangian methods. In a La-
grangian method, the search tries to minimize the objective function, while relying
on unsatisfied clauses in the constraints to provide a force to bring the search out
of local minima.

It is important to point out that in our specific formulation of SAT problems
in (1.2), all local minima are globally optimal. This is true because all constraints
are satisfied when a local minimum is reached. Therefore, Lagrangian methods are
only used to find local minima in the search space.

In this section we first summarize past work on Lagrangian methods for solv-
ing continuous constrained optimization problems. We then extend continuous
Lagrangian methods so that they can be used to solve discrete constrained op-
timization problems. Finally, we show how discrete Lagrangian methods can be
applied to solve SAT problems.

3.1. Existing Lagrangian Methods for Solving General Continuous
Problems. Lagrangian methods are classical methods for solving continuous con-
strained optimization problems [Lue84, Wal75, Sim75|. We review briefly the
theory of Lagrange multipliers in this section.

Define an equality constrained optimization problems as follows.

(3.1) mingegn f{z)
subject to g{z) =0

where z = (1,22, -+ ,Tm), and g(z) = (g1 {x), g2(=),- -~ ,gn{(x)) are n constraints,
Lagrangian function # is defined by

(3.2) Flz,\) = f(z) + Z)\z‘gi(i’?)

LAGRANGIAN-BASED GLOBAL SEARCH FOR SAT 371

where A = {A1, -+, A,) are Lagrange multipliers.

DEFINITION 3.1. A point z* satisfying the constraints g(z*) = 0 is said to be
a regular point of the constraints if the gradient vectors Vg;(z*), ¢ = 1,--- ,n, are
linearly independent.

The tangent plane at regular points can be characterized in terms of the gra-
dients of the constraint functions.

First-order necessary conditions. Let z* be a local minimum of f subject to
constraints g(z) = 0 and that z* be a regular point of these constraints. Then there
exists A € E™ such that

(3.3) VoF(x,A) =0 and ViF{z,A)=10

The conditions in (3.3) are not sufficient to have the existence of a constrained
local minimum of f(z) unless second- or higher-order derivatives of f(z) also satisfy
certain conditions. An example is the following set of conditions.

Second-order sufficient conditions. Suppose there exists point z* and A € E™
such that

(3.4) V.F(z",A) =0 and V,EF(z",A\)=0

Suppose also that matrix V2 F(z*, \) is positive definite on M = {z : Vg(z")z = 0}.
Then z* is a strict local minimum of f subject to g{z) = 0.

The necessary conditions in (3.3) form a system of n+m equations with n+m
unknowns. Since the equations are nonlinear, it is difficult to solve them analyti-
cally. In this case, a locally optimal solution can be obtained by finding a saddle
point of the Lagrangian function.

DEFINITION 3.2. A saddle-point (z*, *) of Lagrangian function F(x,) is de-
fined as one that satisfies the following condition.

(3.5) F(z*,)) < F(z", %) < F(x, ")
for all (z*,\) and all (z, *) sufficiently close to (z*,A").

A saddle-point is a local minimum of Lagrangian function ¥ {z,A) in the 2 space
and a local maximum of F(x,\) in the X space. Hence, one natural way for finding
saddle points is to descend in the z space and ascend in the A space. Lagrange
multipliers A can also be viewed as penalties associated with constraints, and La-
grangian function ¥ corresponds to a penalty function. When certain constraints
are not satisfied, the sum of unsatisfied constraints, weighted by the corresponding
Lagrange multipliers, are added to the objective function to form a penalty func-
tion. Ascents of F in the A space, therefore, correspond to increasing the penalties
associated with unsatisfied constraints. As F is to be minimized, the penalties will
eventually increase to a point that pushes the constraints to be satisfied. Likewise,
descents of F in the z space find a local minimum when all constraints are satisfied.

In the following, we state a theorem on the relationship between local min-
ima and saddle points based on (3.1). Although similar proofs have been derived
for continuous problems with inequality constraints [Lue84, Wal75, Sim75], we
present the proof for a special case with equality constraints. This proof will be
used when we study discrete optimization problems in Section 3.2

372 B. W. WAH AND Y. SHANG

Saddle-Point Theorem. z* is a local minimum to the original problem defined
in (3.1) if and only if there exists A* such that (z”, A*) constitutes a saddle point
of the associated Lagrangian function F(x, A).

Proof: “<" part: Since (z*,A*) is a saddle point, F(z*,X) € F(z*,*) for A
sufficiently close to A*. From the definition of the Lagrangian function, this implies

n k12
3 higifz*) < > Mgz,
31 i=1

Our proof is by contradiction. Suppose there exists some k,1 €k € mn,
gr(z*) # 0. If gp(z*) > 0, then vector A = (A7, JAL+6, -, A%) would violate the
inequality for a positive §. If gr(2*) < 0, then vector A = (AT, - AE =6, A%)
would violate the inequality for a positive §. Therefore, g(z*}) = 0, and z” is a
feasible solution to the problem.

Since (z*, A*) is a saddle point, F(x*,A*) < F(z,A") for z sufficiently close to
z*. From the definition of the Lagrangian function,

£(5%) < £@) + 3 Maile).

Thus, for any feasible z, g(x) = 0, and we have
fz*) < f=z)-

So z* iz a local minimum.

“=» part: If z* is a local minimum, then z* is feasible and f (z*) < f(=z} for
all feasible z sufficiently close to z*. Since g(z*) = 0, F(z*,x*} = F(z*,A). The
vector A* = 0 makes F{z*, *) < F(z,*). Therefore, (z,A") is a saddle point. =

Based on the Saddle Point Theorem, numerical algorithms have been developed
to look for saddle points that correspond to local minima in a search space. One
typical method is to do descents in the original variable space of z and ascents in
the Lagrange-multiplier space of A [AH58, LueB4, CU90, ZC92]. The method
can be written as a set of ordinary differential equations as follows.

(3.6) ‘fi—f — _V.F(z,)) and %i—‘ = VAF(z, \)
where ¢ is an autonomous time variable, This dynamic system evolves over time
t and performs gradient descents in the original variable space of z and gradient
ascents in the Lagrange-multiplier space of A. When the system reaches an equilib-
rium point where all gradients vanish, a saddle point of Lagrangian function F is
found. In other words, given an initial point, the system will not stop until a saddle
point (a local minimum of the constrained optimization problem) is reached.
Lagrangian methods are local optimization methods for continuous cptimiza-
tion problems in the sense that they only return a feasible local optimal solution.
Therefore, Lagrangian methods do not suffice as a general-purpose global optimiza-
tion method. The only exception is when there is only one local minimum in the
search space or when all local minima are global minima (the formulation of SAT
problems in (1.2)), then Lagrangian methods can find the global minimum.

LAGRANGIAN-BASED GLOBAL SEARCH FOR SAT 373

3.2. Lagrangian Methods for Solving General Discrete Problems.
Little work has been done in applying Lagrangian methods to solve discrete con-
strained combinatorial search problems [Geo74, HK71, GH83]. The difficulty in
traditional Lagrangian methods lies in the requirement of a differentiable continuous
space. In order to apply Lagrangian methods to discrete optimization problems, we
need to develop a new operator that works in discrete space. Before we introduce
the difference gradient operator, we first present some related definitions.

Consider the following equality-constrained optimization problem in discrete
space, which is similar to the continuous version in (3.1),

(37) minge pm f(.’L‘)
subject to g{x) =0

where x = (21,22, ,Zm)s 9(z) = (61{x),92(z),- -, gn(z)) and D is the set of
integers.

DEFINITION 3.3. A local minimum z* to problem (3.7) is defined as g(z*) =0
and f(z*) < f(z) for any feasible z, and z* and z differ in only one dimension by
a magnitude of 1.

For example, if z differs from z* in the k" dimension, then |z} — zx| = 1. Note
that this definition can be extended to the case in which two points can differ by
more than one dimensions.

Lagrangian function F' has the same form as in the continuous case and is
defined as follows.

(3.8) Flz,A) = f@)+ Y _ Agi(2)

=1

where A are Lagrange multipliers that have real values.
A saddle point {z*,A*) of F(x,) is reached when the following condition is
satisfied.

(3.9) F(a*, A) < F(z*,X*) < F(z, ")

for all A sufficiently close to A* and all = that differ from z* in only one dimension
by a magnitude 1.

In a way similar to the continuous case, we derive the following theorem spec-
ifving the relation between local minima and saddle points.

Discrete Saddle-Point Theorem for Discrete Problems. z* is a local min-
imum solution to the discrete constrained problem in (3.7) if and only if there
exists A* such that {z*, A*} constitutes a saddle point of the associated Lagrangian
function F(z, A).

Proof. The proof is similar to that of the continuous case.]

In the continuous case, methods thai look for saddle points utilize gradient
information. In order for these methods to work in the discrete variable space x of
discrete problems, we need to define the counterpart of the gradient operator. Note
that A can remain to be continuous even in the discrete case. In the following, we
define a discrete difference gradient operator A,. (Note that this operator is not
unique, and other operators can be defined to work in a similar way.)

374 B. W. WAH AND Y. SHANG

DEFINITION 3.4. Difference gradient operator A, is defined with respect to x
in such a way that A F(z,A) = (61,62,--- ,8m) € {~1,0,1}™, S 16 =1, and
(x — A F(z,\) € {0,1}™. For any z’ such that Sl — x| =1

Flz — A F(z,X), A) < F(z',).
Further, if vz, F(z,A) < F(z', A), then Az F(z,A) = 0.

Based on this definition, Lagrangian methods for continuous problems can be
extended to discrete problems. The basic idea is to descend in the original discrete
variable space of x and ascend in the Lagrange-multiplier space of A. We propose
a generic discrete Lagrangian method as follows.

Generic Discrete Lagrangian Method (DLM)

(3.10) L = 2k — D(zF,\F)
(3.11) AL = AR 4 g(2F)

where D{x*, *) is a heuristic descent direction for updating z, and k is the iteration
index. [

D(x,\) is not unique and can be defined by either steepest descent or hill
climbing. A steepest-descent approach chooses D{z,) to be A F(z,}), the di-
rection with the maximum gradient. A hill-climbing approach, on the other hand,
chooses the first point in the neighborhood of the current x that reduces F'. Al-
though both approaches have different descent trajectories, they can both reach
equilibrium that satisfles the saddle-point condition. Consequently, they can be
considered as alternative approaches to calculate A, F(z, A}.

Given the difference gradient operator Ay F(z,A), the difference equations in
discrete space used to seek saddle points are as follows.

(3.12) 2l = 2* - ALF(2F0F)
(3.13} AL = F 4 g(sb),

where z and A evolve iteratively until a saddle point is reached. The following the-
orem establishes the relation between saddle points and the termination conditions
in (3.12) and (3.13).

Fixed-Point Theorem. A local minimum z* of (3.8) is reached if and only
if (3.12) and (3.13) terminate.

Proof, “=7" part: If (3.12) and (3.13) terminate at (z*,A*), then g{z*) =0 and
A F(z*,A*) = 0. g(z*) = 0 implies that F(z*,A) = Fz*, 2*). A F{z*,A*) =0
implies that F(z*,A*) < F(z,A") for any feasible z in the neighborhood of z*.
Therefore, {x*, A*) is a saddle point, and by the Discrete Saddle Point Theorem,
z* is a local minimum.

“e” part: If z* is a local minimum, then g(z*) = 0. By the Discrete Saddle
Point Theorem, there exists some A* gsuch that (z*, A*) is a saddle point. By
the Discrete Saddle Point Condition, the condition that F(z*, A*) < F(x, A*) for
any z in the neighborhood of z* implies that A F (z=,A*) = 0. Therefore, (3.12)
and (3.13) terminates at (z*, *). =

LAGRANGIAN-BASED GLOBAL SEARCH FOR SAT 375

3.3. Discrete Lagrangian Method for Solving SAT Problems. The
SAT problem defined in (1.2) is a special case of the discrete constrained optimiza-
tion problem defined in (3.7). An important property of the formulation in (1.2) is
that all local minima are also global minima. This is true because, based on (1.2),
z* is defined as a local minimum if U(z*) = 0, which implies that N{z*) = 0 (a
global minimum). This condition is stated more formally as follows.

Necessary and Sufficient Condition for Optimality. z* is a global minimum
of the SAT formulation in (1.2) if and only if U{z*) = 0.

Proof. Straightforward. =

Due to this property, a SAT problem formulated in (1.2) can be solved by the
difference equations in (3.12) and (3.13) that find saddle points of a discrete La-
grangian function. In the rest of this subsection, we show how the general Discrete
Lagrangian method (DLM) can be applied to solve discrete SAT problems.

The discrete Lagrangian function for (1.2) is defined as follows.

(3.14) L(z,A) = N(z) + \TU(x)

where z € {0,1}", U{z) = (I (z),..., Un(z)) € {0,1}", and AT is the transpose of
X = (A1, Az, ..., Ay) that denotes the Lagrange multipliers. Due to the specific do-
main of x, the neighborhood of z is more restricted and is reflected in the definition
of the saddle point.

A saddle point (z*,A*) of L(x,A) in (3.14) is defined as one that satisfies the
following condition.

(3.15) L{z*, A) < L(z*, *) < L(z, *)

for all X sufficiently close to A* and for all z whose Hamming distance between z*
and z is 1.

Saddle-Point Theorem for SAT. z* is a global minimum of (1.2} if and only if
there exists some A* such that (z*, A*} constitutes a saddle point of the associated
Lagrangian function L(z, A).
Proof: The Saddle-Point Theorem discussed in Section 3.2 for discrete preblems
can be applied here. A simpler proof is as follows.

“se=" part: Since (z*, *) is a saddle point, L{z*, X) < L(z", X*) for A sufficiently
close to A*. From the definition of the Lagrangian function in (3.14), this implies

i=1 =1

Suppose some Up(z*) # 0, which means Ug(z*) = 1. Then A = (Al, -+, Ay +
8, , ML) would violate the inequality for a positive §. Therefore, U(z*) = 0, and
x* is a global minimum.

“=7” part: If z* is a global minimum, then U(z*) = 0, and L{z*,A*) =
L(z*,A\) = 0. The vector A* > 0 makes L{z*, A*) < L(z, A*). Therefore, (x*, ") is
a saddie point. =
Corollary. If a SAT problem formulated in (1.2) is feasible, then any algorithm

A that can find a saddle point of L{z, A} defined in (3.14) from any starting point
can find a feasible solution to the SAT problem.

378 B. W. WA AND Y. SHANG

Proof: If a SAT problem is feasible, then its solutions are global minima of (1.2).
These correspond to saddle points of L{x,)) defined in (3.14). If A can find a
saddle point from any starting point, then A will find a solution to the problem. =

Since a Lagrangian method only stops at saddle points, this corollary implies
that the method will find a saddle point regardless of its starting point {including the
origin) if the problem is feasible. Unfortunately, the corollary does not guarantee
that it will find a saddle point in a finite amount of time.

To apply DLM to solve SAT problems, we define the discrete gradient operator
A L(x,A) with respect to z such that ALL(z, A) = (61,82, ,0m) € {-1,0,1}™,
where ., 16| = 1, and (z — AL{z,A)) € {0,1}™. For any z' € {0,1}™ such
that the Hamming distance between z' and z is 1,

L{z — Az L(z, \), A) < L(2', A).

If vz', L(z, A) < L(z', A), then ALL(z,A)=0.
Next, we propose a method to update (z, \) so that it will eventually satisfy
the optimality condition defined in (3.15).

Discrete Lagrangian Method (DLM) A for SAT.
(3.16) 2L = g% — ALz, A)
(3.17) DA U /{679

It is easy to see that the necessary condition for algorithm A4 to converge is
when U (z) = 0, implying that = is optimal. If any of the constraints in U(x) is not
satisfied, then A will continue to evolve to handle the unsatisfied constraints.

The following theorem establishes the correctness of A and provides the condi-
tions for termination,

Fixed-Point Theorem for SAT. If and only if A terminates, then an optimal
solution z* to the SAT problem defined in (1.2) is found.

Proof. “=" part: If A terminates, then U(z) = 0, which makes AL L{z,A) = 0.
Since this is a sufficient condition for optimality, the optimal solution is found.
“e” part: If an optimal solution z* is found, then according to the necessary
condition of optimality, I (z*) = 0, implying that A.L(z,A) = 0. Therefore, neither
nor A will change, leading to the conclusion that A terminates. =

Example. The following simple example illustrates the discrete Lagrangian algo-
rithm. The problem has four variables, {21, Z2, L3, Za}, 7 clauses,
(:l’,']_ V.’.B3V.'I:4)/\(:L‘1 V:szfg)/\(Cﬂ-l V.’.EgV.T:;;)/\(:fl VFy V E)
Aza VsV ig) Alze VEVE) A(d2 VI3V 7))}
and 2 solutions, {(1, 0, 0, 0}, (0, 0, 1, 1)},
Algorithm 4 works as follows.
(1) Initially, 2° = {(1, 1, 1, 1)} and A° = {{0, 0, 0, 0,0, 0, 0)}, and L{z®, X°) =

(2) The L values of neighboring points of the initial point are
L((lv 1, 190)’ AD) = L((l’ 1,0, 1):A0) = L((11 0,1, 1): AO) = L((O: 1.1, l)a)\0) =1.
Since L(z?, A°) is less than or equal to the values of neighboring points, A, L(z%, X% =

0. As the fourth clause is not satisfied, A! is updated to be {0, 0, 0, 1, 0, 0, 0}.
PFurther, z is updated to be 2! = z0, Note that A4, the penalty for the fourth

LAGRANGIAN-BASED GLOBAL SEARCH FOR SAT 377

clause, is increased in order to provide a force to pull the search out of the local
minimum.
(3) L{z',A') = 2. The L values of z'’s neighboring points are
L((1,1,1,0),2") = L{(1,1,0,1),2") = L{(0, 1,1, 0,2 =1
and L((1,0,1,1), A1) = 2.
There are three choices of Az L(z', At}
e If we choose AyL(z!,M) = (0,0,0,1), then »* = (1,1,1,0) and A% =
(0,0,0,2,0,0,0).
e If we choose A,L(z',Al) = (0,0,1,0}, then z* = (1,1,0,1) and M=
(0,0,0,2,0,0,0). :
o Tf we choose A L{z!',)\!)
(0,0,0,2,0,0,0).
Assume that we choose Az L(z', ') = (1,0,0,0} in this example.
(4) % = (0,1,1,1) and L{z?,A*) = 1. The L values of neighboring points are
L((1,1,1,1),2?) = 3, L((0,0,1,1),X*) =0,
and L((0,1,0,1),2?) = L{(0,1,1,0), A*) = 1.
Therefore, AyL(z2,22) = (0,1,0,0). « and X are updated to be z® = (0,0,1,1)
and A* = (0,0,0,2,0,1,0), respectively.
(5) U(z®) = 0 implies that A,L(z*,2%) = 0. Hence, .A terminates and z’isa
solution.
Note that A defined in (3.17) is non-decreasing. Ways to decrease A are con-
sidered in Section 4.2. -

]

(1,0,0,0), then z* = (0,1,1,1) and A =

One of the important features of DLM is that it will continue searching until a
solution to the SAT problem is found, independent of its starting point. Therefore,
DLM does not involve restarts that are generally used in other randomized search
methods. However, as in other incomplete methods, DLM does not terminate if
there is no feasible solution. Further, as in general Lagrangian methods, the time
for DLM to find a saddle point can only be determined empirically.

Another important feature of DLM is that it is a global search algorithm that
combines both local search and global search. Its local-search component is based
on a descent algorithm in the original variable space, similar to what is used in other
algorithms. When the search reaches a local minimum, DLM brings the search out
of the local minimum using its Lagrange multipliers. This mechanism allows the
search to continue in its present trajectory without any breaks. As a result, we often
see small fluctuations in the number of unsatisfied clauses as the search progresses,
indicating that DLM bypasses small “dents” in the original variable space with
the aid of Lagrange multipliers. In contrast, some local search algorithms rely on
randomized mechanisms to bring the search out of local minima in the original
variable space. When the search reaches a local minimum, it is restarted from a
completely new starting point. Consequently, the search may fail to explore the
vicinity of the local minimum it has just reached, and the number of unsatisfied
clauses at the new starting point is unpredictable.

In contrast to other local search methods, such as Gu’s local-search meth-
ods [Gu92c, Gu93, Gu94| and GSAT [SLM92, SK93a, SKC93, SK93b,
Seb94, SKC94|, DLM descends in Lagrangian space, leading to descents in the
objective-function space where local minima lie. To get out of local minima that
do not satisty all the constraints, DLM increases the penalties on constraints that

378 B. W, WAH AND Y. SHANG

Generic algorithm AJ

Set initial x and A
while z is not a solution, 7.e., N(z) >0
update x: x «— x — A L(w, A)
if condition for updating A is satisfied then
update Xt A +—— A+ ex Ulx)
end if
end while

FIGURE 1. Generic discrete Lagrangian algorithm A for solving
SAT problems.

are violated, recording history information on constraint violation in the Lagrange
multipliers. Eventually as time passes, the penalties on violated constraints will be
very large, forcing these constraints to be satisfied. On the other hand, GSAT uses
uphill movements and random restarts to get out of local minima, whereas Gu's
local-minimum handler uses stochastic mechanisms to escape from local minima.
Although our strategy is similar to Morris’ “break-out” strategy [Mor93] and
Selman and Kantz’s GSAT [SK93a, SKC93| that applies adaptive penalties to
escape from local minima, DLM described in this paper provides a theoretical
framework for better understanding of these heuristic strategies. In addition, DLM
can incorporate new techniques for controlling Lagrange multipliers in order to
obtain improved performance. Some of these strategies are described in Section 4.2.
One final remark on DLM is that it is an incomplete search method because
it does not prove infeasibility. Hence, if there is no feasible solution in the search
space or if feasible solutions are very difficult to find, DLM may not terminate.

4. Implementations of DLM to Solve SAT Problems

In this section we discuss issues related to the implementation of DLM and
three implementations of the algorithm. There are three components in applying a
Lagrangian method: evaluating the derivative of the Lagrangian funetion, updating
the Lagrange multipliers, and evaluating the constraint equations. In the contin-
uous domain, these operations are computationally expensive, especially when the
number of variables is large and the function is complex. However, as we show in
this and the next sections, implementation in the discrete domain is very efficient,
and our method is faster than other local-search methods for solving SAT problems.

4.1. Algorithmic Design Considerations. The general structure of DL.M
is shown in Figure 1. It performs descents in the original variable space of z and
ascents in the Lagrange-multiplier space of A. In discrete space, A, L{x, A} is used
in place of the gradient function in continuous space. We call one iferation as
one pass through the while loop. In the following, we describe the features of our
implementation of A in Figure 1.

{a) Descent and Ascent Strategies. There are two ways to calculate Ay L{z, A):
greedy and hill-climbing, each involving a search in the range of Hamming distance
one from the current x (assignments with one variable flipped from the current
assignment).

In a greedy strategy, the assignment leading to the maximum decrease in the
Lagrangian-function value is selected to update the current assignment. Therefore,

LAGRANGIAN-BASED GLOBAL SEARCH FOR SAT 379

all assignments in the vicinity need to be searched every time, leading to computa-
tion complexity of O(m), where m is number of variables in the SAT problem. In
hill-climbing, the first assignment leading to a decrease in the Lagrangian-function
value is selected to update the current assignment. Depending on the order of search
and the number of assignments that can be improved, hill-climbing strategies are
generally less computationally expensive than greedy strategies.

We have compared both strategies in solving SAT benchmark problems, and
have found hill-climbing to be orders of magnitude faster with solutions of compa-
rable quality. Hence, we have used hill-climbing in our experiments.

(b} Updating A. The frequency in which A is updated affects the performance of
a search. The considerations here are different from those of continuous problems.
In a discrete problem, descents based on discrete gradients usually make small
changes in L(z, \) in each update of z because only one variable changes. Hence,
X should not be updated in each iteration of the search to avoid biasing the search
in the Lagrange-multiplier space of X over the original variable space of x.

In our implementation, we have used a parameter T' to control the number of
iterations before A is updated. T can be changed dynamically according to the value
of L{z, A) or when A L(z,A) = 0. In our experiments, we have found that DLM
works better when T is very large. Consequently, A will be updated infrequently
and most likely be updated when A L(z,A) = 0. When A L(xz,A) =0, a local
minimum in the original variable space is reached, and the search can only escape
from it by updating A. By setting 7" to infinity, the strategy amounts to pure
descents in the original z variable space, while holding A constant, until a local
minimum is reached. This corresponds to Morris’ “break out” strategy [Mor93].

A parameter ¢ in the term ¢ x U{z) in Figure 1 controls the magnitude of
changes in A, In general, ¢ can be a vector of real numbers, allowing non-uniform
updates of A across different dimensions and possibly across time. For simplicity,
we have used a constant ¢ in our implementation for all X’s. Empirically, ¢ = 1
has been found to work well for most of the benchmark problems tested. However,
for some larger and more difficult problems, we have used a smaller ¢ in order to
reduce the search time.

The last point on A in Figure 1 is that it is always nondecreasing. This is
not true in continious problems with equality constraints. In applying Lagrangian
methods to solve continuous problems, Lagrange multiplier A of a constraint glx) =
0 increases when g(z) > 0 and decreases when g(z) < 0. In A shown in Figure 1,
A is nondecreasing because U(z) is either 0 or 1: when a clause is not satisfied, its
corresponding A is increased; and when a clause is satisfied, its corresponding A is
not changed. For most of the benchmark problems we have tested, this strategy
does not worsen search time as these problems are relatively easy to solve. However,
for difficult problems that require millions of iterations, A values can become very
large as time goes on. Large A's are generally undesirable because they cause large
swings in the Lagrangian-function value.

To overcome this problem, we develop in DLM A3 in Section 4.2 a strategy to
reduce A periodically. Using this strategy, we can solve some of the more difficult
benchmark problems that require longer search time.

(c) Starting Points and Restarts. In contrast to other SAT algorithms that rely
on random Testarts to bring a search out of a local minimum, DLM will continue to
evolve without restarts until a satisfiable assignment is found. This avoids restarting
to a new starting point when a search is already in the proximity of a good local

380 B. W. WAH AND Y. SHANG

minimum. Another major advantage of DLM is that there are very few parameters
to be selected or tuned by users, including the initial starting point. This makes it
possible for DLM to always start from the origin or from a random starting point
generated by a fixed random seed, and find a feasible assignment if one exists.

(d) Plateaus in the Search Space. In discrete problems, plateaus with equal
values exist in the Lagrangian-function space. Our proposed discrete gradient op-
erator may have difficulties in plateaus because it only examines adjacent points
of L{z, A) that differ in one dimension. Hence, it may not be able to distinguish
a plateau from a local minimum. We have implemented two strategies to allow a
plateau to be searched.

First, we need to determine when to change A when the search reaches a plateau.
As indicated earlier, A should be updated when the search reaches a lecal minimum.
However, updating A when the search is in a plateau changes the surface of the
plateau and may make it more difficult for the search to find a local minimum
somewhere inside the plateau. To avoid updating A immediately when the search
reaches a plateau, we have developed a strategy called flat move. This allows the
search to continue for some time in the plateau without changing A, so that the
search can traverse states with the same Lagrangian-function value. How long
should flat moves be allowed is heuristic and possibly problem dependent. Note
that this strategy is similar to Selman’s “sideway-move” strategy [SKC93].

Our second strategy is for the search to avoid revisiting the same set of states
in a plateau. In general, it is impractical to remember every state the search
visits in a plateau due to the large storage and computational overheads. In our
implementation, we have kept a tabu list to maintain the set of variables flipped in
the recent past [Glo89, HJI90] and to avoid flipping a variable if it is in the tabu
list.

To summarize, we employ the following strategies and settings of parameters
in our implementations of the generic DLM A,

e A hill-climbing strategy is used for descents in the original variable space.

e T the time interval between updating A, is infinity.

» The initial X is 0.

o The initial starting point is either the origin or a randomly-generated start-

ing point obiained by calling random number generator drand48().

The random number generator uses a fixed initial seed of 101.

e To handle more difficult and complex problems, flat moves and tabu lists
may be used in a search to traverse plateaus.

Without specific statement, these strategies and parameters settings are used in
our implementations in the following section.

4.2. Three Implementations of the Generic DLM. Figures 2, 3, 4 show
three implementations of the general algorithm A with increasing complexity.

A1, DLM Version 1 shown in Figure 2, is the simplest. It has two alternatives
to find a variable in order to improve the Lagrangian-function value: flip variables
one by one in a predefined order, or flip variables in unsatisfied clauses. Since
only variables appearing in unsatisfied clauses can potentially improve the current
Lagrangian-function value, it is not necessary to check variables that appear in
currently satisfied clauses. The first alternative is fast when the search starts.
By starting from a randomly generated initial assignment, it usually takes a few
flips to find a variable that improves the current Lagrangian-function value., As

LAGRANGIAN-BASED GLOBAL SEARCH FOR SAT

Set initial =

Set A =10
Setc=1
Set ¥ = 10

while z is not a solation, 7.e., N(z} >0
if number of unsatisfied clauses < 9, then
Maintain a list of unsatisfied clauses
if 3 variable v in one of the unsatisfied clauses such that
L(z',\) < L{z, \) when flipping v in x to get z' then
T —
else
Update A: A +— A+c- U{x)
end_if
else
if 3 variable v such that L(z’, A} < L{x, A) when flipping v
in a predefined order in z to get =’ then
T +— Er
else
Update A: A «— A+c-U(x)
end _if
end_if
end_while

FIGURE 2. Discrete Lagrangian Algorithm Version 1, A;, an im-

plementation of A for solving SAT problems.

Set initial =
Set A=0
Setc=1
Set & = n,/3, where n is the number of variables
while x is not a solution, i.e., N(z} >0
if number of iterations > & then
Maintain a list, I, of variables such that
if one of them is flipped, the solution will improve.
if I is not empty then
Update = by flipping the first element of
else
Update A: A «— A+c-U(x)
end_if
else
if 3 variable v such that L{z’, A) < L{z, A) when flipping v
in a predefined order in x to get z’ then
z oz
else
Update A: A+— A+c-U(x)
end_if
end_if
end_while

FiguRre 3. Discrete Lagrangian Algorithm Version 2, As.

381

382 B. W. WAH AND Y. SHANG

Set initial x
Set A=10
Set x = n/3, where n is the number of variables
Set tabu length L;, e.g., 50
Set flat-region limit Ly, e.g., 50
Set A reset interval Iy, e.g., 10000
Set constant c, e.g., 1/2
Set constant r, e.g., 1.5
while z is not a solution, i.e., N{z) > 0
if number of iterations > x then
Maintain a list, I, of variables such that
if one of them is flipped, the solution will improve.
end _if
if number of iterations > x and [is not empty then
Update « by flipping the first element of {
else if I variable v such that L(z', A) < L{z, A) when flipping v
in a predefined order in x to get =’ then
z+— 3
else if 3 v such that L(z’, A} = L(x, A) when flipping v in x to get z’
and number of consecutive flat moves < Ly
and v has not been flipped in the last L. iterations then

T e /* flat move */
else

Update X A «— A+ ¢-Ulz),
end_if

if iteration index mod I, = 0 then
Reduce X for all clauses, e.g. A «— Afr
end_if
end_while

F1GURE 4. Discrete Lagrangian Algorithm Version 3, .Aa.

the search progresses, there are fewer variables that can improve the Lagrangian-
function value. At this point, the second alternative should be applied.

A; uses parameter @ to control the switching from the first alternative to the
second. We found that ¢ = 10 generally works well and used this value in all our
experiments.

As, DLM Version 2 shown in Figure 3, employs another strategy to make local
improvements. Initially, it is similar to .A;. As the search progresses, the number
of variables that can improve the current Lagrangian-function value are greatly
reduced. At this point, a list is created and maintained to contain variables that
can improve the current Lagrangian-function value. Consequently, local descent is
as simple as flipping the first variable in the list.

A, uses £ to control the switching from the first strategy to the second. We
found that = = n/3 works well and used this value in our experiments. A also has
more efficient data structures to deal with larger problems.

Az, DLM Version 3 shown in Figure 4, has more complex control mechanisms
and was introduced to solve some of the more difficult benchmark problems (such as
the “g,” “f and large “par” problems in the DIMACS benchmarks) better than .4,.

LAGRANGIAN-BASED GLOBAL SEARCH FOR SAT 383

It is based on A» and uses all of Ay’s parameters. We have applied strategies based
on flat maves and tabu lists to handle plateaus [Glo889, HJ90]. An important
element of Aj is the periodic scaling down of the Lagrange multipliers in order to
prevent them from growing to be very large. Further, to get better performance,
we may have to tune ¢ for each problem instance.

Program efficiency is critical when dealing with SAT problems with a large
aumber of variables and clauses. Since DLM searches by constantly updating state
information {current assignment of z, Lagrange-multiplier values and Lagrangian-
function value), state update has to be very efficient. In our implementation, we
update state information incrementally in a way similar to that in GSAT. In large
SAT problems, each variable usually appears in a small number of clauses. There-
fore, state changes incurred by flipping a variable are very limited. When flipping
a variable, some clauses become unsatisfied while some others become satisfied.
The incremental update of the Lagrangian-function value is done by subtracting
the part of improvement and adding the part of degradation. This leads to very
efficient evaluation of L(z, A). In a similar way, the computation of A, L(xz, \) can
also be done efficiently.

In general Lagrangian methods, Lagrange multipliers introduced in the formu-
lation add extra overhead in computing the Lagrangian function as compared to
the original objective function. This overhead in DLM is not significant because an
update of X requires O(p) time, where p is the number of unsatisfied clauses, and
p < n when n is large.

5. Experimental Results

In this section, we evaluate DLM using SAT benchmarks in the DIMACS
archive. The archive is made up of a repository of hundreds of easy and hard
SAT problems with many variables and clauses.

Our DLM code was written in C. In our experiments, we have tested DLM on all
satisfiable problems in the DIMACS archive. We have compared the performance of
DLM with reported results in the literature on the following benchmark problems.

e Circuit synthesis problems (%) by Kamath et al. [KKRR92] — a set of SAT
encodings of Boolean circuit-synthesis problerns;

o Circuit diagnosis problems (ssa) — a set of SAT formulas based on circuit
fault analysis;

e Parity learning problems (par) — a collection of propositional versions of

parity learning problems;

Artificially generated 3-SAT instances (aim);

Randomly generated SAT instances (jnh);

Large random satisfiable 3-SAT instances (f);

Hard graph coloring problems (g);

An encoding of the Towers-of-Hanoi problems {hanoi); and

Gu’s asynchronous-circuit synthesis benchmarks {as) and technology map-

ping benchmarks (¢m).

In this section, we show experimental results on the three versions of our DLM
implementation described in Section 4.2.

A, sets all parameters constant throughout the runs in order to avoid intro-
ducing random effects in the program and to allow easy reproduction of results. It
works well on the “gim” problems, but not as well on others.

384 B. W. WAH AND Y. SHANG

TABLE 1. Execution times of Az in CPU seconds on a Sun Sparc-
Station 10/51 for one run of Ay starting from = = 0 (origin) as the
initial point on some DIMACS benchmark problems.

Problem As Problem Ag
Identification Time | # of Tter. || Identification ; Time | # of Iter.
55a7552-038 0.20 4126 il6al 2.72 756
ssa7bs2-1h8 0.22 3279 ii16b1 2.57 1313
55a7552-159 0.18 3802 iil6cl 1.25 916
ssa7hb2-160 0.23 3409 ii16d1 1.37 595

aim-100-2_0-yesl-1 | 0.05 982 iil6el 1.35 1224
aim-100-2_0-yesi-2 | 0.10 1680 1i32b3 0.88 529
aim-100-2_0-yes1-3 | 0.02 513 1132c3 0.75 735
aim-100-2.0-yesl-4 | 0.53 8510 113243 5.1 1589

par8-2-¢ 0.45 7841 ii32e3 0.88 518

pars-d-c 093 | 5784

As has no problem-dependent parameters to be tuned by users and generally
works well for all the benchmark problems. However, it does not solve some of the
larger and more difficult problems, including the “g,” “f” large “par,” and “hanot’
probletns.

As has some parameters to be tuned in its complex control mechanisms. Al-
though these parameters are problem dependent, we have tried a few sets of pa-
rameters and have found one set that generally works well. Results reported are
based on the best set of parameters found. As solves some of the more difficult
problems better than Ag.

Table 1 shows the experimental results when A, was always started from the
origin. It shows execution times in CPU seconds and the number of iterations
corresponding to the number of flips in GSAT. In each iteration, either one variable
was flipped or the A values were updated. In each experiment, Ao succeeded in
finding a feasible assignment. For most of the test problems, we have found the
average time that A, spent when started from the origin to be longer than the
average time when started from randomly generated initial points. A possible
explanation is that the distance between the origin and a local minimum is longer
than the average distance between a randomly generated starting point and a nearby
local minimum.

We have compared the performance of A; with respect to the best known
results on these benchmark problems. Most of our timing results were averaged
over ten runs with randomly generated initial points, starting from a fixed seed of
101 in our random number generator drand48(). Consequently, our results can be
reproduced deterministically.

In Table 2, we compare Az with WSAT, GSAT, and Davis-Putnam’s algorithm
in solving the circuit diagnosis benchmark problems. We present the execution sta-
tistics of As, including the average execution times and the average number of iter-
ations. We also show the published average execution times of WSAT, GSAT and
Davis-Putnam’s method [SKC94]. We did not attempt to reproduce the reported
results of GSAT and WSAT, since the results may depend on initial conditions,
such as the seeds of the random number generator and other program parameters.

LACRANGIAN-BASED GLOBAL SEARCH FOR SAT 385

TaBLE 2. Comparison of Az’s execution times in seconds av-
eraged over 10 runs with respect to published results on some of
the circuit diagnosis problems in the DIMACS archive, including
the best known results obtained by WSAT, GSAT, and Davis-
Putnam’s algorithm [SKC94].

Problem No. of | No. of Az WSAT | GSAT | DP
1d Var. | Clauses || SS 10/61 | SGI | # Iter.
ssa7B52.038 | 1601 | 3575 0.228 | 0.235 | 7070 23 129 | 7
ssa7652-158 | 1363 | 8034 0.088 | 0.102 | 2169 2 90 *
ssa7552-159 1363 3032 0.085 0.118 2154 0.8 14 *
ssa7552-160 1391 3126 0.097 0.113 3116 1.5 18 *

s Ao Sun SparcStation 10/51 and a 150-MHz SGI Challenge with MIPS R4400;
e GSAT, WSAT and DP: SGI Challenge with a 70 MHz MIPS R4400.

TaBLE 3. Comparison of Az’s execution times in seconds aver-
aged over 10 runs with published results on circuit synthesis prob-
lems from the DIMACS archive, including the best known results
obtained by GSAT, integer programming, and simulated anneal-

ing [SKC94].
Problem | No. of | No. of Az GSAT | Integer | SA
1d. Var. | Clauses || 88 10/51 | SGI | # Iter. Prog,.
iil6al 1650 19368 0.122 0.128 819 2 2039 12
ii16bl 1728 24792 0.265 0.310 | 1546 12 78 11
iil6ecl 1580 16467 0.163 0.173 797 1 758 5
ii16d1 1230 15501 0.188 0.233 908 3 1547 4
Hlgel 1245 14766 0,297 0.302 861 1 2156 3

e A;: Sun SparcStation 10/51 and a 150-MHz SGI Challenge with MIPS R4400;
e GSAT and SA: 8CI Challenge with a 70 MHz MIPS R4400;
¢ Integer Programming: VAX 8700.

We ran .As on an SGI Challenge! so that our timing results can be compared to
those of GSAT and WSAT. Qur results show that .4, is approximately one order
of magnitude faster than WSAT.

In Table 3, we compare .A; with the published results of GSAT, integer pro-
gramming and simulated annealing on the circuit synthesis problems [SKC94].
Our results show that 4, performs several times faster than GSAT.

In Table 4, we compare the performance of the three versions of DLM with
some of the best known results of GSAT on circuit-synthesis, parity-learning, some
artificially generated 3-SAT, and some of the hard graph coloring problems. The
results on GSAT are from [Sel95], which are better than other published results.
Our results show that DLM is consistently faster than GSAT on the “#” and “par”
problems, and that ,4; is an order-of-magnitude faster than GSAT on some “aim”

problems.

'Based on a single-CPU 150-MHz SGI Challenge with MIPS R4400 at the University of Illi-
nois National Center for Supercomputing Applications, we estimate empirically that it is 15.4%
slower than a Sun SparcStation 10/51 for executing Az to solve SAT benchmark problems. How-
ever, we did not evaluate the speed difference between a 150-MHz SGI Challenge and a 70-MHz
SGI Challenge on which GSAT and WSAT were run.

386 B. W. WAH AND Y. SHANG

TABLE 4. Comparison of DLM’s execution times in seconds
averaged over 10 runs with the best known results obtained by
GSAT [Sel95] on the circuit-synthesis, parity-learning, artificially
generated 3-SAT instances, and graph coloring problems from the
DIMACS archive.

Problem No. of | No. of Aq GSAT
Identification Var. | Clauses || SS 10/51 | Success | Time | Success
Ratio Ratio
aim-100-2 O-yesi-1 | 100 | 200 019 | 10/10 | 1.96 | 9/10
aim-100-2_0-yesl-2 100 200 0.65 10/10 1.6 10/10
aim-100-2_0-yes1-3 | 100 200 0.19 | 10/10 | 1.09 | 10/10
aim-100-2_0-yes1-4 100 200 0.10 10/10 1.54 10/10
Aa GSAT
ii32b3 348 5734 0.31 10/10 0.6 10/10
i132c3 279 3272 0.12 10/10 0.27 10/10
113243 824 19478 1.05 10/10 2.24 10/10
1i32e3 330 5020 0.16 10/10 0.49 10/10
par8-2-c 68 270 0.06 | 10/10 | 1.33 [10/10
pars-i-c 67 266 000 | 10/10 | 02 | 10/10
Az GSAT
gl25.17 2125 66272 1360.32 10/10 | 264.07 7/10
gl25.18 2250 70163 3.197 10/10 1.9 10/10
g250.15 3750 | 233965 2.798 10/10 441 10/10
£250.29 7250 | 454622 1219.56 9/10 1219.88 | 9/10

e A;, Ay, A3: Sun SparcStation 10/51
e GSAT: SGI Challenge (model unknown)

Table 4 also shows the results of .43 on some “¢” problems. Recall that A3z
was developed to cope with large flat plateaus in the search space that confuse .Asg,
which failed to find any solution within 5 million iterations. Hansen [HJ90] and
later Selman [SKC93| addressed this problem by using the tabu search strategy.
In a similar way, we have adopted this strategy in .A; by keeping a tabu list to
prevent flipping the same variable back and forth. This led to better performance,
although the performance is sensitive to the length of the tabu list. Our results on
Aj in Table 4 were obtained using a tabu length of 50, flat region limit of 50, A
reset interval of 10,000, and A reset to be A/1.5 when the X reset interval is reached.
We used ¢ = 1/2 for “gl25-18” and “g250-15”", and ¢ = 1/16 for “gl25-17" and
“g95(-28". A performs comparably to GSAT on these “g’ problems.

We show in Tables 5 and 6 results of DLM on most of the satisfiable problerns
in the DIMACS archive. Overall, DLM perform well on the “i,” “fnh,” “par§,”
“gga,” “aim,” “as” and “#m” problems. The average time over 10 runs is usually
under 1 second for these problems. Table 6 shows the execution times of .4; and
As on the whole set of “eim” problems. For these problems, .A; performs better
than 45 on the average. Finally, A; and A; have difficulty in solving the “perl6,”
“pard2” “hanoi” and “f’ problems.

LAGRANGIAN-BASED GLOBAL SEARCH FOR SAT 387

TABLE 5. Execution times in CPU seconds over 10 runs of As.

Problem Success Sun S8 10/51 Sec. Problem Success Sun 85 10/51 Sec.
Identifier Ratio | Avg | Min. | Max. Id. Ratio | Avg. [Min. | Max.
ii8al 10/10 | 0.003 | 0.000 | 0.017 ii8bl 10/10 | 0.012 | 0.000 | 0.017
ii8a2 10/10 | 0.007 | 0.000 | 0.017 ii8b2 10/10 | 0.028 | 0.017 | 0.050
ii8a3 10/10 | 0.013 | 0.000 | 0.017 1i8b3 10/10 | 0,043 | 0.017 | 0.067
ii8ad 10/10 | 0.027 ; 0.017 | 0.033 ii8h4 10/10 | 0.062 | 0.050 | 0.083
ii8cl 10/10 | 0.013 | 0.000 | 0.017 ii8d1 10/10 | 0.018 | 0.017 | 0.033
i8c2 10/10 | 0.640 | 0.033 | 0.050 1i8d2 10/10 | 0.043 | 0.033 | 0.050
ii8el 10/10 | .020 | 0.017 | 0.033 iiBe2 10/10 | 0.040 1 0.033 | 0.067
iil6al 10/10 2.122 | 0117 | £6.133 iil6a2 10/10 | 0.302 | 0.200 } 0.433
ii16bl 10/10 | 0.265 | 0.217 | 0.350 i116b2 10/10 | 0.377 | 0.183 | 0.717
iilBcl 10/10 | 0.163 | 0.133 | 0.200 ii16c2 10/10 | 0.667 | 0.133 | 1.350
it16d1 10/10 | 0.188 | 0.167 | 0.217 ii16d2 10/10 | ©.618 | 0.250 | 1.333
iil6el 10/10 | 0.297 § 0.267 | 0.367 1il6e2 10/10 | 1.273 | 0.183 | 3.350
ii32al 10/10 | 0.337 | 0.133 | 1.000 ii32el 10/10 | 0.022 | 0.017 | 0.033
1i32b1 10/10 | 0.028 | 0.017 | 0.033 ii32e2 10/10 | 0.097 | 0.050 | 0.183
ii32b2 10/10 | 0.130 | 0.050 | 0.517 ii32e3 10/10 | 0.160 | 0.100 ; 0.450
1i32b3 10/10 | 0.305 | 0.150 | 0.767 1i32e4 10/10 | 0.190 | 0.150 | 0.233
ii32b4 10/10 | 0.460 | 0.167 | 1.033 ii32eb 10/10 | 0.402 | 0.250 [1.450
ii32cl 10/10 | 0.022 | 0.000 | 0.033 1132d1 10/10 | 0.065 | 0.017 [0.167
ii32c2 10/10 | 0.050 | 0.033 | 0.083 1i32d2 10/10 | 0.202 | 0.083 | 0.833
1132¢3 10/10 | 0.118 j 0.083 | 0.233 ii32d3 10/10 | 1.047 | ©.333 | 2.750
ii32c4 10/10 | 2,940 | 0.567 | 6.217
jnhl 18/10 | 0.068 | 0.017 | 0.150 jnh209 10/10 | 0.433 | 0.067 ; 2.00¢
jnh7 10/10 | 0.043 | 0.017 | 0.083 jnh210 10/10 | 0,033 | 0.017 | 0.067
jnhl2 10/10 | 0.155 | 0.067 | 0.250 jnh212 10/10 | 5.442 | 0.033 | 51.250
jnht7 10/10 | 0.082 | 0.033 | 0.167 jnh213 10/10 | 0.083 | 0.017 [0.183
inh201 10/10 | D.028 | 0.017 | 0.050 jnh217 10/10 | 0.060 | 0.000 | 0.133
jnh204 10/10 | 0.172 | 0.017 | 0.667 jnh218 10/10 | 0.083 | 0.017 | 0.183
jnh205 10/10 | 0.103 | 0.050 | 0.183 jnh220 10/10 | 0.387 | 0.033 | 2.033
jnh207 10/10 | 0.337 | 0.050 | 1.817 jnh301 10/10 i 0.333 | 0.117 [0.950
par8-1-c 10710 | 0,075 | 0.000 | 0.400 pard-1 5/10 | 1.437 | 0.050 | 4.150
par8-2-c 10/10 | 0.058 | 0.000 | 0.267 par8-2 6/10 | 4.380 | 0.433 | 8.417
pard-3-c 10/10 | 1.998 | 0.000 | 9.233 par8-3 3/10 | 2.139 | 0.350 | 4.350
par8-4-c 10/10 | 0.088 | 0.017 ! 0.367 par8-4 5/160 6.877 | 1.150 | 11.767
par§-5-¢ 10/10 | 0.477 | 0.017 | 2.633 par8-5 4/10 | 9.175 | 6.450 | 13.083
esa7552-038 [10/10 | 0.228 | 0.083 | 0.933 || ssa7552-158 10/10 | 0.088 | 0.050 | 0.167
s8a7552-159 | 10/10 | 0.085 | 0.067 | 0.150 ssa7552-160 | 10/10 | 0.097 | 0.050 | 0.183
asl-yes 0/10 asB-yes 10/10 | 0.047 | 0.017 | 0.067
as2-yes 10/10 | 0.020 { 0.017 | 0.033 asl{-yes 10/10 i 0.103 | 0.067 | 0.150
as3-yes 10/10 | 0.037 | 0.017 | 0.050 asll-yes 10/10 0.047 | 0.017 3 0.067
asd-yes 10/10 | 0.157 | 0.133 | 0.200 asl2-yes 10/10 | 0.038 | 0.017 | 0.067
asb-yes 10/10 | 0.988 | 0.850 | 1.283 asl3-yes 10/10 | 0.085 | 0.067 | Q.117
ast-yes 10/10 | 0.098 | 0.050 | 0.150 asld-yes 10/10 | 0.017 | 0.017 | 0.033
asT-yes 10/10 | ©.520 | 0.450 | 0-633 asl5-yes 10/10 | 0.157 | 0.117 [0.200
[tmiyes | 10/10 [0.238 {0217 | 0.250 | tm2-yes [10/10 [0.013 | 0.000 [0.033 |

We are designing new strategies to improve Aj3’s performance. Tables 7 shows
some preliminary but promising results of A3 on some of the more difficult but
satisfiable DIMACS benchmark problems.

388

B. W. WAH AND Y. SHANG

TABLE 6. Execution time in seconds over 10 runs of A4; and A

Problem
Identifier

Aa

Ay

Succ.
Ratio

Sun 8S 10/51 Sec.

Suce,

Sun S8 10/51 Sec.

Avg. | Min. | Max.

Ratio

Avg. [Min. | Max.

aim-50-1_6-yesl-1
aim-50-1_6-yes1-2
aim-50-1_6-yes1-3
aim-50-1_6-yesl-4

10/10
6/10
10/10
5/10

0.032 | 0.000 | 0.150
0.008 | 0.000 | 0.017
0.010 | 0.000 | 0.017
0.210 | 0.017 | 0.917

10/10
10/10
10/10
10/10

0.042 | 0.017 | 0.100
0.020 | 0.000 | 0.050
0.027 | 0.000 | 0.050
0.030 | 0.000 | 0.067

aim-50-2_0-yes1-1
aim-50-2_0-yes1-2
aim-50-2_0-yesl-3
aim-50-2_0-yesl-4

10/10
8/10
10/10
10/10

0.012 | 0.000 | 0.033
0.010 | 0.000 | 0.017
0.007 ; 0.000] 0.017
0.048 | 0.000 | 0.250

10/10
10/10
10/10
10/10

0.035 [0.017 | 0.083
0.035 | 0.017 | 0.100
0.077 | 0.000 | 0.533
12.603 | 0.000 | 125.733

aim-50-3_4-yesl-1
aim-50-3_4-yes1-2
aim-50-3_4-yes1-3
aim-50-3_4-yesl-4

10/10
10/10
10/10
9/10

0.025 | 0.000 | 0.067
0.015 | 0.000 | 0.033
0.012 | 0.000 | 0.033
0.013 | 0.000 | 0.033

10/10
10/10
10/10
10/10

1.528 | 0.017 | 13.400
0.162 | 0.017 | 0.350
0.142 | 0.033 | 0.317
0.057 | 0.033 7 0.150

aim-50-6_0-yesl-1
alm-50-6_0-yes1-2
aim-50-6_0-yes1-3
aim-50-6_0-yesi-4

10/10
10/10
10/10
10/10

0.010 | 0.000 | 0.033
0.007 | 0.000 ; 0.017
0.007 | 0.000 | 0.017
0.007 | 0.000 | 0.017

10/10
10/10
10/10
10/10

0.027 | 0.000 | 0.067
0.028 | 0.017 | 0.050
0.035 | 0.000 [0.100
0.027 | 0.000 | 0.067

aim-100-1.6-y=s1-1
aim-100-1_6-yes1-2
aim-100-1_6-yesl-3
aim-100-1_6-yes1-4

10,/10
10/10
10/10
10/10

0.068 | 0.033 | 0.117
0.053 | 0.017 | 0.100
0.095 | 0.050 | 0.333
0.052 | 0.000 { 0.117

10/10
10/10
10/10
10/10

0.092 | 0.033 | 0.200
0.098 | 0.050 | 0.167
0.142 | 0.033 | 0.333
0.095 | 0.017 | 0.317

aim-100-2_0-ves1-1
aim-100-2_0-yes1-2
aim-100-2_0-yes1-3
aim-100-2_0-yes1-4

9/10
10/10
10/10
10/10

0.854 | 0.017 | 2.700
0.287 | 0.050 | 0.900
0.100 | 0.017 | 0.333
0.357 | 0.033 | 1.817

10/10
10/10
10/10
10/10

0.193 | 0.050 | 0.383
0.652 | 0.117 | 1.650
0.187 | 0.067 | 0.400
0.097 | 0.050 | 0.167

aim-100-3_4-yesl-1
aim-100-3_4-yesl-2
aim-100-3_4-yes1-3
aim-100-3_4-yesl-4

10/10
10/10
10/10
10/10

0.450 | 0.000 | 2.950
0.195 | 0.017 | 1.383
0.050 | 0.017 { ©.100
0.038 | 0.000 | 0.100

10/10
10/10
10/10
10/10

0.795 | 0.133] 4.417
0.362 | 0.133 | 0.817
0.858 ; 0.067 | 3.800
0.170 | 0.000 | 0.317

aim-100-6_0-yes1-1
aim-100-6_0-yes1-2
aim-100-6_0-yes1-3
aim-100-6_0-yesl-4

10/10
10/10
10/10
10/10

0.020 | 0.600 [0.033
0.018 | 0.000 | 0.033
0.017 | 0.000 | 0,050
0.018 | 0.000 | 0.033

10/10
10/10
10/10
10/10

0.075 [0.017 | 0.133
0.142 | 0.033 | 0.467
0.082 | 0.017| 0.233
0.093 | 0.017 ; 0.267

aim-200-1_6-yesl-1
aim-200-1_6-yes1-2
aim-200-1_6-yes1-3
aim-200-1_6-yesl-4

10/10
6/10
9/10
1/10

0.958 | 0.150 ; 2.433
0.786 | 0.417 | 1.283
1.357 | 0.283 | 4.517
6.617 | 6.617 [6.617

10/10
10/10
10/10
10/10

0.748 | 0.333 | 1.583
0.635 | 0.150 | 2.350
1.217 | 0.233 | 6.950
2.308 | 0.333 | 7.183

aim-200-2_0-yesl-1
aim-200-2_0-yesl-2
aim-200-2_0-yesl-3
aim-200-2_0-yes1-4

1710
4/10
5/10
0/10

1.283 | 1.283 | 1.283
0.538 | 0.150 | 1.350
0.867 | 0.150 | 1.683

10/10
10/10
10/10
10/10

8.128 | 0.300 | 51.483
6.132 | 0.317 | 30.000
9.545 | 0.383 | 45.717
2.102 | 0.300 [6.950

aim-200-3_4-yesl-1
aim-200-3_4-yes1-2
aim-200-3_4-yes1-3
aim-200-3.4-yes1-4

8/10
10/10
10/10
9/10

0.554 | 0.250 | 1.350
0.547 | 0.050 | 3.417
0.838 | 0.050 | 5.500
3.122 | 0.050 | 22.433

10/10
10/10
10/10
9/10

6.638 | 0.517 | 16.500
20.117 | 0.917 | 213.467
2.405 | 0.550 | 9.467
6.520 | 0.917 | 27.150

aim-200-6_0-yesl-1
aim-200-6_0-yes1-2
aim-200-6_0-yes1-3
aim-200-6_0-yes1-4

10/10
9/10
10/10
10/10

0.075 | 0.033 | 0.133
0.209 | 0.050 | 0.583
0.102 { 0.017 | 0.317
0.218 | 0.017 | 0.717

10710
10/10
10/10
10/10

0.575 | 0.100 | 1.717
0.350 | 0.117 | 0.933
0.513 | 0.150 | 1.250
0.415 | 0.050 | 1.000

LACRANGIAN-BASED GLOBAL SEARCH FOR SAT 389

TaBLE 7. Execution times in CPU seconds over 10 runs of A3 to
solve some of the mare difficult DIMACS benchmark problems.
Prob. | Suce. | Sun S8 10/51 Seconds Prob. Suce. Sun S8 10/51 Seconds
Id. Ratio | Avg. | Min. | Max. Id. Ratio | Avg. | Min, | Max

par8-1 | 10/10 | 4.780 | 0.133 14.383 || parl6-1-c | 10/10 | 398.1 11.7 1011.9
par8-2 | 10/10 | 5.068 | 0.100 13.067 || parl6-2-e¢ § 10/10 | 1324.3 | 191.0 4232.3
par8-3 1 10/10 | 9.903 | 0.350 } 21.150 parl6-3-¢ | 10/10 | 987.2 | 139.8 3705.2
par8-4 ; 10/10 | 5.842 | 0.850 ; 16.433 parif-4-c | 10/10 | 316.7 5.7 692.66
par8-5 | 10/10 | 14.628 | 1.167 34.900 || parl6-b-c | 10/10 | 1584.2 | 414.5 3313.2
hanoi4 1/10 632.6 | 682.6 | 682.6 1000 10/10 | 126.8 4.4 280.7
600 10/10 16.9 2.1 37.2 2000 10/10 | 1808.6 | 174.3 8244.7
Program parameters
Tabu length = 50; Flat region limit = 50; A reset interval = 10,000, operation: A = A/1.5.
Problem group par f hanoi4
Increment of A 1/2 1/18 1/2

6. Conclusions

In this paper, we have presented a discrete Lagrangian method for solving sat-
isfiability (SAT) problems. Our method belongs to the class of incomplete methods
that attempts to find a feasible assignment if one exists, but will not terminate if
the problem is infeasible.

We first extend the theory of Lagrange multipliers for continuous problems
to discrete problems. With respect to problems in discrete space, we define the
concept of saddle points, derive the Saddle Point Theorem, propose methods to
compute gradients, and develop the heuristic discrete Lagrangian algorithm to look
for saddle points. Finally, we show the Fixed Point theorem which guarantees that
the algorithm will continue to search until a saddle point is found.

We then apply the Discrete Lagrangian Method (DLM) to solve SAT problems.
We formulate a SAT problem as a discrete constrained optimization problem in
which local minima in the Lagrangian space correspond to feasible assignments of
the SAT problem. Searching for saddle points, therefore, corresponds to solving
the SAT problem. We further investigate various heuristics in implementing DLM.

We have compared the performance of DLM with respect to the best existing
methods for solving some SAT benchmark problems archived in DIMAGS. Exper-
imental results show that DLM can solve these benchmark problems faster than
other local-search methods. We are still working to solve the remaining DIMACS
benchmark problems that include :

e parif-1 thru parl6-5,
e par32-1 thru par32-5,

e par32-1-c thru pard2-5-c,
o hanotd,

and Gu’s as! benchmark.
To summarize, DLM improves over existing discrete local- and global-search
methods in the following manner.

e DLM can escape from local minima without restarts. When a constraint is
violated but the search is in a local minimum, the corresponding Lagrange
multipliers in DLM provide a force that grows with the amount of time that
the constraint is violated, eventually bringing the search out of the local
minimum.

390

B. W. WAH AND Y. SHANG

¢ DLM escapes from local minima in a continuous trajectory, hence avoiding a
break in the trajectory as in methods based on restarts. This is advantageous
when the trajectory is already in the vicinity of a local minimum, and a
random restart may bring the search to a completely different search space.

e DLM is more robust than other local-search methods and is able to find
feasible assignments irrespective of its initial starting points. In contrast,
descent methods have to rely on properly chosen initial assignments and on
a good sampling procedure to find new starting points in order to bring the
search out of local minima.

In short, the Lagrangian formulation and its discrete versions presented in this
paper are based on a solid theoretical foundation and can be used to develop better
heuristic algorithms for solving discrete optimization problems.

[AH58]

[Cer85]

[CuU9e]

[CWos3]
[DP60]

[DTWZ94|

[GeoT4]

felels)

felele)]
(GHS3]

[Glo89]
[GN8T]

[Gus9)
[Gugo]
[Gu92a)
[Gu92b)
[Gu9zc]

[Guo3)

References

K. J. Arrow and L. Hurwicz, Gradient method for conceve programming, I: Local
results, Studies in Linear and Nonlinear Programming {Stanford, CA) (K. J. Arrow,
L. Hurwica, and H. Uzawa, eds.), Stanford University Press, Stanford, CA, 1958.
V. Cemny, Thermodynamical approach to the traveling salesman problem: An effi-
cient simulation algorithm, Journal of Optimization Theory and Applications 45
(1985), 41-51.

A. Cichocki and R. Unbehauen, Switched-capacitor artificial neural networks for
nonlinear optimizaetion with constraints, Proc. of 1990 TEEE Int'l Symposium on
Circuits and Systems, 1990, pp. 2808-2812.

Y. Chang and B. W. Wah, Lagrangien techniques for solving a class of zero-one
integer linear programs, Proc. Computer Software and Applications Conf., 1995,
M. Davis and H. Putnam, A computing procedure for quantification theory, J. Assoc.
Comput. Mach. 7 (1960), 201-215,

A. Davenport, E. Tsang, C. Wang, and K. Zhu, Genet: A connectionist architecture
for solving constraint satisfaction problems by iterative improvement, Proc. of the
12th National Conf. on Artificial Intelligence (Seattle, WA), 1994, pp. 325-330.

A. M. Geoffrion, Lagraongian relazation and its uses in integer programming, Math-
ematical Programming Study 2 (1974), 82-114.

J. Gu and Q.-P. Gu, Average tirne complezities of several local search algorithms for
the satisfiability problem (sat), Tech. Report UCECE-TR-91-004, Univ. of Calgary,
Canada, 1991,

J. Gu and Q.-P. Gu, Average time complezity of the satl.3 algorithm, Tech. report,
Tech. Rep., Univ. of Calgary, Canada, 1882.

B. Cavish and 8. L. Hantler, An algorithm for optimal route selection in SNA net-
works, IEEE Transactions on Communications {1983), 1154-1161.

F. Glover, Tabu search — Part I, ORSA J. Computing 1 (1989), no. 3, 190-206.
M. R. Genesereth and N. J. Nilsson, Logical foundation of artificial intelligence,
Morgan Kaufmann, 1987.

J. Gu, Parallel algorithms and architectures for very fast ai search, Ph.D. thesis,
Dept. of Computer Science, University of Utah, August 1989.

J. Cu, How to solve very large-scale satisfinbility (VLSS) problems, Tech. Report
UCECE-TR~90-002, Univ. of Calgary, Canada, October 1990.

J. Gu, Efficient local search for very large-scale satisfiability problems, SIGART
Bulletin 3 (1992), no. 1, 8-12.

J. Gu, On optimizing a search problem, Artificial Intelligence Methods and Applica-
tions (N. G. Bourbakis, ed.), World Scientific Publishers, 1992.

J. Gu, The UniSAT problem models {appendiz), [EEE Trans. on Pattern Analysis
and Machine Inteliigence 14 (1992), no. 8, 865.

J. Gu, Local search for satisfiability (SAT) problems, IEEE Trans. on Systems, Man,
and Cybernetics 23 (1993), no. 4, 1108-1129.

[Gub4}

[Guar]
[Gwo2j

[GW93]

(FLI90]
[HKT1]
[Hoi75]
[Hoog8]
[KCDGVS3)

[KKRR90}

[KKRR92|

[Lue84]
[Mico4]

[MJIPL92]

[Mor93]
[MSL92]
[Pur83]
[Rob65]
[Seb94]

(Sel95]
[SG90]

[SGO1a]
15G91b]

[SG94]

[Sim75]

[SK63a)

LAGRANGIAN-BASED GLOBAL SEARCH FOR. SAT 391

J. Gu, Global optitnization for satisfiability (SAT) problems, IEEE Trans. on Knowl-
edge and Data Engineering 6 (1994}, no. 3, 361-381.

J. Gu, Constraint-based search, Cambridge University Press, New York, to appear.
J. Cuand W. Wang, A novel discrete relazation architecture, IREE Trans. on Pattern
Analysis and Machine Intelligence 14 (1992}, no. 8, 857-865,

I Gent and T. Walsh, Towards an understanding of hill-climbing procedures for
SAT, Proc. of the 11th Naticnal Conf. on Artificial Intelligence {Washington, DC),
1993, pp. 28-33.

P. Hansen and R. Jaumard, Algorithms for the maximum satisfiability problem,
Computing 44 {1990), 279-303.

M. Held and R. M. Karp, The traveling salesman problem and minimum spanning
trees: Part I1, Mathematical Programming 6 (1971), 62-88.

J. H. Holland, Adaption in natural and adaptive systems, University of Michigan
Press, Ann Arbor, 1975,

J. N. Hooker, Resolution ws. cutting plane solution of inference problems: some
computational results, Operations Research Letters 7 (1988}, 1-7.

8. Kirkpatrick, Jr. C. D. Gelatt, and M. P. Vecchi, Optimization by simulated an-
nealing, Science 220 (1983), no. 4598, 671--680.

A. P. Kamath, N. K. Karmarkar, K. G. Ramakrishnan, and M. G. C. Resende, Com-
putational experience with an interior point algorithm on the satisfiability problem,
Annals of Operations Research 25 (1990), 43-58.

A. P. Kamath, N. K. Karmarkar, K. G. Ramakrishnan, and M. G. C. Resende, A
continuous approach to inductive inference, Mathematical Programming 57 {1992},
215-238.

D. G. Luenberger, Linear and nonlinear programming, Addison-Wesley Publishing
Company, 1984.

Z. Michalewicz, Genetic algorithms + date structure = evolution programs, Springer-
Verlag, 1994.

S. Minton, M. D. Johnson, A. B. Philips, and P. Laird, Minimizing conflicts: a
heuristic repair method for constraint satisfaction and scheduling problems, Artificial
Intelligence 58 (1992), 161-205.

P. Morris, The breakout method for escaping from local minima, Proc. of the 11th
National Conf. on Artificial Intelligence (Washington, DC), 1993, pp. 40-45.

D. Mitchell, B, Selman, and H. Levesque, Hard and easy distributions of SAT prob-
lems, Proc. of the 10th National Conf. on Artificial Intelligence, 1992, pp. 459--465.
P. W. Purdom, Search rearrangement backiracking and polynomial average time,
Artificial Intelligence 21 {1983), 117-133.

J. A. Robinson, A machine-oriented logic based on the resolution principle, J. Assoc.
Comput. Mach. (1965), 23-41.

R. Sebastiani, Applying GSAT to non-clausal formulas, Journal of Artificial Intelli-
gence Research 1 (1994), 309-314.

B. Selman, 1995, private communication.

R. Sosi¢ and J. Gu, A polynomial time algorithm for the n-queens problem, SIGART
Bulletin 1 (1990), no. 3, 7-11.

R. Socic and J. Gu, Fast search algorithms for the N-gueen problem, IEEE Trans.
on Systems, Man, and Cybernetics 21 {1991}, no. 6, 1572-1576.

R. Sosit and J. Gu, 3,000,000 queens in less then one minute, SIGART Bulletin 2
(1991}, no. 2, 22-24,

R. Sosié and J. Gu, Efficient local search with conflict minimization: A ecase study
of the n-queens problem, IEEE Trans. on Knowledge and Data Engineering 6 (1994),
no. 5, 661-668.

D. M. Simmons, Nonlinear programming for operations research, Prentice-Hall, En-
glewood Cliffs, NJ, 1975.

B. Selman and H. Kautz, Domain-independent extensions to GSAT: Solving large
structured satisfiability problems, Proc. of the 13th Int’l Joint Conf. on Artificial
Intelligence, 1993, pp. 200~295.

392 B. W. WAH AND Y. SHANG

[SK93b] B. Selman and H. A, Kautz, An empirical study of greedy local search for satisfiability
testing, Proc. of the 11th Naticnal Conf. on Artificial Intelligence (Washington, DC),
1993, pp. 46-51.

ISKC93] B. Selman, H. Kautz, and B. Cohen, Local search strategies for satisfiability test-
ing, Proc. of the Second DIMACS Challenge ‘Workshop on Cliques, Coloring, and
Satisfiability, Rutgers University, oct 1993, pp. 290-295.

[SKC94] B. Selman, H. Kautz, and B. Cohen, Noise strategies for improving local search, Proc.
of the 12th National Conf, on Artificial Intelligence (Seattle, WA), 1994, pp. 337-343.

[SLM92] B. Selman, H. J. Levesque, and D. G. Mitcheli, A new method for solving hard
sotisfiability problems, Proc. of AAAT-92 (San Jose, CA), 1992, pp. 440446,

[Wal75] G. R. Walsh, Methods of optimization, John Wiley and Sons, 1975.

[ZC92] S. Zhang and A. G, Constantinides, Lagrange programming neural networks, IEEE
Transactions on Circuits and Systems-II: Analog and Digital Signal Processing 39
(1092), no. 7, 441-452.

Current address: Coordinated Science Laboratory, University of Iilinois at Urbana-Champaign,
1308 West Main Street, Urbana, IL 61801, USA

Phone: (217) 333-3516

Fax: (217) 244-7175

E-mail address: {wah, shang}@manip.crhe.uiuc.edu

URL address: http://manip.crhe.uive.edu

