Abstract

n this paper, we present efficient trap-escaping strate-
gies in a search based on discrete Lagrange multipli-
ers to solve difficult SAT problems. Although a basic
discrete Lagrangian method (DLM) can solve most of
he satisfiable DIMACS SAT benchmarks efficiently, a
ew of the large benchmarks have eluded solutions by
- any local-search methods today. These ditficult bench-
~marks generally have many traps that attract local-
earch trajectories. To this end, we identifv the ex-
stence of traps when any change to a variable will
cause the resulting Lagrangian value to increase. Us-
ing the hanoid and per!6-1 benchmarks, we illustrate
that some unsatisfied clauses are trapped more often
than others. Since it is too difficult to remermber ex-
plicitly all the traps encountered, we propose to re-
member these traps implicitly by giving larger increases
to Lagrange multipliers of unsatisfied clauses that are
trapped more often. We illustrate the merit of this new
update strategy by solving some of most difficult but
satisfiable SAT benchmarks in the DIMACS archive
(hanoif, hanoid-simple, parl6-1 to parlé-5, {2000, and
par32-1-c to par32-3-c). Finally, we apply the same
algorithm to improve on the solutions of some bench-
mark MAX-SAT problems that we solved before.

Introduction

m variables x = (1,22, -
Boolean f()rmula in conjunctive normal f()rm‘

I

“find a truth assignment to x for (1), v

makes the Boolean formula true.

Grant NSF MIT 96-32316.

Intelligence (www.aaaiorg). All vights reserved.

Department of Electrical

A general satisfiability (SAT) problem is defined as fol-
lows. Given a set of n clauses {C}, (‘: o, Cudoon
2), ;€ {0, ?} and a

CyANCo A ANC,, (1)
‘here a truth as-

signment is a combination of variable (l.nsagnnwnts that

The mazirmum satisfiability (MAX-SAT) problem is
a general case of SAT. In MAN-S5AT. cach clause ¢

Research supported by National Science Foundation

Source code of DLM-98 is at http://manip crheuine.edu.
Copyright (©1999. American Association for Artificial

Trap Escaping Strategies in Discrete Lagrangian Methods for Solving
Hard Satisfiability and Maximum Satisfiability Problems®
Zhe Wu and Benjamin W. Wah

and Computer Engineering
and the Coordinated Science Laboratory
University of Illinois, Urbana-Champaign
Urbana, IL 61801, USA
E-mail: {zhewu, wah}©
URL: hittp://www.manip.crhe.uiuc.edu

manip.crhe.uiuc.edu

is associated with weight w;. The objective is to find
an assignment of variables that maximizes the sum of
weights of satisfied clauses.

Search methods developed previously for solving SAT
can be classified into two types. Traditional ap-
proaches based on resolution, constraint satisfaction
and backtracking are computationally expensive and
are not suitable for solving large instances. Local-search
methods (Frank 1997; Selman, Kautz, & Cohen 1994;
1993), in contrast, iteratively perturb a trajectory until
a satisfiable assignment is found. These methods can
solve larger instances, but may have difficulty in solving
hard-to-satisfy instances.

Following the successful work of (Shang & Wah
1998}, we formulate in this paper a SAT problem as a
discrete, constrained optimization problem as follows:

)=y Uilx) (2)

te=
subject to Ui(z) =0 Vie {1,2,...,n},

where U;{x) is a binary expression equal to zero when

mingegoyn N(z

the 7t" clause is satisfied and to one otherwise, and N(x)
is the number of unsatisfied clauses. Note that in the
above formulation, when all constraints are satisfied,
the objective function is automatically at its minimum.

In this paper, we extend the work of (Shang & Wah
1998; Wu 1998) on discrete Lagrange-multiplier method
to solve (2). After summarizing the theory of discrete
Lagrange multipliers and the basic approach of (Shang
& Wah 1998) for solving SAT problems, we identify
traps that limit the search trajectory. Intuitively, trops
are points in the search space that attract a scarch tra-

jectory and prevent it from escaping. We present a trap

escaping strategy that remembers traps implicitly by in-
creasing the Lagrange multipliers of unsatisfied clauses
found in traps, thereby forcing the search not to visit
the same traps repeatedly. Finally, we show our results
in solving some difficult and previously unsolved satis-
fiable SAT problems and some MAX-SAT benchmarks
in the DIMACS archive.

AAALD9 (73

Discrete Lagrangian Formulations
(Shang & Wah 1998 Wy 1998) extended the theory
of Lagrange multipliers in continuons space to thar of
discrete space. In contrast to methods in continnons
space, Lagrangian methods in discrete space do not re-
quire a continuous differentiable space to find equilib-
rium points. In thig section, we summarize the thoe-
ory of these methods for solving discrete optimization
problems. Define a discrete constrained optimization
problem as follows:

Mmingepm f{z) {3)
subject to g(z) <0 =z, e,)
hiz) =0
where 2 is a vector of m discrete variables, f(z) is
an objective function, g(x) = [g, (z), . .ge(x))]” =0

is a vector of k inequality constraints, and hiz) =
[y (;x),”.,h,,,(x)]T = (} is a vector of n equality con-
straints.

As discrete Lagrangian methods only handle prob-
lems with equality constraints, we first transform an in-
equality constraint g:(z) < 0into an equality constraint
max(g;(z),0) = 0. (Shang & Wah 1998) formulates the
resulting discrete Lagrangian function as follows:

k
Lata, A) = f(@) + A k() + 37 g max(0, g;(2)), (4)
i=1
where A and u are Lagrange multipliers that can be
continuous.

The discrete Lagrangian function in (4) cannot be
used to derive first-order necessary conditions similar
to those in continuous space (Luenberger 1984) be-
cause there are no gradients or differentiation in discrete
space. Without these concepts, none of the calculus in
continuous space is applicable in discrete space.

An understanding of gradients in continuous space
shows that they define directions in a small neighbor-
hood in which function values decrease. To this end,
(Wu 1998) defines in discrete space a direction of mag-
imum potential drop {DMPD) for La(x, A, i) at point
for fixed A and p as a vector! that points from z to a
neighbor of z ¢ N(x) with the minimum Ly

Belalz, \p) =0 =y&a = (g —x1,.. 4y — Tn) (5}

where
y € A(z)U {2} and Luly, A, 1) = min L(a', A, o (6)
2:'64’\:'[_1}
U{r}

Here, & is the vector-subtraction operator for changing
€ in discrete space to one of its “user-defined” neigh-
borhood points A (x). Intuitively, 7, is a vector point-
ing from z to y, the point with the minimum L value

"To stmplify our symbols, we represent points in the z
space without the explicit vector notation.
i

674 SATISFIABILITY

among all neighboring points of . incl
That is, if # itself has the minimum L, they 7o

Based on DMPD, (Shang & Wali 1998: Wy 1grgg
fine the concept of saddle potnts in discrete Space
lar to those in continuous space {'Lueubm‘geg 1984
point (%, A*, 1*) is a saddle point when:

mling T

Lz A) < L{x" M p*y < L(.‘r./*,;f):

for all (z* A,) and all (z, A", i) sufficient]
to (z7, A%, u*). Starting from (7), {Wu 1998) prey
stronger first-order necessary and sufficient conditig
in discrete space that are satisfied by all saddle DPoing

.AQ;L([(L&', /\‘1 ﬂ') = O‘
VL@, A 1) = 0.

Ualalz, A i) = 0,

Note that the first condition defines the DMPD of
in discrete space of z for fixed A and g1, whereag
differentiations in the last two conditions are in copj
uous space of A and y for fixed z. Readers can refer
the correctness proofs in (Wu 1998).

The first-order necessary and sufficient conditiong
(8) lead to a discrete-space first-order search methg
that seeks discrete saddle points. The following equ
tions are discrete approximations to implement, (8),

General Discrete First-Order Search Method

wk+1) = a(k) ® AcLa(e(k), Mk), (k)
Ak +1) = Ak) + ey h(z(k)) (10),
wlhk+1) = uk) + e, max(0, g(z(k))) (11

where @ is the vector-addition operator (z &y = (z +
Y1, Tn+yn)), and ¢; and ¢, are positive real numbers®
controlling how fast the Lagrange multipliers change.

It is easy to see that the necessary condition for (9)-
(11) to converge is when h(z) = 0 and g(x) < 0, imply-
ing that z is a feasible solution to the original problem.
It any of the constraints is not satisfied, then A and g
on the unsatisfied constraints will continue to evolve,
Note that, as in continuous Lagrangian methods, the
first-order conditions are only satisfied at saddle points,
but do not imply that the time to find a saddle point is
finite, even if one exists.

DLM for Solving SAT Problems
DLM-98-BASIC-SAT: A Basic DLM

The advantage of formulating the solution of SAT as
discrete Lagrangian search is that the method has a
solid mathematical foundation (Shang & Wah 1998;
Wu 1998). The theory of discrete Lagrange multipliers
also explains why other weight-update heuristics (Frank
1997; Morris 1993) work in practice, although these
heuristics were developed in an ad hoc fashion.

rocedure DEM-GS-BASTC-SAT
f Reduce original SAT problem;
2‘ Generate a random starting point using a fixed seed,
" nitialize A, ¢ 0;
while solution not found and dme not azed up do
Pick z; ¢ Tabulist that reduces L, the most,
Maintain Tabulist;
Flip 7;;
if #eopminiaconcs v #H riargoees > F then
A — A, 48,
if #,ﬁ,g‘,_\-;%- 62 = () then
Ai - Ay — by end_if

12: end_if
3, end_while

he Lagrangian function for the SAT problem in (2) is:
La(z,A) = N(x) + > NlUi(x) (12)

Figure 1 shows the basic Discrete Lagrangian Method
DLM) of (Shang & Wah 1998) for solving SAT prob-
ems. It uses two heuristics, one based on tabu
ists (Glover 1989} and the other based on flat (Selman,
autz, & Cohen 1993) and up-hill moves. We explain
hese steps later when we present our improved DLM.
Although quite simple, DLM-98-BASIC-SAT can
nd selutions to most satisfiable DINMACS benchmarks,
such as all problems in the wim-, i, jnh-, paré-, ssa-
classes, within seconds. However, it takes a long time to
solve some DIMACS benchmarks and has difficulty in
solving a few of the large ones (Shang & Wah 1998). For
example, it takes a long time to solve 2000 and pari6-1-
cto pari6-5-c and cannot solve hanoif, hanoij-simple,
hanoi5, parié-1 1o parl6-5, and all par32- problems.
To improve DLM-98-BASIC-SAT, we identify in the
next subsection traps that prevent DLM trajectories
from moving closer to satisfiable assignments. We then
Propose new strategics to overcome these traps.

Traps to Local Search

i By examining the output profiles when applying DLM-
98-BASIC-SAT to solve hard SAT problems, we find
~that some clauses are frequently flipped from being sat-
: isfied to being unsatisfied. A typical scenario is as fol-

ows. A clause is inttially unsatisfied but becomes satis-
v fied after a fou fips due to inereases of A for that clause.
- It then becomes unsatisfied again after a few more flips
due to increases of A of other unsatisfied ctanuses. These
_ State changes happen repeatedly for some clauses and
“are tremendously inetficient becanse they trap the tra-
fectory in an unsatisfinble assignment. To quantify the
ObSGr’\’at.il}isf«t, woe introduce a new coneept called fraps.

Zeeris

-
Clagse Index
(a) Hanowf: maximum = 2.4 x 10°, average = 90, 938,

total number of flips = 1.11 x 10*
Avg=120 Max=1601

BT —
z
1HIXN: §
|
=G ‘ i
1260 ISR i
g
1o0e | ! I
i

btk

Clause Index

niens of number of fines in a tey

Wai

(b) Par-16-1: maximum = 1.6 x 10%, average = 120,
total number of flips = 5 x 10

Figure 2: Large disparity between the maximum and aver-
age numbers of times a clause is in traps.

A trap is a combination of z and A such that a point in
it has one or more unsatisfied clauses, and any change
to a single variable in z will cause the associated La
to increase. Note that a satisfiable assignment is not
a trap because all its clauses are satisfied, even though
its Ly may increase when z is perturbed.

To show that some clauses are more likely to be un-
satisfied, we plot the number of times a clause is in a
trap. This is not the same as the number of times a
clause is unsatisfied because a clause may be unsatis-
fied when outside a trap. We do not consider the path a
scarch takes to reach a trap, during which a clause may
be unsatisfied, because the different paths to reach a
frap are not crucial in determining the strategy to es-
cape from it.

Figure 2 shows that some clauses reside in traps much
more often than average when DLM-98-BASIC-SAT
was applied to solve hanoif and parf6-1, two very hard
SAT problems in the DIMACS archive. This behavior
is detrimental to finding solutions because the search
may be trapped at some points for a long tine, and the
search is restricted to a small area in the search space.

[deally, we like a trajectory to never visit the same
poiut twice in solving an optimization problem. This

s, however, difficult to achiove in practice because it

AAAT Y0 L7

procedure LM 99547
L. Reduce original SAT problem:
2. Generate a random starting point using o fxedl seed:

30 Inmtialize A, e F and #; +— i
L while solution vot fonnd and rime not eed up o
3] Pick o, ¢ Tabulist that redices Ly the most;

0. If search 15 in a trap then

7 For all unsatisfied clanses . t, ¢— f, 4+ 3, end_if
8 Maintain TabulList:

9. Flip rj:

14. it Hoe + #riiarec. > 60 then
11 Sos

12) JA8y = 0 then

13 A = A, — d4; end_if;

14 call SPECIAL-INCREASE:

15 end _if

16. end_while

end

procedure SPECIAL-INCREASE
17. Pick a set of clauses S
18 if H"NESle > Gy then
ies hin
19. For clause 7 in S with the largest £;, A, ¢— A A B4
20. end _if
end

Figure 3: Procedures DLM-99-SAT, an implementation of
the discrete first-order method for solving SAT problems,
and SPECIAL-INCREASE, special increments of A on cer-
tain clauses when their weights are out of balance.

is impractical to keep track of the history of an entire
trajectory. Alternatively, we can try not to repeat vis-
iting the same trap many times. The design of such a
strategy will depend on how we escape from traps.

There are three ways to bring a trajectory out of
traps; the first two maintains history information ex-
plicitly, while the last maintains history implicitly.

a) We can perturb two or more variables at a time to
see if Ly decreases, since a trap is defined with respect.
to the perturbation of one variable. This is not practical
because there are too many combinations to enumerate
when the number of variables is large.

b) We can restart the search from a random starting
point in another region when it reaches a trap. This will
lose valuable history information accummulated during
each local search and is detrimental in solving hard SAT
problems. Moreover, the history information in each
local search needs 1o be maintained explicitly.

¢y We can update A to help eseape from a trap. By
placing extra penalties on all unsatisfied clauses inside
atrap, unsatisfied clauses that are trapped more often
will have very large Lagrange multipliers, making them
less likely to be unsatisfied in the future. This st rategy,
therefore, tmplicitly reduces the probability of visiting

that same trap again in the fature and was used in our

exXperiments.

670 SATISFIARIT LY

DLM-99-SAT: An Improved DLM for SA’I‘

Fignre 3 outlines the new DLM for solving SAT I
defines a weight for cach Lagrance multiplior and(it
creases the weights of all unsatisfied ¢lases Cvery Ei::?
the search reaches a trap. This mavy. however, lead 8
an undesirable out-of-balance situation in which Somg
clauses have much larger weights than average, Ty Cope
with this problem. when the ratio of the Larpest Weight
to the average is larger than a predefined l_in‘r—‘shold' o
increase the Lagrange multipliers of clanses With the
largest weight in order to force them into satisfaction I
these increases are large enough, the corresponding une
satisfied clauses are not likely to be unsatisfied again iy
future, thereby resolving the out-of-balance Situatiop,

We explain next in detail each line of DL;\-{—QQ_SAT‘

Line 1 carries out straightforward reductions on ajf
one-variable clauses. For all one-variable clauses, we sot
the value of that variable to make that clause satisfieq
and propagate the assignment.

Line 2 generates a random starting point using a fixed
seed. This allows the experiments to be repeatable,

Line 3 initializes ¢, (temporary weight for Clause i)
and A; (Lagrange multiplier for Clause 1) to zero in
order to make the experiments repeatable. Note that t;
increases A; faster if it is larger.

Line 4 defines a loop that will stop when time (max-
imum number of flips) runs out or when a satisfiable
assignment is found.

Line 5 chooses a variable z; that will reduce Ly the
most among all variables not in TabulList. If such can-
not be found, then it picks z; that will increase Ly the
least. We call a flip an up-hill move if it causes Ly
to increase, and a flat move (Selman, Kautz, & Cohen
1993) if it does not change L,. We allow flat and up-hill
moves to help the trajectory escape from traps.

Lines 6-7 locate a trap and increase t. by 6, (=1)
for all unsatisfied clauses in that trap.

Line 8 maintains Tabulist, a first-in-first-out queue
with a problem-dependent length tabu_len (100 for f,
10 for parl6 and par3?2, 16 for g, and 18 for hanoid).

Line 9 flips the z; chosen (from false to true or vice
versa). It also records the number of times the trajec
tory is doing flat and up-hill moves.

Lines 10-11 increase the Lagrange multipliers for all
unsatisfied clauses by 6, (= 1) when the sum of up-bill
and flat moves exceeds a predefined threshold #, (50 for
J 16 for par16 and par32, 26 for g, and 18 for hanoid)-
Note that &, is the same as ¢y in {10}. After increasing
the Lagrange multiplicrs of all unsatisfied clauses, we
increase a counter # 4,47, by one.

Lines 12-13 reduce the Lagrange multipliors of all
clauses by &y (= 1) when # Adjust veaches threshold 82
(P2 for f. 40 for parl6, 56 for par32. 6 for g. and 40

an104) L
he clauses and may allow the trajectory

Loy o To
othex region in the search space after the reduction.

ine 14 calls Procedure SPECIALIINCREASE o
Je the case w hen some clauses appear in traps more
than other clauses.

ne 17 picks a problem-dependent sct
parll- [to purl6-5. the set of all currently unsatis-

S of elauses

‘clauses; for ot hers, the set of all clauses}.

ines 18-19 compute the ratio between the maximum

ght and the average weight to see if the ratio is out
baganff‘ where n is the number of clauses. If the
{io is larger than O3 {3 for parl6, pard2. and f. 1 for
d 10 for hanoid), then we increase the Lagrange
{tipiier of the clause with the largest weight by 4, (1
all problems).

ntuitively, increasing the Lagrange mulripliers of un-

isfied clauses in traps can reduce their chance to be
raps again. Figure 4 illustrates this point by plotting
number of times that clauses appear in traps after
ng SPECIAL-INCREASE. Compared to Figure 2,
gee that SPECIAL-INCREASFE has controlled the
ge imbalance in the number of times that clauses are
watisfied. For hanoif (resp. peri6-1). the maximum
imber of times a clause is trapped is reduced by more
50% (resp. 35%) after the same number of flips.

Note that the balance is controlled by parameters
d §,. If we use smaller 3 and larger d.. then better
lance can be achieved. However, better balance does
ot always lead to better solutions because a search
ay leave a ttap quickly using smaller # and larger d,,

o

ereby missing some solutions for hard problems.

Results on SAT and MAX-SAT

e first apply DLAM-99-SAT to solve some hard but sat-
sfiable SAT problems in the DI?\'I ACS archive. DLM-
9-SAT can now solve quickly f2000, pariG-1-c¢ to
r16-5-c, pari6-1 to parl6-5, em(] hanorf with a very
ligh success ratio. These problems had not been solved
ell by any single method in the literature. Morcover,
« Can now solve hanoif-simple with a very high success
atio, and par32-/-c to par32-3-c, althongh not with
igh success ratios. These problems cannot be solved
Y any other local search method today. For other sim-
ler problems in (he DINACS arel vive, DENEOO-SAT
as similar performance as the best existing method
eveloped in the past. Due to space limitation. we will
0t present the details of these experiments here.

“Table 1 lists the experimental resules an all the hard
Toblems solyved | v DEAM-99-5AT and the experimen-
tal resules from WalkSAT and GSAT. Tt lists the CPU

times of oy ¢ urrent bnplementation on a Penthoan-Pro

200 MHZ Linuy com puter,

the mamber of dmachine -

These help change the relative weighes of

®IEMENY

ANKKKT

R VS

BRSNS

Ciause fndex
(a) Hanor: maximum = 1.1 x 10°, average = 109, 821,
total number of flips = 1.11 x 10%

Avg=HT Maxs= 1032
1208 —

y, !

Clause Index {b)
Parl6-1. maximum = 1,032, average = 97,
total number of flips = 5 x 10
Figure 4: Reduced disparity between the maximuom and av-

erage numbers of times a clause is in traps using SPECIAL-
INCREASE.

HELH

=K1

HOK)

RIEEN S

2H)

Weight {in terms of sumber of tues 10 trap)

dependent} flips for our algorithm to find a feasible so-
lution, the success ratios (from multiple randomly gen-
erated starting points), and in the last two columns the
success ratios (SR) and CPU times of WalkSAT/GSAT.
I'or most problems, we tried our algorithm from 10 ran-
dom starting points. For hanoif and hanoif-simple,
we only tried 6 starting points because each run took
more than 50 hours of CPU time on the average to
complete. Note that hanoi, hanoif-simple and par32-
problems are much harder than problems in the parig
and feclasses because the number of flips is much larger.

Table results of applying DLM-99-
SAT to solve the g-class problems that were not solved
well by (Shang & Wah 1998}, The number of flips used
for solving these problems indicate that they are much
casgier than problems in the par/6 class.

So far, we are not able to find solutions to cight satis-
fiable problems in the DIMACS archive (hanois, par32-
4-c to par32-5-¢ and pard2-1 to pard2-5). However,
we have fonnd assignments to hanoid and pard2-2-¢ to
par32-5-c with only one unsatisficd clause.

1 also lists the

These re-
sults are very encowraging from the point view of the
nimnber of unsatisfied clauses.

Next, we apply the same algorithm o

e \rﬂus'm s of some MAN-SAT

IHprove on

benchmark problems

AAAT [AA

Table 1. Comparison of performance of DLAO9-SAT fn
solving some hard SAT problems and the gclass probleins
that (Shang & Wah 1998) did not solve well before (All onr
experiments were run on a Dentinum Pro 2000 computer with
Linux. WalkSAT/GSAT experiments were run on an 561
Challenge with MPIS processor, model unknown. “NA™ in
the tast two columns stands for “not available.”}

Table 20 Performance of DLM-99-SAT in solving the 44
MAX-SAT DIMACS benchmark problems (Shang & \"\:1]
1997). (Each problem were solved on a Sun Ultra-s (~();nl
puter from 20 randomly generated starting points and ;‘;'it{
a limit of 10,000 flips. CPU sec. is the average CPU E’inz;
for runs that led to the optimal solution. Deviation frm;;
optimal solution is the average deviation for runs thag did
not lead to the optimal solution.}

of | CPU | Deviation [List of jnh—7 Benchmark

Suce. || Sec. | from Opt. | Problems Achioving Performanee
2 0061 -175.2 |9 T
4 0.07 -33.0 18
b 0.12 -78.0 4,5, 11, 303, 305, 307
6 0.11 -83.4 15
9 0.11 -29.4 310
10 0.13 -2.8 16
12 0.09 -47.4 19, 208
14 0.11 -49.3 302

15 0.10 -15.6
16 0.11 -13.9

215, 216, 219, 309
6, 8.:203

17 011 -19.3 211, 212, 308
18 (.08 -3.5 14, 207, 220
18 0.07 -1 301, 304

20 0.03 0.0 1, 7,10, 12, 13, 17, 201, 202, 205,

209, 210, 214, 217, 218, 306

Problem | Suce. CcPu Num. of || WalkSAT/GSAT
D Ratio Sec. Flips SR Sec.
pari6-1 |[10/10] 2165 |13 107 NA NA
part6-2 [[10/10] 4063 2.7 107 NA NA
parl6-3 [[10/10} 309.2 | 2.1-107 NA NA
parl6-4 [[10/10] 1748 | 1.2 107 NA NA
parl6-5 ||10/10] 293.6 | 2.0-107 NA NA
pari6-i-c | 107107 79.6° [5501464 | NA NA
parl6-2-c || 10/10 | 124.4 | 8362374 || NA NA
parl6-3-c || 10/10 | 116.0 | 7934451 NA NA
parl6-4-c || 10/10 | 111.3 | 7717847 NA NA
parl6-5-¢ || 10/10 81.9 3586538 NA NA
600 10710 14 39935 NA 35°
f1000 410/10| 8.3 217061 NA 1095
£2000 [10/10] 443 655100 NA 3255"
hanowd [5/6 |1.85-10°14.7-10° [NA NA
hanoid, || 5/6 |2.58-10%; 9.9 107 NA NA
par32-1-c || 1/10 15.36 - 107 6411650 || NA NA
par32-2-ci| 1/20 [2.16 1071 9.2 10° | NA NA
par32-3-c || 1/30 |3.27-10° 141071 NA NA
gl125°17 [[10710 2315 | 632023 1] 77107 2647
g125-18 |[10/101 10.9 8805 [[10/10°° 1 1.9*°
g250-15 [110/10] 25.6 2384 [10/10°7 4417
g250-29 [110/10) 4121 200813 || 9/107" | 1219*"

¥ Results from (Selman, Kautz, & Cohen 1993) for similar

but not the same problems in the DIMACS archive
**#. Results from (Selman 1995)

solved by (Shang & Wah 1997) before. Recall the
weight on Clause 7 is wy, and the goal is to maximize
the weighted sum of satisfied clauses. In solving MAX-
SAT, we set initial values in DLM-99-SAT (Figure 3)
to be) « 20, 8, « 74, 83 « 10 and for Clause 1,
X w1, 8, 4 2wy, 8g ¢ wi /4, and &, + Bw, /4.

Using these empirically set parameters, we were able
to find optimal solutions to all the MAX-SAT bench-
mark problems within 20 runs and 10,000 flips. Table 2
presents the results with respect to the number of suc-
cesses from 20 randomly generated starting points and
the average CPU seconds when optimal solutions were
found. For cases that did not lead to optimal solutions,
we show in the third column the average deviation from
the optimal solutions. The last column shows the in-
dices of the jnh problems in the MAX-SAT benchmarks
achieving the results.

Our algorithm solves MAX-SAT better than (Shang

& Wah 1997) and GRASP, but our average number of
successes of 14.77 is slightly worse than the average of

16.64 in (Mills & Tsang 1999). This could be due to
the fact that our algorithm was originally designed for

solving SAT rather than MAX-SAT.

7R SATISFIABILETY

References
Frank, J. 1997. Learning short-term weights for
GSAT. Proc. 15th Int’l Joint Conf. on AT 384-301.
Glover, . 1989. Tabu search — Part I. ORSA J.
Computing 1(3):190-206.
Luenberger, D. G. 1984. Linear and Nonlinear Pro-
grammang. Addison-Wesley Publishing Company.
Mills, P., and Tsang, E. 1999. Solving the MAX-SAT
problem using guided local search. Technical Report
CSM-327, University of Essex, Colchester, UK.
Morris, PP. 1993, The breakout method for escaping
from local minima. In Proc. of the 11th National Conf.
on Artificial Intelligence, 40-45.
Selman, B.; Kautz, H.; and Cohen, B. 1993. Local
search strategies for satisfiability testing. In Proc. of
2nd DIMACS Challenge Workshop on Cligues, Color-
ing, and Satisfiability, Rutgers University, 2900--295.
Selman, B.; Kautz, H.; and Cohen, B. 1994. Noise
strategies for improving local search. In Proc. of 12th
National Conf. on Artificial Intelligence, 337-343.
Selman, 3. 1995, Private communcation.
Shang, Y.. and Wah, B, W. 1997, Discrete lagrangian-
based search for solving MAX-SAT problems. Proc.
15°th Int’l Joint Conf. on AI 378-383.
Shang, Y., and Wah, B. W. 1998 A discrete La-
grangian based global search method for solving satis-
fiability problems. J. Global Optimization 12{(1):61-99.
Wu, 7. 1998, Discrete Lagrangian Methods for Solving
Nonlinear Distrete Constrained Optimization Prob-
ferns. Urbana, 1L M.Sc. Thesis, Dept. of Computer
Science, Univ. of Tilinois.

Discrete Lagrangian-Based Search for Solving MAX-SAT Problems

Benjamin W. Wah and Yi Shang
Coordinated Science Laboratory
University of Illinois at Urbana-Champaign
1308 West Main Street
Urbana, 1L 61801, USA
{wah, shang}@manip.crhec.uiuc.edu
URL: http://manip.crhc.uiuc.edu

Abstract

Weighted maximum satisfiability problems
(MAX-SAT) are difficult to solve due to the
large number of local minima in their search
space. In this paper we propose a new discrete
Lagrangian based search method (DLM) for
solving these problems. Instead of restarting
from a new point when the search reaches a lo-
cal minimum, the Lagrange multipliersin DLM
provide a force to lead the search out of the
local minimum and move it in a direction pro-
vided by the multipliers. Since DLM has very
few parameters to be tuned, it can be made de-
terministic and the results, reproducible. We
compare DLM with GRASP in solving a large
set of test problems, and show that it finds bet-
ter solutions and is substantially faster. DLM
has a solid theoretical foundation that can be
used as a systematic approach for solving gen-
eral discrete optimization problems.

1 Introduction

The satisfiability (SAT) problem is defined as follows.
Given a set of n clauses {Cy, C3, - -+, C,,} on m variables
= (z1,29,",Zm), z; € {0,1}, and a Boolean formula
in conjunctive normal form (CNF),

CiACyA---ACy, (1)

find an assignment to the variables so that (1) evaluates
to be true, or derive its infeasibility if (1) is infeasible.
The weighted mazimum satisfiability problem (MAX-
SAT) is a general case of SAT. In MAX-SAT, each clause
Ci is associated with weight w;. The objective is to find
an assignment to the variables that maximizes the sum

*Research supported by National Science Foundation
Grant MIP 96-32316 and National Aeronautics and Space
Administration Grant NAG 1-613.

Source code of DLM is at http://manip.crhe.uinc.edu.

378 CONSTRAINT SATISFACTION

of the weights of satisfied clauses,

where S; equals 1 if logical assignment z satisfies Ci, an
0 otherwise. This objective is equivalent to minimizi
the sum of the weights of unsatisfied clauses.

MAX-SAT problems are difficult to solve for the fo
lowing reasons. First, they have a large number of lo
minima in their search space, where a local minimu
is a state whose local neighborhood does not includ
any state that is strictly better. Second, the weigh
in the objective function of a MAX-SAT problem ¢
lead to a much more rugged search space than the co
responding SAT problem. When a MAX-SAT pro
lem is satisfiable, existing SAT algorithms [Gu, 198
Selman and Kautz, 1993] developed to find a satisfiab
assignment to the corresponding SAT problem can b
applied, and the resulting assignment is also optimal fo
(2). However, this approach does not work when the
MAX-SAT problem is not satisfiable. In this case, exist- -
ing local search SAT methods have difficulties in ove
coming the rugged search space.

Methods for solving MAX-SAT can be classified as in-
complete and complete, depending on whether they can
find the optimal assignment. Complete algorithms can
determine optimal assignments. They include mixed in-
teger linear programming methods [Resende et al., 1997
and various heuristics [Hansen and Jaumard, 1990; Goe-
mans and Williamson, 1995; Joy et al., 1997]. They are
generally computationally expensive and have difficulties
in solving large problems. On the other hand, incom-
plete methods are usually faster and can solve some large
problems that complete methods cannot handle. Many
incomplete local search methods have been designed to
solve large SAT problems of thousands of variables [Gu,
1989; Selman and Kautz, 1993; Wah and Shang, 1996;
Shang and Wah, 1997} and have obtained promising re-
sults in solving MAX-SAT problems [.]iang et al., 1995;
Resende et al., 1997].

