Constrained Formulations for Neural Network Training
and Their Applications to Solve the Two-Spiral
Problem*

Benjamin W. Wah and Minglun Qian
Department of Electrical and Computer Engineering
and the Coordinated Science Laboratory
University of Illinois, Urbana-Champaign
Urbana, IL 61801, USA
E-mail: {wah, m-gian}@manip.crhc.uiuc.edu

Abstract

In this paper, we formulate neural-network training
as a constrained optimization problem instead of the
traditional formulation based on unconstrained opti-
mization. We show that constraints violated during
a search provide additional force to help escape from
local minima using our newly developed constrained
simulated annealing (CSA) algorithm. We demon-
strate the merits of our approach by training neural
networks to solve the two-spiral problem. To enhance
the search, we have developed o strategy to adjust the
gain factor of the activation function. We show con-
verged training results for networks with 4, 5, and 6
hidden units, respectively. Our work is the first suc-
cessful attempt to solve the two-spiral problem with
19 weights.

1 Formulation of Supervised Neural-
Network Training

Traditional supervised neural-network training is
formulated as an unconstrained optimization prob-
lem of minimizing the sum of squared errors of the
output over all training patterns:

n

> (0i(w) — di)?,

i=1

min Bw) =)

where 0; and d; are, respectively, the actual and de-
sired outputs of the network for the i* pattern, n is

*Research supported by National Science Foundation
Grant CCR 96-32316.

Proc. of the Fifth International Conference on Computer
Science and Informatics, Feb. 2000.

598

the number of training patterns, and w is a vector
of weights of the neural network trained.

In order for a neural network to generalize well to
unseen patterns, we like it to have a small number of
weights. Training is difficult in this case because the
terrain modeled by (1) is often very rugged, and ex-
isting local-search algorithms may get stuck easily in
deep local minima. Although global search can help
escape from local minima, it has similar difficulties
when the terrain is rugged.

Instead of using an unconstrained formulation
(1), we propose to formulate neural-network training
as a constrained optimization problem that includes
constraints on each training pattern. An unsatisfied
training pattern in a local minimum of the weight
space may provide an additional force to guide a
search out of the local minimum. The constrained
formulation considered in this paper is:

min E(w) = »_ maz{|oi(w) — di| —€,0} (2)
=1
subject to h;(w) = maz{|o;(w) — d;| — €,0},

where i = 1,---,n, h;(w) is the constraint on the i*?
pattern, and € is a small positive number that de-
creases towards 0 as looser constraints are satisfied.

In constrained formulation (2), E(w) should be
zero and all constraints should be satisfied when
training converges. If e is small enough, then the
solution found is a global solution to (1).

Note that the use of constraints does not incur ad-
ditional computational overheads because they can
be computed as E(w) is computed. In the rest of
this paper, we use the two-spiral problem to demon-
strate the effectiveness of our proposed approach.

8 8
6t D 6t
4t o 4t
2 P e :*"xx:ﬂ 2 ne

> 0 L > 0
2 5 T 2
4t 41
6! 6 I
-8 : : -8

6 4 -2 0 2 4 6

(a) Training set

6 4 -2 0 2 4 6

(b) Testing set

X

(c) 4-hidden-unit network

Figure 1. Learning and testing data and a network topology for solving the two-spiral problem.

2 The Two-Spiral Problem

Figures 1a and 1b show the two-spiral problem,
a difficult nonlinear classification problem that dis-
criminates between two sets of training points on
two distinct spirals in the z-y plane.

The best converged network requires 4 hidden
units and 25 weights and was trained by a gradient-
based global-search procedure called Novel [3]. The
disadvantage of Nowel is that it took over 150 hours
on a Sun SS10 to find a converged network, and
the result could not be repeated from random start-
ing points. Simulated annealing (SA) [2] is the next
best algorithm to solve the two-spiral problem, al-
though it only found converged networks with 6 hid-
den units [3]. Last, cascade correlation was able to
find converged networks with 9 hidden units and 75
weights [1]. Figure 1c shows the topology of a 4-
hidden-unit network with shortcuts, where training
was done according to the 40-20-40 criterion. (An
output is considered to be -1 if it is in the lower 40%
of the output range, 1 if it is in the upper 40%, and
incorrect otherwise.)

Based on (2), we reformulate neural-network
training into a Lagrangian function by adding La-
grange multipliers [6]:

L(w,A) = E(w) + i)\i max(|o;(w) — d;| — €,0), (3)

i=1

where); is the Lagrange multiplier for the con-
straint on the i*" training pattern. We then apply
our newly developed constrained simulated anneal-
ing algorithm (CSA) [5] to find converged networks.
CSA extends SA and has asymptotic convergence to
a constrained global minimum with probability one.

One problem-specific characteristic of the two-
spiral problem is that the output of the training set is
antisymmetric; 4.e., if the desired output for (z,y) is
1 (resp. —1), then the desired output for (—z, —y)
is —1 (resp. 1). This leads us to use an antisym-

599

anh(3x

o

transition
region

)

X

Figure 2. Transition regions of the tanh(az) ac-
tivation function with different o where ¢ = 0.4.

metric network and train it using only half of the
training set, leading to possible saving of 50% train-
ing time. Figure 1c shows an antisymmetric network
that eliminates all bias weights and that uses an anti-
symmetric activation function, such as tanh, in both
the hidden and output units.

3 Tuning the Activation Function

We use the tanh function as our activation func-
tion in both the hidden and output units (Figure 2):

g(z) = tanh(az), 4)

where « is the gain factor.

Our first implementation using a fixed « consider-
ably larger than one led to a ping-pong effect in con-
straint satisfaction. Oftentimes, constraint h; corre-
sponding to pattern i was not satisfied for a long
time, leading to large A;. At one point, h; was sat-
isfied and jumped from the wrong state (near —1 or
1) to the correct state (near 1 or —1), while at the
same time, quite a few other constraints with rela-
tively small Lagrange multipliers jumped from their
correct states to their wrong states.

The above scenario happened because the tanh
function has a very sharp transition region when «

Table 1. Training results on 4, 5, and 6-hidden-unit networks. Success ratio m/n indicates m out of n runs
that achieve 100% training correctness. The average training time shows the average CPU time per run that
achieves 100% training correctness. All runs were done on Pentium 3/450 computers under Solaris.

Number of | Number of Best Solution Training Time (Seconds) Succ.

hidden units | Weights Training (%) | Testing (%) | Shortest | Longest | Average | Ratio
6 35 100 95.9 1532.3 2824.3 2210.0 5/5
5 27 100 94.8 2334.4 6987.3 4040.7 5/5
4 20 100 97.9 19473.6 | 54449.7 | 35866.2 4/5

is considerably larger than 1 (Figure 2). When con-
straint h; is in the wrong state and far away from
the transition region, a move of z in the right direc-
tion translates into very little changes in g(z). In
fact, this change is so small that it may easily be
dominated by other patterns’ movements in the La-
grangian function. Hence, h; may be unsatisfied for
a long time, leading to large A;. When finally A; is
so large that causes h; to be satisfied, a few other
patterns may change from their correct states to in-
correct ones due to the sharp transition region in
g(z). Consequently, we observed oscillations during
training: some constraints that were unsatisfied for
a long time were finally satisfied, but led to the vio-
lation of some other constraints; after a while, these
unsatisfied constraints got satisfied because their La-
grange multipliers grew to be very large, but some
other satisfied constraints might become unsatisfied.
The oscillations continued, leading to very large La-
grange multipliers without convergence.

To avoid oscillations in constraint satisfaction and
large changes in output values, we need the acti-
vation function to have a smooth transition region.
This makes small a desirable. Figure 2 shows that
a tanh function with a smaller a has a smoother
transition region. However, when « is too small, the
output when training converges can be considerably
far away from the desired output of —1 or 1.

To allow the output to be close to 1 or —1 when
training converges, consider the output of a neural
network for solving the two-spiral problem as a func-
tion of input values x and y and hidden-layer out-
puts Ny, -+, Ny, where m is the number of hidden
units. The output o for a pattern can be expressed
as follows:

m
o = tanh(a(z X w, +y X wy + ZNj X wn;)), (5)
j=1

Hence, after a converged network has been found, we
can obtain a new converged network by multiplying
either the weights or « in (5) by a constant factor.
This property gives us the freedom to dynamically
adjust the shape of the activation function of the
output unit by changing its a in order to control
its convergence behavior. Specifically, we decrease

600

(resp. increase) « of the output unit when our run-
time statistics shows that the output changes too
frequently by more (resp. less) than 1.4 (resp. 0.2).
Finally, after training converges, we increase a of
the output unit in order to stabilize its value at the
extreme state of —1 or 1.

4 Experimental Results

Due to space limitation, we do not present the
CSA algorithm we have implemented [5]. Rather,
we report only partial experimental results.

Table 1 shows the training results on networks
with 4, 5, and 6 hidden units, respectively, with the
corresponding classification graphs in Figures 3a-
c. We have obtained converged training with 100%
classification for all three cases. Our training out-
performs Nowel in term of training speed, success
ratio, and number of weights [3].

As a comparison, we have solved the same train-
ing problems by SA using unconstrained formula-
tions. Although SA guarantees asymptotic conver-
gence for unconstrained formulations, it has diffi-
culty in solving (1) and often terminated prema-
turely in our experiments when time was limited.
It completed successfully in training a 6-hidden-
unit network with 42 weights (including 7 biases),
but took much longer time (8.61 hours on aver-
age). It did not converge in 12.7 (resp. 86.8) hours
of CPU time when applied to train 5 (resp. 4)
hidden-unit networks with 33 (resp. 25) weights;
the best training results we have obtained is 97.9%
(resp. 91.2%) correctness on all training patterns.
Finally, we applied sequential quadratic program-
ming (SQP) [4], a fast local-search method for con-
strained optimization, to solve both the constrained
and unconstrained versions. SQP did not find any
good solutions because the terrains searched were
very rugged and good local minima were all in very
deep and narrow regions. It often skipped these re-
gions and failed to find global solutions in uncon-
strained formulations and feasible solutions in con-
strained formulations even when its starting point
was very close to but not within the local region
containing the global minimum.

y

& A& v o N & o
y

& & v o N a2 o

(a) 4 hidden units with 20 weights (b) 5 hidden units with 27 weights

y

S A v o v o~ o
y

S A v o v o~ o

(d) 4 hidden units with 19 weights (e) 4 hidden units with 18 weights (f) 4 hidden units with 17 weights

Figure 3. Upper row shows 2-D classification graphs of the three neural networks in Table 1 trained using
constrained formulations. Lower row shows classification graphs of 3 4-hidden-unit networks with different
number of weights.

After successfully training a 4-hidden-unit net- Our results represent the first successful attempt
work with 20 weights, we tried to train a network to train feedforward neural networks to solve the
with a smaller number of weights. We cannot de- two-spiral problem with less than 20 weights.

crease weights on links connected to the output node
because such decreases will be offset by an increase = References
in the gain factor « in the output node. After ex-

perimentation, we tried eliminating some weights on [1] §. E. Fahlman and C. Lebiere. The cascade-

links connecting hidden units. This is done by mod- correlation learning architecture. In D. S.
ifying the objective function as follows: Touretzky, editor, Advances in Neural Informa-
T\ 2 tion Processing Systems 2, pages 524-532. Mor-
E'(w) = B(w) + Y |w;|** (%) , (6) gan Kaufmann, San Mateo, CA, 1990.
i€t [2] S. Kirkpatrick, Jr. C. D. Gelatt, and M. P. Vec-
where 7 is the set of indexes of weights to be elimi- chi. Optimization by simulated annealing. Sci-
nated, T} is the initial temperature in CSA, and T ence, 220(4598):671-680, 1983.

is current temperature. T

By applying this technique to weight wyy (con- [3] Y. Shang and B. W. Wal.l. Global optimization

: . : for neural network training. IEEE Computer,
necting the first and fourth hidden units), we were 99:45 54. March 1996
able find a converged network with 19 weights and) , Viarc)

100% correctness in training. The weights of the [4] P. Spellucci. An SQP method for general

converged network (with @ = 100 in the hidden layer nonlinear programs using only equality con-
and 500 in the output node) are as follows: strained subproblems. Mathematical Program-
0.4524 0.8012 —0.0538 —0.0202 0.5201 ming, 82:413-448, 1998.
0.0027 —0.0085 0.0176 2.9777 0.0977 [5] B. W. Wah and T. Wang. Simulated anneal-
02159 0.1584 0.9070 —0.8930 0.1084 ing with asymptotic convergence for nonlinear
0.2970 0 1.1129 —0.2234 —0.6013 constrained global optimization. Principles and
Figure 3d shows the output of the corresponding Practice of Constraint Programming, pages 461—
neural network. 475, October 1999.

Applying weight elimination to wy, and wy7 (resp. [6] B. W. Wah and Z. Wu. The theory of discrete

wiz, w1y and wig), we were able to achieve 99% Lagrange multipliers for nonlinear discrete opti-
(resp. 97%) training correctness with 18 (resp. 17) mization. Principles and Practice of Constraint

weights. Figure 3e-f show the corresponding out- Programming, pages 28-42, October 1999.
puts. ’ ’

601

