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Abstract. In this paper we propose an optimal anytime version of con-

strained simulated annealing (CSA) for solving constrained nonlinear

programming problems (NLPs). One of the goals of the algorithm is

to generate feasible solutions of certain prescribed quality using an av-

erage time of the same order of magnitude as that spent by the original

CSA with an optimal cooling schedule in generating a solution of sim-

ilar quality. Here, an optimal cooling schedule is one that leads to the

shortest average total number of probes when the original CSA with the

optimal schedule is run multiple times until it �nds a solution. Our sec-

ond goal is to design an anytime version of CSA that generates gradually

improving feasible solutions as more time is spent, eventually �nding a

constrained global minimum (CGM). In our study, we have observed a

monotonically non-decreasing function relating the success probability

of obtaining a solution and the average completion time of CSA, and an

exponential function relating the objective target that CSA is looking

for and the average completion time. Based on these observations, we

have designed CSAAT�ID, the anytime CSA with iterative deepening

that schedules multiple runs of CSA using a set of increasing cooling

schedules and a set of improving objective targets. We then prove the

optimality of our schedules and demonstrate experimentally the results

on four continuous constrained NLPs. CSAAT�ID can be generalized

to solving discrete, continuous, and mixed-integer NLPs, since CSA is

applicable to solve problems in these three classes. Our approach can

also be generalized to other stochastic search algorithms, such as genetic

algorithms, and be used to determine the optimal time for each run of

such algorithms.

1 Introduction

A large variety of engineering applications can be formulated as constrained non-

linear programming problems (NLPs). Examples include production planning,
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computer integrated manufacturing, chemical control processing, and structure

optimization. Some applications that are inherently constrained or have multiple

objectives may be formulated as unconstrained mathematical programs due to a

lack of good solution methods. Examples include applications in neural-network

learning, computer-aided design for VLSI, and digital signal processing. High-

quality solutions to these applications are important because they may lead to

lower implementation and maintenance costs.

By �rst transforming multi-objective NLPs into single-objective NLPs, all

constrained NLPs can be considered as single-objective NLPs. Without loss of

generality, we consider only minimization problems in this paper. A general

discrete constrained NLP is formulated as follows:

minimize f(x)

subject to g(x) � 0 x = (x1; x2; : : : ; xn) is a vector (1)

h(x) = 0 of discrete variables;

where f(x) is a lower-bounded objective function, h(x) = [h1(x); � � � ; hm(x)]
T

is a set of m equality constraints, and all the discrete variables in x are �nite.

Both f(x) and h(x) can be either linear or nonlinear, continuous or discrete

(i.e. discontinuous), and analytic in closed forms or procedural. In particular,

we are interested in application problems whose f(x), g(x), and h(x) are non-

di�erentiable. Our general formulation includes both equality and inequality

constraints, although it is shown later that inequality constraints can be trans-

formed into equality constraints. The search space (sometimes called solution

space) X is the �nite set of all possible combinations of discrete variables in x

that may or may not satisfy the constraints. Such a space is usually limited by

some bounds on the range of variables.

To characterize the solutions sought in discrete space, we de�ne for discrete

problems, N (x), the neighborhood [1] of point x in discrete space X , as a �nite

user-de�ned set of points fx0 2 Xg such that x0 is reachable from x in one step,

that x0 2 N (x) () x 2 N (x0), and that it is possible to reach every other x00

starting from any x in one or more steps through neighboring points. Note that

neighboring points may be feasible or infeasible.

Point x 2 X is called a discrete constrained local minimum (CLM) if it

satis�es two conditions: a) x is a feasible point, implying that x satis�es all the

constraints g(x) � 0 and h(x) = 0, and b) f(x) � f(x0), for all x0 2 N (x) where

x0 is feasible. A special case in which x is a CLM is when x is feasible and all its

neighboring points are infeasible.

Point x 2 X is called a constrained global minimum (CGM) i� a) x is a

feasible point, and b) for every feasible point x0 2 X , f(x0) � f(x). According

to our de�nitions, a CGM must also be a CLM.

In the next section we formulate the problem that we study in this paper.

This is followed by a summary of the constrained simulated annealing algorithm

(CSA) in Section 3 and a statistical model on the CSA procedure in Section 4.

Finally, we present our proposed anytime CSA with iterative deepening in Sec-

tion 5 and our experimental results in Section 6.
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2 Formulation of the Problem

Constrained simulated annealing (CSA) [14] (see Section 3) has been proposed

as a powerful global minimization algorithm that can guarantee asymptotic con-

vergence to a CGM with probability one when applied to solve (1).

One of the di�culties in using CSA, like conventional simulated annealing

(SA) [8], is to determine an annealing schedule, or the way that temperatures are

decreased in order to allow a solution of prescribed quality to be found quickly. In

general, the asymptotic convergence of CSA to a CGM with probability one was

proved with respect to a cooling schedule in which temperatures are decreased in

a logarithmic fashion [14], based on the original necessary and su�cient condition

of Hajek developed for SA [6]. It requires an in�nitely long cooling schedule in

order to approach a CGM with probability one.

In practice, asymptotic convergence can never be exploited since any algo-

rithm must terminate in �nite time. There are two ways to complete CSA in

�nite time. The �rst approach uses an in�nitely long logarithmically decreas-

ing cooling schedule but terminates CSA in �nite time. This is not desirable

because CSA will most likely not have converged to any feasible solution when

terminated at high temperatures.

The second approach is to design a cooling schedule that can complete in pre-

scribed �nite time. In this paper we use the following geometric cooling schedule

with cooling rate �:

Tj+1 = �� Tj ; j = 0; � � � ; N� � 1; (2)

where � < 1, j measures the number of probes in CSA (assuming one probe is

made at each temperature and all probes are independent), and N� is the total

number of probes in the schedule. A probe here is a neighboring point examined

by CSA, independent of whether CSA accepts it or not. We use the number of

probes expended to measure overhead because it is closely related to execution

time. Given T0 > TN�
> 0 and �, we can determine N�, the length of a cooling

schedule, as:

N� = log�
TN�

T0
: (3)

Note that the actual number of probes in a successful run may be less than N�,

as a run is terminated as soon as a desirable solution is found. However, it should

be very close to N�, as solutions are generally found when temperatures are low.

The e�ect of using a �nite � is that CSA will converge to a CGM with

probability less than one. When CSA uses a �nite cooling schedule N�, we are

interested in its reachability probability PR(N�), or the probability that it will

�nd a CGM in any of its previous probes when it stops. Let pj be the probability

that CSA �nds a CGM in its jth probe, then PR(N�) when it stops is:

PR(N�) = 1�

N�Y
j=1

(1� pj): (4)
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Table 1. An example illustrating trade-o�s between the expected total number of

probes in multiple runs of CSA to �nd a CGM, the cooling rate used in each run, and

the probability of success in each run. The optimal cooling rate at � = 0:574 leads to

the minimum average total number of probes to �nd a CGM. Note that the probability

of success is not the highest in one run using the optimal cooling rate. (The problem

solved is de�ned in (6). Each cooling schedule is run 200 times using f 0 = 200.)

� cooling rate in one run 0.139 0.281 0.429 0.574 0.701 0.862 0.961 0.990

N� avg. cooling schedule 99.8 148.0 207.5 296.0 434.5 798.0 2414.0 6963.5

T� avg. CPU time per run 0.026 0.036 0.050 0.074 0.11 0.18 0.54 1.58

PR(N�) succ. prob. of one run 1% 10% 25% 40% 55% 70% 85% 95%
1

PR(N�)
avg. runs to �nd sol'n 100 10 4 2.5 1.82 1.43 1.18 1.05

N�

PR(N�)
avg. probes to �nd sol'n 9980 1480 830 740 790 1140 2840 7330

T�

PR(N�)
avg. time to �nd sol'n 2.6 0.36 0.20 0.19 0.20 0.25 0.64 1.7

Reachability can be maintained by keeping the best solution found at any time

and by reporting the best solution when CSA stops.

Although the exact value of PR(N�) is hard to estimate and control, we can

always improve the chance of hitting a CGM by running CSA multiple times,

each using a �nite cooling schedule. Given PR(N�) for each run of CSA and

that all runs are independent, the expected number of runs to �nd a solution is
1

PR(N�)
and the expected total number of probes is:

Expected total number of

probes to �nd a CGM
=

1X
j=1

PR(N�)(1� PR(N�))
j�1N�j =

N�

PR(N�)
(5)

Table 1 illustrates trade-o�s betweenN� and PR(N�) in solving a constrained

NLP with a 10-dimensional Rastrigin function as its objective:

minimize f(x) = F

 
10n+

nX
i=1

(x2
i
� 10cos(2�xi)); 200

!
(6)

subject to j(xi � 4:2)(xi + 3:2)j � 0:1 for n = 10;

where F is the transformation function de�ned later in (11). A run of CSA is

successful if it �nds a feasible point with objective value less than or equal to 200

in this run, and the probability to hit a CGM is calculated by the percentage of

successful runs over 200 independent runs.

Table 1 shows that PR(N�) increases towards one when � is increased. A

long cooling schedule is generally undesirable because the expected number of

probes in (5) is large, even though the success probability in one run of CSA

approaches one. On the other hand, if the schedule is too short, then the success

probability in one run of CSA is low, leading to a large expected number of

probes in (5). An optimal schedule is one in which CSA is run multiple times

and the expected total number of problems in (5) is the smallest.

De�nition 1. An optimal cooling schedule is one that leads to the smallest av-

erage total number of probes of multiple runs of CSA in order to �nd a solution

of prescribed quality.
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Table 1 shows that N�

PR(N�)
is a convex function with a minimum at � = 0:574.

That is, the average total number of probes of multiple runs of CSA to �nd a

CGM �rst decreases and then increases, leading to an optimal cooling rate of

0.574 and an average of 2.5 runs of CSA to �nd a CGM.

This paper aims at determining an optimal cooling schedule that allows a

solution of prescribed quality to be found in the shortest average amount of time.

In order to �nd the optimal cooling schedule, users generally have to experiment

by trial and error until a suitable schedule is found. Such tuning is obviously

not practical in solving large complex problems. In that case, one is interested

in running a single version of the algorithm that can adjust its cooling schedule

dynamically in order to �nd a schedule close to the optimal one. Moreover,

one is interested in obtaining improved solutions as more time is spent on the

algorithm. Such an algorithm is an anytime algorithm because it always reports

the best solution found if the search were stopped at any time.

The goals of this paper are two folds. First, we like to design cooling schedules

for CSA in such a ways that the average time spent in generating a solution of

certain quality is of the same order of magnitude as that of multiple run of the

original CSA with an optimal cooling schedule. In other words, the new CSA is

optimal in terms of average completion time up to an order of magnitude with

respect to that of the original CSA with the best cooling schedule. Second, we

like to design a set of objective targets that allow an anytime-CSA to generate

improved solutions as more time is spent, eventually �nding a CGM.

The approach we take in this paper is to �rst study statistically the per-

formance of CSA. Based on the statistics collected, we propose an exponential

model relating the value of objective targets sought by CSA and the average

execution time, and a monotonically non-decreasing model relating the success

probability of obtaining a solution and the average execution time. These models

lead to the design of CSAAT�ID, the anytime CSA with iterative deepening,

that schedules multiple runs of CSA using a set of increasing cooling schedules

that exploit the convexity of (5) and a set of improving objective targets.

Let Topt(fi) be the average time taken by the original CSA with an optimal

cooling schedule to �nd a CLM of value fi or better, and TAT�ID(fi) be the

average time taken by CSAAT�ID to �nd a CLM of similar quality. Based on

the principle of iterative deepening [9], we prove the optimality of CSAAT�ID
by showing:

TAT�ID(fi) = O (Topt(fi)) where i = 0; 1; 2; � � � (7)

Further, CSAAT�ID returns solutions of values f0 > � � � > f� that are gradually

improving with time.

There were many past studies on annealing schedules in SA. Schedules stud-

ied include logarithmic annealing schedules [6] that are necessary and su�cient

for asymptotic convergence, schedules inversely proportional to annealing steps

in FSA [13] that are slow when the annealing step is large, simulated quenching

scheduling in ASA [7] that is not e�cient when the number of variables is large,

proportional (or geometric) cooling schedules [8] using a cooling rate between
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0.8-0.99 or a rate computed from the initial and �nal temperatures [11], constant

annealing [3], arithmetic annealing [12], polynomial-time cooling [2] adaptive

temperature scheduling based on the acceptance ratio of bad moves [16], and

non-equilibrium SA (NESA) [4] that operates at a non-equilibrium condition

and that reduces temperatures as soon as improved solutions are found.

All the past studies aimed at designing annealing schedules that allow one

run of SA to succeed in getting a desirable solution. There was no prior studies

that examine trade-o�s between multiple runs of SA using di�erent schedules

and the improved probability of getting a solution. Our approach in this paper

is based on multiple runs of CSA, whose execution times increase in a geometric

fashion and whose last run �nds a solution to the application problem. Based on

iterative deepening [9], the total time of all the runs will be dominated by the

last run and will only be a constant factor of the time taken in the last run.

3 Constrained Simulated Annealing

In this section, we summarize our Lagrange-multiplier theory for solving discrete

constrained NLPs and the adaptation of SA to look for discrete saddle points.

Consider a discrete equality-constrained NLP:

minimizex f(x) (8)

subject to h(x) = 0;

where x = (x1; : : : ; xn) is a vector of discrete variables, and f(x) and h(x)

are analytic in closed forms (but not necessarily di�erentiable) or procedural.

An inequality constraint like gj(x) � 0 can be transformed into an equivalent

equality constraint max(gj(x); 0) = 0. Hence, without loss of generality, our

theory only considers application problems with equality constraints.

A generalized discrete Lagrangian function of (8) is de�ned as follows:

Ld(x; �) = f(x) + �TH (h(x)) ; (9)

where H is a continuous transformation function satisfying H(y) = 0 i� y = 0.

We de�ne a discrete saddle point (x�; ��) with the following property:

Ld(x
�; �) � Ld(x

�; ��) � Ld(x; �
�) (10)

for all x 2 N (x�) and all � 2 R. Essentially, a saddle point is one in which

Ld(x
�; �) is at a local maximum in the � subspace and at a local minimum

in the x subspace. The concept of saddle points is very important in discrete

problems because, starting from them, we can derive the �rst-order necessary

and su�cient condition for CLM that lead to global minimization procedures.

This is stated formally in the following theorem [15]:

Theorem 1. First-order necessary and su�cient condition for CLM. A point

in the variable space of (8) is a CLM if and only if it satis�es the saddle-point

condition (10).
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1. procedure CSA

2. set initial x = (x; �) by randomly generating x and by setting � 0;

3. initialize temperature T0 to be large enough and cooling rate 0 < � < 1

4. set NT (number of probes per temperature);

5. while stopping condition is not satis�ed do

6. for n 1 to NT do

7. generate x0 from N (x) using G(x;x0);

8. accept x0 with probability AT (x;x
0)

9. end for

10. reduce temperature by T  �� T ;

11. end while

12. end procedure

Fig. 1. CSA: Constrained simulated annealing [15].

Figure 1 describes CSA [14] that looks for saddle points with the minimum

objective value. By carrying out probabilistic ascents in the � subspace with a

probability of acceptance governed by a temperature, it looks for local maxima in

that subspace. Likewise, by carrying out probabilistic descents in the x subspace,

it looks for local minima in that subspace. It can be shown that the point where

the algorithm stops is a saddle point in the Lagrangian space.

CSA di�ers from traditional SA that only has probabilistic descents in the x

space, and the point where SA stops is a local minimum of the objective function

of an unconstrained optimization. By extending the search to saddle points in a

Lagrangian space, CSA allows constrained optimization problems to be solved

in a similar way as SA in solving unconstrained optimization problems.

Using distribution G(x;x0) to generate trial point x0 in neighborhoodN (x), a

Metropolis acceptance probability AT (x;x
0), and a logarithmic cooling schedule,

CSA has been proven to have asymptotic convergence with probability one to a

CGM. This is stated in the following theorem without proof [14].

Theorem 2. Asymptotic convergence of CSA. The Markov chain modeling CSA

converges to a CGM with probability one.

Although Theorems 1 and 2 were derived for discrete constrained NLPs, it is

applicable to continuous and mixed-integer constrained NLPs if all continuous

variables were �rst discretized. Discretization is acceptable in practice because

numerical evaluations of continuous variables using digital computers can be

considered as discrete approximation of the original variables up to a computer's

precision. Intuitively, if discretization is �ne enough, the solutions found are fairly

good approximations to the original solutions. Due to space limitations, we do

not discuss the accuracy of solutions found in discretized problems [17]. In the

rest of this paper, we apply CSA to solve constrained NLPs, assuming that

continuous variables in continuous and mixed-integer NLPs are �rst discretized.
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4 Performance Modeling of CSA

The performance of a CSA procedure to solve a given application problem from

a random starting point can be measured by the probability that it will �nd a

solution of a prescribed quality when it stops and the average time it takes to

�nd the solution. There are many parameters that will a�ect how CSA performs,

such as neighborhood size, generation probability, probability of accepting a

point generated, initial temperature, cooling schedule, and relaxation of objective

function. In this section, we focus on the relationship among objective targets,

cooling schedules, and probabilities of �nding a desirable solution.

4.1 Relaxation of objective target

One way to improve the chance of �nding a solution by CSA is to look for

CLM instead of CGM. An approach to achieve this is stop CSA whenever it

�nds a CLM of a prescribed quality. This approach is not desirable in general

because CSA may only �nd a CLM when its temperatures are low, leading to

little di�erence in times between �nding CLM and CGM. Further, it is necessary

to prove the asymptotic convergence of the relaxed CSA procedure.

A second approach that we adopt in this paper is to modify the constrained

NLP in such a way that a CLM of value smaller than f 0 in the original NLP is

considered a CGM in the relaxed NLP. Since the CSA procedure is unchanged, its

asymptotic convergence behavior remains the same. The relaxed NLP is obtained

by transforming the objective target of the original NLP:

F (f(x); f 0) =

�
f 0 if f(x) � f 0

f(x) if f(x) > f 0 :
(11)

Assuming that f� is the value of the CGM in the original NLP, it follows that

the value of the CGM of the relaxed NLP is f� if f 0 � f� and is f 0 if f 0 > f�.

Moreover, since the relaxed problem is a valid NLP solvable by CSA, CSA will

converge asymptotically to a CGM of the relaxed NLP with probability one.

As a relaxed objective function leads to a possibly larger pool of solution

points, we expect CSA to have a higher chance of hitting one of these points

during its search. This property will be exploited in CSAAT�ID in Section 5.2.

4.2 Exponential model relating f 0 and N� for �xed PR(N�)

In order to develop CSAAT�ID that dynamically controls its objective targets,

we need to know the relationship between f 0, the degree of objective relaxation,

and N�, the number of probes in one run of CSA, for a �xed PR(N�). In this

section we �nd this relationship by studying the statistical behavior in evaluating

four continuous NLPs by CSA.

Figure 2 shows a 3-D graph relating the parameters in solving (6), in which

PR(N�) was obtained by running CSA 200 times for each combination of N�

and f 0. It shows an exponentially decreasing relationship between f 0 and N� at
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Fig. 2. A 3-D graph showing an exponentially decreasing relationship between f 0

and N� and a monotonically non-decreasing relationship between PR(N�) and N�
when CSA is applied to solve (6). The dotted line shows the trace taken in a run of

CSAAT�ID.

Table 2. The averages and standard deviations of coe�cient of determination R2 on

linear �ts of f 0 and log2(N�) for �xed PR(N�).

Benchmark Mean(R2) Std. Dev.(R2)

G1 [10] 0.9389 0.0384

G2 [10] 0.9532 0.0091

Rastrigin 0.9474 0.0397

Problem 5.2 [5] 0.9461 0.0342

�xed PR(N�) and a monotonically non-decreasing relationship between PR(N�)

and N� at �xed f 0. These observations lead to the following exponential model:

N� = ke�af
0

for �xed PR(N�) and positive real constants a and k: (12)

To verify statistically our proposed model, we performed experiments on

several benchmarks of di�erent complexities: G1, G2 [10], Rastrigin (6), and

Floudas and Pardalos' Problem 5.2 [5]. For each problem, we collected statistics

on f 0 and N� at various PR(N�), regressed a linear function on f 0 and log2(N�)

to �nd a best �t, and calculated the coe�cient of determination R2 of the �t.

Table 2 summarizes the average and standard deviation of R2 of the linear �t

for each test problem, where R2 very close to 1 shows a good �t. Since R2 has

averages very close to one and has small standard deviations, f 0 is veri�ed to be

exponential with respect to N� at �xed PR(N�).

4.3 Su�cient conditions for the existence of N�opt

In order for N�opt
to exist at �xed f 0, N�

PR(N�)
in (5) must have an absolute

minimum in (0;1). Such a minimum exists if PR(N�) satis�es the following

su�cient conditions: a) PR(0) = 0 and limN�!1
PR(N�) = 1, and b) P

00

R
(0) > 0.

We do not show the proof of these conditions due to space limitation.



10 Benjamin W. Wah and Yi Xin Chen

0

20

40

60

80

100

0 2000 4000 6000 8000

P R
 (

N
α)

Nα

2000

4000

6000

8000

10000

12000

14000

0 2000 4000 6000 8000

N
α/

P R
 (

N
α)

Nα

a) PR(N�) satis�es the two su�cient conditions b) Absolute minimum in N�

PR(N�)

Fig. 3. An example showing the existence of an absolute minimum in N�

PR(N�)
when

CSA was applied to solve (6) with f 0 = 180. (N�opt � 2000.)

We collected statistics on PR(N�) and N� at various f 0 for each of the four

test problems studied in Section 4.2. The results indicate that PR(N�) satis�es

the two su�cient conditions, implying that N�

PR(N�)
has an absolute minimum in

(0;1). In other words, each of these problems has an optimal cooling schedule

N�opt
that minimizes N�

PR(N�)
at �xed f 0. Figure 3 illustrates the existence of

such an optimal schedule in applying CSA to solve (6) with f 0 = 180. The

experimental results also show that PR(N�) is monotonically nondecreasing.

Note that there is an exponential relationship between PR(N�) and N� in

part of the range of PR(N�) (say between 0.2 and 0.8) in the problems tested.

We do not exploit this relationship because it is not required by the iterative

deepening strategy studied in the next section. Further, the relationship is not

satis�ed when PR(N�) approaches 0 or 1.

It is interesting to point out that the second su�cient condition is not satis�ed

when searching with random probing. In this case, PR(N�) = 1�(1� 1
S
)N� , and

P
00

R
(0) = �ln2(1� 1

S
) < 0, where S is the number of states in the search space.

Hence, N�

PR(N�)
at �xed f 0 does not have an absolute minimum of N� in (0;1).

5 Anytime CSA with Iterative Deepening

We propose in this section CSAAT�ID with two components. In the �rst com-

ponent discussed in Section 5.1, we design a set of cooling schedules for multiple

runs of the original CSA so that (7) is satis�ed; that is, the average total number

of probes to �nd a CLM of value f 0 or better is of the same order of magnitude as

Topt(f
0). In the second component presented in Section 5.2, we design a schedule

to decrease objective target f 0 in CSAAT�ID that allows it to �nd f� using an

average total number of probes of the same order of magnitude as Topt(f
�).

CSAAT�ID in Figure 4 �rst �nds low-quality feasible solutions in relatively

small amounts of time. It then tightens its requirement gradually, tries to �nd a

solution at each quality level, and outputs the best solution when it stops.
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1. procedure anytime-CSA

2. set initial target of solution quality at f 0 =1;

3. set initial cooling rate � = �0;

4. set K = number of CSA runs at �xed � and f (typically K = 3);

5. repeat /* Lines 5-15 are for gradually improving solutions of value f 0 */

6. repeat /* Lines 6-12 are for generating a solution of quality f 0 */

7. for i 1 to K do

8. evaluate CSA with transformed objective F (f(x); f 0) and �;

9. if CSA succeeded then goto 13; end if

10. end for

11. increase cooling schedule N�  ��N� (typically � = 2);

12. until number of probes in target f 0 exceeded 10 times

the number of probes in previous target level;

13. if (f 0 ==1) then f 0 = f0; end if /* f0 is �rst fesasible solution found */

14. reduce target level f 0  f 0 � c;

15. until no better solution was found in two successive decreases of f 0;

16. end procedure

Fig. 4. CSAAT�ID: Anytime-CSA procedure with iterative deepening. The only

problem-dependent run-time information used is f0.

It is important to point out that CSAAT�ID does not use regression at

run time in order to �nd the values of parameters of (12). One reason is that

these problem-dependent parameters are hard to estimate. Rather, CSAAT�ID
exploits the exponential relationship between f 0 and N� and the monotonically

nondecreasing relationship between PR(N�) and N� in order to derive a set

of CSA runs with di�erent parameters. The only run-time information used in

CSAAT�ID is f0, the value of the �rst feasible solution found with an initial

objective target of f 0 =1.

5.1 Finding a solution using increasing cooling schedules

Lines 6-12 in Figure 4 are used to evaluate CSA using a set of cooling schedules,

each involving multiple runs of CSA, in order to carry out iterative deepening [9]

and to achieve geometric growth in the number of probes in successive schedules.

By choosing an appropriate number of runs under each cooling schedule, we like

to show that the total average overhead over all the schedules is dominated by

that of the last schedule and is of the same order of magnitude as the average

overhead of multiple run of the original CSA with the best cooling schedule.

Our approach in Lines 6-12 of Figure 4 starts with an objective target f 0 =1

and a cooling rate � = �0, corresponding to a fast cooling schedule N0 = N�0
.

We propose to use a set of geometrically increasing cooling schedules:

Ni = �iN0; i = 0; 1; : : : (13)

where N0 is the (fast) initial cooling schedule. Under each cooling schedule, CSA

is run multiple times for a maximum of K times but stops immediately when a

solution is found. For iterative deepening to work, � > 1.
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Let PR(Ni) be the reachability probabilities of one run of CSA under cooling

schedule Ni. Let �(f
0) be the expected total number of probes taken by Lines

6-12 in Figure 4 to �nd a solution with objective target f 0 starting from schedule

N0, and Bopt(f
0) be the expected total number of probes taken by the original

CSA with optimal N�opt
to �nd a solution of similar quality. According to (5),

Bopt(f
0) =

N�opt

PR(N�opt
)

(14)

The following theorem shows the su�cient conditions in order for �(f 0) to

be of the same order of magnitude as Bopt(f
0). Due to space limitation, we do

not show the proof here.

Theorem 3. �(f 0) = O(Bopt(f
0)) if

a) PR(N�) is monotonically non-decreasing for N� in (0;1);

b) PR(0) = 0, and limN�!1
PR(N�) = 1;

c) P
00

R
(0) > 0; and

d) (1� PR(N�opt
))K� < 1.

The proof is not shown due to space limitations. Typically, � = 2, and in

all the benchmarks tested, PR(N�opt
) � 0:25. Substituting these values into the

last condition in Theorem 3 yields K > 2:4. In our experiments, we have used

K = 3. Since a maximum of three runs of CSA are done under each cooling

schedule, Bopt(f
0) is of the same order of magnitude as one run of CSA with the

optimal cooling schedule.

5.2 Anytime search using decreasing objective targets

After �nding a solution of quality f 0 using Lines 6-12 in Figure 4, Line 14 adjusts

f 0 to a new objective target so that better solutions will be found if more time is

allowed. (If this were the �rst time that a feasible solution was found, then Line

13 updates f 0 to f0, the value of �rst feasible solution with an initial objective

target of f 0 =1.) Based on the exponential model in (12) and the principle of

iterative deepening [9], the average number of probes to �nd a solution of value

f 0 grows geometrically if f 0 is decreased using the following linear schedule:

fj+1 = fj � c; where c is a positive constant. (15)

In our experiments, we estimate c to be 10% of f0.

Let (fn) be the expected total number of probes CSAAT�ID takes to �nd

fn, using objective targets f0; f1; : : : ; fn. The following theorem proves the rel-

ative complexities of (fn) and Bopt(fn).

Theorem 4. (fn) = O(Bopt(fn)).
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Table 3. Comparison between TAT�ID and TCSA in solving four constrained NLPs

with transformed objective F (f(x); f 0). N�succ is the average length of the cooling

schedule when a desirable solution was found using Lines 6-12 of CSAAT�ID. N�opt is

the length of the optimal cooling schedule for the target objective.

Problem
f�

Target CSAAT�ID CSA TAT�ID

TCSAID f 0 N0 N�succ TAT�ID N�opt PR(N�opt) TCSA

G2 -0.8036 -0.803 220 4640 9.176 5800 0.56 7.375 1.244

Rastrigin 162.6630 163.0 200 4560 3.964 3400 0.43 2.010 1.972

5.2 1.5670 1.7 2310 108100 595.662 136400 0.55 208.211 2.861

7.3 0.9705 1.3 450 515840 1105.948 829440 0.60 555.916 1.989

Proof. According to (12), and (14),

Bopt(fi) =
N�opt

PR(N�opt
)
= �(e�afi): (16)

Hence, using the result in Theorem 3,

(fn) =

nX
i=0

�(fi) =

nX
i=0

O(Bopt(fi)) =

nX
i=0

O(e�afi)

=

nX
i=0

O(e�a(f0�ic)) = O(e�a(f0�nc)) = O(Bopt(fn)) (17)

The theorem shows that, despite �nding solutions of intermediate quality

de�ned by a linear sequence of improving objective targets, the overall complex-

ity is dominated by that in �nding solutions to the last objective target fn. In

particular, we have established (7) by showing that TAT�ID(f
�) = O(Topt(f

�)).

6 Experimental Results

We tested CSAAT�ID on four continuous constrained NLPs of di�erent sizes

and degrees of di�culty. G2 [10] and Rastrigin (6) are relatively easy NLPs

with multiple feasible regions. In particular, (6) is characterized by a large num-

ber of deep infeasible local minima in the objective function. Finally, Floudas

and Pardalos' Problems 5.2 and 7.3 [5] are large and di�cult NLPs with many

equality constraints. Although our experiments were on continuous NLPs, simi-

lar performance is expected for discrete and mixed-integer constrained NLPs.

Table 3 compares �TAT�ID, the average time taken by Lines 6-12 in Fig-

ure 4 to obtain a CGM to the four benchmark NLPs with transformed objective

F (f(x); f 0), and �TCSA, the average time of CSA with an optimal cooling sched-

ule N�opt
for the objective target. The results verify the analysis in Section 5.1

and show that the two averages are related by a (small) constant factor.

Figure 5 compares the anytime behavior of CSAAT�ID and the original

CSA in terms of solution quality and execution time. The anytime performance

of the original CSA was found by running CSA using the same cooling schedule
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Fig. 5. Performance comparison of CSAAT�ID and CSA in solving four continuous

constrained minimization NLPs. CPU times were measured on Pentium 500-MHz com-

puters running Solaris 2.7. � is the cooling rate of the original CSA.
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multiple times until a CGM was found. Without knowing its optimal schedule,

we tried two geometric schedules with � = 0:3 and � = 0:8, respectively. CSA

and CSAAT�ID were each ran from three random starting points.

In general, the results show that CSAAT�ID performs substantially better

than the original CSA as an anytime algorithm. When compared against a given

amount of time, CSAAT�ID found much better suboptimal solutions than CSA.

When compared against solutions of the same quality, CSAAT�ID took between

one to two orders less CPU time than CSA.
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