
Constrained Genetic Algorithms and their

Applications in Nonlinear Constrained Optimization�

Benjamin W. Wah and Yi-Xin Chen

Department of Electrical and Computer Engineering
and the Coordinated Science Laboratory
University of Illinois, Urbana-Champaign

Urbana, IL 61801, USA
E-mail: fwah, cheng@manip.crhc.uiuc.edu

URL: http://manip.crhc.uiuc.edu

Abstract

This paper presents a problem-independent frame-

work that uni�es various mechanisms for solving

discrete constrained nonlinear programming (NLP)

problems whose functions are not necessarily di�er-

entiable and continuous. The framework is based on

the �rst-order necessary and su�cient conditions in

the theory of discrete constrained optimization using

Lagrange multipliers. It implements the search for

discrete-neighborhood saddle points (SPdn) by per-

forming ascents in the original-variable subspace and

descents in the Lagrange-multiplier subspace. Our

study on the various mechanisms shows that CSAGA,

a combined constrained simulated annealing and ge-

netic algorithm, performs well. Finally, we apply it-

erative deepening to determine the optimal number of

generations in CSAGA.

1 Introduction

A discrete constrained nonlinear programming prob-

lem (NLP) is formulated as follows:

minimize f(x)

subject to g(x) � 0 x = (x1; : : : ; xn) is a vector

h(x) = 0 of �nite discrete variables.

Here, f(x) is a lower-bounded objective function,
h(x) = [h1(x); � � � ; hm(x)]

T is a set of m equality
constraints, and g(x) = [g1(x); � � � ; gk(x)]

T is a set

�Proc. 12th International Conference on Tools with Arti�-

cial Intelligence, November 2000.

of k equality constraints. f(x), g(x), and h(x) are
not necessarily di�erentiable and can be either linear
or nonlinear, continuous or discrete, and analytic or
procedural. X is the Cartesian product of all possi-
ble combinations of variables in x. Without loss of
generality, we consider only minimization problems.
To characterize solutions sought in discrete space,

we de�ne the following concepts on discrete neighbor-
hoods and constrained solutions in discrete space.

De�nition 1. Nd(x), the neighborhood [1] of point
x in discrete space X , is a �nite user-de�ned set of
points fx0 2 Xg such that x0 is reachable from x in
one step, that x0 2 N (x)() x 2 N (x0), and that it
is possible to reach every other x00 starting from any
x in one or more steps through neighboring points.

De�nition 2. Point x 2 X is called a constrained

local minimum in discrete neighborhood (CLMdn) if
it satis�es two conditions: a) x is feasible, and b)
f(x) � f(x0), for all x0 2 Nd(x) where x

0 is feasible.

De�nition 3. Point x 2 X is called a constrained

global minimum in discrete neighborhood (CGMdn) i�
a) x is feasible, and b) for every feasible point x0 2 X ,
f(x0) � f(x). The set of all CGMdn is Xopt.

We have shown in our previous work that the
necessary and su�cient condition for a point to
be a CLMdn is that it satis�es the discrete-space
saddle-point condition [8] (Section 2.1). We have
also extended simulated annealing (SA) [7] and
greedy search [9] to look for saddle points in dis-
crete neighborhoods of x (SPdn) (Section 2.2). At

1

the same time, new problem-dependent constraint-
handling heuristics have been developed in the
genetic-algorithm (GA) community to handle nonlin-
ear constraints [5] (Section 2.3). Up to now, there is
no clear understanding on whether these algorithms
can be uni�ed and which strategy is the most e�ective
in �nding CGMdn.
Based on our previous work, we develop in this

paper a framework that uni�es SA, greedy search,
and GA in looking for SPdn. We study constrained

genetic algorithm (CGA) and combined constrained
SA and GA (CSAGA) and ways to achieve optimal
average completion times in �nding CGMdn.
The algorithms studied are all random searches

that probe a search space in a random order, where a
probe is a point examined by an algorithm, indepen-
dent of whether it is accepted or not. The overhead of
one run of such an algorithm is characterized by the
number of probes made and the reachability probabil-

ity that it hits a CGMdn in any of its probes. Let pj
be the probability that an algorithm �nds a CGMdn

in its jth probe. Then PR(N) when the algorithm
stops after N probes is:

PR(N) = 1�

NY

j=1

(1� pj); (1)

assuming independent probes (a simplifying assump-
tion). Reachability can be maintained by keeping the
best solution found at any time and by reporting the
best solution when the algorithm stops.
Although it is hard to control PR(N) for a search,

we can always improve its chance of �nding a CGMdn

by running it multiple times from random starting
points, each examining the search space by N probes.
Given PR(N) for each run of the algorithm and that
all runs are independent, �B(N;PR(N)), the expected
total number of probes to �nd a CGMdn, is:

1X

j=1

PR(N)(1� PR(N))j�1N � j =
N

PR(N)
: (2)

In general, there exists an optimal N that minimizes
N

PR(N)
when PR(N) satis�es the following su�cient

conditions: a) PR(0) = 0 and limN!1 PR(N) = 1,
and b) P

00

R(0) > 0 [6]. Using these conditions, we
have developed an optimal strategy that minimizes
(2) in searching for CGMdn [6] (Section 2.2).
We present in Section 3.3 an extension of the opti-

mal strategy in CGA and CSAGA that allows them
to minimize �B(N;PR(N)) in (2) in �nding a CGMdn.
Finally, Section 4 shows the experimental results.

2 Previous Work

This section summarizes the theory of discrete con-
strained optimization using Lagrange multipliers and
two algorithms developed based on the theory. We
also describe work in GA to solve constrained NLPs.

2.1 Discrete Constrained Optimiza-

tion using Lagrange multipliers

The theory is based on solving discrete equality-
constrained NLPs represented as [8, 9]:

minimizex f(x) x = (x1; : : : ; xn) are (3)

subject to h(x) = 0 �nite discrete variables,

where h(x) = [h1(x); � � � ; hm(x)]
T is a vector of m

equality constraints. Both f(x) and h(x) may be an-
alytic or procedural but not necessarily di�erentiable.
A generalized augmented Lagrangian function of

(3) is de�ned as follows:

Ld(x; �) = f(x) + �TH (h(x)) +
1

2
jjh(x)jj2; (4)

where H is a continuous transformation function sat-
isfying H(y) = 0 i� y = 0, and � = f�1; � � � ; �mg 2

Rm is a vector of Lagrange multipliers.
A direction of maximum potential drop (DMPD)

for Ld(x; �) in discrete neighborhood of x for �xed �
is a vector1 that points from x to x0 2 Nd(x) with
the minimum Ld:

�xLd(x; �) = ~�x = y	x where y = min
x0
2Nd(x)

[fxg

Ld(x
0; �):

(5)
Here, 	 is the vector-subtraction operator for moving
from x to a point in Nd(x) [fxg. Intuitively, vector
~�x points from x to y, the point with the minimum Ld
among all discrete neighbors of x, including x itself.
We de�ne SPdn(x

�; ��), a saddle point in discrete

neighborhoods of x, with the following property:

Ld(x
�; �) � Ld(x

�; ��) � Ld(x; �
�) (6)

for all x 2 Nd(x
�) and all � 2 Rm. Note that al-

though we use similar terminologies as in continuous
space, SPdn in (6) are di�erent from those in continu-
ous space because their de�nition is based on discrete
neighborhoods of x.

1To simplify our symbols, we represent points in the x sub-

space without the explicit vector notation.

Theorem 1. First-order necessary and su�cient

conditions for CLMdn. In discrete x space of (3),
if H in (4) is a non-negative (or non-positive) con-
tinuous function satisfying H(x) = 0 i� x = 0, then
point x of (3) is a CLMdn i�:

� It satis�es (6) for any � � ��, where �0 � ��

means that each element of �0 is not less than
the corresponding element of ��; or

� It satis�es the following �rst-order conditions:

�xLd(x; �) = 0; h(x) = 0: (7)

Requiring H to be non-negative (or non-positive)
is easy to achieve. Two such examples are H(h(x)) =
jh(x)j and H(h(x)) = h2(x). A similar transforma-
tions can be used to transform an inequality con-
straint, like gj(x) � 0, into an equivalent equality
constraint max(gj(x); 0) = 0. For this reason, we
only consider problems with equality constraints in
the rest of this paper.

The conditions in Theorem 1 are stronger than
their counterparts in continuous space. In general,
in the theory of Lagrange multipliers in continuous
space [3], the set of solution points of an applica-
tion problem that satisfy the �rst-order necessary and
second-order su�cient conditions is not necessarily
the same as the set of CLMdn of the problem and
the set of points satisfying the saddle-point condi-
tion. Only when the Lagrangian function is di�eren-
tiable everywhere and all CLMdn are regular points
that the three sets are identical. Further, a CGMdn

at a point that is not regular or not di�erentiable
cannot be found by existing methods in continuous
space. These limitations are overcome in Theorem 1
because it does not require di�erentiability and im-
plies that �nding SPdn amounts to �nding CLMdn of
the original problem. Further, a strategy looking for
SPdn with the minimum objective value will result in
a CGMdn because a CGMdn is also a SPdn.

2.2 Algorithms Implementing Thm. 1

The conditions in (7) provide a stopping condition
when a search �nds SPdn but do not present the
mechanism to arrive at such points. In this section
we review two methods to look for SPdn.

The discrete Lagrangian method (DLM) is an it-
erative local-search method based on the �rst-order

1. procedure CSA

2. set initial x = (x; �) with random x and � 0;

3. initialize T0 and cooling rate 0 < � < 1;

4. set NT (number of probes per temperature);

5. while stopping condition is not satis�ed do

6. for n 1 to NT do

7. generate x0 from Nd(x) using G(x;x
0);

8. accept x0 with probability AT (x;x
0)

9. end for

10. reduce temperature by T �� T ;

11. end while

12. end procedure

Figure 1: CSA: Constrained simulated annealing [8].

conditions, similar to those in continuous space:

xk+1 = xk ��xLd(x
k; �k); (8)

�k+1 = �k + %H(h(xk)); (9)

where � is the vector-addition operator, x � y =
(x1+ y1; : : : xn + yn), and % is a positive real number
controlling how fast the Lagrange multipliers change.
It can be shown that the point where DLM stops is
a CLMdn when the number of neighborhood points
is small enough to be enumerated in each descent of
(8) [9]. However, if the number of neighboring points
is very large and hill-climbing is used to �nd the �rst
point with a smaller Lagrangian value in each de-
scent, then DLM will stop at a feasible point but not
necessarily a saddle point.
Constrained simulated annealing (CSA) [7], on the

other hand, looks for SPdn with the minimum objec-
tive (Figure 1). This is done by carrying out proba-
bilistic ascents in the � subspace, with a probability
of acceptance governed by the Metropolis probability,
and by probabilistic descents in the x subspace.
Using distribution G(x;x0) to generate trial point

x
0 in neighborhood Nd(x), a Metropolis acceptance

probability AT (x;x
0), and a logarithmic cooling

schedule, CSA has been proven to have asymptotic
convergence with probability one to a CGMdn [7].
The result is of theoretical interest only as it assumes
an in�nitely long cooling schedule. In practice, we
can only use a �nite cooling schedule, leading to a
reachability probability less than one.
As described in Section 1, there exists an optimal

cooling schedule that minimizes the expected over-
head in (2) when two su�cient conditions are satis-
�ed. Experimentally, we have veri�ed that reachabil-
ity probabilities of CSA satisfy these conditions [6].
By exploiting this property, we have used iterative
deepening to �nd the optimal schedule. The algo-

1. procedure CSAID

2. set initial cooling rate � = �0;

3. set K = number of CSA runs at �xed �;

4. repeat

5. for i 1 to K do run CSA with �; end for;

6. increase cooling schedule N� ��N�;

7. until feasible solution has been found and no

better solution in two successive increases of N�;

8. end procedure

Figure 2: CSAID: CSA with iterative deepening [6].

rithm starts with a short cooling schedule and dou-
bles it every time it fails to �nd a solution of desired
quality. To reduce the chance for a search to over-
shoot into exceedingly long cooling schedules, CSA
in Figure 2 is run K (= 3) times at each cooling
schedule. It has been proved that the algorithm has
a completion time of the same order of magnitude as
that using the optimal schedule if K is set to be large
enough [6] .

2.3 Genetic Algorithms for Solving

Constrained NLP Problems

Genetic algorithm (GA) is a general stochastic op-
timization algorithm that was originally developed
for solving unconstrained problems. Recently, many
variants of GA have been developed for solving con-
strained NLPs. Most of these methods were based on
penalty formulations that transform (3) into an un-
constrained function F(x), consisting of a sum of the
objective and the constraints weighted by penalties,
and use GA to minimize F(x).

Examples of penalty formulations include static
penalties, dynamic penalties, annealing penalties,
and adaptive penalties [5]. In general, these problem-
dependent methods may require extensive tuning and
lack a strong mathematical foundation, making them
hard to guarantee convergence [4].

In addition to penalty methods, other methods
have been studied in GA for handling constraints.
These include methods based on preserving feasi-
bility with specialized genetic operators, methods
searching along boundaries of feasible regions, meth-
ods based on decoders, repair of infeasible solutions,
co-evolutionary methods, and strategic oscillation.
These methods require domain-speci�c knowledge or
problem-dependent genetic operators, and have dif-
�culties in �nding feasible regions or in maintaining
feasibility for nonlinear constraints.

3 Framework to look for SPdn

Existing work today lacks a framework that uni�es
the various mechanisms to look for SPdn, making it
di�cult to know whether di�erent algorithms are ac-
tually variations of each other. In this section we
present a framework that uni�es SA, GA, and greedy
searches in looking for SPdn.

Based on Theorem 1, Figure 3 depicts a general
stochastic optimization procedure to look for SPdn.
The procedure consists of two loops: the x loop that
updates the variables in x in order to perform de-
scents of Ld in the original-variable subspace, and
the � loop that updates the � variables, if there are
unsatis�ed constraints for any candidate in the list, in
order to perform ascents in the Lagrange-multiplier
subspace. The procedure quits when no new probes
can be generated in both the x and � subspaces.

The general procedure is guaranteed to terminate
only at feasible points; otherwise, new probes will be
generated in the � subspace to suppress the unsat-
is�ed constraints. Further, if the probe generator in
the x subspace is able to enumerate all the points
in Nd(x) for any point x in the original-variable sub-
space, then the point where the procedure stops must
be a SPdn, or equivalently, a CLMdn.

Both DLM and CSA discussed in Section 2.2 can be
made to �t into this framework, each maintaining a
list of one candidate. DLM entails greedy generations
in the x and � subspaces, deterministic insertions into
the list of candidates and deterministic acceptance of
candidates, and stops updating � when all the con-
straints are satis�ed. In contrast, CSA generates new
probes randomly along one of the x or � variables, ac-
cepts them based on the Metropolis probability if Ld
increases along the x dimension and decreases along
the � dimension, and stops updating � when all the
constraints are satis�ed.

In the rest of this section, we extend the mech-
anisms to include genetic operators and present in
Section 3.1 CGA and in Section 3.2 the combined
CSAGA. Finally, we propose the optimal version of
these algorithms in Section 3.3.

3.1 CGA: Constrained GA

CGA was developed based on the general framework
in Figure 3 that looks for SPdn. Similar to tradi-
tional GA, it organizes a search into a number of
generations, each involving a population of candidate
points in the Lagrangian space. It uses genetic oper-

start

stop

N

N

Y

Y

Insert candidate(s) into list

based on sorting criterion

(annealing or deterministic)

Search in Generate new candidate(s)

(probabilistic or greedy)

Update Lagrangian values

of all candidates in list

(annealing or determinisic)

Generate new candidates

probabilistic, or greedy)

Stopping

conditions

met?

initial candidate in the � subsubace

in the x subspace (genetic,

with initial �
� subspace

� loop

Generate random

x loop

Figure 3: An iterative stochastic procedural framework to look for SPdn.

1. procedure CGA(P , Ng)

2. set generation number t 0 and �(t) 0;

3. initialize random or user-provided population P(t);

4. repeat /* over multiple generations */

5. evaluate Ld(x; �(t)) for all candidates in P(t);

6. repeat /* over probes in x subspace */

7. y GA(select(P(t)));

8. evaluate Ld(y; �) and insert into P(t)

9. until su�cient number of probes in x subspace;

10. �(t) �(t)� c�H(h;P(t)); /* update � */

11. t t+ 1;

12. until (t > Ng)

13. end procedure

Figure 4: CGA: Constrained genetic algorithm. P is the

population size and Ng is the number of generations.

ators to generate new probes in the original-variable
subspace, either greedy or probabilistic generations
in the � subspace, and deterministic organization of
candidates according to their Lagrangian values. Fig-
ure 4 outlines the algorithm.

Line 4 terminates CGA when either the maximum
number of allowed generations is exceeded or when
no better feasible solution within a precision range is
found in some successive generations. (The stopping
condition is speci�ed more precisely later in CGA
with iterative deepening.)

Line 5 evaluates in generation t all individuals in
P(t) using Ld(x; �(t)) as the �tness function.

Lines 6-9 search the x subspace by selecting from
P(t) individuals to reproduce using genetic operators
and by inserting the individuals generated into P(t)
according to their �tness values. (In our experiments,
we have used the seven operators in Genocop III [4].)

Line 10 updates � according to the vector of max-
imum violations H(h;P(t)), where the maximum vi-
olation of a constraint is evaluated over all the indi-

viduals in P(t). That is,

Hi(h;P(t)) = max
x2P(t)

H(hi(x)); i = 1; 2; � � � ;m; (10)

where hi(x) is the i
th constraint function, H is the

non-negative transformation in (4), and c is a positive
step-wise constant controlling how fast the Lagrange
multipliers change (typically c = 0:1).

Operator � can be implemented in a deterministic
or a probabilistic fashion. In a deterministic way, �
can be implemented as simple vector addition. Al-
ternatively, we implement � as vector addition based
on an annealing rule: at each generation, we either
increase or decrease �. The probability to decrease �,
controlled by T , decreases from a high to a very low
value during the evolution. In either case, a Lagrange
multiplier will not be changed if its corresponding
constraint is satis�ed. Our evaluations have shown
that Lagrange multipliers updated stochastically lead
to shorter average completion times. For that reason,
we have used stochastic updates in our experiments.

3.2 CSAGA: CSA + CGA

Based on the general framework in Figure 3, we de-
sign CSAGA by integrating CSA in Figure 1 and
CGA in Figure 4 into a combined procedure. The
new procedure di�ers from the original CSA in two
aspects. First, by maintaining multiple candidates in
a population, we need to decide how CSA should be
applied to the multiple candidates in a population.
Our evaluations show that, instead of running CSA
corresponding to a candidate from a random starting
point, it is best to run CSA sequentially, using the
best solution found in one run as the starting point
of the next run. Second, we need to determine the

1. procedure CSAGA(P , Ng)

2. set t 0, T0, 0 < � < 1, and P(t);

3. repeat /* over multiple generations */

4. for i 1 to P do /* SA in Lines 5-11 */

5. for j 1 to freq do

6. generate x0

j from Nd(xj) using G(xj;x
0

j);

7. accept x0

j with probability AT (xj;x
0

j)

8. end for

9. Assign the best xj found as starting point

10. end for

11. set T � �� T ; /* set T for the SA part */

12. repeat /* by GA over probes in x subspace */

13. y GA(select(P(t)));

14. evaluate Ld(y; �) and insert y into P(t);

15. until su�cient number of probes in x subspace;

16. t t+ freq; /* update generation number */

17. until (t � Ng)

18. end procedure

Figure 5: CSAGA: Combined CSA and CGA. P is the

population size and Ng is the number of generations.

duration of each run of CSA. This is controlled by
parameter freq that to set to

Ng

6
after experimental

evaluations.
Figure 5 shows the combined algorithm that uses

both SA and GA to generate new probes in the
original-variable subspace.
Line 2 initializes P(0). Unlike CGA, any x in P (t)

in CSAGA is de�ned in the joint x-� space. Initially,
x can be either user-provided or randomly generated,
and � is initialized to zero.
Lines 4-11 perform CSA using freq probes on ev-

ery individual in P (t). Point x generated probabilisti-
cally is accepted based on annealing and the Metropo-
lis probability. As discussed earlier, we use the best
point of one run as the starting point of the next run.
Lines 12-15 start a GA search after the SA part is

completed. The algorithm searches in the x subspace
using GA and evaluates the Ld value of each individ-
ual in order to select the individuals with the best
�tness. In ordering the individuals, since each indi-
vidual has its own �, we �rst get the average value
of each Lagrange multiplier over the population and
then calculate the Ld value of each individual using
the average Lagrange multipliers.

3.3 Optimal CGA and CSAGA with

Iterative Deepening

As discussed in Section 2.2 on CSA with iteration
deepening [6], there exists an optimal N that mini-
mizes �B(N;PR(N)) in (2). In this section we extend

1. procedure CGAID

2. set initial number of generations Ng = N0;

3. set K = number of CGA runs at �xed Ng;

3. repeat /*using iterative deepening to �nd CGM*/

4. for i 1 to K do call CGA(P , Ng) end for

5. set Ng ��Ng (typically � = 2);

6. until Ng exceeds a maximum number allowed or

(no better solution has been found in two

successive increases of Ng and Ng > �5N0

and a feasible solution has been found);

7. end procedure

Figure 6: CGAID: CGA with iterative deepening.

this result to �nd the optimal number of generations
in a run of CGA and CSAGA.
The number of probes expended in CGA and

CSAGA is N = P �Ng . let P̂R(Ng) = PR(P �Ng)
be the reachability probability with Ng generations.
Hence, the expected total number of probes using
multiple runs with P and Ng under constant P is:

N

PR(N)
=

P �Ng

PR(P �Ng)
= P

Ng

P̂R(Ng)
(11)

In order to have an optimal Ngopt that minimizes

(11),
Ng

P̂R(Ng)
must have an absolute minimum in

(0,1). Such a minimum exists if P̂R(Ng) satis�es

the following su�cient conditions [6]: a) P̂R(0) = 0
and limNg!1 P̂R(Ng) = 1, and b) P̂

00

R(0) > 0 [6].

We have collected statistics on P̂R(Ng) and Ng at
various P by using CGA and CSAGA to solve ten
discretized test problems G1-G10 [5]. The results
indicate that, for both CGA and CSAGA, P̂R(Ng)
satis�es the two su�cient conditions. Figure 7 illus-
trates the existence of such an optimal Ng in apply-
ing CSAGA to solve discretized G1 with P = 3. The
experimental results also show that P̂R(Ng) is mono-
tonically nondecreasing.
In a way similar to the design of CSA with iterative

deepening, we apply iterative deepening to estimate
Ngopt . CGAID in Figure 6 uses a set of geometrically
increasing Ng to �nd a CGMdn:

Ngi = �iN0; i = 0; 1; : : : (12)

where N0 is the initial number of generations used.
Under each Ng, CGA is run for a maximum of K

times but stops immediately when at least one fea-
sible solution has been found, or when no better so-
lution has been found in two successive generations
and after the number of iterations has been increased

0

20

40

60

80

100

0 1000 2000 3000 4000 5000

P̂R(Ng)

Ng

b
b

b

b

b

b

b

b

b
b

b b

3000

4000

5000

6000

7000

0 1000 2000 3000 4000 5000

Ng

P̂R(Ng)

Ng

b

b

b

b
b

b
b

b

b

b

a) P̂R(Ng) satis�es the two su�cient conditions b) Absolute minimum in
Ng

P̂R(Ng)

Figure 7: An example showing the existence of a minimum in
Ng

P̂R(Ng)
when CSAGA with a population size P = 3

was applied to solve G1 [5]. (Ngopt � 2000.)

geometrically at least �ve times. These conditions
are used to ensure that iterative deepening has been
applied a su�cient number of times. For iterative
deepening to work, � > 1.
Let P̂R(Ngi) be the reachability probability of one

run of CGA using Ngi generations, �(f
0) be the ex-

pected total number of probes taken by CGAID to
�nd a CGMdn starting from N0 generations, and
Bopt(f

0) be the expected total number of probes
taken by the original CGA with optimal Ngopt to �nd
a solution of similar quality. According to (11),

Bopt(f
0) = P

Ngopt

P̂R(Ngopt)
(13)

Next, we show the su�cient conditions for �(f 0) to
be of the same order of magnitude as Bopt(f

0).

Theorem 2. Optimality of iterative deepening in

CGA and CSAGA. �(f 0) = O(Bopt(f
0)) if

a) P̂R(Ng) is monotonically non-decreasing for Ng

in (0;1);

b) P̂R(0) = 0, and limNg!1 P̂R(Ng) = 1;

c) P̂
00

R(0) > 0; and

d) (1� P̂R(Ngopt))
K� < 1.

The proof is not shown due to space limitations.
Typically, � = 2, and in all the benchmarks tested,

P̂R(Ngopt) � 0:25. Substituting these values into the
last condition in Theorem 2 yields K > 2:4. In our
experiments, we have used K = 3.
CSAGA with iterative deepening (CSAGAID) can

be obtained by substituting CGA by CSAGA in Fig-
ure 6. Theorem 2 is also applicable to CSAGAID .

The only remaining issue left is in choosing a suit-
able population size P in each generation. Similar to
the design of CGA, the range of optimal P in CGAID

ranges from 4 to 40 and is di�cult to determine a
priori. Although it is possible to choose a suitable
P dynamically, we do not present the algorithm here
because it performs worse than CSAGAID .

In selecting P for CSAGAID , we note in the design
of CSAID thatK = 3 parallel runs were made at each
cooling rate in order to increase the corresponding
probability of success. For this reason, we set P =
K = 3 in our experiments. Our experimental results
in the next section show that, although the optimal P
may be slightly di�erent, the corresponding expected
overhead to �nd a CGMdn di�ers very little from that
when a constant P is used.

4 Experimental Results

In this section, we show the results on testing our pro-
posed algorithms on ten discretized constrained NLPs
G1-G10 [5, 2]. These problems were originally de-
signed to be solved by GA using problem-speci�c con-
straint handling techniques discussed in Section 2.3

Table 1 compares the various algorithms. We mea-
sure performance using T , the expected overhead (2)
of multiple runs of CSA with iterative deepening at
the optimal cooling schedule and those of CGA and
CSAGA with iterative deepening at the optimal num-
ber of generations.

The �fth and sixth columns of Table 1 show the
performance of �B(f�): the �rst showing T , the av-
erage time CSAID takes to �nd a CGMdn, and the
second showing T 0, the average time taken by a mod-
i�ed CSAID in which we feed the best point found

Table 1: Experimental results of EA, CSAID, CGAID and CSAGAID in evaluating ten discretized constrained
NLPs. (S.T. stands for strategic oscillation, H.M. for homomorphous mappings, and D.P. for dynamic penalty. All

runs were done on a Pentinum III 500-MHZ computer with Solaris 7. The best �B(f�) is highlighted in bold font.)

Problem Global EAs CSAID CGAID CSAGAID

ID Solution f� Best Sol. Method �T (f�) �T 0(f�) Popt
�T (f�) P �T (f�) Popt

�T (f�)

G1 (min) -15 -15 Genocop 6.92 6.25 40 5.49 3 3.31 2 2.67

G2 (max) -0.80362 0.803553 S.T. 38.99 29.79 30 311.98 3 20.64 3 20.64

G3 (max) 1.0 0.999866 S.T. 8.09 7.45 30 14.17 3 3.40 2 3.27

G4 (min) -30665.5 -30664.5 H.M. 1.94 1.06 5 3.95 3 0.93 3 0.93

G5 (min) 4221.9 5126.498 D.P. 2.97 2.16 30 68.9 3 2.32 2 2.08

G6 (min) -6961.81 -6961.81 Genocop 3.26 2.20 4 7.62 3 1.41 2 1.05

G7 (min) 24.3062 24.62 H.M. 29.03 21.43 30 31.60 3 14.40 2 12.82

G8 (max) 0.095825 0.095825 H.M. 0.33 0.21 30 0.31 3 0.19 4 0.17

G9 (min) 680.63 680.64 Genocop 2.73 2.40 30 5.67 3 2.05 2 1.87

G10 (min) 7049.33 7147.9 H.M. 4.86 5.01 30 82.32 3 3.25 3 3.25

in one of the K runs as the starting point to the next
run at each cooling schedule (Lines 5-9 of CSAGA).
The results show that there can be signi�cant im-
provements by using improved starting points.

The next two columns show the performance of
CGAID : the �rst showing Popt, the optimal popu-
lation size obtained by enumeration, and the second
showing the average time to �nd a CGMdn. The
results show that CGAID is not competitive as com-
pared to CSAID , even using an optimal population
size. The results on including an additional compo-
nent in the algorithm to select a suitable population
size at run time are worse and are not shown.

Finally, the last four columns show the perfor-
mance of CSAGAID : the �rst two showing the aver-
age times using a constant population size, while the
last two showing the average times using an optimal
population size Popt obtained by enumeration. The
results show little improvements in using an optimal
population size and improvements in T 0 ranging from
3% to 134% as compared to that of CSAID.

Comparing CGAID and CSAGAID with EA, EA
was only able to �nd CGMdn in three of the ten prob-
lems, despite extensive tuning and using problem-
speci�c heuristics, whereas both CGA and CSAGA
can �nd CGMdn for all these problems without any
problem-dependent strategies. It is not possible to re-
port the timing results of EA because the results are
the best among many runs after extensive tuning.

Comparing the average completion times of
CSAID, CGAID and CSAGAID , we see that
CSAGAID outperforms CSAID and CGAID on all
the ten test problems. This result shows that incor-
porating genetic search in CSA can achieve a higher
reachability probability in a given search time, lead-
ing to a faster optimal-search algorithm.

References

[1] E. Aarts and J. Korst. Simulated Annealing and Boltz-
mann Machines. J. Wiley and Sons, 1989.

[2] S. Koziel and Z. Michalewicz. Evolutionary algo-
rithms, homomorphous mappings, and constrained
parameter optimization. Evolutionary Computation,
7(1):19{44, 1999.

[3] D. G. Luenberger. Linear and Nonlinear Program-
ming. Addison-Wesley Publishing Company, Reading,
MA, 1984.

[4] Z. Michalewicz and G. Nazhiyath. Genocop III: A
co-evolutionary algorithm for numerical optimization
problems with nonlinear constraints. Proceedings of
IEEE International Conference on Evolutionary Com-
putation, 2:647{651, 1995.

[5] Z. Michalewicz and M. Schoenauer. Evolution-
ary algorithms for constrained parameter optimiza-
tion problems. Evolutionary Computation, 4(1):1{32,
1996.

[6] B. W. Wah and Y. X. Chen. Optimal anytime con-
strained simulated annealing for constrained global
optimization. In Sixth International Conference on
Principles and Practice of Constraint Programming.
Springer-Verlag, September 2000.

[7] B. W. Wah and T. Wang. Simulated anneal-
ing with asymptotic convergence for nonlinear con-
strained global optimization. Principles and Practice
of Constraint Programming, pages 461{475, October
1999.

[8] B. W. Wah and Z. Wu. The theory of discrete La-
grange multipliers for nonlinear discrete optimization.
Principles and Practice of Constraint Programming,
pages 28{42, October 1999.

[9] Z. Wu. The Theory and Applications of Nonlinear
Constrained Optimization using Lagrange Multipliers.
Ph.D. Thesis, Dept. of Computer Science, Univ. of
Illinois, Urbana, IL, October 2000.

