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Abstract

Time-series predictions by artificial neural net-
works (ANNs) are traditionally formulated as un-
constrained optimization problems. As an uncon-
strained formulation provides little guidance on
search directions when a search gets stuck in a
poor local minimum, we have proposed recently
to use a constrained formulation in order to use
constraint violations to provide additional guid-
ance. In this paper, we formulate ANN learn-
ing with cross-validations for time-series predic-
tions as a non-differentiable nonlinear constrained
optimization problem. Based on our theory of
Lagrange multipliers for discrete constrained op-
timization, we propose an efficient learning al-
gorithm, called violation guided back-propagation
(VGBP), that computes an approximate gradient
using back-propagation (BP), that introduces an-
nealing to avoid blind acceptance of trial points,
and that applies a relax-and-tighten (R&T) strat-
egy to achieve faster convergence. Extensive
experimental results on well-known benchmarks,
when compared to previous work, show one to
two orders-of-magnitude improvement in predic-
tion quality, while using less weights.

1 Introduction
We study in this paper new formulations and learning al-
gorithms for predicting stationary time-series using artificial
neural networks (ANNs).

ANNs for modeling time-series generally have special
structures that store temporal information either explicitly
using time-delayed structures or implicitly using feedback
structures. Examples of the first class include time-delayed
neural networks (TDNN) and FIR neural networks (FIR-NN),
whereas examples of the latter include recurrent neural net-
works (RNN) [Haykin, 1994]. In the ANNs studied in this
paper, we use a hybrid architecture with a recurrent structure,
whose neurons are connected by FIR filters, instead of links�
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with constant weights. We believe that such an architecture is
more powerful for modeling unknown temporal information.

Time-series predictions using ANNs have traditionally
been formulated as an unconstrained optimization problem
of minimizing the mean squared errors (MSE):
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where 021 is the number of output nodes in the ANN, * � and- � are, respectively, the actual and desired outputs of the ANN
at time � , 3 is a vector of all the weights, and the training
data consist of patterns observed at �4�5���6��7�7879����� . Exten-
sive research has been conducted in the past on designing
ANNs with a small number of weights that can generalize
well. However, such learning algorithms have limited suc-
cess because little guidance is provided in an unconstrained
formulation when a search is stuck in a local minimum in its
weight space. In this case, the sum of squared errors in (1)
does not indicate which patterns are violated and the best di-
rection for the trajectory to move.

To address the issue on lack of guidance, we have proposed
recently a constrained formulation [Wah and Qian, 2000] on
ANN learning that accounts for the error on each training pat-
tern in a constraint::<;>=?A@CB�DCEGFIHKJIFML�N$OQP �RPTS�P %,U 'RV S LXW E�ETY V EGFZN\[^] V EGF�N�N�_`[bacN (2)

such that dfe J�FMJhg V EGF�N9OiETY V EGFZN\[^] V EGF�N�N�_kjla�J
where m )

�����onqp prescribes that the error of the r ��s output
unit on the � ��s training pattern be less than p , and t �#u\�b��4vCwyxKz ��uh{ . A constrained formulation is beneficial in dif-
ficult training scenarios because violated constraints provide
additional guidance during a search, leading a trajectory to-
wards a direction that reduces overall constraint violations.

In time-series prediction, cross validations are often used
to prevent data from over-fitting. There are two types of
cross-validation errors: single-step validation errors that
measure output errors when external inputs to an ANN are
true observed data, and iterative validation errors that mea-
sure output errors when external inputs to an ANN are pre-
dicted outputs from previous iterations.
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Figure 1: Multiple validation sets in a training set. � L , � _ and ���
are three validation sets. The test test is used for testing the ANN
after learning is completed.

In traditional learning with cross validations, a part of train-
ing patterns is reserved a priori in a validation set and not
used in learning, and the single objective in learning is to min-
imize validation errors. Hence, errors measured in validation
will not be included in learning. This approach is problematic
because it allows only one validation set in learning and ex-
cludes patterns in the validation set to be used in learning. As
a result, learning may not converge when the time-series con-
tains multiple regimes or when training patterns are scarce.

Based on a constrained formulation, we have proposed a
new cross-validation method [Wah and Qian, 2000] that de-
fines multiple validation sets in learning and that includes
the error from each validation set as a new constraint (see
Figure 1). The use of multiple validation sets is especially
suitable for time-series with inadequate training data and for
time-series with multiple stationary regimes. The validation
error for the r ��s output unit from the � ��s

, � � � �87�7�79��� , val-
idation set is defined by the normalized mean squared error
( 	�
��� ):
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where � /� is the variance of the true time series in � � ��� �6��� ��� � � ,
and 0 � is the number of patterns in the � ��s

validation set.
(Note that errors on the test set in Figure 1 are defined in a
similar way.) The constrained formulation then becomes:
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where ��0 (resp. �21 ) is the 	�
���� of the iterative (resp.
single-step) validation error, and p , p30��� ) and p41��� ) are prede-
fined small positive constants.

Eq. (4) is a constrained nonlinear programming problem
(NLP) with non-differentiable functions. The formulation,
when applied to large time-series predictions, cannot be han-
dled by existing Lagrangian methods that require the differen-
tiability of functions. Methods based on penalty formulations
have difficulties in convergence when penalties are not chosen
properly. Sampling algorithms [Wah and Wang, 1999] based
on our recently developed theory of Lagrange multipliers for
discrete constrained optimization [Wah and Wu, 1999], when
continuous variables are discretized to floating-point num-
bers, are too inefficient for solving large learning problems.
To address this issue, we present in this paper an efficient
learning algorithm called violation-guided back-propagation
(VGBP).

2 Theory of Lagrange Multipliers for Discrete
Constrained Optimization

To use a Lagrangian method to solve (4), we first transform it
into an augmented Lagrangian function:5 E*) J76�N$O @ B�D EGF H JIF L N (5)8 P �!
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Since (5) is not differentiable, we discretize variables finely
and solve the problem in discrete space using the theory
of Lagrange multipliers for discrete constrained optimiza-
tion [Wah and Wu, 1999]. Algorithm designed to solve con-
strained NLPs in discrete space can be extended to solve con-
strained NLPs in continuous space because numerical eval-
uations of continuous variables using digital computers can
be considered as discrete approximations of the original vari-
ables up to a computer’s precision. The theory in discrete
space is summarized in three definitions and one theorem.
Definition 1. ?A@�B � 3 � is a finite user-defined set of points3DC so that 3EC is reachable from 3 in one step and that 3 can
reach any point in the discrete weight space through ?F@�B � 3 � .
Definition 2. Point 3 is a GIHJ
K@�B iff (4) is feasible at 3
and the objective function is the smallest in x 3 {ML ?F@�B � 3 � .
Note that a GIHJ
N@�B of (4) is the same as a feasible point.
Definition 3. ��O�@�B � 3MP ��Q P � , a discrete-neighborhood sad-
dle point at � 3DP ��Q P � , satisfies:HJ@ � 3SR � Q\�kn HT@ � 3SR � Q R �kn HJ@ � 3 � Q R � (6)

for all 3�UV? @�B � 3 R � and all real vector Q .
Theorem 1. First-order necessary and sufficient condition
on GIHT
N@�B [Wah and Wu, 1999]. A point in the discrete
space of (4) is a GIHT
 @�B iff it satisfies (6) for any QXWYQ R ,
where QNW�Q R means that each element of Q is not less than
the corresponding element of Q R .

The theorem shows that solving (4) in discrete space is
equivalent to (the much easier problem of) finding ��O @�B of
(5). Note that the theorem does not hold in continuous space.

3 Violation-Guided Back-Propagation
In this section we describe an efficient algorithm to look for��O @�B in the Lagrangian space defined in (5). The shaded box
in Figure 2 [Wah and Chen, 2000] shows the framework with
two parts: one performing descents in the 3 subspace and
another performing ascents in the Q subspace. As indicated
earlier, random sampling in a Lagrangian space with discrete3 is too inefficient. To this end, we propose in Section 3.1
to use BP to compute an approximate gradient direction in
order to generate a probe. Since gradient descents may lead to
infeasible local minima, we present a new annealing strategy
in Section 3.2 to help escape from infeasible points. Last, we
exploit special properties in the constrained formulation for
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Figure 2: An iterative learning procedure using a discrete constrained formulation for ANN time-series prediction. The shaded box represents
the routine to look for �����
	 . R&T stands for our proposed relax-and-tighten strategy.

ANN learning and present in Section 3.3 a new relax-and-
tighten (R&T) strategy to successively tighten constraints as
more relaxed constraints are satisfied. The R&T strategy is
depicted in the two boxes on the left of Figure 2.

3.1 Framework to look for �����
The 3 loop in Figure 2 performs descents in the 3 subspace
by generating candidates in Box (A) and by accepting the
candidates generated using deterministic or annealing rules in
Box (B). Occasionally, the Q loop carries out ascents in the Q
subspace by generating candidates in the Q subspace in Box
(C) and by accepting them using deterministic or annealing
rules in Box (D). In this subsection we present the functions
of Boxes (A), (C) and (D) and leave the discussion of Box (B)
to the next subsection.

For a learning problem with a large number of weights
and/or training patterns, it is essential that the points gener-
ated be likely candidates to be accepted. Since (5) is not dif-
ferentiable, we choose an approximate gradient direction by
setting output error � C) �#���� Q )

����� � ) �#��� , applying BP to com-
pute the gradient of the mean squared errors of � C) �#��� , generat-
ing a trial point using the approximate gradient and step size� , and mapping the trial point to (discretized) floating-point
space. In this way, a training pattern with a large error (and
its corresponding Lagrange multiplier) will contribute more
in the overall gradient direction, leading to an effective sup-
pression of constraint violations,

Step size � used in deriving a candidate point must be dy-
namic because the same candidate point will be generated re-
peatedly using a fixed � and a deterministic gradient algo-
rithm. In our algorithm, we generate � uniformly in � z � � �X�
and adapt � � dynamically based on the acceptance ratio � of
candidate points generated. The reason for the latter strategy
is that a high � indicates that the current direction is promis-
ing, leading to increases in � � and larger step sizes. On the
other hand, a low � indicates that the step size is too large
for the current search terrain, leading to decreases in � � and
smaller step sizes. After extensive experiments, we adjust � �
as follows:

� ��� +
�� � � � ��� ��� /�� � �\��! "$#��� �%! "'& if �)( z+*-,� �/. � ��� /�� ��! 0��y�1#�%! 0 & if �)2 z+* 3 (7)

Box (C) in Figure 2 increases Q as follows:Q4� +XQ � �
if true violation ( � * � p (8)
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Figure 3: Progress of MSE defined in (1) for 5 O : and 5 O76
during learning of an ANN to predict the MG17 time-series.

where p is the tolerance defined in (4) and (5). This rule pe-
nalizes a violated constraint relative to p . We do not generateQ probabilistically because we like their effects on guidance
to take place as soon as possible. The deterministic update ofQ leads to the deterministic acceptance of Q in Box (D).

3.2 Probabilistic acceptances in the 8 subspace
Since the gradient direction computed by BP does not con-
sider constraints due to cross validation and the step size is
chosen heuristically, it is possible that a search may get stuck
in infeasible local minima. In previous studies, restarts are
often used to help escape from such points. However, our ex-
perimental results have shown that uncontrolled restarts may
lead to loss of valuable local information collected during a
search. To solve this problem, we propose an annealing strat-
egy in Box (B) that decides whether to go from current point� 3 � Q\� to � 3 C � Q\� according to the Metropolis probability:9�: �<; C �
; ��= > ���8u@?BA �DC��DE #F� C��DEHG #<#JI: K (9)

where uMLi� ��� �hxKz ��u${ , and N is a parameters introduced to
control the acceptance probability.

Figure 3 plots the progress of the mean squared errors
(MSE) defined in (1) of training an ANN to predict the
Mackey-Glass-17 time-series (in short MG17) by using two
fixed temperatures: N � �

and N �PO , respectively. (MG17
is used as a running example throughout this section unless
specified otherwise.)

When N �PO is combined with restarts, the algorithm ac-
cepts every trial point generated in the same way as traditional
BP. Figure 3 illustrates this behavior by showing a search that
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Figure 5: Decreases of maximum violation over all training pat-
terns between using different initial violation tolerance a (broken
lines) and using our relax-and-tighten (R&T) strategy (solid line).

explores a local region in the first 4000 evaluations, got stuck
in an infeasible local minimum, and restarted to a new point
without keeping any history information.

On the other hand, using N � �
allows the search to accept

trial points according to (9) and rejects poor points with high
probability. Consequently, the algorithm keeps implicitly the
history information of points searched in the past and pro-
gresses smoothly without escaping into poor regions blindly.

In contrast to conventional annealing schedules that start a
search at high temperatures and decrease the temperature to
zero as time runs out, we use a fixed temperature throughout
the search. A fixed temperature is chosen so that local de-
scents will only be carried out by BP and not by annealing
at low temperatures, and that a search will always have an
opportunity to explore better regions. Figure 4 shows the im-
provements in maximum constraint violations when a fixed
temperature is used as compared to those at low temperatures
using a dynamic temperature schedule.

3.3 Relax-and-tighten (R&T) strategy
It is undesirable to set violation tolerance p � z initially in
a search because we do not know whether such a violation
tolerance can be achieved by the search. Moreover, settingp � z will result in considerably large violations in each pat-
tern, leading to large Q ’s, a rugged search space, and a more

difficult search. On the other hand, if we set a loose p ( z
initially, then most constraints can be satisfied easily, and the
algorithm can focus on the few patterns with large constraint
violations and increase their corresponding Q ’s.

Another observation is that the progress of a search dif-
fers considerably for different fixed p ’s. These differences
are illustrated in Figure 5 that shows the average maximum
violations for different 0 (number of evaluations) over five
independent runs. When 0 is small, there is little difference
in maximum violations. As 0 is increased, runs with largerp ’s have faster decreases in maximum violation than those
with smaller p ’s. Eventually, all the curves level off when ei-
ther all constraints are almost satisfied using the specified p
or further improvement is impossible using the given ANN
topology. The figure also shows a steeper rate of decrease of
maximum violations with larger p ’s.

Our proposed R&T strategy exploits the different conver-
gence behavior due to different p ’s by dynamically adjustingp during a search in order to achieve the fastest convergence
rate through the search. This is done by choosing a loose p
initially and by tightening p � � p when the maximum vi-
olation of all constraints satisfies �4vCw ) x m )

����� { n � � �� �Zp ,
where z 2  2 � 2 �

. In this way, the search will try to use
the largest possible p at any time and will switch to a smallerp as the convergence behavior using the original p levels off.

Figure 5 illustrates the behavior of our proposed R&T al-
gorithm. Initially, we set p � z *�� , leading to the steepest
convergence behavior. When the convergence behavior lev-
els off, we switch to pl� z+* � 3 by tightening the constraints,
again leading to the steepest convergence behavior for the
range of 0 used. By repeatedly tightening constraints, the
convergence behavior of R&T leads to the envelope of the
best convergence behavior at all times.

The choice of the initial p is not critical to convergence
as long as it is large enough because the larger the p is, the
steeper the curve will be and the shorter the amount of time
before it will level off and tighten p . In our implementation,
we set initial p � z+* �,�4v w ) x m )

�#����{ over all constraints,
� �z * �@3 , and

 � z * � . Around those values, convergence is not
sensitive to different

�
’s and


’s.

The R&T strategy works well on a constrained formula-
tion of ANN learning because all constraints are defined in
the same range (limited by the activation function) and all
constraints have similar magnitudes. In a general constrained
NLP in which constraint violations may vary in large ranges,
it will be necessary but difficult to define different amount of
relaxations for different constraints. As a result, R&T does
not work well in solving general constrained NLPs.

3.4 Parameters in VGBP
In this section, we summarize the values of parameters used
in VGBP. First, we set N ��� 0���� � (10)

where 0 � is the number of training patterns and is known
when training begins, � is the range in which ANN outputs
are normalized and is set to a default value of one, and � is
a constant. N should be proportional to 0 � because (5) is
proportional to 0�� when all patterns have approximately the



Table 1: Single-step and iterative test performance in � � ��� on laser. (The test set consists of patterns from 1001 to 1100. As a comparison,
we also show the performance on patterns from 1001 to 1050. Boxed numbers indicate the best results; N/A stands for data not available.)

Method
Number of Training Single-step predictions Iterative predictions

weights 100-1000 1001-1050 1001-1100 1001-1050 1001-1100
FIR network [Wan, 1993] 1105 0.00044 0.00061 0.023 0.0032 0.0434

ScaleNet: Multi-scale ANN [Geva, 1998] N/A 0.00074 0.00437 0.0035 N/A N/A
VGBP (Run 1)

�
�

�
�461

�
�

�
�0.00036 0.00043 0.0034 0.0054

�
�

�
�0.0194

VGBP (Run 2)
�
�

�
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Figure 6: Robustness of VGBP with respect to � in predicting the
MG-17, MG-30, and sunspots time-series.

same level of violation. Likewise, N should be proportional
to � because � affects (5) in a similar manner.

Figure 6 shows the average 	�
���� ’s over 10 runs of
VGBP under different � ’s for MG17, MG30, and sunspots.
Since VGBP is robust over a wide range of � U � � z �
	 � � z � / � ,
we set the default � to be

� z � � in our implementation.
We further set � � in (7) to be

� * z . Since � � is adjusted dy-
namically, its initialization has no significant impact on per-
formance. The setting of p ,

�
and


in R&T has been dis-

cussed in Section 3.3.
In short, all the parameters in VGBP are set either by de-

fault or automatically, with no tuning required by users.

4 Experimental Results

We have evaluated VGBP with respect to 	�
���� and the
number of weights on several benchmarks.

Laser is a set of chaotic intensity pulsation of an 0�� �
laser in the Santa Fe competition. In that competition, FIR-
NN [Wan, 1993] took the first place. Table 1 shows that
VGBP improves over previous algorithms in terms of pre-
diction quality as well as number of weights used.

Sunspots contains yearly average sunspot numbers from
1700 to 1994. Using data from 1700 to 1920 for training
and single-step predictions on four durations, Table 2 shows
that VGBP achieves much better performance on all predic-
tion periods, while using less weights than previous designs.

Table 3 compares single-step prediction results using
VGBP with previous work on 5 chaotic time series. The two
sets of Mackey-Glass and Henon map have one input and one
output, whereas Lorenz attractor and Ikeda attractor have
one input and two outputs as specified in [Wan, 1997] and
[Aussem, 1999].

Table 2: Single-step test performance in � � ��� on sunspots
for different algorithms. Results on AR(12), WNet, COMM are
from [Wan, 1997], ScaleNet is from [Geva, 1998], and DRNN is
from [Aussem, 1999]. Boxed numbers indicate the best results; N/A
stands for data not available; � represents the number of weights/free
variables used in each method.)

Method � Training Single-Step Testing
1700-1920 1921-55 1956-79 1980-94 1921-94

AR(12) 12 0.128 0.126 0.36 0.306 0.238
WNet 113 0.082 0.086 0.35 0.313 0.219
SSNet N/A N/A 0.077 N/A N/A N/A
DRNN 30 0.105 0.091 0.273 N/A N/A
COMM N/A 0.079 0.065 0.24 0.188 0.148
ScaleNet N/A 0.086 0.057 0.13 N/A N/A
VGBP

�
�

�
�11

�
�

�
�0.0559
�
�

�
�0.0337
�
�

�
�0.0524
�
�

�
�0.0332
�
�

�
�0.0397

In terms of single-step predictions, Table 3 shows that
VGBP uses less weights and achieves impressive 	�
���� ’s
one to two orders of magnitude smaller than those of other
methods.

Similarly, VGBP achieves much more accurate itera-
tive predictions as compared to those of [Wan, 1997]
and [Aussem, 1999]. For example, VGBP was able to achieve
iterative-prediction 	�
���� ’s of z * z � � for MG17 and z * z�z���
for MG30, respectively, for the duration 501-600. In contrast,
applying Wan’s training algorithm on FIR-NN [Wan, 1997]
leads to iterative-prediction 	�
���� ’s of z * ����� � for MG17
and z * � � � , for MG30. Figure 7 plots the iterative predictions
of the ANN found by VGBP and that by Wan’s algorithm for
MG17 and MG30. The figure shows that our iterative predic-
tions are accurate for as many as 100 steps.

In general, it may be hard to predict chaotic time series
multiple steps into the future since they are unpredictable by
their nature. For this reason, DRNN [Aussem, 1999] did
not emphasize prediction performance, especially iterative-
prediction performance [Aussem, 2001]. However, our work
has shown that it is possible to predict at least the first 100
steps for the Mackey-Glass time series, and better for the
other three sets of chaotic time series, although iterative pre-
dictions are much harder for the latter. For example, we can
achieve an 	�
���� of only z+* � �� � for the first 20 steps of
Henon map, whereas Wan’s algorithm achieves an 	�
���� ofz *  �@3�� .

In short, constrained formulations solved by VGBP lead to
superior prediction performance for the benchmarks tested.
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Table 3: Comparison of single-step-prediction performance in � � ��� on five methods: Carbon copy (C.C), linear and FIR [Wan, 1993],
DRNN [Aussem, 1999], and VGBP. Carbon copy simply predicts the next time-series data to be the same as the proceeding data ( � EGF 8 : N$O
� EGF�N ). The training (resp. testing) set indicates patterns used for learning (resp. testing). Lorenz attractor has two data streams labeled by �
and � , respectively, whereas Ikeda attractor has two streams – real (

� +CE � N ) and imaginary ( ��� E � N ) parts of a plane wave.

Bench- Training Testing Performance Design Methods
Mark Set Set Metrics C.C. Linear FIR DRNN VGBP

MG17 1-500 501-
2000

� � ��� 0.6686 0.320 0.00985 0.00947
�
�

�
�0.000057

# of weights 0 N/A 196 197
�
�

�
�121

MG30 1-500 501-
2000

� � ��� 0.3702 0.375 0.0279 0.0144
�
�

�
�0.000374

# of weights 0 N/A 196 197
�
�

�
�121

Henon 1-5000 5001-
10000

� � ��� 1.633 0.874 0.0017 0.0012
�
�

�
�0.000034

# of weights 0 N/A 385 261
�
�

�
�209

Lorenz 1-4000
4001-
5500

� � � � x 0.0768 0.036 0.0070 0.0055
�
�

�
�0.000034

z 0.2086 0.090 0.0095 0.0078
�
�

�
�0.000039

# of weights 0 N/A 1070 542
�
�

�
�527

Ikeda 1-10000
10001-
11500

� � � � � +CE � N 2.175 0.640 0.0080 0.0063
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Figure 7: Comparisons of 100-step iterative predictions on two sets of Mackey-Glass time-series. Solid lines represent actual data; long
dashed lines indicate predicted data using VGBP; and short dashed lines are prediction results by running Wan’s FIR-NN training algorithm
in [Wan, 1993].
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