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Abstract

[n this paper, we propose new dominance relations that can
speed up significantly the solution process of planning prob-
lems formulated as nonlinear constrained dynamic optimiza-
tion in discrete time and space. We first show that path domi-
nance in dynamic programming cannot be applied when there
are general constraints that span across muitiple stages, and
that node dominance, in the form of Euler-Lagrange con-
diticns developed in optimal control theory in continuous
space. cannot be extended to that in discrete space. This pa-
per is the first to propose efficient node-dominance relations.
in the form of local saddle-point conditions in each stage of a
discrete-space planning problem, for pruning states that will
not lead to locally optimal paths. By utilizing these domi-
nance relations, we present efficient search algorithms whose
complexity. despite exponential, has a much smaller base as
compared to that without using the relations. Finally, we
demonstrate the performance of our approach by integrating
it in the ASPEN planner and show significant improvements
in CPU time and solution quality on some spacecraft schedul-
ing and planning benchmarks.

Introduction

Many planning, scheduling and control applications can
be formulated naturally as constrained dynamic optimiza-
tion problems with dynamic variables that evolve over time.
These problems can generally be classified into four types:

e continuous-time continuous-state problems,
e discrete-time continuous-state problems,

e continuous-time discrete-state problems, and
o discrete-time discrete-state problems.

The first two classes have been studied as functional op-
tinuzation problems in classical calculus of variations and
as optimal control problems in control theory. In these two
classes of problems, variational techniques and calculus of
variations are the major solution tools when the objective
and constraint functions are continuous and differentiable.
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In this paper, we are interested in the last class defined
above, namely, planning problems formulated as nonlin-
ear constrained dynamic optimization problems in discrete
space and time:

N
min - Jly] =3 F(ty(t),y(t +1)) ()
t=0
subject to E(t,yt))=0, t=0,---,N+1,

G(t7 y(t)v y(t + 1)) =0,
and I(y) =0,

with dummy constraints G(N +1,y(N+1),y(N+2)) =0
always satisfied. Here, ;(t) is the 1t? discrete dynamic state
variable in stage (time step) t; y(t) = (y1(t), -, yu(t))T
is a u-component state vector in discrete space J; E =
(Ep,--- ,ET)T is a r-component vector of functions called
the local constraints; G = (G1,--- ,Gp)T is a p-component
vector of Lagrange constraints (Cadzow 1970); and I =
(I,---,1,)T is a g-component vector of general con-
straints. In this definition, a local constraint only involves
local state variables in one stage, a Lagrange constraint in-
volves state variables in two adjacent stages, and a gen-
eral constraint involves state variables across more than two
stages. Note that F', G and I are not necessarily continuous
and differentiable. For simplicity and to mirror the defintion
in traditional calculus of variations, we have defined an ob-
jective that is composed of multiple objectives, each across
a pair of stages. However, this assumption can be relaxed
by using a general objective function in the same way as a
general constraint in the formulation. Lastly, although we
have defined (1) with equality constraints, we show exten-
sions later for handling inequality constraints.

A solution y = (y(0),y(1),--- ,»{(N + 1)) to (1) con-
sists of u discrete-time curves,' one for each dynamic state
variable. Following conventional terminologies in continu-
ous control theory, we call y a bundle (or a vector of curves)
for both continuous- and discrete-time cases, and J[yj, a
functional defined as a mapping from y to a value in R.

Many applications in discrete time and space formulated
in (1) are characterized by multiple stages (discrete time
horizons) with a discrete search space, local constraints

'In this paper, we use the term “curve” for both continuous-
and discrete-time cases. A discrete-time curve is typically named a
“sequence.”
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Figure 1: A classification of existing approaches, where the
shaded boxes indicate our focus in this paper.

in each stage, Lagrange constraints between neighboring
stages, general constraints across more that two stages, and
procedural objective and constraint functions. Ample exam-
ples exist in production planning and scheduling, chemical
control processing, automated vehicle path planning, and ac-
tion scheduling. For example, some Al planning problems
can be formulated in (1) using a discrete planning horizon,
discrete state vectors representing positive and negative facts
in each stage, and constraints representing preconditions and
effects of actions. In that case, both space and time are
discrete. Another example is in planning spacecraft oper-
ations over a horizon. The application involves finding a
sequence of low-level commands from a set of high-level
science and engineering goals, such as spacecraft operabil-
ity constraints, flight rules, hardware models, science exper-
iment goals, and operation procedures, subject to parameter
dependencies and temporal and resource constraints. In this
application, a Lagrange constraint relates state variables in
adjacent time steps, whereas a general constraint may repre-
sent the total fuel available in the horizon.

Figure | classifies existing Al planning and scheduling
methods and our focus in this paper.

Existing methods for solving discrete-state discrete-time
problems can be classified into four categories:

e Systematic search methods that explore the entire state
space are expensive because they are enumerative. Exam-
ples include Graphplan, STAN and PropPLAN.

» Heuristically guided and local searches that search in dis-
crete path space depend heavily on the guidance heuris-
tics used and are not guaranteed to find feasible bundles.
Examples include HSP, FF, AltAlt, and ASPEN.

e Transformation methods transform a planning problem
into a constrained optimization or satisfaction problem
before solving it by existing constrained programming
techniques. They allow objectives to be coded easily and
discrete resource constraints to be handled. However,
constrained searches are too computationally expensive
when applied to solve large planning problems. Exam-
ples include SATPLAN, ILP-PLAN, and Blackbox.

To overcome the exponential complexity of systematic
searches, it is essential to develop techniques for reducing
the worst-case exponential complexity ot these methods. In
this paper, we propose powerful node-dominance relations

<= P—h binary ¢,
Stage t dominance 7 2

8 S relation
@ Oc C1
P

a) Principle of Optimality
applied to feasible states

b) Termination of ¢; by node
dominance, independent of P,

Figure 2: The application of path and node dominance in con-
strained minimization.

Table 1: Worst-case complexities of enumeration algorithms with
path and/or node dominance, where |s| < [)].

Constraint Without General With General Const.
Type Constraints (W/O Path Dominance)

Dominance || With Path With Path & ‘W/O Node With Node
Used Dominance Node Dom. Domi e Domi e

complexiyJo M¥I2 o NI +Is?) [[o 1YV o 1YIN|sY

in order to reduce the base of the exponential complexity.

The class of discrete-time, mixed-state problems have
been solved by heuristic methods (Metric-FF, GRT-R) and
transformation methods (LPSAT), whereas the class of
continuous-time, mixed-state problems have been solved by
systematic searches (SHOP2, TALplanner), heuristic meth-
ods (MIPS, Sapa), and local-search methods (LPG, Europa).
We discuss later the extension of our proposed approach to
these two classes.

In general, the complexity of a muiti-stage path-search
problem can be reduced by dominance relations. Such rela-
tions can be classified into path dominance studied in tradi-
tional dynamic programming and node dominance.

A special case of (1) with local and Lagrange constraints
but without general constraints can be solved by dynamic
programming, as is illustrated on an intermediate feasible
state ¢ in Figure 2a. The Principle of Optimality (Bellman
1957) states that, if ¢ lies on the optimal bundle from s to the
final state, then it is necessary and sufficient for the bundle
from s to ¢ to be optimal. According to the principle, if
bundle P; (resp. P,) from s to ¢ has objective value J;
(resp. Jo), based on variables assigned in P (resp. P»), and
Jo < Ji, then P; cannot to be part of the optimal bundle.
That is, P, is path dominatedby Py (Py — Py).

Since dominating paths involve only feasible states in
each stage and there is no efficient algorithm for identify-
ing feasible states when constraints are nonlinear, we may
need to enumerate all possible states in each stage in the
worst case. To estimate this worst-case complexity, consider
asimple (N + 2)-stage search problem, with an initial state
in the first stage, a final state in the last stage, and |)/| states
instaget = 1,---, N, where ) is the discrete search space
in each stage. The complexity to find an optimal bundle is
O (N|Y|?), which is polynomial in |'|. The second column
in Table | summarizes this complexity.

When general constraints I(y) = 0 are present in (1),
the Principle of Optimality is not satisfied because a path-
dominated partial bundle in a stage may satisfy a general
constraint that spans beyond this stage, whereas a path-
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Figure 3: The pruning of dominated states in each stage leads toa
smaller search space in finding optimal bundles across stages.

dominating partial bundie may not. Hence, an algorithm for
finding an optimal bundle may need to enumerate all possi-
ble bundles across all stages in the worst case, leading to a
complexity exponential® in | V| (fourth column in Table 1).

Another type of dominance that does not involve the Prin-
ciple of Optimality is a binary node-dominance relation
¢o — ¢y that prunes c; in Figure 2b. Node dominance rela-
tions are conditions that relate one state to another in such a
way that a dominated state can be pruned safely because it
cannot lead to better feasible objective values than those of
a dominating state. They are different from path dominance
because they only depend on local state variables and not on
paths leading to these states. They help reduce the overall
number of bundles enumerated because any feasible bundle
should involve only dominating but not dominated states in
each stage. Note that node dominance is only necessary for
global optimality in (1).

When only local and Lagrange constraints are present in
(1}, node dominance, if exists, can be combined with path
dominance to further reduce the search complexity. For sim-
plicity, let s C ) be the set of dominating states not pruned
by node dominance in stage t =0, - -, N 41 in the multi-
stage example above. An exhaustive search for finding an
optimal bundle will first enumerate all states in stage t and
then apply node dominance in order to identify s. It then
applies path dominance on the |s|? pairs of states across
adjacent stages n order to identify the optimal bundle.
This leads to a worst-case complexity of O (N(l)ii + 1s%)),
which is better than that when path dominance is applied
alone (third column in Table 1).

Last, when general constraints I(y) = 0 are present in

(1), only node dominance but not path dominance can be
applied. Node dominance in this case helps restrict the
state space in each stage to be searched. For instance,
an algorithm for finding an optimal bundle may enumerate
all possible combinations of bundles of |s| states in stage
t = 0,---,N + 1, leading to a worst-case complexity of
O (N]Y| x |s]V) (ast column in Table 1). Here, we assume
a worst-case complexity of |V] in stage ¢ for finding a dom-
inating state in s. Since |s| is generally much smaller than
|3} node dominance helps reduce the base of the worst-case
exponential complexity to a much smaller value.
*The implicit assumption is that (1) with general nonlincar dis-
crete constraints is NP-hard: hence, it is unlikely that the problem
is polynomially solvable. An enumerative algorithm can find an
optimal bundle in worst-case complexity O | Y[V
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Figure 3 illustrates the reduction in search space due to
node dominance. By partitioning the search into stages and
by finding only dominating states in each stage, the search
can be restricted to only dominating states in each stage.
This focus will lead to a significant reduction on search com-
plexity, especially when it takes exponential time to find op-
timal bundles in the presence of general constraints.

In the calculus of variations in classical control theory,
node dominance in Figure 2b has been applied to solve
continuous-state problems. Since the conditions in continu-
ous space are based on necessary conditions in the theory of
Lagrange multipliers, they can only be proved to be neces-
sary. As a result, a dominating state may not always lead to
feasible bundles, even when general constraints are absent.

We have introduced new node-dominance relations for
solving (1) (Chen & Wah 2002) by partitioning global nec-
essary conditions, based on the theory of Lagrange multipli-
ers in discrete space (Wah & Wu 1999), into multiple sets
of local node-dominance relations, one for each stage of the
problem. The use of Lagrange multipliers in the global prob-
lem as well as the decomposed subproblem in each stage
allows these problems to be solved in a uniform fashion.

Our approach extends the calculus of variations in contin-
uous space to that in discrete space. We first formulate (1)
without general constraints in a Lagrangian function with
discrete variables. Based on the theory of Lagrange multi-
pliers in discrete space (Wah & Wu 1999), we reduce the
search to finding a saddle point in a discrete neighborhood
of the bundle, where a neighborhood is the union of discrete
neighborhoods in each stage. Since such a neighborhood
is very large when the number of stages is large, it is hard
to find feasible bundles within it. To this end, we partition
the original Lagrangian function into multiple Lagrangian
functions, each involving only local variables in a stage of
the problem. The search for a saddle point in the original
neighborhood is then reduced to the search for multiple lo-
cal saddle points, one in each stage. Moreover, we show that
the collection of local saddle points are necessary for local
optimality.

To implement the theory, we present DCV+CSA, a gen-
eral search algorithm that uses constrained simulated an-
nealing (CSA) (Wah & Wang 1999) to look for local sad-
dle points in each stage, and the dynamic decomposition
of time steps into stages. We employ CSA (Wah & Wang
1699) to look for saddle points in each stage by perform-
ing descents in the original variable subspace and ascents in
the Lagrange-multiplier subspace. To demonstrate our ap-
proach, we integrate DCV+CSA into ASPEN (Chien, et al.
2000) and show significant improvements in time and qual-
ity on some spacecraft planning benchmarks, as compared
to those obtained by ASPEN.

Figure 4 illustrates our approach on a toy example in
ASPEN (Chien, er al. 2000). The application involves
scheduling four activities over a horizon of 60 seconds,
while satisfying various constraints relating the activities
and “powerresource,” “‘color_state,” and “color_changer.”
By partitioning the horizon into three stages, eleven con-
straints are localized, leaving only two Lagrange constraints
and two general constraints. In this toy example. the number



model toy {HORIZON_START = 1998-1/00:00:00; horizon_duration = 60s; time_scale = second; }:

parameter string color {domain = ("red",

*blue”,
State_variable color_sv {states = (*red", "blue",

"green"});};
"green*); default_state = "red";};

Resource power {type = non_depletable; capacity = 25; min_value = 0;1};

Activity color_changer {color c; duration =
Activity Al {duration = [10,20]; constraints

reservations = color_sv change_to c;};
ends_before start of A2 by [0,30];

reservations = power use 10, color_sv must_be "green";};

Activity A2 (duration = 10; reservations =
// initial schedule
Al act_1 {start_time
A2 act_3 {start_time

0; duration = 15;};
30; duration = 10;};:

act_2 { start_time
act_4 ( start_time

power use 20, color_sv must_be "blue®;};

20; duration = 10;};
50; duration = 10;};

Local constraints (B, -+ - , B}

- color_state constraints for act.1, act_2, act_3,

- power_resource constraints for act_1 thru act_4;

- color_state transition constraints relating
color_changer and color_state

- act_2 ends_before start of act_3 by [0,30].

Bt ! Lagrange constraints:
i iEu - qct_1 ends.before start of act.3 by [0,30] (g1);

- act_2 ends_before start of act_4 by {0,30] (g2).

General constraints:

- act_1 ends_before start of act_4 by [0,30) (I1);

- power_resource always less than capacity of

- power._resource {I2).

0 Stagel 10 20 Stage2 30 40 Stage3 50 60
L 1 l 1 ! 1 . - —d
Al act_1 ) - 3 act2 : Time Horizon
Sorvenaa. rene H
Ad TR, o e
A2 P TR acrs TR add
color_changerL_1 é E Es 'E E"i g |_‘__1 ” : é é
i, 52 A
cotor_state ¥ ¥ i S A vy :
Fed 1 E blue 5 H I E E green H
power_resource ‘ . ' H
| 10 | i o I [ 20 ]
I F eramass seasasammsssssasense L4 S, R .

Figure 4: A toy example from ASPEN (Chien, et al. 2000) in which the goal is to find a valid schedule that completes activities act.1,
act_2, act.3, and act_4. The horizon is divided into three stages: {0,201, [21, 40], [41, 60].

of iterations is reduced from 16 taken by ASPEN to 12 taken
by our proposed ASPEN+DCV+CSA.

Previous Work
Calculus of variations in continuous space

In classical variational theory, the simplest form of a fun-
damental continuous-time continuous-state functional opti-
mization problem is defined as follows:

131
minJo = [ P,y Ot wherey() € R*.
to

Since it is generally difficult to find conditions for an ab-
solute minimum curve in a search space, the theory in con-
tinuous space defines the concepts of strong and weak rela-
tive minimum (Dreyfus 1965). The study led to a number
of necessary conditions for a curve to be a weak relative
minimum, among which the most important is the Euler-
Lagrange condition stated below in its differentiated form.

Theorem 1. Continuous-time continuous-state Euler-
Lagrange condition (Dreyfus 1965). If bundle y is a weak
relative minimum to (2), and if ¢ is any pointin [tg, t1] where
derivative y/(t) exists, then the following Euler-Lagrange
equation holds:

Pt y'(®) — o Fy 6@y @) =0 )

Analogous to variational theory in continuous time and
space, the calculus of variations in discrete time and con-
tinuous space was studied since the 1960s. A Sfundamental

functional optimization problem in discrete time and contin-
uous state is defined as follows:

N
mgn.f[y] =S F(ty(t),y(t + 1)), wherey(t) € R*. (4)
t=0

Such studies led to the development of discrete-time Euler-
Lagrange equations (Cadzow 1970), the Noether The-
orem (Logan 1973), and extensions to integrable sys-
tems (Veselov 1988).

Although these results do not consider constraints, side
constraints, including Lagrange constraints and isoperimet-
ric constraints (Cadzow 1970), can be included. Constraints
are typically handled by using Lagrange multipliers to trans-
form a constrained problem into an unconstrained one, and
by applying the Euler-Lagrange condition on the Lagrangian
function to get the Euler-Lagrange equations. The condi-
tions obtained are only necessary but not sufficient, as the
theory of Lagrange multipliers only yields necessary condi-
tions for continuous optimization. .

Unlike (2) and (4), constraints in general control prob
lems (Cadzow 1970) are introduced explicitly by a control
vector and a control function governing the system. The
major principle for such control problems is the Pontryagin
minimum principle (Dreyfus 1965; Cadzow 1970) that can
be derived by first treating the controf function as a side con-
straint, transforming a general problem into a constrained
fundamental problem, constructing a Lagrangian function
using Lagrange multipliers, and finally solving the Euler-
Lagrange equations.

The theory in continuous space apptlies to continuous and
differentiable functions and cannot be used to solve (1) in
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discrete space when functions are not continuous and differ-
entiable. To solve (1), we first apply our theory of Lagrange
multipliers for discrete constrained optimization (Wah & Wu
1999) to (1) without general constraints and show that a bun-
dle satisfying the discrete-neighborhood saddle-point condi-
tion is necessary and sufficient for it to be a local-minimum
bundle in its discrete neighborhood. We then establish coun-
terpart discrete-neighborhood Euler-Lagrange equations for
(1) and show that the saddle-point condition on a bundle can
be partitioned into multiple saddle-point conditions, one for
each stage. Due to space limitations, we do not show the ex-
tension of our results to the Pontryagin minimum principle
for discrete-space general control problems.

Lagrangian theory on discrete constrained
optimization

Consider a discrete equality-constrained nonlinear program-
ming problem (NLP):

min ()

where z is a vector of  (5)

subject to h(z) =0, discrete variables.

Here, f(z) and h(z) = (hi(2), - hm(z))T are either ana-
lytic or procedural. We do not include inequality constraint
g(z) < 0in (5), as it can be handled easily by transforming
the constraint function into an equivalent equality constraint
using a a non-negative continuous transformation function
H defined as follows:

W [=0 iffg(z) =0,
Higl@)) {Z 0 otherwise. ©)
Function H is easy to design; examples of which in-
clude H(g(z)) = (lg1(2)},-- -, lgx(x))T and H(g(z)) =

(max(g1{x),0), - , max(gx(z), 0))T. As aresult, g(z) <
0 can be transformed into H(g{z))} = 0. Such transforma-
tions are not used in conventional Lagrange-multiplier meth-
ods in continuous space because the transformed functions
are not differentiable at g(z) = 0. However, they do not
pose any problem in our algorithms because we do not re-
quire their differentiability. Moreover, practical search algo-
rithms employing greedy search do not enumerate all possi-
ble neighborhood points.

To characterize solutions sought in discrete space, we de-
fine N'(x), the neighborhood (Aarts & Korst 1989) of point
 in discrete space X, as a finite user-defined set of points
{2/ € X} in such a way that z’ is reachable from z in one
step, that z/ € A (z) <= = € N(z'), and that it is possible
to reach every other 2’/ starting from any x in one or more
steps through neighboring points.

Point = € X is a discrete-neighborhood constrained lo-
cal minimum (CLAMgy) if it satisfies two conditions: a)
o is a feasible point, implying that z satisfies h(z) = 0;
and b) f(z) < f(a') for all feasible 2’ € N (z). Point
+ € X is a discrete-neighborhood constrained global min-
imum (CGMan) if 1 is feasible and f(x) < f(z') for all
e X,

A generalized Lagrangian function (Wah & Wu 1999) of
(5) is defined as tollows:

Ld(gj, A) = f(.L‘) + /\7H (’I(L)) s (7)
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Figure 5: An iterative procedure to look for S Py, (Wah & Chen
2001).

where A = (A1, -+ ,Am)T is a vector of continuous La-
grange multipliers, and H is defined in (6).

A direction of maximum potential drop (DMPD) defined
in a discrete neighborhood of Lg4(x, A) at point x for fixed A
is a vector that points from z to ¥’ € {z} U N (z) with the
minimum Lg:

AILd(iE,/\) = z—z= (:[:'1 — Ty, ’3":1 _xn)T
wherez’ =  argmin La(y, A).
yeN (z)U{z}

A discrete-neighborhood saddle point S Pyn(x*, \*) sat-
isfies the following property similar to that of S P, (saddle
point in continuous neighborhoods):

La(z*, ) < La(z*, A*) < La(z, A7), (8)

for all z € A(z*) and A € R™. However, SPy, and SFcn
are different because they are defined using different neigh-
borhoods.

Theorem 2. First-order necessary and sufficient condi-
tions for CLM 4, (Wah & Wu 1999). A point in the discrete
search space of (5) is a CL My, iff it satisfies either:

a) the saddle-point condition (8) for any A > A*; or
b) the following discrete-space first-order conditions:

AzLg(z,\) =0and h(z) = 0. G

Theorem 2, when applied to solve (5), is stronger than
its counterpart continuous-space first-order necessary con-
ditions, which require CLM_,, (CLM in continuous neigh-
borhoods) to be regular points and all functions to be dif-
ferentiable. In contrast, these conditions are not required
for C LMy, Further, the first-order conditions for continu-
ous problems are only necessary and must be augmented by
second-order sufficient conditions, whereas the conditions
in Theorem 2 are necessary as well as sufficient.

Based on the conditions in Theorem 2, Figure S depicts a
general procedure to look for S Py, (Wah & Chen 2001). It
consists of two loops: the z loop that updates the z variables
in order to perform descents of Lq in its = subspace, and
the A loop that updates the X variables of unsatisfied con-
straints in order to perform ascents in its A subspace. The
point where the procedure converges can be proved to be
a local minimum in the discrete neighborhood of Ly and a
jocal maximum in the continuous neighborhood of A.

Various implementations have been developed based on
the procedure, including the discrete Lagrangian method



(DLM) (Wah & Wu 1999) and constrained simulated an-
nealing (CSA) (Wah & Wang 1999). DLM entails greedy
searches in the = and A subspaces until all constraints are
satisfied, using deterministic rules in accepting candidates.
In contrast, CSA generates new probes randomly in one of
the = and ) variables, accepts them based on the Metropolis
probability if L4 increases along the z dimension and de-
creases along the A dimension, and stops updating A when
all the constraints are satisfied.

An important issue in using CSA is the selection of a cool-
ing schedule. (Chen 2001) proves that there exists an opti-
mal cooling schedule that can minimize the expected search
time of CSA in finding a solution. An optimal version of
CSA with iterative deepening has been developed to find the
optimal cooling schedule dynamically (Chen 2001).

Calculus of Variations in Discrete Space

Basic definitions

Solutions to (1) cannot be characterized in ways similar
to those of continuous-space problems with differentiable
functions. The latter entails strong and weak relative min-
ima that are defined with respect to neighborhoods of open
spheres with radius approaching zero asymptoticaily. Such
concept does not exist in problems with discrete variables.
To characterize solutions in discrete space, we define new
concepts on neighborhoods and constrained solutions.

Definition 1. A\, (s), the discrete neighborhood (Aarts &
Korst 1989) of state vector s € ., is a finite user-defined set
of states {s' € V} such that s € Ny(s) <= s € Ny(s).
Further, for any s!,s* € ), it is Possiblc to find a finite
sequence of state vectors s'.--- , s € Y such that sitl ¢
Ny(st), e =1, k—1.

Definition 2. Nb“)(y), the t'"-stage discrete neighbor-
hood of bundle y for given Ny(s) andallt = 0,1,--- N +
1, is defined as tollows:

N () = (= 2(t) € Nolu(t)) and (i | i # ) = y(&)}. (10)

Intuitively., J\/’,f” (1) includes all bundles that are identical
to y in all stages except ¢, where the state vector is perturbed
to a neighboring state in NV, (y(t)). Based on Ngt)(y), we
define the discrete neighborhood of bundle y to be the union
of discrete neighborhoods across each of the N + 2 stages.

Definition 3. A, (y). the discrete neighborhood of bundte
y. is defined as tollows:

N+l

Nty = |J M), ()

t=0

Definition 4. Bundle y s a discrete-neighborhood con-
strained local mumunem (C LM g, of (1) if a) y is feasi-
ble, implying that y satisties all the constraints in (1); and
b) J[yl < J[z] for all feasible bundles = € Nu(y).

Definition 5. A generalized discrete Lagrangian function
of (1) 1s:

La(y Ayopt) = Jlyl + z:i";g‘{vT(t)H(E(t.yu))onz)

AT H(G (1), ult + 1)))}+M“H(I(y)).

where A(t) = (A1(t), - AT (8 = (),
()T, and g1 = (u1, - , 1) T are vectors of Lagrange
multipliers, and H is a transformation defined in (6).

Definition 6. A discrete-neighborhood saddle point
SPy(y*, A", y*, 1u*) of (1) is a point that satisfies the fol-
lowing properties for all y € Ap(y*), A € RWV+D¥ v €
RW+2)7 and u € RY:
Ld(y*a/\*a’)’*,#‘) S Ld(yaA*a’Y*iy‘*)a (13)
La(y*, \, 7", 1") < La(y™, A", y", 17), (14)
La(y™, A" 7, 1) < La(y™, A%y, 07),  (15)
and  La(y™, A",y 1) < La(y™, A% Y7 17) (16)
These equations state that S Py, (y*, A*, v*, p*) is at a local
minimum of Lg{y, A, v, i) with respect to y and at a local
maximum with respect to A, 7y, and p.

The following result can be derived easily from Defini-
tion 6 and Theorem 2.

Lemma 1. Bundle y in the discrete search space of (1) is
a CL My, iff it satisfies:

a) the discrete-neighborhood saddle-point conditions (13)-
(16) forany A > A*, v > v*,and p > pu*;or

b) the foillowing discrete-space first-order conditions:
AyLd(y$ )\a Af’! p‘) = 0, (l7)
E(t,y(t)) =0, t=0,--,N+1,
Gt y(t),y(t + 1)) =0,
and I(y) =0

Intuitively, Lemma 1 restates the necessary and sufficient
conditions in Theorem 2 when (1) is solved as a nonlinear
equality-constrained NLP. Although they define the condi-
tions under which the objective value of a feasible bundle is
at a local minimum value, they do not exploit node domi-
nance in order to reduce search complexity. In the next sec-
tion, we introduce node-dominance relations by partitioning
the conditions in Lemma | in order to reduce the base of the
exponential search complexity (last column in Table 1).

Node dominance by distributed necessary and
sufficient conditions

Analogous to the Euler-Lagrange conditions in continu-
ous space, we present next the partitioning of the discrete-
neighborhood saddle-point condition in (13)-(16) into mul-
tiple saddle-point conditions, one for each stage. The par-
titioned conditions are essentially node-dominance relations
which help prune points that are not discrete-neighborhood
saddle points in each stage.

Betore the main theorem is presented, we define the fol-
Jowing to characterize the distributed properties of the solu-
tion space of (1).
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Definition 7. The t!*-stage, t = 0,--- . N + L. distributed
discrete Lagrangian function of (12) is defined as:
Tult,y, A vop) = F(t = Lyt = 1),y(t))
FE(E (), y(t+ 1)+ ()T HE® y()
+A(t - DTH(G(t — Lyl — 1), y(1)))
FAOTH(G(, y(t), y(t + 1)) + 1 H(I(y)

with boundary conditions:

(0,9, A,y 1) = F(0,5(0),5(1) + ¥(0)" H(E(0, y(0)))
MOV H(G(0,y(0), (1)) + 1" H{I{(y))

Ta(N + Ly, Ay, w) = F(N,y(N),y(N + 1))
+9(N +H)TH(E(N + Ly(N +1))) + uT H{I(y)).

Definition 8. The t!"-stage distributed direction of maxi-
mum potential drop in a discrete neighborhood of y in stage
t.t = 0,---,N + 1, is a vector that points from y to

y € {y}t U Nb(t)(y) with the minimum Tg(t, y, A, 7, i1):

Ay(t)rd(ts Y, Av s U') = y, Y,
wherey’ = argmin  Da(t, z, A, v, 1)
2e {y}uN{T ()

The main result is summarized as follows.

Theorem 3. Distributed necessary conditions for
CLMy,. If bundle y is a CLMgyn in the discrete search
space of (1), then it satisfies either one of the following sets
of conditions fort = 0,1,--- ,N + 1

a) Discrete-neighborhood Euler-Lagrange equations
(ELEqgn):

Ay(t)rd(tvyv)‘s ’]/,]L) = O! (18)
E(t,y(t)) =0, t=0, -+, N+1(19)
and Gt y(t),y(t + 1)) =0. (20)

b) Distributed discrete-neighborhood saddle-point condi-
tions (DS Pyn):

rd(te y‘,A‘,'}’*,H*) S Fd(t! yla ’\*1 "thu*‘)a (2])
Ca(t,y" N, y5 1) < Ca(t,y*, A%y 1), (22)
and  Ta(t,y™, A%y 07) < Talt,y®, A%y ut) (23)
forany v > ¥* and X' > A™.
Here, 3y’ € Ntft)(y*). N o€ Nb(”()\*), ¥ e Ngt)('y‘). and
1/ € R9, where y/, A, and ' represent, respectively, y*, A",
and v* perturbed in the t** stage, namely.

Vo=t 0), -y (= D,y )y )y N )

A= (AT0), AT = DN (AT 1), AT(N))

A = (3T(0). A= DY ()T (D) TN+ 1)),

NP = (AT € RYand AG i # t) = M)

NG = (v [~ € R*and (i1 # 1) = 4" (1)}
The theorem can be proved by examining the functional
structure of the conditions in Lemma 1 and by decomposing

the conditions in each stage. Due to space limitations, we do
not show the proof in this paper.
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1. procedure DCV+CSA

2 initialize starting values of g, A, v. !

3. set starting temperature 7" = Ty and cooling schedule S
4. p — po /* vector p controls the update of ju*/

5 repeat /* outer loop in iterative scheme */

6 for t = O to N 4 1 /* inner oop for SPq, */

7 generate a trial point of cither y(¢), A(t), or ()

8. accept the trail point with probability Ar:

9. end _for

10. generate a trial point of g /* ascents in g subspace */
1. accept the trail point with probability .Ar;

12.  until stopping condition is satisfied;

13. end_procedure
Figure 6: DCV+CSA: an iterative procedure for finding points
that satisfy DS Py, in Theorem 3 using CSA in Figure 5.

There are several salient features of Theorem 3.

a) Unlike classical calculus of variations in continuous
space, Theorem 3 does not require the differentiability or
continuity of functions.

b) Conditions (18)-(20) in ELEgy are the discrete-space
counterpart of the continuous Euler-Lagrange equations,
whereas (21)-(23) in DS Py, indicate that finding N +2
discrete-neighborhood saddle points, one in each stage, 1s
necessary for finding a CLMgn. These conditions are the
node-dominance relations for pruning states in a search. In
particular, (21)-(23) are very easy to implement and are em-
ployed in the variational search algorithm presented next.

¢) As is discussed in the first section, the use of node dom-
inance helps reduce the search complexity from O (|Y|") to
O (Ly[le[N) (see Table 1). For simplicity, consider [s| to
be the number of discrete-neighborhood saddle points in Y
in each stage. Since |s| is much smaller than { Y}, node dom-
inance helps reduce the base of the exponential complexity
to a much smaller value. This reduction in complexity is
illustrated in Figure 3.

d) In a way similar to that described in the second section,
our theory can handle inequality constraints by transforming
g(z) < 0into an equivalent equality constraint H{g(z)) =
0 using transformation H defined in (6).

Discrete-Space Variational Search implementing
Node Dominance

Figure 6 outlines DCV+CSA, a heuristic procedure for find-
ing saddle points that satisfy DS Py, in Theorem 3. It uses
CSA in Figure 5 with default parameters to search for S Pan
in each stage. This is done by looking for local minima n
the = subspace of Ta(t, 7, A, 7, 41) in stage ¢ that satisfy (21),
and by looking for local maxima in the A and v subspaces
that satisfy (22) and (23). Once all the stages have been
examined, it performs ascents of Lg{y, A,~, 1) defined in
(16) in the jt subspace if there were unsatisfied general con-
straints. As before, since it is very difficult to determine the
optimal cooling schedule for CSA in the inner loop, we ap-
ply iterative deepening and double the duration of the cool-
ing schedule S iteratively in order to determine the optimal
cooling schedule. The procedure stops when no further im-
provements can be made in the y, A, v and p subspaces. In
general, the inner loop does not have to use CSA and can be
any algorithm that looks for local S Py, in a stage.



Experiments on ASPEN

In this section we compare the performance of ASPEN (Au-
tomated Scheduling and Planning Environment developed at
the Jet Propulsion Laboratory (JPL)) with ASPEN integrated
with, respectively, CSA and DCV+CSA. The performance
improvements are demonstrated experimentally on a series
of spacecraft operation planning application benchmarks.

The ASPEN System

ASPEN (Chien, et al. 2000) is an objective-based planning
system for automated complex planning and scheduling of
spacecraft operations. Such operations involve generating a
sequence of low-level parallel spacecraft commands from a
set of high-level science and engineering goals.

Using discrete time horizons and a discrete state space, an
ASPEN model encodes spacecraft operability constraints,
flight rules, spacecraft hardware models, science experiment
goals, and operations procedures. It defines various types of
schedule constraints that may be in procedural form among
or within the parallel activities to be scheduled. Such con-
straints include temporal constraints, decomposition con-
straints, resource constraints, state dependency constraints,
and goal constraints. In addition, the quality of a schedule
is defined in a preference score, which is a weighted sum of
multiple preferences (that may also be in procedural form)
to be optimized by the planner. Preferences can be related to
the number of conflicts, the number of actions, the value of
a resource state, or the value of an activity parameter.

Since ASPEN cannot optimize plan quality and search
for feasible plans at the same time, it alternates between
its repair-based feasibility planning and the optimization of
plan quality.

In the repair phase (Rabideau et al. 1999), ASPEN first
generates an initial schedule that may not be conflict-free,
using an algorithm called forward dispatch. It then searches
for a feasible plan from this initial plan, using iterative re-
pairs that try to resolve each conflict individually in the cur-
rent plan. In each repair iteration, the planner must decide
at each choice point a conflict to resolve and a conflict-
resolution method from a rich collection of repair heuristics.

To improve the quality of plans defined by a preference
score, ASPEN uses a preference-driven, incremental, local
optimization method. Based on multiple choice points in
each iteration, ASPEN provides various optimization heuris-
tics for deciding search directions at choice points.

ASPEN Application Benchmarks

The ASPEN software can be tested on several publicly avail-
able benchmarks that schedules parallel spacecraft oper-
ations. These benchmarks encode goal-level tasks com-
manded by science and engineering operations personnel,
with a goal of generating high-quality plans as fast as possi-
ble. There are four benchmarks tested in this paper:

e The CX1-PREF benchmark (Willis, Rabideau, & Wilk-
low 1999) models the operations planning of the Citizen
Explorer-1 (CX-1) satellite that took data relating to ozone
and downlinked its data to ground for scientific analysis.
It was used by JPL to explore autonomous command and

R

control software running on the satellite and the ground
system, and automated planning and scheduling software
(ASPEN) running on the ground system. The benchmark
has a problem generator that can generate problem in-
stances of different number of satellite orbits.

e The DCAPS benchmark (Rabideau et al. 1997) models
the operation of DATA-CHASER shuttle payload, man-
aged by the University of Colorado at Boulder. DATA-
CHASER is a science payload primarily used for solar
observation, whose payload was scheduled for the STS-
85 shuttle flight in August 1997.

e OPTIMIZE and PREF are two benchmarks developed at
JPL that come with the licensed release of ASPEN.

Integrating CSA and DCV+CSA in ASPEN

We have tested the performance of DCV+CSA in ASPEN
by comparing it to that of ASPEN and ASPEN with CSA.

In our experiments on ASPEN, we allow it to alternate
between a repair phase with unlimited number of iterations
and an optimization phase with 200 iterations.

In integrating CSA with ASPEN, ASPEN+CSA performs
descents of T’y by choosing probabilistically among AS-
PEN’s repair and optimizations actions, selecting a random
feasible action at each choice point, applying the selected
action to the current schedule, and accepting the new sched-
ule based on the Metropolis probability in CSA. In our im-
plementation, we fix the initial temperature to be 1000.0,
determine the cooling schedule by iterative deepening {(Wah
& Chen 2000), set a weight of the objective value in the La-
grangian function by a factor of 100.0 (since the preference
score is only between O to 1), initialize all Lagrange multi-
pliers to be zero, and increase those multipliers assigned to
unsatisfied schedule conflicts in each iteration by 0.1. There
are no parameters in determining neighborhoods as in CSA
because all probes are generated by ASPEN heuristics.

In integrating DCV with ASPEN+CSA, we need to de-
termine the number of stages used as well as the duration
of each stage. In ASPEN, each conflict has an active win-
dow bounded by a start time and an end time called the time
points. Since ASPEN has discrete time horizons, we can
either treat each time point as a discrete stage or collapse
adjacent time points into a stage.

ASPEN+DCVs+CSA partitions a time horizon statically
and evenly into N stages. This simple strategy often leads
to an unbalanced number of time points in different stages.
During a search, some stages may contain no conflicts to be
resolved, whereas others may contain too many conflicts.
Such imbalance leads to search spaces of different sizes
across different stages and search times that may be dom-
inated by those in a few stages.

To address this issue, ASPEN+DCVd+CSA partitions
time points dynamically into stages by adjusting the bound-
ary of stages at run time in order to balance evenly the activ-
ities across different stages. This is accomplished by sorting
all the time points at the end of the outer loop of DCV+CSA
(Line 11 in Figure 6), and by partitioning the time horizon
into IV stages in such a way that each stage contains approx-
imately the same number (M /N) of time points, where A/
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Figure 7: Number of iterations taken by ASPEN+DCVs+CSA
and ASPEN+DCVd+CSA to find a feasible plan for an 8-orbit
CX1-PREF problem under various numbers of stages.

is the total number of time points in the horizon.

Another important issue to be considered is the number of
stages N. Figure 7 shows the number of iterations taken by
ASPEN+DCVs+CSA and ASPEN+DCVd+CSA in finding
a feasible schedule in solving an 8-orbit CX1-PREF prob-
lem. The results show that N = 100 is optimal, althcugh
the performance is not very sensitive to N when it is large
enough. Since other benchmarks lead to similar conclusions,
we set N = 100 in our experiments.

Experimental Results

In the origina! implementation, ASPEN commits to every re-
pair/optimize action it generates and never undo any changes
of its schedule. In our approach, however, a candidate sched-
ule may not be accepted and the change to the schedule must
be undone in that case. Since ASPEN does not support the
undo mechanism, we create at each new probe a child pro-
cess that is a duplicate of the ASPEN program in memory.
We then apply the scheduling actions on the child copy, eval-
uate the candidate schedule, and carry out the same action in
the main process only if the new schedule is accepted after
evaluation. The CPU overhead of forking a child process is
significant, and the CPU time of one iteration in our imple-
mentation is about 10 to 20 times longer than that of AS-
PEN. However, this CPU overhead will only be marginal
with an efficient undo implementation in ASPEN. There-
fore, we compare the number of iterations taken, instead of
the CPU time, in our experimental results.

Figure 8 compares the performance of ASPEN+DCVd
+CSA and ASPEN+DCVs+CSA with respect to that of AS-
PEN and ASPEN+CSA on five benchmarks: CX1-PREF
with 8 and 16 orbits, DCAPS, OPTIMIZE, and PREF.
In each case, we plot the the quality of the best feasible
schedute found with respect to the number of search itera-
tions. The results show that ASPEN+DCVd+CSA and AS-
PEN+DCVs+CSA are able to find bundles of the same qual-
ity one to two orders faster than ASPEN and ASPEN+CSA
and much better bundles when they converge. Further,
by partitioning time points dynamically into stages, AS-
PEN+DCVd+CSA can find better plans in shorter times than
ASPEN+DCVs+CSA.

Conclusions

In this paper we have modeled planning problems as dy-
namic optimization problems and have proposed new node-
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PEN+DCVs+CSA, and ASPEN+DCVd+CSA on five benchmarks.
(All runs involving DCV were terminated at 24,000 iterations.)



dominance relations to improve their solutions. Although
path dominance governed by the Principle of Optimality
is well studied in dynamic programming, it cannot be ap-
plied when there are general constraints that involve vari-
able in multiple stages. On the other hand, node dominance
in dynamic optimization is well studied in control theory
with continuous and differentiable functions. This exists
in the form of calculus of variations when Lagrange mul-
tipliers are used to handle nonlinear constraints. However,
the use of node dominance in discrete problems with non-
differentiable functions is open in the literature.

We have applied the theory of Lagrange multipliers in dis-
crete space in order to allow goal optimization and constraint
satisfaction to be handled in a uniform fashion. By ex-
ploiting the organization of dynamic optimization problems
in stages, we have partitioned the Lagrangian function and
have searched for distributed discrete-nei ghborhood saddle
points, one in each stage. Node dominance in each stage is,
therefore, implemented by the dominance of saddle points
over non-saddle points. Such node dominance lowers the
base of the exponential complexity in looking for feasible
bundles. Our results on integrating our proposed technique
in ASPEN have demonstrated improvements in search com-
plexity as well as plan quality.

Our proposed node dominance can be extended easily to
continuous-time planning problems in Figure 1. Similar to
that in ASPEN, each conflict in a continuous-time problem
is governed by a duration bounded by a continuous start time
and an end time. Since the number of conflicts are finite, the
number of start and end times is also finite. Hence, the origi-
nal planning problem can be partitioned into a finite number
of stages in such a way that each can be solved as a discrete
or a mixed-state constrained optimization problem using La-
grange multipliers.

Similarly, our proposed node dominance can be extended
to mixed-state planning problems in Figure 1. This is pos-
sible because, once a mixed-state planning problem is par-
titioned into stages, each stage is a mixed-state constrained
optimization problem that can be formulated using Lagrange
multipliers. In case of mixed-state functions that are dif-
ferentiable with respect to continuous variables, we can de-
velop necessary conditions that combine the first-order nec-
essary and sufficient conditions in Theorem 2 and the first-
order necessary conditions in continuous-space Lagrange-
multiplier theory. In case of functions that are not differ-
entiable with respect to continuous variables, weaker neces-
sary conditions can be developed after the continuous vari-
ables have been discretized. We will present results on these
extensions in the future.
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