
Partitioning of Temporal Planning Problems in Mixed Space
using the Theory of Extended Saddle Points∗

Benjamin W. Wah and Yixin Chen
Department of Electrical and Computer Engineering

and the Coordinated Science Laboratory
University of Illinois, Urbana-Champaign

Urbana, IL 61801
{wah,chen}@manip.crhc.uiuc.edu

Abstract
We study the partitioning of temporal planning prob-

lems formulated as mixed-integer nonlinear program-
ming problems, develop methods to reduce the search
space of partitioned subproblems, and propose algo-
rithms for resolving unsatisfied global constraints. The
algorithms are based on the necessary and sufficient
extended saddle-point condition for constrained local
minimization developed in this paper. When compared
with the MIPS planner in solving some PDDL2.1 plan-
ning problems, our distributed implementation of MIPS
shows significant improvements in time and quality.

1. Introduction

A temporal planning problem involves arranging ac-
tions and assigning resources in order to accomplish
given tasks and objectives over a period of time. It can
be defined by a set of states with discrete, continuous, or
mixed variables; a discrete or continuous time horizon; a
set of actions defining valid state transitions; a set of ef-
fects to be evaluated in each state or action; a set of con-
straints to be satisfied in each state or throughout an ac-
tion; and a set of goals to be achieved.

Many languages and schemes have been developed
to represent planning problems, such as STRIPS [6],
PDDL [7], and planner-specific languages [4]. In this pa-
per, we formulate a planning problem as amixed-integer
nonlinear programming(MINLP) problem.

Our formulation assumes that the continuous time
horizon is partitioned inN+1 stages, withut local vari-

∗ Research supported by the National Aeronautics and Space Ad-
ministration Grant NCC 2-1230 and the National Science Foun-
dation Grant ITR 03-12084.
Proc. IEEE International Conference on Tools with Artificial In-
telligence, 2003.

ables,mt local equality constraints, andrt local inequal-
ity constraints in staget, t = 0, . . . , N . Such partition-
ing decomposes the variable vectorz ∈ Z of the prob-
lem intoN + 1 subvectorsz(0), . . . , z(N), wherez(t)
= (z1(t), . . . , zut

(t))T is a ut-elementstate vectorin
mixed space and staget, andzi(t) is the ith dynamic
state variable. The MINLP formulation is as follows:

(PT) : min
z

J(z) (1)

subject to h(t)(z(t)) = 0, g(t)(z(t)) ≤ 0,

and H(z) = 0, G(z) ≤ 0.

Here,h(t) = (h
(t)
1 , . . . , h

(t)
mt

)T and g(t) = (g
(t)
1 , . . . ,

g
(t)
rt

)T are vectors of local-constraint functions that in-
volvez(t) and time in staget; andH = (H1, . . . , Hp)

T

andG = (G1, . . . , Gq)
T are vectors of global-constraint

functions that involve state variables and time in two or
more stages. A solution to (1) is aplan that consists of
the assignments of all the variables inz.

Partitioning is possible in temporal planning prob-
lems because many of their constraints and objectives
are related to activities with temporal locality.

There are two reasons for partitioning the variables of
a planning problem into disjoint subsets before solving
the problem. First, when the search space of the problem
is exponential in size, we can reduce the base of its expo-
nential complexity by reducing the search space of each
partitioned subproblem beforehand. As a simple illustra-
tion, consider a problem that has been partitioned into
N + 1 stages, each of which hasS local states ands of
these states satisfy the local constraints. Without resolv-
ing the local constraints ahead of time, the search space
of the partitioned problem has a worst-case complex-
ity of O(SN+1). In contrast, by first resolving the local
constraints, the search space is reduced tosN+1 possi-
ble paths. Although an additional overhead is needed to
resolve the local constraints in each stage (O(S) worst-

case complexity), it is obvious that there will be a signifi-
cant reduction in complexity whens� S. In this paper,
we develop new necessary conditions and efficient im-
plementations to further reduce the space in each parti-
tion. Second, variable partitioning leads to smaller plan-
ning subproblems of similar nature. As a result, existing
planners can be employed to solve these subproblems
with little or no modification. Without the need to de-
velop new planners to solve each subproblem, pruning
techniques in existing planners, such as constraint prop-
agation, can be employed to further reduce the search
space of these subproblems.

Although there are significant benefits in partition-
ing, existing planning algorithms in artificial intelli-
gence and optimization techniques in mathematical pro-
gramming do not exploit partitioning except in some
special cases, such as problems with partitionable con-
vex subproblems. The difficulty of partitioning in gen-
eral is that there are no good methods for resolving
global constraints after the partitioned subproblems have
been solved. Dynamic programming cannot be applied
in temporal planning with global constraints because a
partial feasible plan that dominates another partial feasi-
ble plan in one stage will fail to hold when the dominat-
ing plan violates a global constraint in a later stage.

In this paper, we develop strategies to partition the
search space of temporal planning problems and eval-
uate algorithms for resolving unsatisfied global con-
straints. We first summarize in Section 2 the limitations
of existing planning techniques in artificial intelligence
and search methods in mathematical programming. We
present in Section 3 the necessary and sufficient ex-
tended saddle-point condition for constrained local min-
imization in mixed space. Since the condition is true for
all Lagrange multipliers larger than some critical multi-
pliers, we propose an iterative approach to look for La-
grange multipliers that are larger than the critical mul-
tipliers and to look for variable assignments that mini-
mize the Lagrangian function. In Section 4, by choos-
ing a suitable neighborhood in mixed space, we fur-
ther reduce the search into stages in order to look for
distributed saddle points in each stage, and we resolve
global constraints across multiple stages in an outer loop
by choosing suitably large Lagrange multipliers. Finally,
we demonstrate in Section 5 our approach by using
the MIPS planner to solve partitioned subproblems and
show significant improvements on some benchmarks.

2. Previous Work

In this section, we summarize the shortcomings of
some existing work related to AI planning and La-
grangian methods in optimization.

2.1. Temporal Planning Methods

Existing AI planning and scheduling methods can be
classified based on the their state and temporal represen-
tations and the search techniques used.

Discrete-time discrete-state methodsconsist of sys-
tematic searches, heuristic searches, local searches, and
transformation methods.

Systematic searches that explore the entire state space
are complete solvers. Examples include UCPOP, Graph-
plan, PropPlan, and System R. Systematic solvers are
not amenable to variable partitioning because locally
feasible or optimal plans in partitioned variable space
may not satisfy all global constraints.

Local searches employ heuristic guidance functions
to search in discrete path space. Examples include HSP,
FF, AltAlt, GRT, and ASPEN. Heuristic solvers do not
work well with partitioned plans because their guidance
heuristics are generally computed over the entire time
horizon in order to estimate the distance from a state to
the goal state.

Transformation methods convert a problem into a
constrained optimization or satisfaction problem before
solving it by existing SAT and ILP solvers. Examples in-
clude SATPLAN, Blackbox, and ILP-PLAN. They are
not amenable to variable partitioning because they rely
on solvers that do not support partitioning.

Discrete-time mixed-state methodsemploy system-
atic searches, heuristic searches, and transformation
methods. Examples include SIPE-2, O-Plan2, Metric-
FF, GRT-R, and LPSAT. The search methods employed
by these planners are not amenable to partitioning for
reasons similar to those discussed above.

Continuous-time mixed-state methodscan be classi-
fied into systematic, heuristic, and local searches. Ex-
amples include LPG, MIPS, Sapa, ZENO, SHOP2,
TALplanner, and Europa. The methods in these plan-
ners rely on global information in their search and do
not have mechanisms to combine the solutions of parti-
tioned subproblems into global solutions.

2.2. Mathematical Programming Methods

In this section, we survey existing techniques on con-
tinuous and mixed-integer optimization and discuss their
limitations with respect to partitioning.

Continuous nonlinear programming (CNLP) meth-
ods.We examine two sets of conditions used in exist-
ing methods for solving CNLPs. Consider the follow-
ing CNLP with continuous and differentiable functions
f , h = (h1, . . . , hm)T andg = (g1, . . . , gr)

T :

(Pc) : min
x
f(x) wherex = (x1, . . . , xv)T ∈ Rv (2)

subject to h(x) = 0 and g(x) ≤ 0.

The goal of solvingPc is to find a constrained local
minimumx with respect toNc(x) = {x′ : ‖x′ − x‖ ≤
ε andε→ 0}, thecontinuous neighborhoodof x.

Definition 1. Point x∗ is aCLMc, a constrained local
minimum in continuous neighborhood ofPc, if x∗ is fea-
sible andf(x∗) ≤ f(x) for all feasiblex ∈ Nc(x

∗).

Based on Lagrange-multiplier vectorsλ = (λ1, . . . ,
λm)T ∈ Rm andµ = (µ1, . . . , µr)

T ∈ Rr, the La-
grangian function ofPc is defined as:

L(x, λ, µ) = f(x) + λTh(x) + µT g(x). (3)

a) Karush-Kuhn-Tucker (KKT) necessary condi-
tion [2]. Assumingx∗ is aCLMc and a regular point,1

then there exist uniqueλ∗ andµ∗ such that:

∇xL(x∗, λ∗, µ∗) = 0, (4)

whereµj ≥ 0 andµj = 0 ∀ j /∈ A(x∗) = {i | gi(x
∗) =

0} (the set of active constraints).

The uniqueλ andµ that satisfy (4) can be found by
solving a system of nonlinear equations inλ, µ, andx.
As an illustration, considerPc with only equality con-
straints. By specializing KKT, we obtain a system of
n+m equations inn+m unknowns:

F (x, λ) =

[

∇f(x) +B(x)Tλ
h(x)

]

= 0, (5)

whereB(x)T = [∇h1(x), . . . ,∇hm(x)] is the Jacobian
of the constraints. In general, a solution method solving
(5) needs to involve all thex andλ variables and does
not work with multiple subproblems with a partitioned
variable space.

b) Sufficient saddle-point condition[8, 1]. The con-
cept of saddle points has been studied extensively in the
literature. Here,x∗ is a saddle point ofPc if there ex-
ist λ∗ andµ∗ such that:

L(x∗, λ, µ) ≤ L(x∗, λ∗, µ∗) ≤ L(x, λ∗, µ∗) (6)

for all x satisfying‖x − x∗‖ < ε and allλ ∈ Rm and
µ ∈ Rr. This condition is only sufficient but not neces-
sary; that is, ifx∗ is a saddle point, thenx∗ is aCLMc,
but the converse is not true. Hence, ifx∗ is aCLMc,
there may not existλ∗ andµ∗ that satisfy (6).

The existing saddle-point condition is also not
amenable to partitioning because it requires solving for
uniqueλ∗ andµ∗. Moreover, it is only a sufficient con-
dition and does not cover all possibleCLMc.

1 Pointx is said to be aregular point[9] with respect toh if gradi-
ent vectors∇h1(x), . . . ,∇hm(x) atx are linearly independent.

c) Penalty formulations. A static-penalty ap-
proach [10] transformsPc into an unconstrained mini-
mization with the following objective function:

Lρ(x, γ, ψ) = f(x) + γT |h(x)|ρ + ψT max(0, g(x))ρ,

whereρ > 0. By choosingρ = 1, there exist finite and
sufficiently large penalty vectorsγ ∈ Rm andψ ∈ Rr

such thatx∗, a global minimum ofLρ(x, γ, ψ), corre-
sponds to aconstrained global minimum(CGMc) of Pc.
Hence, findingx∗ by an unconstrained global optimiza-
tion algorithm amounts to finding aCGMc of Pc. How-
ever, the approach is hard to apply in practice becauseγ
andψ must be large enough in order for the global op-
timality of x∗ to hold for all points in the search space.
This makes the function very rugged to be searched ef-
fectively.

A dynamic-penalty approach[10] increases penal-
ties gradually and solves a sequence of unconstrained
problems. The requirement of finding a global optimum
of Lρ(x, γ, ψ) for each unconstrained problem may be
computationally expensive in practice.

Mixed-integer NLP (MINLP) methodsgenerally de-
compose a MINLP into subproblems in such a way
that, after fixing a subset of the variables, each result-
ing subproblem is convex and is easily solvable, or can
be relaxed and be approximated. There are several types
of these algorithms, including generalized Benders de-
composition (GBD), outer approximation (OA), gen-
eralized cross decomposition (GCD) and branch-and-
reduce methods. All those methods require the functions
of subproblems to be convex or factorable.

In this paper, we focus on the resolution of global
constraints after decomposing a large problem into sub-
problems. Since our approach does not require the de-
composed subproblems to be convex or factorable, it is
more general than existing approaches.

3. The Necessary and Sufficient Extended
Saddle-Point Condition

In this section, we present ourextended saddle-point
condition (ESPC) in mixed space. By using a new
Lagrangian function with transformed constraints, we
show that ESPC is necessary as well as sufficient and
is satisfied for a range of Lagrange multipliers. The lat-
ter property is important because it allows any algorithm
implementing ESPC to be partitioned.

3.1. ESPC for Mixed Optimization

Consider the MINLP whosef , g andh are continu-
ous and differentiable functions with respect to the con-

tinuous subspacex:

(Pm) : min
x,y

f(x, y), x ∈ Rv andy ∈ Dw (7)

subject to h(x, y) = 0 and g(x, y) ≤ 0.

The goal of solvingPm is to find a constrained lo-
cal minimum(x, y) with respect toNm(x, y), the mixed
neighborhood of(x, y). As a discrete neighborhood is a
user-defined concept, a mixed neighborhood is a user-
defined concept as well. In our theory, we use the fol-
lowing definitions.

Definition 2. A user-defineddiscrete neighborhood
Nd(y) of y in discrete spaceDw is afinite user-defined
set of points{y′ ∈ Dw} in such a way thaty′ is reach-
able fromy in one step, thaty′ ∈ Nd(y) ⇐⇒ y ∈
Nd(y

′), and that it is possible to reach everyy′′ from
anyy in one or more steps through neighboring points.

Definition 3. A user-defined mixed neighborhood
Nm(x, y) in mixed spaceRv ×Dw is:

Nm(x, y) =

(x′

, y) | x′ ∈ Nc(x)

ff

(8)

[

(x, y
′) | y′ ∈ Nd(y)

ff

Definition 4. Point(x∗, y∗) is aconstrained local mini-
mum in mixed neighborhood(CLMm) of Pm if (x∗, y∗)
is feasible andf(x∗, y∗) ≤ f(x, y) for all feasible
(x, y) ∈ Nm(x∗, y∗).

Definition 5. The transformed Lagrangian function for
Pm in (7) is defined as follows:

Lm(x, y, α, β) = f(x, y) + αT |h(x, y)|
+ βT max(0, g(x, y)). (9)

Theorem 1. Necessary and sufficient ESPC onCLMm

of Pm. Suppose(x∗, y∗) ∈ Rv × Dw is a point in
the mixed space ofPm, and the gradient vectors of the
equality and the active inequality constraints for given
y∗ are linearly independent. Then(x∗, y∗) is aCLMm

of Pm iff there exist finiteα∗ ≥ 0 andβ∗ ≥ 0 such that,
for anyα∗∗ > α∗ andβ∗∗ > β∗, the following condi-
tion is satisfied:

Lm(x∗, y∗, α, β) ≤ Lm(x∗, y∗, α∗∗, β∗∗)

≤ Lm(x, y, α∗∗, β∗∗) (10)

for all (x, y) ∈ Nm(x∗, y∗), α ∈ Rm, andβ ∈ Rr.
The following corollary facilitates the implementa-

tion of ESPC in (10) and follows directly from the def-
inition of Nm(x, y). This definition allows (10) to be
partitioned into two independent necessary conditions.
Note that such partitioning cannot be accomplished if a
mixed neighborhood likeNc(x)×Nd(y) were used.

α −→ 0; β −→ 0;
repeat

increaseαi by δ if hi(x, y) 6= 0 for all i;
increaseβj by δ if gj(x, y) � 0 for all j;
repeat

perform descent ofLm(x, y, α, β) wrt x for giveny;
until a local minimum ofLm(x, y, α, β) wrt x is found;
repeat

perform descent ofLm(x, y, α, β) wrt y for givenx;
until a local minimum ofLm(x, y, α, β) wrt y is found;

until aCLMm of Pm is found or (α > ᾱ∗ andβ > β̄∗);

Figure 1. Pseudo code showing the implemen-
tation of ESPC for assumed ᾱ∗ and β̄∗.

Corollary 1. GivenNm(x, y) defined in (8), the ESPC
in (10) can be rewritten as three necessary conditions
that, collectively, are necessary and sufficient:

Lm(x∗, y∗, α, β) ≤ Lm(x∗, y∗, α∗∗, β∗∗)(11)
Lm(x∗, y∗, α∗∗, β∗∗) ≤ Lm(x∗, y, α∗∗, β∗∗)(12)
Lm(x∗, y∗, α∗∗, β∗∗) ≤ Lm(x, y∗, α∗∗, β∗∗)(13)

wherey ∈ Nd(y
∗) andx ∈ Nc(x

∗).

3.2. Implementation Considerations

An important feature of ESPC over the original
saddle-point condition in (6) is that, instead of finding
uniqueλ∗ andµ∗ that minimizeL(x, λ∗, µ∗) at x∗, it
suffices to minimizeLm(x, y, α∗∗, β∗∗) by finding any
α∗∗ > α∗ andβ∗∗ > β∗. Such a property reduces the
implementation to an iterative search, instead of solv-
ing a system of equations.

Figure 1 shows the pseudo code which solvesPm

by looking for x∗, y∗, α∗∗, andβ∗∗ that satisfy (11)-
(13). By performing separate descents ofLm(x, y, α, β)
in the continuous and discrete neighborhoods in the
two inner loops, it looks for a local minimum(x∗, y∗)
of Lm(x, y, α, β) with respect to points inNm(x, y)
that satisfy (12) and (13). The outer loop performs as-
cents for unsatisfied global constraints and stops when a
CLMm has been found.

Despite the simplicity of the implementations, there
are three considerations to need to be noted.

First, the algorithms do not prescribe how largeα and
β should be increased. Obviously, suitable upper bounds
onα andβ need to be chosen in practice. For the same
reason as in dynamic penalty methods described in Sec-
tion 2.2,α andβ should be increased gradually in order
to help the search escape from local minima of the La-
grangian function. Onceα andβ reach the prescribed
upper bounds, they may need to be scaled down and the
search repeated. The reason for reducingα andβ in this

case is to allow the search to move to a different region
of the Lagrangian function, in case that it is stuck in an
infeasible local minimum of the constrained model.

Second, the number ofCLMm in the search space of
a problem depends on the size of the neighborhood cho-
sen. It is clear that if the neighborhood of each point is
the entire search space itself, then anyCLMm found is
also a constrained global minimum, and the number of
CLMm in the search space is the smallest. In practice,
we choose a neighborhood that allows a search to be par-
titioned into those of continuous and discrete subspaces.
A neighborhood likeNc(x)×Nd(y) is not a good choice
because it is not partitionable.

Third, the pseudo code in Figure 1 does not spec-
ify how descents in the inner loop are to be per-
formed. In solving problems with closed-form contin-
uous and differentiable functions, existing descent pro-
cedures, like Newton’s search, will need to be modified
to account for the discontinuities at|h(x, y)| = 0 and
max(0, g(x, y)) = 0. In temporal planning problems,
since their functions may not be in closed form, heuristic
descent procedures can be used to look for local minima
of the Lagrangian function. Probes in a search space can
be generated based on deterministic, probabilistic, or ge-
netic mechanisms and be accepted based on determin-
istic or stochastic criteria. For example, the stochastic
constrained simulated annealing (CSA) algorithm [11]
generates new probes randomly in one of the variables,
accepts them based on the Metropolis probability when
Lm increases along thex or y dimension and decreases
along theα or β dimension, and stops updatingα andβ
when all the constraints are satisfied.

4. Partitioning of the ESPC

In this section, we partition the ESPC presented in
the last section into a set of conditions that collectively
are necessary and sufficient. By defining a partitionable
neighborhood for planning problemPT , we show that
the search forCLMm can be reduced to finding local
saddle points in each stage ofPT and to the resolution
of unsatisfied global constraints by choosing appropri-
ate Lagrange multipliers. Finally, we show an iterative
implementation of the partitioned conditions.

4.1. Necessary and Sufficient ESPC for Parti-
tioned Problems

The goal of solvingPT in (1) is to find a planz
that is aCLMm with respect to its mixed neighbor-
hoodNm(z). To simplify our discussion, we do not par-
tition z into discrete and continuous parts in the follow-
ing derivation, although it is understood that each parti-

tion will need to be further decomposed in the same way
as in Figure 1. To enable the partitioning of ESPC into
independent necessary conditions, we define the neigh-
borhood of planz as follows:

Definition 6.Np(z), thepartitionable mixed neighbor-
hood of planz, is defined as:

Np(z) =

N
⋃

t=0

N (t)
p (z) =

N
⋃

t=0

{

z′
∣

∣

∣

∣

z′(t) ∈ Nm(z(t))

andz′(i | i 6= t) = z(i)

}

, (14)

whereNm(z(t)) is the mixed-space neighborhood of
state vectorz(t) in staget.

Intuitively, Np(z) is partitioned intoN + 1 disjoint
sets of neighborhoods, each perturbingz in one of the
stages ofPT . By consideringPT in (1) as an MINLP,
we can apply (9) and Theorem 1 to get the ESPC con-
ditions. Based on the partitionable neighborhood, these
conditions can be further partitioned into a set of dis-
tributed conditions.

Definition 7. The transformed Lagrangian function for
PT in (1) is defined as follows:

Lm(z, α, β, γ, η) = J(z) +

N
∑

t=0

{

α(t)T |h(t)(z(t))|

+ β(t)T max(0, g(t)(z(t))

}

+ γT |H(z)|+ ηT max(0, G(z)), (15)

whereα(t) = (α1(t), . . . , αmt
(t)) ∈ Rmt , β(t) =

(β1(t), . . . , βrt
(t)) ∈ Rrt , γ = (γ1, . . . , γp) ∈ R

p

, and
η = (η1, . . . , ηq) ∈ R

q

are vectors of Lagrange multi-
pliers.

Theorem 2. Partitioned necessary and sufficient ESPC
onCLMm of PT . Planz is aCLMm of (1) with respect
toNp(z) if and only if the followingN + 2 conditions
are satisfied:

Γm(z∗, α(t), β(t), γ∗∗, η∗∗) (16)
≤ Γm(z∗, α(t)∗∗, β(t)∗∗, γ∗∗, η∗∗),

Γm(z∗, α(t)∗∗, β(t)∗∗, γ∗∗, η∗∗) (17)
≤ Γm(z, α(t)∗∗, β(t)∗∗, γ∗∗, η∗∗),

Lm(z∗, α∗∗, β∗∗, γ, η) (18)
≤ Lm(z∗, α∗∗, β∗∗, γ∗∗, η∗∗),

for all z ∈ N (t)
p (z∗) andα(t) ∈ R

mt , β(t) ∈ R
rt , γ ∈

Rp, η ∈ Rq, andt = 0, . . . , N , where

Γm(z, α(t), β(t), γ, η) = J(z) + α(t)T |h(t)(z(t))|
+ β(t)T max(0, g(t)(z(t)))

+ γT |H(z)|+ ηT max(0, G(z)). (19)

Γm(N, z, α(N), β(N), γ, η)
x

α(N),β(N)

Γm(0, z, α(0), β(0), γ, η)
x

α(0),β(0)

Γm(0, z, α(0), β(0), γ, η)

y

z(0)

Γm(N, z, α(N), β(N), γ, η)

y

z(N)

Lm(z, α, β, γ, η)
x

γ,η
to findγ∗∗ andη∗∗

Figure 2. An iterative implementation of the
partitioned necessary and sufficient ESPC in
(16)-(18) to look for CLMm of PT .

By using a partitionable neighborhood, Theorem 2
shows that the original ESPC in Theorem 1 can be
partitioned into multiple necessary conditions, each of
which corresponds to finding a saddle point in a stage of
the original problem. Consequently, solving the original
problem is now reduced to solving multiple smaller sub-
problems, whose solutions are collectively necessary for
the final solution, and to the resolution of global con-
straints across subproblems. By reducing the solution
space in each subproblem through the search of saddle
points, Theorem 2 leads to a significant reduction in the
base of the exponential complexity in findingCLMm.

4.2. Implementation Considerations

Figure 2 illustrates an iterative implementation of the
conditions in Theorem 2.

In the two inner nested loops of staget,
the algorithm looks for a local saddle point of
Γm(t, z, α(t), β(t), γ, η). This is done by updat-
ing z and Lagrange multipliersα(t) and β(t) associ-
ated with the local constraints, using fixedγ andη in
the global constraints. With fixedγ and η, the algo-
rithm is actually findingz(t) that solves the following
MINLP in staget:

min
z(t)

J(z) + γTH(z) + ηTG(z) (20)

subject to h(t, z(t)) = 0 and g(t, z(t)) ≤ 0.

Since this is a well-defined MINLP, any existing solver
can be used to solve it with little modification. As illus-
trated in the next section, we use the MIPS planner to
solve planning subproblems, each defined by the objec-
tive and the local constraints in (20).

After all the local searches have been performed, the
penalties on unsatisfied global constraints are increased

in an outer loop. The search terminates when a feasible
local minimum in the constrained model is found.

It is important to point out that the traditional La-
grangian theory cannot support the iterative search de-
scribed above. In the traditional theory, each stage
related to a global constraint will require a unique
Lagrange-multiplier value for this constraint. Since pos-
sibly different multiplier values may be associated with
a global constraint in different stages, an iterative search
will have difficulty to converge to a single multiplier
value for each global constraint.

5. A Distributed Implementation of MIPS

In this section, we describe briefly the algorithms
used in the mixed-space MIPS planner, the PDDL2.1
benchmarks tested, and our experimental results. For
comparison, results on the application of our approach
on the discrete-space ASPEN planner [4] has been re-
ported elsewhere [3].

MIPS [5] is a heuristic anytime planner that performs
static analysis of a problem instance in mixed space and
continuous time, searches for an optimized sequential
plan, and performs a critical path analysis called PERT
to generate optimal parallel plans from a sequence of op-
erators and their precedence relations. Using a weighted
A∗ algorithm, it finds an optimal feasible path from ini-
tial statesi to goal statesg ∈ G in a state space of propo-
sitional facts and numeric variables. It can also optimize
an arbitrary objective by incorporating the objective in
the heuristic evaluation.

MIPS can handle the STRIPS subset of the PDDL
language and can cope with numeric quantities and du-
rations in PDDL 2.1 [7]. We use MIPS in our experi-
ments because it performs well on the PDDL2.1 bench-
marks and its source code is readily available.

5.1. Implementation of Distributed Search

Figure 3 shows the MIPS+DIS algorithm that gen-
erates an initial (possibly infeasible) plan of a planning
problem, formulates the problem in a Lagrangian func-
tion, decomposes the states into multiple stages, solves
each subproblem locally, and resolves unsatisfied global
constraints by increasing their Lagrange multipliers.

In a problem solved by MIPS, states with nf facts
andnr numerical variables is specified ass = (sf , sr),
wheresf lists the true facts ats, andsr is annr-vector of
instantiated values of the variables. The set of grounded
facts are further partitioned intosymmetry groupsin the
static-analysis phase in such a way that each element of
sf is a fact from a unique symmetry group.

After partitioning, the local planning problem in
staget has initial statesi(t) and goal statesi(t+1) (see

1. procedure MIPS+DIS
2. generate initial plan using relaxed operators;
3. repeat
4. iter ← 0;
5. for t = 0 to N

6. num trials← 0;
7. repeat
8. num trials← num trials + 1;
9. generate an initial state inNm(si(t)) for staget;
10. call MIPS to solve the subproblem in staget;
11. evaluateΓm(t) of the solution plan from MIPS;
12. until (Γm(t) is improved)or

(num trials > max trials);
13. end for
14. update Lagrange multipliersγ on unsatisfied

global constraints;
15. iter ← iter + 1;
16. if (iter % τ == 0) dynamically repartition the stages;
17. until no change inz andγ in an iteration;
18.end procedure

Figure 3. MIPS+DIS: A distributed iterative
procedure using MIPS to find points that sat-
isfy Theorem 2.

Staget
si(t + 1)

si(t)
sg(t)

Nm(si(t))

Ht[z]Ht−1[z]

sg(t− 1)

Using MIPS to solve:
minz(t) J [z] + γH [z]
such thatg(t, z(t)) = 0, h(t, z(t) ≤ 0

Sg

si(0) = si

Figure 4. An illustration of the distributed
search in MIPS+DIS.

Figure 4 for the states defined in staget). Since the ini-
tial local plan may not be feasible, we need to define
a new local planning problem that, when solved, will
hopefully make the overall planning problem feasible.

We define theneighborhoodNm(s) of s to includes
as well as the set of states that differ froms by at most
one fact and that the different facts of two neighboring
states exist in a symmetry group. To generate a neigh-
boring state froms, we randomly pick a fact ins and
perturb the fact to a different fact in the corresponding
symmetry group. Note that, sincesr, the numeric part
of s, is not changed in the process, there may not ex-
ist a valid action for a transition froms to its neighbor.

We measure thedistanceD(s, t) between two states
s = (sf , sr) andt = (tf , tr) as the sum ofNd (the num-
ber of different facts ins andt) and the normalized dif-

ference between their numerical parts:

D(s, t) = Nd +

nr
∑

i=1

|sri
− tri

|

max(sri
, tri

)
. (21)

Hence,D(s, t) = 0 iff s andt are identical states. Next,
we defineS(s), the set ofsuccessor(different from
neighborhood) states ofs, in such a way that there ex-
ists a valid action that bringss tov for all v ∈ S(s). Last,
we define thetransition distanceT (s, t) as the minimum
distance betweens andt over all successors ofs:

T (s, t) = min
v∈S(s)

D(v, t). (22)

According to this definition,T (s, t) = 0 if there exists a
valid action to brings to t.

We are now ready to define the new local plan-
ning problem in staget for MIPS to solve (Line 10 of
Figure 3). The problem has the same domain specifi-
cation as in the overall problem, initial states′i(t) ∈
Nm(si(t)), and goal statesi(t+1). In addition, there are
two global constraints at the boundaries between staget
and the predecessor and successor stages:

Ht−1(z) = T (sg(t− 1), si(t)) = 0; (23)
Ht(z) = T (sg(t), si(t+ 1)) = 0. (24)

Hence,Ht−1(z) = 0 (resp.Ht(z) = 0) is satisfied if
and only if there is a valid action to bringsg(t−1) (resp.
sg(t)) to si(t) (resp.si(t + 1)). We also define the ob-
jective of the local problem:

f(t) = J(z) + γt−1Ht−1(z) + γtHt(z), (25)

whereγt−1 andγt are fixed Lagrange multipliers asso-
ciated with the two global constraints.

After solving the local problem defined, MIPS re-
turns an optimal feasible plan froms′i(t) to si(t + 1)
if one exists; otherwise, it returns a feasible plan from
s′i(t) to sg(t) that minimizesf(t). We accept this plan
if it improvesf(t); otherwise, we repeat generating new
initial states inNm(si(t)) until we find a better plan or
when the maximum number of trials is exceeded (Line
12). In our experiments, we setmax trials to 5.

After completing theN + 1 local subproblems in an
iteration (Line 14), we update the Lagrange multipliers
of all unsatisfied global constraints, usingω > 0 to con-
trol the rate of increase ofγt:

γt ← γt + ω ×Ht(z), t = 0, 1, . . . , N. (26)

We setω = 0.01Ja, whereJa is the average value of
J(z) in the last three iterations.

We repartition the stages dynamically by adjusting
the boundary of stages every certain number (τ in Fig-
ure 3) of iterations. This is accomplished by counting

the number of state transitions fromsi to sg at the end
of the outer loop (Line 16) and redefine the stage bound-
aries in order for each stage to have approximately the
same number of state transitions. As a result of the repar-
titioning, the number of violated global constraints in a
stage may be different from one. In our experiments, we
setN = 20 andτ = 5.

5.2. Experimental Results

We show that our MIPS+DIS planner im-
proves significantly over the original MIPS plan-
ner on a set of PDDL2.1 planning benchmarks
used in the Third International Planning Competi-
tion. The problems studied belong to a number of
domains, including DepotNumeric, DepotSim,
DepotT ime, DriveLogNumeric, DriveLogSim,
DriveLogT ime, ZenoTravelNumeric, Zeno-
TravelSim, andZenoTravelT ime.

In our experiments on MIPS, we used the most re-
cent executables downloaded from its Web site and ran
it with default parameters and a maximum time limit
of 106ms. All experiments were conducted on an AMD
Athlon MP2000 PC with Linux Redhat 7.2.

For the 120 (out of a total of 160) problems solvable
by MIPS, Figure 5a plots the distribution of the quality
of the solution found by MIPS+DIS normalized with re-
spect to that of MIPS, using the same amount of time
taken by MIPS to find the solution. Similarly, Figure 5b
plots the distribution of the time taken by MIPS+DIS to
find a solution of the same or better quality as obtained
by MIPS, normalized with respect to the time taken by
MIPS. The graphs do not include the results on 30 prob-
lems for which MIPS+DIS can solve but MIPS cannot
find any feasible plan in106ms. The results show that
MIPS+DIS is able to improve over MIPS in 81.7% of
the cases in quality or 83.2% in time.

Of the 150 of the 160 problems solvable by
MIPS+DIS, MIPS+DIS can find a feasible solution
faster than MIPS in94.4% of the cases and a better fi-
nal solution quality in93.8% of the cases.

References

[1] M. Avriel. Nonlinear Programming: Analysis and Meth-
ods. Prentice-Hall, Inc., Englewood Cliffs, NJ., 1976.

[2] D. P. Bertsekas.Nonlinear Programming. Athena Scien-
tific, Belmont, Massachusetts, 1999.

[3] Y. X. Chen and B. W. Wah. Automated planning and
scheduling using calculus of variations in discrete space.
In Proc. Int’l Conf. on Automated Planning and Schedul-
ing, pages 2–11, June 2003.

[4] S. Chien,et al. ASPEN - Automating space mission op-
erations using automated planning and scheduling. In
Proc. SpaceOps. Toulouse, France, 2000.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2 2.5

D
is

tr
ib

ut
io

n
P

ro
ba

bi
lit

y

Normalized Quality at the Same Time as MIPS (Smaller is Better)

a) Distribution of the quality of the solution found by
MIPS+DIS normalized with respect to that of MIPS, using the
same amount of time taken by MIPS to find the solution

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2 2.5

D
is

tr
ib

ut
io

n
P

ro
ba

bi
lit

y
Normalized Time at the Same or Better Quality as MIPS

b) Distribution of the time taken by MIPS+DIS to find a
solution of the same or better quality as obtained by MIPS,
normalized with respect to the time taken by MIPS

Figure 5. Normalized time and quality of
MIPS+DIS with respect to MIPS on the 120
problems solvable by MIPS (out of a total of 160
problems). The time and quality of MIPS is (1,1)
for all these problems.

[5] S. Edelkamp. Mixed propositional and numerical plan-
ning in the model checking integrated planning system.
Proc. Int’l Conf. on AI Planning and Scheduling (AIPS),
2002.

[6] R. E. Fikes and N. J. Nilsson. STRIPS: A new approach
to the application of theorem proving to problem solv-
ing. Artificial Intelligence, 2(3 & 4):189–208, 1971.

[7] M. Fox and D. Long. PDDL2.1: An extension to PDDL
for expressing temporal planning domains.Tech. Rep.,
Dept. of Computer Science, Univ. of Durham, Durhan,
UK, February 2002.

[8] H. W. Kuhn and A. W. Tucker. Nonlinear program-
ming. In J. Neyman, editor,Proc. Second Berkeley Sym-
pos. Math. Stat. Prob., pages 481–492. University of Cal-
ifornia Press, 1951.

[9] D. G. Luenberger.Linear and Nonlinear Programming.
Addison-Wesley, Reading, MA, 1984.

[10] R. L. Rardin. Optimization in Operations Research.
Prentice Hall, 1998.

[11] B. W. Wah and T. Wang. Simulated annealing with
asymptotic convergence for nonlinear constrained global
optimization.Principles and Practice of Constraint Pro-
gramming, pages 461–475, October 1999.

