
Optimization of Bounds in Temporal Flexible Planning
with Dynamic Controllability ∗

Benjamin W. WahandDong Xin
Department of Electrical and Computer Engineering

and the Coordinated Science Laboratory
University of Illinois, Urbana

Urbana, IL 61801, USA
E-mail:{wah, dongxin}@manip.crhc.uiuc.edu

Abstract

A temporal flexible planning problem can be formulated
as a simple temporal network with uncertainty (STNU),
whose links are classified as contingent and requirement
links. The problem of constraint satisfaction forSTNU has
been characterized as controllability, where dynamic con-
trollability is the most interesting and useful controllability
property. In this paper, we study the assignment of bounds
allowed on the requirement links in order for the resulting
STNUto be dynamically controllable and the total cost over
the allowed ranges of the requirement links to be minimized.
Since the problem with a linear cost function is NP-hard,
we formulate the dynamic controllability of anSTNU with
a general cost function as constraints in a nonlinear opti-
mization problem. Our approach is flexible because it can
incorporate additional constraints, such as resource con-
straints, in the formulation. Finally, we present methods to
reduce the number of constraints in order to make the prob-
lem tractable.

1. Introduction

In temporally flexible planning, event that govern spe-
cific actions of a planner may be non-deterministic. To cope
with uncertainties in the occurrence of events, the planner
must respond to these contingent events and develop plans
in such a way that all the problem requirements are satis-
fied eventually. As an example, the camera and the com-
puter on a Mars rover may need to be turned on or off, de-
pending on whether the rover encounters an obstacle in its
path and whether the obstacle can be circumvented.

∗ Research supported by National Science Foundation Grant IIS 03-
12084
Proc. IEEE Int’l Conference on Tools with Artificial Intelligence, 2004

A temporal flexible planning problem can be formulated
formally in a simple temporal network with uncertainty
(STNU) [7], whose links are classified ascontingentandre-
quirement links. Contingent links may be thought of as rep-
resenting causal processes of uncertain duration, whose fi-
nal time points are controlled by nature, whereas require-
ment links are controlled by a planner. Formally, anSTNU
is described by a 5-tupleΓ = 〈V, E, L, U, C〉, whereV is
a set of nodes;E is a set of links;L: E → R ∪ {−∞}
andU : E → R ∪ {+∞} are functions that map a link into
the lower and upper bounds of the interval of possible du-
rations;C is a subset of links that are contingent links; and
E\C is the subset of requirement links.

The problem of constraint satisfaction forSTNU has
been characterized ascontrollability [6]. A network is con-
trollable if there is a strategy for executing the actions by a
planner that satisfies all the requirements in all situations in-
volving contingent events. Instrong controllability, the ac-
tions can always be scheduled under all possible times at
which contingent events can happen. Inweak controllabil-
ity, the actions can always be scheduled under all possi-
ble times of contingent events if those times were specified
ahead of time. Last, indynamic controllability, the remain-
ing actions in a network can always be scheduled under all
possible future times of contingent events when all the past
contingent events are known. It is easy to see from the def-
initions that strong controllability implies dynamic control-
lability; that is, if anSTNU is strongly controllable, then
it must be dynamically controllable. Dynamic controllabil-
ity in turn implies weak controllability. Since strong con-
trollability is too rigid for planning under contingent events
and weak controllability does not guarantee a strategy that
can handle all contingencies, the most interesting and use-
ful controllability property is dynamic controllability.

In this paper, we study the following optimization
problem. Define a dynamically controllableSTNU Γ =
〈V, E, L, U, C〉, where[L(e), U(e)] are the loose bounds of

Proceedings of the 16th IEEE International Conference on Tools with Artificial Intelligence (ICTAI 2004)
1082-3409/04 $20.00 © 2004 IEEE

[1,100]

[1,100][2,4]

9

10

[1,100]

[1,100]7

5 8

6

[2,4]4

[1,100]

[1,100]

[1,100]

3

2

[2,4]
[2,4]

b) Dynamically controllable STNU with optimized bounds

a) Original dynamically controllable STNU with loose bounds

[1,1]

5

[1,3]
[2.5,3]

[1,1]
[3,5]

[2,4] [1,4.5]
[2,4]

9[1,1][2,4][1.5,4]

[2,4]

[1,100] [1,100] [1,100]

[1,100]1

[4,9.5]
10

7

[3,5]6

8

4

3

[1,1]

2

1

Figure 1. Example of dynamically controllable
STNU with optimized bounds. Solid arrows repre-
sent requirement links, and dashed arrows repre-
sent contingent links.

e ∈ E; and[l(e), u(e)] are the desired bounds ofe. Assum-
ing a cost functionf : l(e1), u(e1), . . . , l(en), u(en) → R,
where n = |E|, the optimalSTNU with respect tof ,
Γ′ = 〈V, E, l, u, C〉, is the solution overl(ei), u(ei):

(Pstnu) : min f(l(e1), u(e1), . . . , l(en), u(en)) ei ∈ E

subject to L(e) ≤ l(e) ≤ u(e) ≤ U(e) e ∈ E\C

l(e) = L(e), u(e) = U(e) e ∈ C

and Γ′ is dynamically controllable.

Pstnu is interesting in practice. A larger interval on a
requirement link is always desirable because the resulting
STNUmay be more likely to be dynamically controllable.
However, such flexibility may incur new costs. For instance,
the cost of allowing a camera onboard a satellite be turned
on at any time in [10,20] may be higher than that if the cam-
era were allowed to be turned on in [18,20]. The larger in-
terval in the first case may incur an additional cost because
other resources must be made available earlier.

Figure 1a illustratesPstnu, whose dashed (resp.solid)
lines are contingent (resp.requirement) links. It is easy to
verify that the network is dynamically controllable. If we set
the cost function as

∑

e∈E\C
(u(e) − l(e)), then theSTNU

has objective value 1089. By reducing the bounds on each
requirement link, Figure 1b shows the modifiedPstnu with
objective value 18 that is also dynamically controllable.

Pstnu with a linear cost function can be proved to be
NP-hard by reducing it from the 3-coloring problem. This is
done by constructing a mapping from the 3-coloring prob-
lem to an instance ofPstnu in such a way that a solution
to the 3-coloring problem maps to a solution ofPstnu con-
structed. Due to space limitation, we do not show the proof.

Previous studies onSTNUs have focused on algorithms
for checking controllability [4] and for executing anSTNU

efficiently and successfully [3]. Section 2 reviews existing
algorithms for checking dynamic controllability. Although
such algorithms have polynomial complexity [4],Pstnu is
NP-hard even when a linear cost function is involved. In
this paper, we formulatePstnu with a general cost function
as a constrained optimization problem and solve it by exist-
ing nonlinear programming methods. This approach is flex-
ible because it can incorporate additional constraints, such
as resource constraints [5], in the formulation. Since exist-
ing methods for checking dynamic controllability are pro-
cedural [4], we first define in Section 3 the constraints that
specify the conditions for dynamic controllability in our
constrained formulation. We show a naive formulation that
leads to an intractable problem withO(N2) variables and
O(N3) constraints for anN -nodeSTNU. In order to reduce
the complexity, we propose in Section 4 methods to elimi-
nate unnecessary variables and implied constraints. Finally,
Section 5 presents our experimental results.

2. Dynamic Controllability

Given anSTNUwith independent contingent events, an
algorithm for checking dynamic controllability must con-
sider every combination of possible contingent events [4].
We further assume that the lower bounds of contingent links
are positive because influences of contingent events should
propagate only forward in time. The dynamic controllabil-
ity of an STNUis classified into local and global dynamic
controllability [4].

2.1. Local Dynamic Controllability

By treating anN -nodeSTNUasCN
3

triangles, local dy-
namic controllability examines each triangle in two steps.

The first step treats each contingent link as a requirement
link and examines each triangle in the network and the as-
sociateddistance graph[2]. Each directed link in the trian-
gle corresponds to two directed edges in the distance graph,
whose weights are derived from the upper and the negative
lower bounds of the corresponding links (Figure 2). More-
over, the bounds of each link in the triangle are the short-
est paths in the distance graph. For instance, it follows that
[LR

BC
, UR

BC
] ⊆ [LC

AC
− UR

AB
, UC

AC
− LR

AB
] in Figure 2,

where[LR
r , UR

r] (resp.[LC
c , UC

c]) denote the lower and up-
per bounds of requirement linkr (resp.contingent linkc).

Second, a triangle that has at least one contingent link is
classified into one of the following three categories. (If a tri-
angle has two contingent links, it will be considered twice,
with each contingent link in turn plays the role of a require-
ment link.) Refer to Figure 2a in the following discussion.

a) If UR
BC

< 0, the triangle is in thefollow case, and
B always follows C in its occurrence. Here, contingent link
AC acts like a requirement link because C has already oc-

Proceedings of the 16th IEEE International Conference on Tools with Artificial Intelligence (ICTAI 2004)
1082-3409/04 $20.00 © 2004 IEEE

CACA

B

b) Corresponding distance graph

[LR
BC

, UR
BC

]

a) Triangle inSTNU

UR
AB

UR
BC[LR

AB
, UR

AB
]

[LC
AC

, UC
AC

]

−LR
BC

−LR
AB

UC
AC

−LC
AC

Figure 2. Triangle network and its distance graph

curred at the time when B is scheduled to occur. The condi-
tion for dynamic controllability is always satisfied.

b) If LR
BC

≥ 0 andUR
BC

> 0, the triangle is in thepre-
cede case, and B must occur before or simultaneously with
C. Here, the information about the occurrence of C is not
available to B when B is scheduled. Hence, the bounds of
AB must be tightened to[UC

AC
− UR

BC
, LC

AC
− LR

BC
] in or-

der for B to be controllable.
c) If LR

BC
< 0 andUR

BC
≥ 0, then the triangle is in

the unordered case, and B can occur before or after C.
Here, if C has not occurred, then B cannot be scheduled
at any time beforeUC

AC
− UR

BC
after A has occurred. Fur-

ther, if UC
AC

− UR
BC

≤ LC
AC

, thenLR
AB

can be tightened to
UC

AC
− UR

BC
. On the other hand, ifUC

AC
− UR

BC
> LC

AC
,

thenLR
AB

can be tightened toLC
AC

, and a wait annotation
〈C, w

ABC
〉 is placed on AB for contingent link AC. We call

w
ABC

a triangular wait in this paper, where:

w
ABC

= UC

AC − UR

BC (triangular wait on AB for AC). (1)

The triangular wait on AB defines a threshold: at any
time before the threshold, B cannot occur until C has oc-
curred; whereas at any time after the threshold, B can occur
independent of C. Clearly, the wait on a link must be within
the lower and upper bounds defined on the link. The only
exception is when the link is a contingent link because the
wait on the contingent link must equal the lower bound de-
fined. For simplicity, we refer to the lower and upper bounds
on the wait defined in (1) as thewait-bound constraints.

2.2. Global Dynamic Controllability

In global dynamic controllability, wait information is
propagated throughout a network byregression[4]. Con-
sider regressing〈C, w

ABC
〉 for a wait on AB to AD, where

AC is the contingent link that causes the wait.
a) If there is any link DB with upper boundUR

DB
, then

the wait regressed to AD is〈C, w
ABC

− UR
DB

〉.
b) If w

ABC
≥ 0 and DB is a contingent link with lower

boundLC
DB

, then the wait regressed to AD is〈C, w
ABC

−
LC

DB
〉.

To distinguish fromtriangular waits, we call the wait re-
gressed to AD aregression waitin this paper. The actual

wait 〈C, w
ABD

〉 on AD will be the maximum of its regres-
sion and triangular waits.

By applying the steps for checking dynamic controlla-
bility, the bounds of links may be tightened. AnSTNU is
dynamically controllable if and only ifUR

r ≥ LR
r for ev-

ery requirement linkr and[LC
c , UC

c] has not been tightened
for any contingent linkc [4].

3. Naive Formulation

Given thatPstnu is NP-hard for a linear cost function,
we propose to formulate the dynamic-controllability condi-
tions in Pstnu with a general cost function as constraints
and solve the problem as a nonlinear constrained optimiza-
tion problem. These conditions can be formulated as con-
straints by following the properties in Section 2. Appendix
A presents the complete list of constraints that are grouped
into shortest-path, precede, andwait constraints. The latter
include constraints on triangular-wait, regression-wait and
wait-bound.

In our formulation, we represent the desired bounds on a
link as variables[l, u], and the wait value on AB for contin-
gent link AC as variablew

ABC
or justw for simplicity.

Given STNUSc, there are two steps in developing the
constrained formulation. First, we generate precede and
wait constraints according to each contingent link inSc and
add new links involved in the constrained formulation toSc.
Next, we consider every link in the updatedSc as a require-
ment link and formulate constraints to ensure every bound
to be the shortest path in the corresponding distance graph.

In contrast to the algorithm for checking controllabil-
ity in which the bounds are known and the types of trian-
gles are determined a priori, the bounds inPstnu are vari-
ables. Hence, the conditions for the different cases must be
incorporated as constraints in the formulation. The only ex-
ception is the conditions for theunordered casein which
we prove that the associated constraints are implied. This is
stated formally as follows:

Lemma 1 If the shortest-path and precede constraints are
satisfied, then removing the conditions for the unordered
case will not change the solution region ofPstnu.

The proof is not shown due to space limitations.
Because constraints can be translated directly from the

properties in Section 2, we only illustrate the construction of
the constraints for regression wait through a contingent link.
Assuming waitw2 obtained by regressing waitw1 through
a contingent link with bounds[lC , uC], then:

w2 ≥

{

w1 − lC if w1 ≥ 0

w1 − uC otherwise.
(2)

Proceedings of the 16th IEEE International Conference on Tools with Artificial Intelligence (ICTAI 2004)
1082-3409/04 $20.00 © 2004 IEEE

Type of Constraints #Const. Type of Var. #Variables

Shortest-Path O(N3) Bound O(N2)
Precede O(CN) Wait O(CN)

Triangular-Wait O(CN) Auxiliary O(C2 + CN)
Regression-Wait O(CN2)

Wait-Bound O(CN)

Table 1. Complexity of the naive formulation for
an N -node STNU with C contingent links.

To combine the two cases into a single constraint, we
generate a linear constraint that is true for both cases:

w2 ≥ w1 − uC . (3)

We then introduce three constraints using an auxiliary
variableα:

α ≥ 0; α ≥ w1; (4)
α × (w2 − w1 + lC) ≥ 0.

In addition, we addα(α − w1) to the objective function in
order to ensure that theα chosen is either 0 orw1. Note that
α ≥ w1 if w1 ≥ 0 andα ≥ 0 if w1 < 0.

The two constraints defined in (2) with respect to the sign
of w1 are not always needed because we can infer the sign
of w1 in some cases. Since the wait on a link must be within
its initial loose bounds[L1, U1] specified for the link, we
know thatw1 ≥ 0 if L1 ≥ 0, and thatw1 < 0 if U1 < 0.

Table 1 shows that the naive formulation results in
O(N2) variables andO(N3) constraints for anN -node
STNU. Such a problem is usually too large to be solved.
In the next section, we present methods to reduce the num-
ber of redundant variables and implied constraints.

4. Reduced Formulation

The naive formulation treats anSTNUSc as a clique and
enumerates all possible triangles that lead to the numerous
linear constraints, resulting in many redundant variables and
implied constraints. Although pre-solving techniques and
linear reductions in linear programming can help eliminate
such redundancies, they are of limited use because they can-
not find complex problem-specific redundancies.

In this section, we present methods to eliminate redun-
dancies in our naive formulation. Instead of looking for re-
dundancies directly, we examine the temporal order among
nodes and links inSc and analyze the relationship among
the constraints in order to avoid generating implied con-
straints. Note that since every shortest path is embodied
by existing links inSc, it is not necessary to formulate
shortest-path constraints on links that do not exist inSc.
However, contingency information has to be propagated in
Sc before the shortest-path constraints can be derived when

[−1,3][1,3]

[3,5]

E

F A C

D
B

[4,7] [2,4]

[1,3]

[2,4][2,4]

[1,3]
[3,4]

Figure 3. Reductions on wait constraints

each contingent link is treated as a requirement link. This
step is done by adding new links toSc and by introducing
wait and precede constraints on these links. These links are
necessary because their wait and precede constraints give
tighter bounds than the corresponding shortest-path con-
straints. The shortest-path constraints are then formulated
in the updated network. The amount of reductions are, of
course, problem dependent. In the worst case, ifSc is a
clique, then all the shortest-path constraints are necessary
and cannot be reduced.

In the following subsections, we introduce methods to
reduce wait, precede, and shortest-path constraints.

4.1. Reductions on Wait Constraints

Before the reduction, we first checkSc for dynamic con-
trollability and derive better bounds for all possible links,
including those that do not exist inSc.

Given contingent link AC, we derive the wait (triangular-
wait, regression-wait, and wait-bound) constraints on ev-
ery node in the naive formulation. To find redundant con-
straints, we consider temporal information based on the
loose bounds and classify every node B ofSc into:

• Pre-Set: {B such thatUAB ≤ LC
AC

},

• Post-Set: {B such thatLAB ≥ LC
AC

},

• Wait-Set: otherwise,

where AB can be a requirement or a contingent link.
As an illustration, if AC in Figure 3 is a contingent link,

then{E,F} is the Pre-Set,{D} is the Post-Set, and{B} is
the Wait-Set. Basically, nodes in the Pre-Set (resp.Post-Set)
are guaranteed to occur before (resp.after) some time point.
Knowing that the wait on a link is always between its lower
and upper bounds, we conclude that the wait on the link be-
tween A and any node in the Pre-Set (resp.Post-Set) is no
larger (resp.no less) thanLC

AC
.

As shown in Lemma 1, triangular waits in the precede
and follow cases always satisfy the wait-bound constraints.
However, Section 2.1 shows that nodes in the Pre-Set (resp.
Post-Set) are not guaranteed to form triangles with contin-
gent link AC in the precede (resp. follow) cases. Using a
similar argument as in Lemma 1, triangular-wait constraints
for nodes in the Post-Set are found to be redundant. For
the Pre-Set, we find the necessary nodes to formulate the

Proceedings of the 16th IEEE International Conference on Tools with Artificial Intelligence (ICTAI 2004)
1082-3409/04 $20.00 © 2004 IEEE

triangular-waits and migrate them to the Wait-Set, leaving
other nodes in the Pre-Set to be ignored in the triangular-
wait formulation. The migration procedure is presented as
Guard-Migrations below.

Regression-wait constraints are more complex for two
reasons. First, if waits in the Pre-Set and the Post-Set are
found by regression, then the bounds on which the waits
apply can be tightened. Second, if waits in the Pre-Set and
the Post-Set are regressed to other links, then the bounds on
the target links can also be tightened. In both case, the cor-
responding regression-wait constraints are no longer non-
redundant. We have found that if a wait satisfies the wait-
bound constraints, then its regression through a requirement
link satisfies the wait-bound constraints. (If a wait is neg-
ative, then its regression through a contingent link is the
same as through a requirement link.) As a result, we are
only interested in waits that are positive and that can be re-
gressed through a contingent link (that is, the end point of
the link where the wait applies is the end point of a contin-
gent link). The procedures are presented as Post-Migration
(Pre-Migration) for nodes in the Post-Set (Pre-Set).

a) Post-Migrationsare used to find waits in the Post-Set
that may affect the bounds in the Wait-Set or the Pre-Set.
For each F in the Post-Set, let F be an end point of con-
tingent link EF, and P be either node C or a node in the
Wait-Set that is the starting point of any contingent link.
Both E and F can be migrated to the Wait-Set ifLR

PF
< 0.

Hence, the regression of waitw
AP C

to link AF and the re-
gression ofw

AF C
through EF will be included in the for-

mulation. This step is repeated until the Wait-Set does not
change. As an illustration, node D in Figure 3 will be mi-
grated to the Wait-Set, since D is the end point of contin-
gent link BD andLR

CD
< 0.

b) Pre-Migrationsare used to find waits in the Pre-Set
that may affect other nodes in the Pre-Set. For each node F
in the Pre-Set, if0 ≤ UR

AF
≤ LC

AC
(hence the value of wait

w
AF C

can be positive) and F is the end point of contingent
link EF, migrate both E and F to the Wait-Set.

c) Guard-Migrationsare used to find waits in the Pre-
Set that will eliminate triangular-wait constraints on the re-
maining nodes in the Pre-Set. This step is achieved by find-
ing guardnodes that are in the Pre-Set and that appear first
in each path starting from C. Hence, for each node P that is
not directly connected to C, there are guard nodes on every
possible path between P and C. The upper bound of non-
existent link PC must be equal to the upper bound of one
of paths from P to C, where the upper bound of a path is
the sum of the upper bounds of all the links in the path. As-
suming guard node D on a path from P to C, one can easily
verify that the triangular-waitw

AP C
on AP is equivalent to

the regression-wait ofw
ADC

through requirement link PD.
Note that PD cannot be a contingent link because it has been
ruled out by Pre-Migration. This regression will be possi-

ble if constraints formulated onw
ADC

are satisfied. Conse-
quently, the constraints formulated on the guard nodes en-
sure that the rest of the nodes in the Pre-Set can be ignored.

By treating the network as an undirected graph, we use a
modified Depth First Search (DFS) to find the guard nodes.
Take C as the root and A as visited. Consider any node B
visited during the traversal:

1. If B is in the Post-Set or the Wait-Set, mark B as vis-
ited and continue.

2. Otherwise, B is a guard node; migrate B to the Wait-
Set; and mark B as visited. At this point, DFS does not
continue from the current node but return to the parent
of the current node before continuing.

For example, DFS will classify E in Figure 3 as a guard
node and put it into the Wait-Set, and leave F in the Pre-Set.

After the migrations and updating the Wait-Set, Pre-Set,
and Post-Set, the following lemma states that only nodes in
the Wait-Set are needed in the formulation involving wait
constraints. We skip the proof due to space limitation.

Lemma 2 If the shortest-path, precede, and wait con-
straints (triangle-wait, regression-wait, and bound con-
straints) on the Wait-Set are satisfied, then excluding the up-
dated Post-Set and Pre-Set in the formulation involving wait
constraints will not change the solution region ofPstnu.

4.2. Reductions on Precede Constraints

Similar to reductions on wait constraints, we consider
temporal information according to the loose bounds and
classify every node B ofSc for contingent link AC into:

• Post-Set:{B such thatLCB ≥ 0},

• Pre-Set:{B such thatUCB < 0},

• Unordered-Set: otherwise,

where CB can be a requirement or a contingent link. For
any B in the Post-Set, triangle ABC must be in the follow
case, and no precede constraints will be generated. For any
B in the Unordered-Set, the type of triangle ABC is unde-
termined, and nonlinear precede constraints will be gener-
ated. Reductions can be applied on the Pre-Set, where, sim-
ilar to the reductions on wait constraints, the set of guard
nodes will be found by the modified DFS search and mi-
grated to the Unordered-Set. Likewise, we state the follow-
ing lemma without proof.

Lemma 3 If the shortest-path constraints are satisfied,
then excluding the Post-Set and the Pre-Set in the formu-
lation involving precede constraints will not change the so-
lution region ofPstnu.

As stated earlier, the formulation of wait and precede
constraints may add new links toSc. The updated network

Proceedings of the 16th IEEE International Conference on Tools with Artificial Intelligence (ICTAI 2004)
1082-3409/04 $20.00 © 2004 IEEE

A

B

C

D
[lAD, uAD]

[lAB, uAB]
[lBD, uBD]

[lAC , uAC] [lCD, uCD]

Figure 4. The order of node removals affect the
number of shortest-path constraints. (AD is a link
added to the network.)

will lead to different guard nodes found by DFS in both wait
and precede reductions. In our algorithm, we redo both wait
and precede reductions until no new guards are found.

4.3. Reductions on Shortest-Path Constraints

In a naive formulation, there are a large number of
shortest-path constraints because all possible triangles in
the network are considered. To reduce the number of such
constraints, we only formulate them between neighboring
nodes in the reduced formulation, and propagate the con-
straints on bounds throughout the network.

Our algorithm for reducing the number of shortest-path
constraints works by finding recursively new candidate
nodes in the distance graph ofSc, formulate the corre-
sponding shortest-path constraints, and remove the candi-
date nodes from the distance graph until no nodes are left.
For any node A in the distance graph, we define nodes
that are connected to A by existing links in itsAdjacent-
Setand generate the shortest-path constraints on those tri-
angles made up by A and any two nodes in its Adjacent-
Set. We assume that nodes in the Adjacent-Set will always
be connected by existing links, or new links will be created
in case they do not exist. After generating the constraints,
we remove A from the distance graph and repeat the proce-
dure on the remaining graph. One can easily verify that, if
nodes are removed one by one this way, then the shortest-
path constraints between any two nodes in the original dis-
tance graph will be satisfied.

Shortest-path constraints are formulated in triangles
where the number of such constraints is proportional to the
number of triangles inSc. We have seen that when a node
is removed fromSc, additional links may be added toSc,
leading to an increase in the number of triangles. To get a
reduced formulation, we like to add as few links as possible
and remove nodes in a proper order in the distance graph.

For example, in Figure 4, if B is removed first, then BAC,
BAD, and BCD will be considered in the shortest-path for-
mulation after adding AD to the network, and the shortest-
path constraints will be formulated in ACD. Hence, four tri-
angles will be considered. On the other hand, if A is re-

moved first, only the shortest-path constraints for two trian-
gles (ABC followed by BCD) will be considered, and those
of ABD and ACD are redundant. To illustrate that the lat-
ter is true, consider as an example one shortest-path con-
straint in ABD:uAB ≤ uAD − lBD. Since there is no di-
rect link between AD, we assume the upper bound of AD to
beuAD = uAC + uCD. From the shortest-path constraints
on ABC and BCD, we know thatuAB ≤ uAC + uCB and
uCB ≤ uCD − lBD. These constraints imply thatuAB ≤
uAC + uCB = uAC + uCD − uCD + uCB ≤ uAD − lBD,
which show that the constraint is redundant.

We have developed a heuristic algorithm to identify the
order of removing nodes. We define a heuristic valuevA =
LA/CSA

2
for node A, whereSA is the size of the Adjacent-

Set of A andLA is the number of existing links in the
Adjacent-Set. IfvA = 1, then A is an ideal node to be re-
moved; that is, removing A does not add any new links. In
each step of the algorithm, the algorithm finds the node with
the maximumv for removal.

As an illustration, using the proposed methods, the naive
formulation in Figure 1 with 116 variables and 1173 con-
straints can be reduced to 53 variables and 263 constraints.

5. Experimental Results

In our experiments, we generated ourSTNUs randomly,
using the same code as in [1]. We chose the GRID fam-
ily that closely approximatedSTNUs found in natural plans,
whereL × H + 1 is the number of nodes,L is the number
of horizontal layers,H is the number of vertical heights,
and one accounts for the source node. The links are either
horizontal or vertical, where a contingent link is chosen ran-
domly among horizontal links, and there is at most one con-
tingent link in each layer. We restricted the lower bounds to
be negative and the upper bounds to be positive in each ver-
tical link. The bounds on requirement links were so loose
that the generatedSTNUs were guaranteed to be dynami-
cally controllable. In each network, we varied the topolo-
gies by changing its height to 2, 4, and 5, respectively. We
also varied the random seed in order to get a different distri-
bution of contingent links. Finally, we averaged our results
over ten different random seeds.

We chose our cost function as
∑

e∈E\C
(u(e) − l(e))

in order to minimize the sum of durations of all require-
ment links. We formulated the optimization of bounds for
both the naive and the reduced formulations as nonlinear
programming problems and solved them by SNOPT at the
NEOS server (http://www-neos.mcs.anl.gov).

Table 2 shows the formulation and computation results.
Using the naive formulations, SNOPT was not able to find
any solution within 6000s. Our results show that reductions
are important because they allow large problems to be solv-
able within a reasonable amount of time, and that they per-

Proceedings of the 16th IEEE International Conference on Tools with Artificial Intelligence (ICTAI 2004)
1082-3409/04 $20.00 © 2004 IEEE

STNU Topology Naive Formulation Reduced Formulation
Nodes Layers Height Links Ctg. Var. Const. NL Time Var. Const. NL Time

41 20 2 60 12 2099 85630 51 - 276 1438 51 1.194
41 10 4 70 8 1971 79642 102 - 502 3972 102 16.066
41 8 5 72 6 1923 77416 114 - 574 5224 114 19.993
81 40 2 120 25 8436 681622 106 - 609 3418 106 3.110
81 20 4 140 17 7865 631993 215 - 1081 8810 215 36.237
81 16 5 144 14 7672 615368 243 - 1265 12088 243 128.255

121 60 2 180 36 18826 2274089 156 - 881 4755 156 8.212
121 30 4 210 26 17727 2133019 334 - 1698 14317 334 100.734
121 24 5 216 22 17219 2069761 369 - 1977 19266 369 251.766
161 80 2 240 52 33992 5465487 224 - 1216 6643 224 13.276
161 40 4 280 33 31121 4989835 417 - 2219 18608 417 154.296
161 32 5 288 28 30380 4867119 476 - 2632 25812 476 486.370
201 100 2 300 63 52772 10596461 273 - 1508 8223 273 19.260
201 50 4 350 42 48783 9772733 537 - 2814 23622 537 221.225
201 40 5 360 37 47660 9540734 617 - 3319 32478 617 837.102

Table 2. Complexity of test networks generated and their solution times in seconds on the NEOS Server. Each
network is represented by the number of nodes (Nodes), the number of horizontal layers of the GRID network (Lay-
ers), the number of vertical layers of the GRID network (Height), the total number of links (Links), and the number
of contingent links (Ctg.). Each formulation is represented by the number of variables (Var.), the number of lin-
ear constaints (Const.), the number of nonlinear constraints (NL), and the solution time in seconds of SNOPT on
the NEOS server (Time).

form better when the height of the graph is small. The lat-
ter is true because most nodes in the same layer with a given
starting point (resp.end point) will be in the Wait-Set (resp.
Unordered-Set) when we restrict every vertical link to have
negative lower and positive upper bounds. When the height
of the network increases, reductions become less effective
due to increases in the size of the Wait-Set in wait reduc-
tions and that of the Unordered-Set in precede reductions.

6. Conclusions

In this paper, we have presented a constrained formula-
tion of finding the bounds allowed on the requirement links
of a simple temporal network with uncertainties (STNU) in
order for the resulting STNU to be dynamically controllable
and the total cost over the allowed ranges of the requirement
links to be minimized. We have first shown a naive formula-
tion that treats an STNU as a clique and that enumerates all
possible triangles. Such a formulation leads to many redun-
dant variables and implied constraints, rendering the prob-
lem unsolvable even for a small network. To address this is-
sue, we present methods to eliminate such redundancies by
studying the temporal order among nodes and links and by
analyzing the relationship among the constraints in order to
avoid generating implied constraints. Our experimental re-
sults illustrate that our reduction methods lead to tractable
solutions for reasonable large networks.

a) Triangle network b) Correspondig distance graph
B

CACA

B

uR

BC

−lC
AC

[lC
AC

, uC

AC
]

[lR
BC

, uR
BC

]

wABC

[lR
AB

, uR

AB
]

−lR
AB

−lR
BC

uR

AB

uC

AC

Figure 5. Illustration for constraints discussed in
Appendix A. l and u denote the desired bounds.

APPENDIX A: COMPLETE CONSTRAINT LIST The
constraints are discussed with respect to Figure 5.

Shortest-Path Constraints.














lC
AC

≤ uR
AB

+ lR
BC

≤ uC
AC

lC
AC

≤ uR
BC

+ lR
AB

≤ uC
AC

uR
AB

+ uR
BC

≥ uC
AC

lR
AB

+ lR
BC

≤ lC
AC

.

(5)

Precede Constraints.

1. If LR
BC

< 0 andUR
BC

≥ 0,

{

lR
BC

× (lR
AB

+ uR
BC

− uC
AC

) ≥ 0
lR
BC

× (uR
AB

+ lR
BC

− lC
AC

) ≤ 0.
(6)

Proceedings of the 16th IEEE International Conference on Tools with Artificial Intelligence (ICTAI 2004)
1082-3409/04 $20.00 © 2004 IEEE

2. If LR
BC

≥ 0,
{

lR
AB

= uC
AC

− uR
BC

uR
AB

= lC
AC

− lR
BC

.
(7)

Triangular Wait.

w
ABC

≥ uC

AC − uR

BC , wherew
ABC

is the wait on AB.
(8)

Regression Wait (w1 → w2).

1. Through a requirement link with upper bounduR,

w2 ≥ w1 − uR. (9)

2. Through a contingent link with bounds[lC , uC], as-
suming[L, U] to be the bounds on the link wherew1

applies:

w2 ≥

{

w1 − lC if L ≥ 0

w1 − uC if U < 0.
(10)

Otherwise,














α ≥ 0
α ≥ w1

α × (w2 − w1 + lC) ≥ 0
w2 ≥ w1 − uC ,

(11)

whereα is an auxiliary variable. An additional nonlin-
ear partα×(α−w1) is added to the objective function
to ensure thatα is either 0 orw1.

Wait-Bound Constraints.

1. Wait-bound on contingent link, givenlC to be the
lower bound of contingent link where the wait applies:

w = lC . (12)

2. Upper bound of wait on a requirement link where the
wait applies:

w ≤ uR. (13)

3. Lower bound of wait on a requirement link where the
wait applies.[LR, UR] are the loose bounds of the re-
quirement link, andLC is the lower bound of the con-
tingent link causing the wait:

w = lR if UR ≤ LC . (14)

Otherwise,














(lC − w)(lR − w) ≥ 0
β ≥ 0
β ≥ w − lC

β(lR − lC) ≥ 0,

(15)

where β is an auxiliary variables. A nonlinear part
β(β − (w − lC)) is added to the objective function
to ensure thatβ is either 0 orw − lC .

APPENDIX B: PROOF OF LEMMA 1 A triangle must
be in the follow or the precede case when it is not in the
unordered case. Removing the condition for the unordered
case will cause additional triangular-wait constraints in the
follow and the precede cases to be formulated. Assuming
that the shortest-path and precede constraints are satisfied,
we show that those additional triangular-wait constraints in
the follow and the precede cases are redundant. The proof
is constituted by the following two propositions.

a) The triangular waits are redundant in the follow and
precede cases with respect to local dynamic controllability.
Referring to Figure 5, consider triangular waitw

ABC
de-

fined in (1). It is sufficient to show that this triangular wait
does not change the solution region defined by wait-bound
constraints. We first prove that the statement is true in the
follow case, and the proof for the precede case is much sim-
pler. In each case, we need to consider two different situa-
tions: AB is a requirement link and AB is a contingent link.

1. The triangle is in the follow case (i.e., uR
BC

< 0).
First, assume AB is a requirement link. From the shortest-
path constraints, we have:

w
ABC

= uC

AC − uR

BC ≤ uR

AB.

This proves that the upper bound of the wait-bound con-
straint in (13) is not affected by the additional triangular-
wait constraint. For the lower bound of the wait-bound con-
straint, since ABC is in the follow case, we haveUR

AB
>

LC
AC

(otherwise, ABC will be in the precede case), we need
to consider (15) instead of (14). BecauseuR

BC
< 0, we

have:
w

ABC
= uC

AC − uR

BC ≥ uC

AC ≥ lCAC .

Combining the shortest-path constraints:

w
ABC

= uC

AC − uR

BC ≥ lRAB, lCAC ≤ uR

BC + lRAB ≤ lRAB.

The above three inequalities prove that the lower bound of
the wait-bound constraint in (15) is not affected by the ad-
ditional triangular-wait constraint.

Second, assume AB is a contingent link. Since ABC is in
the follow case (with AC as the contingent link), ACB must
be in the precede case (with AB as the contingent link).
Using the precede constraintlR

AB
− (−uR

BC
) = uC

AC
, the

triangular-wait on AB is:

w
ABC

= uC

AC − uR

BC = lRAB.

Hence, the wait-bound constraint in (12) for AB is not af-
fected by the additional triangular-wait constraint.

2. The triangle is in the precede case (i.e.lR
BC

≥ 0).
From the constraints in the precede case, we havew

ABC
=

uC
AC

− uR
BC

= lR
AB

. Regardless of whether AB is a con-
tingent or a requirement link, all the wait-bound constraints
are satisfied.

Proceedings of the 16th IEEE International Conference on Tools with Artificial Intelligence (ICTAI 2004)
1082-3409/04 $20.00 © 2004 IEEE

CA

DB

[lR
DA

, uR
DA

]

[lR
BC

, uR
BC

]
wBCA

[lC
BA

, uC
BA

]

wBDA

[lR
BD

, uR
BD

]

[lR
DC

, uR
DC

]

[lR
CA

, uR
CA

]

Figure 6. Wait regression through requirement
link

b) The triangular wait is redundant in the follow and pre-
cede cases with respect to global dynamic controllability.
Since the wait value on a link is chosen to be the maxi-
mum of its triangular and regression waits, it is enough to
show that the regression of such a source triangular wait is
no larger than any target triangular wait.

Consider the waits in Figure 6. Here,w
BCA

, w
BDA

are
triangular waits in BCA and BDA, respectively, and BA is
the contingent link causing the wait:

w
BCA

= uC

BA − uR

CA, w
BDA

= uC

BA − uR

DA.

Let w
BCA

be the source triangular wait in the follow or pre-
cede case, andw

BDA
be an arbitrary target triangular wait.

Assuming the regression wait ofw
BCA

to be w
′

BDA
, we

show thatw
BDA

≥ w
′

BDA
. We consider two cases in which

DC is a requirement link and DC is a contingent link.
1. Assume DC to be a requirement link. The value of the

regression wait ofw
BCA

is:

w′
BDA

= w
BCA

− uR

DC = uC

BA − uR

CA − uR

DC .

Using the shortest-path constraints,uR
DA

≤ uR
CA

+ uR
DC

:

w
BDA

≥ uC

BA − uR

CA − uR

DC = w′
BDA

.

2. Assume DC to be a contingent link with C as the end
point. We assumew

BCA
≥ 0 (regression a negative wait

through a contingent link is the same as through a require-
ment link). Then,

w′
BDA

= w
BCA

− lRDC = uC

BA − uR

CA − lRDC .

First, assume that BCA is in the follow case (uR
CA

< 0),
which implies that DAC (with DC as contingent link) is
in the precede case. Using the precede constraints,uR

DA
=

lR
DC

− (−uR
CA

), we have:

w
BDA

= uC

BA − uR

DA = w′
BDA

.

Second, consider BCA to be in the precede case (lR
CA

> 0).
From the shortest-path constraint, we havelR

DA
≥ lR

CA
+

lR
DC

> 0. (Here we use the assumption that the lower bound
lR
DC

of contingent link DC is positive.) Hence, both BCA

and BDA are in the precede case. Combining the precede
constraints lead to:

w
BCA

= uC

BA−uR

CA = lRBC , w
BDA

= uC

BA−uR

DA = lRBD.

Using the shortest-path constraint,lR
BD

≥ lR
BC

− lR
DC

, the
regression ofw

BCA
is:

w
BDA

= lRBD ≥ lRBC − lRDC = w
BCA

− lRDC = w′
BDA

.

References

[1] B. Cherkassky, A. Goldberg, and T. Radzik. Shortest paths al-
gorithms: Theory and experimental evaluation.Mathematical
Programming, 73:129–174, 1996.

[2] R. Dechter, I. Meiri, and J. Pearl. Temporal constraint net-
works. Artificial Intelligence, 49:61–95, 1991.

[3] P. Morris and N. Muscettola. Execution of Temporal Plans
with Uncertainty. Proc. National Conf. on Artificial Intelli-
gence, 2000.

[4] P. Morris, N. Muscettola, and T. Vidal. Dynamic Control of
Plans with Temporal Uncertainty.Proc. Int’l Joint Conf. on
Artificial Intelligence, pages 494–499, 2001.

[5] N. Muscettola. Computing the Envelop for Stepwise-Constant
Resource Allocations. Proc. of 8th Int’l Conf. on Princi-
ples and Practice of Constraint Programming, pages 139–
154, 2002.

[6] T. Vidal. Controllability characterization and checking in
Contingent Temporal Constraint Networks.Proc. 7th Int’l
Conf. on Principles of Knowledge Representation and Rea-
soning, 2000.

[7] T. Vidal and M. Ghallab. Dealing with Uncertain Durations in
Temporal Constraint Networks dedicated to Planning.Proc.
European Conf. on Artificial Intelligence, 1996.

Proceedings of the 16th IEEE International Conference on Tools with Artificial Intelligence (ICTAI 2004)
1082-3409/04 $20.00 © 2004 IEEE

