
Hypergraph Partitioning for Exploiting Localities
in Nonlinear Constrained Optimization∗

Benjamin W. Wah and Soomin Lee
Department of Electrical and Computer Engineering

and the Coordinated Science Laboratory
University of Illinois, Urbana-Champaign

1308 West Main Street, Urbana, IL 61801, USA
URL: http://manip.crhc.uiuc.edu

Abstract

In this paper, we present a new hypergraph partitioning
algorithm that jointly optimizes the number of hyperedge
cuts and the number of shared vertices in nonlinear con-
strained optimization problems. By exploiting the localities
of constraints with respect to their variables, we propose
to partition the constraints into subproblems. We use a re-
laxed global search to solve the subproblems and resolve
those violated global constraints across the subproblems
by updating the corresponding penalties. As resolving vi-
olated global constraints is computationally expensive, we
propose to reduce the number of global constraints by in-
creasing the number of shared variables. This trade-off is
advantageous because the number of global constraints in
many benchmarks can be significantly reduced by having a
small number of variables shared across the subproblems.
Partitioning in this context can be achieved by partition-
ing the corresponding hypergraph. We improve hMETIS to
jointly optimize the number of hyperedge cuts and the num-
ber of shared vertices. Our experimental results demon-
strate improved solution quality with similar computational
overhead on some VLSI cell placement benchmarks.

1 Introduction

Many applications in engineering, temporal planning,
and VLSI design can be formulated as nonlinear program-
ming problems (NLP) or mixed-integer nonlinear program-
ming problems (MINLP). Such formulations have an ob-
jective function to be optimized and one or more constraint
functions to be satisfied:

(P ) minx,y f(x, y), x ∈ Rn, y ∈ Zp

subject to h(x, y) = 0 and g(x, y) ≤ 0,
(1)
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Figure 1. TRIMLON12 with strong localities.

where f and h = (h1, . . . , hm)T and g = (g1, . . . , gr)T are
nonlinear functions. Our goal is to find an assignment of x
and y that does not violate the constraints h and g and that
minimizes the given objective function f(x, y).

In the application problems studied in this research, we
do not assume the continuity or differentiability of the ob-
jective and constraint functions. In fact, these functions do
not have to be in closed form. The objective can be repre-
sented as a single function to be optimized or as multiple
functions with trade-offs. The constraints may be hard and
must be satisfied, or be soft and are optional.

We have observed that the constraints in many con-
strained optimization benchmarks have highly regular struc-
tures with respect to their variables. These localities hap-
pens because constraints are often constructed from related
variables and are not generated randomly. For example, in a
planning problem, constraints are used to model conditions
with variables in close proximity in time. Such localities al-
low constraints to be clustered into multiple disjoint groups.

Figure 1 shows the constraint locality in TRIM-
LON12 [8] (with 168 mixed-integer variables and 72 con-
straints). The goal of the application modeled is to produce
a set of paper-roll products from raw paper rolls by assign-
ing some continuous and discrete variables in order to mini-
mize a function of the trim loss and the production cost. Be-



cause the application involves 12 customers, the constraints
can be clustered into 12 groups, each with 5 constraints.
There are 60 local constraints (ID 0 to 59) that involve only
local variables and 12 global constraints (ID 60 to 71) that
involve variables from multiple groups.

A lot of existing work on exploiting constraint localities
has been done in the constraint-satisfaction-problem (CSP)
community. (See for example the book by Dechter [4].)
This belongs to a class of inferencing techniques that refine
a constraint graph into a hypergraph or a hypertree, and that
solve the problem using efficient constraint propagation and
resolution strategies. Constraint resolution in CSP is based
on the assumption that a constraint is defined either on dis-
crete points or on a continuous interval when the constraint
is linear. As a result, whether a constraint is satisfied can be
verified by either enumeration or by more elegant constraint
propagation and reasoning [4]. For example, the constraint
x ≤ y, where x ∈ {2, 3, 4} and y ∈ {1, 2}, can be verified
on each element in the Cartesian product of x and y.

In contrast, constraint localities are not effectively ex-
ploited in NLPs and MINLPs. The reason is that there are
no effective techniques to verify whether a nonlinear con-
straint is satisfied in a continuous or mixed-integer domain,
even for a single constraint. For example, there is no closed-
form solution to find the zeroes of a polynomial equation in
the continuous domain. General techniques are based on
conditioning the instantiation of a subset of variables into
a disjunction (∨) of subproblems and on solving the sub-
problems one at a time until a solution is found. In cases
when the domain is continuous and the functions are differ-
entiable and satisfy some regularity conditions, the solution
can be expressed as solving a system of nonlinear equations.
More efficient procedures have been derived when the func-
tions are convex [3]. Due to a lack of methods for resolv-
ing fine-grain nonlinear constraints, techniques in CSP for
decomposing a constraint graph into hypergraphs or hyper-
trees do not lead to tractable solution procedures.

In our previous work [15], we have developed an effec-
tive approach for exploiting the localities of constraints in
NLPs and MINLPs. Similar to that in CSPs, the constraints
in an NLP orMINLP can be represented by a dual constraint
hypergraph [4], where a node denotes a constraint and a hy-
peredge across multiple nodes denotes the variables shared
by the corresponding constraints. Because of the difficulties
in resolving individual nonlinear constraints, we only par-
tition the constraints into clusters that are organized in two
levels and develop algorithms for resolving each cluster of
constraint as a whole. Each of the N lower-level clusters
of constraints represents a subproblem of local constraints
with local variables, and the subproblems are related by a
cluster of global constraints that contain variables across
multiple subproblems. Figure 2(a) shows an example of
five constraints and their scope of variables, and Figure 2(b)
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Figure 2. Illustration of constraint partitioning

shows the corresponding dual constraint graph.
Based on our theory of extended saddle points [15], we

have developed a relaxed global search (RGS) that solves
each subproblem independently, while treating the top-level
global constraints as soft constraints. Because we do not
expect all the global constraints to be satisfied in each sub-
problem, we model their satisfaction as a penalty term in
the objective function of a subproblem and minimize the
weighted sum of those violated global constraints as well as
the objective of the subproblem. Hence, RGS uses a modi-
fied objective function when solving Subproblem t:

min
x(t),y(t)

f(x, y) + γT |H(x, y)| + ηT max(0, G(x, y))

subject to h(t)(x(t), y(t)) = 0 and g(t)(x(t), y(t)) ≤ 0 (2)

where t = 1, . . . , N . Here, h(t) and g(t) are, respec-
tively, the local equality and inequality constraint functions;
{x(t), y(t)} is a set of local variables involved in the local
constraints; and H(x, y) and G(x, y) are, respectively, the
equality and inequality global constraint functions.

With fixed γ and η, RGS solves each subproblem using
an existing solver. After solving a subproblem, it increases
γ and η on those violated constraints and repeat the pro-
cess until either a feasible local minimum of (2) is found
or when γ and η exceed their maximum bounds. Note that
each penalty in γ and η is related to the duration that the
corresponding constraint is violated. When a global con-
straint is not satisfied for a long time, its penalty becomes
larger, and the solver pays more attention in satisfying it.

Our approach improves over a naive approach that solves



each subproblem independently without any consideration
on satisfying the global constraints. Without the global
constraints, the solution found by solving the subproblems
alone will likely not satisfy the global constraints.

Note that RGS relies on an existing solver to resolve
the nonlinear constraints in (2). By coordinating the so-
lution process of the subproblems through the penalty term
of the global constraints, RGS can resolve the global con-
straints very quickly, usually in a few iterations of solving
the subproblems. Consequently, the complexity of RGS is
significantly lower than that of existing NLP and MINLP
solvers because each subproblem involves a small fraction
of the constraints and is a significant relaxation of the orig-
inal problem in complexity. It is possible to further reduce
the complexity by decomposing the constraint hypergraph
into more levels, although there will be more overhead in
backtracking the resolution of the global constraints.

In RGS, the complexity for solving a problem includes
the overhead for solving all the subproblems and that for
resolving the violated global constraints. In some cases,
when the number of global constraints is large, the overhead
for consistently resolving all the global constraints across
the subproblems can be computationally expensive [15, 16].

In this paper, we propose to use shared variables in the
constraint partitioning process. We allow some variables
to be shared across subproblems, rather than partitioning
all the variables into disjoint sets. Based on the variables
in a set, we group all those constraints that are related to
the variables into a subproblem. As a result, constraints
are disjoint across the subproblems, but variables may be
shared. That is, from (2),

Disjoint constraints: h(1) ∧ h(2) ∧ . . . ∧ h(N) = h

g(1) ∧ g(2) ∧ . . . ∧ g(N) = g

Shared variables:
⋃N

t=1 x(t) = x.

Our approach reduces the number of global constraints,
since shared variables are more likely to cover some con-
straints that may otherwise be global. Figures 2(c) and 2(d)
illustrate a smaller number of global constraints when x3 is
shared between the two subproblems.

Shared variables are not handled as global constraints
in RGS. In maintaining the consistency of shared variables
across subproblems, we propagate their values from those
assigned in one subproblem to the next. The implicit global
constraint corresponding to a shared variable does not carry
any penalty and in that sense are weaker in arriving at con-
sistent assignments. The aggregate complexity in this case
is the total overhead for solving the subproblems, resolv-
ing the global constraints, and propagating the values of the
shared variables. Although shared variables may incur new
overheads in their propagation, they lead to good trade-offs
in some benchmarks because a small increase in the num-
ber of shared variables may result in a significant decrease

in the number of global constraints.
Our goal in this paper is to study the trade-offs be-

tween the number of shared variables and the number of
global constraints. We achieve this goal by developing
an efficient hypergraph partitioning algorithm that allows
shared variables, based on the hypergraphpartitioning pack-
age hMETIS [10]. We demonstrate the trade-offs on some
NLP and MINLP benchmarks and illustrate the approach
on solving the VLSI cell placement problem. By allowing
shared cells in the cell placement problem, our results show
reduced total wire lengths and similar CPU times when
compared to the results of an existing placer Capo [1].

2 Hypergraph Partitioning

In this section, we survey some existing hypergraph par-
titioning algorithms for minimizing hyperedge cuts without
shared variables. Based on a primal constraint graph, we
associate the variables and constraints of an optimization
problem to the vertices and hyperedges of a hypergraph,
where each hyperedge connects a subset of the vertices.
We further summarize the shortcomings of these algorithms
with respect to our research. Last, we present two applica-
tions that are solvable by our approach.

2.1 Previous Work

Hypergraph partitioning entails the process of finding
disjoint partitions of the vertices or hyperedges in order to
minimize some cost function. The problem of minimizing
the number of hyperedges that span across multiple parti-
tions is called the mincut problem. The decision problem
MINCUT HG [6] is defined as follows.

Definition 1. MINCUT HG.
Input: Hypergraph G = (V, E), weight functions w : V →
Z+ (a set of positive integers), � : E → Z+, and J ∈ Z+

and K ∈ Z+.
Property: There is a partition of V into disjoint sub-
sets V1, V2, . . . , Vm such that

∑
e∈E′ �(e) ≤ J , where

E′ is a subset of the hyperedges whose elements belong
to two or more partitions, under the balance constraints∑

v∈Vi
w(v) ≤ K for 1 ≤ i ≤ m.

The Kernighan and Lin (KL) method [12] and its im-
provement by Fiduccia and Mattheyses [5] iteratively im-
prove in a pass a given partition by moving every vertex
to its complementary partition exactly once. After all the
moves have been made, the best partition encountered dur-
ing the pass is taken as the output of the pass, and another
pass begins with the best known partition. This class of
methods are efficient and consistently produce good results.
However, they needs dummy vertices for handling unbal-
anced problems, since they only produce exact bisections.



(a) lukvle5 without and with shared variables

(b) ibm10 without and with shared variables

Figure 3. The localized constraint structures
in two constrained optimization benchmarks.

Hypergraph partitioning can be done by hMETIS [10], a
software package that implements a randomized algorithm
to partition a hypergraphG = (V, E) into k subsets in such
a way that bounds the number of vertices in each subset
and that optimizes a partitioning objective. The algorithm
can be applied to minimize either the number of shared vari-
ables without any global constraints or the number of global
constraints without any shared variables. However, the al-
gorithm cannot jointly optimize both objectives.

hMETIS [10] is an example implementation of this itera-
tive improvement method. It produces M coarser graphs
Gi by collapsing vertices and hyperedges of the original
graph G0, and by applying KL on the coarsest hypergraph
Gk = (VM , EM ). It then refines the partition of each hyper-
graph Gi at level i by iteratively swapping vertices, using a
similar criteria as in the partitioning process.

Simulated annealing (SA) [13] and tabu search (TS) [7]
are well-known iterative heuristic algorithms based on ran-
dom moves. SA randomly selects a vertex to be moved
to another partition and always accepts such a move if it
results in smaller hyperedge cuts and does not violate any
given balance constraints. It also accepts worse moves with
a probability that depends on the deterioration of the cost
function and a control parameter called temperature. TS
further avoids cycles in searches by taking advantage of the
search history. Since SA and TS converge asymptotically,
they may be able to achieve a better solution quality at the
expense of an impractical amount of run time.

Spectral algorithms [2] find eigenvalues of the Laplacian
matrix of the connectivity graph and derive a partitioning
from the coefficients of an eigenvalue by comparing them to
the median and by using constraints on their inputs. These
algorithms are limited because they cannot handle fixed ver-

tices well. As a result, they are not general for many appli-
cations, including VLSI placement and routing.

Network flow-based partitioning relies on the max-flow
min-cut theorem and other efficient algorithms for identify-
ing optimally small cuts in graphs [18]. The work by Hur
and Lillis [9] applies similar techniques to VLSI placement
using an incremental-flow solver. These polynomial-time
algorithms do not typically perform approximation and can
handle hyperedges using an accurate conversion to graphs.
However, they cannot handle balance constraints, which re-
sults in expensive trial-and-error and slow run time.

Remarks. Existing algorithms can minimize either the
number of shared variables without any global constraints
or the number of global constraints without any shared vari-
ables, but not both jointly. To this end, we enhance hMETIS
and study the trade-offs between the two objectives. By al-
lowing shared variables, it is possible to significantly reduce
the hyperedge cuts when compared to the original hMETIS.

2.2 Applications in Constraint Partitioning

We focus on benchmarks from two domains: NLP and
VLSI design. These applications are very different in
terms of their objective and constraint functions. Although
domain-specific partitioning and resolution algorithms may
work better for some of these benchmarks, our goal is to de-
velop a general approach that is applicable without domain-
specific tuning.

Nonlinear programming (NLP). The problem defined
in (1) has ample applications in production management,
optimal control and engineering designs. As is illustrated
in Figure 1, NLP problems in real-world applications have
useful localized constraint structures.

Figure 3(a) illustrates a strong constraint locality in the
lukvle5 NLP. Given 250,000 variables and 249,996 con-
straints, we need to find an assignment to the variables that
optimizes the objective and that satisfies all the constraints.
We can partition the constraints into 8 groups, resulting in
either 31,241 global constraints without shared variables, or
10,464 global constraints with 2,063 shared variables.

VLSI placement and routing. Logic circuits are com-
posed of gates (or standard cells) that are connected by
metal wires. Using a common wire, the same electrical sig-
nal propagates through those connected components. Such
a connection is called a net and can be represented by a hy-
peredge. The hypergraph corresponding to a logic circuit
directly maps gates to vertices and nets to hyperedges.

In general, VLSI circuits have useful localized struc-
tures. A circuit can be grouped into sub-circuits accord-
ing to their functionality, with only a few interconnections
(such as clock and power lines) among the sub-circuits. We
can produce partitions of a circuit with small inter-segment



communications by solving the corresponding hypergraph
partitioning problem. In a top-down placement of large
VLSI circuits, a region of a chip is divided geometrically,
and each partitioned sub-circuit is placed in a subregion.

A VLSI placement and routing problem is as follows.

Definition 2. VLSI Placement.
Given hypergraph G = (V, E), where V = {v1, . . . ,
vN , vN+1, . . . , vN+P } is the set of cells, E = {e1, . . . , em}
is the set of nets (hyperedges), ei ⊂ V , and {vN+1,
. . . , vN+P } is the set of terminals with fixed locations
throughout the placement process, find (xj , yj) of each cell
vj on the die without overlaps in order to minimize the sum
of the wirelengths of all the nets

∑m
i=1 WL(ei).

Figure 3(b) illustrates a strong locality in ibm10 (with
69,429 cells, 744 I/O terminals, 75,196 nets, and 297,567
pins) from the ISPD04 standard-cell benchmarks [14].
Given the I/O terminals on the perimeter, the problem en-
tails the minimization of the total wirelength (the sum of
wirelengths in each net) without overlap between cells. In
general, a circuit can be grouped into sub-circuits accord-
ing to their functionality, with only a few interconnections
among them. In this example, we can partition the circuit
into 8 groups, resulting in either 4,409 global nets without
shared cells, or 4,054 global nets with 200 shared cells.

Note that the our hypergraph model does not model the
hard overlap constraints of cells, but instead model each
hyperedge as a net of connected cells. The reason is that
the overlap constraints is enforced in the detailed placement
phase of the placer. At the global level, it is more important
to minimize the total wire length of the nets, while allowing
cells that are shared across different partitions.

3 Proposed Approach

In this section, we formally define a new hypergraph
partitioning problem with shared vertices and analyze its
complexity. We also propose a new hypergraph partitioning
algorithm that minimizes both hyperedge cuts and shared
variables. Last, we present a VLSI design application that
can be efficiently solved by our approach.

3.1 Problem Formulation and Complexity

As is discussed in Section 1, many real-world applica-
tions have highly localized constraint structures, and a par-
titioning of the constraints by their localities leads to sub-
problems with tightly coupled local constraints. Although
the resulting subproblems are highly independent, there are
still global constraints that span across the subproblems.
These global constraints corresponds to hyperedge cuts and
can be minimized by solving MINCUT HG on the corre-
sponding hypergraphs.

The localized structure and the number of global con-
straints are problem dependent, and there is a limit on how
far they can be reduced by hypergraph partitioning alone.
However, if we allow some variables to be shared among
the partitions, then some global constraints will be covered
by the shared local variables and become local constraints.
We define this problem, MINCUT HG SHARE, as follows.

Definition 3. MINCUT HG SHARE.
Input: Hypergraph G = (V, E), weight functions w : V →
Z+, � : E → Z+, and J ∈ Z+ and K ∈ Z+.
Property: There is a partition of V into subsets
V1, V2, . . . , Vm with possibly Vi ∩ Vj 
= ∅ for i 
= j such
that

∑
e∈E′′ �(e) ≤ J , where E′′ is a subset of hyper-

edges whose elements are strictly in two or more partitions,
under the the balance constraints

∑
v∈Vi

w(v) ≤ K for
1 ≤ i ≤ m.

Based on the NP-completeness of MINCUT HG [6], we
prove the NP-completeness of MINCUT HG SHARE.

Theorem 1. MINCUT HG SHARE is NP-complete.

Proof. We prove the NP-completeness by reducing MIN-
CUT HG to MINCUT HG SHARE.

It is obvious that MINCUT HG SHARE is in the class of
NP: a nondeterministic algorithm can guess some subset of
vertices with overlaps and check in polynomial time that the
conditions in Definition 1 are met.

For MINCUT HG, we are given a hypergraph G =
(V, E) with weight functions w : V → Z+ and � : E →
Z+, balance constraint K , and constraint in the cut J . The
MINCUT HG SHARE with an input G̃ = (Ṽ , Ẽ), weight
functions w̃ : Ṽ → Z+, �̃ : Ẽ → Z+, balance constraint K̃
and constraint in the cut J̃ can be reduced as follows:

Ṽi = Vi ∪
⎧⎨
⎩

m⋃
j=1

V ∗
i,j

⎫⎬
⎭ i = 1, . . . , m, (3)

Ẽ = E, (4)

where V ∗
i,j ⊆ Vj , j = 1, . . . , m. Also,

K̃ =
∑

v∈Ṽi

w̃(v) =
∑
v∈Vi

w(v) +
∑

v∈V ∗
i,j ,

i�=j

w(v)

≤ K + (m − 1)K = mK (5)

J̃ =
∑

e∈E′′
�̃(e)

=
∑
e∈E′

�(e) +
∑

u∈V ∗
i,j ,i�=j,

(u,u[k])/∈E′

�((u, u[k])) ≤ J, (6)

where u[k] are the adjacent vertices of u. This conversion
is straightforward and can be done in polynomial time.



1. procedure HG Partitioning Share
2. for i = 0 to M − 1
5. coarsening(Gi);
2. end for
3. partitioning(GM );
2. for i = M to 1
5. refinement(Gi);
6. create shared vertices(Gi);
7. rollback(Gi);
8. propagation(Gi);
2. end for
10.end procedure

Figure 4. New HG partitioning algorithm.

3.2 Overall Procedure

In this section, we develop an algorithm for solving
MINCUT HG SHARE and study the trade-offs between the
number of global constraints and the number of shared vari-
ables. By allowing shared variables, we can reduce the
computational overhead for resolving the global constraints,
while exploiting the inherent localized structures in con-
strained optimization problems.

Figure 4 presents our hypergraph partitioning procedure.
The coarsening, partitioning and refinement phases are the
same as those in the original multilevel approaches [11].
That is, in the coarsening phase, the original hypergraph
G0 = (V0, E0) is transformed into a sequence of smaller
graphs G1, G2, . . . , GM such that |V0| > |V1| > |V2| >
· · · > |VM |. In the partitioning phase, a 2-way partition-
ing on the smallest graph GM is computed in order to par-
tition VM into two parts, each containing half of the ver-
tices of G0. In the refinement phase, the partition of GM is
projected back to G0 by going through intermediate graphs
GM−1, GM−2, . . . , G1, G0.

HG Partitioning Share is implemented after the re-
finement phase. We first assign some vertices to be shared
in a greedy fashion such that they maximally reduce the hy-
peredge cuts of the current partition. We define the external
degree of vertex v as the number of hyperedges that con-
tain v in one partition and its neighbor in another. This
represents the actual reduction in the hyperedge cuts if v
is shared. We also define the internal degree of v as the
number of hyperedges that contain v and its neighbor in the
same partition (Figure 5(a)). We put all the vertices in a pri-
ority queue according to their external degrees and retrieve
one vertex at a time in order to make both partitions have
that vertex in common.

Next, in the rollback computation, we restore some un-
necessary shared vertices propagated from a lower-level
graph to their original partitions. As is illustrated in Fig-
ure 5(b), u is a shared vertex from the lower-level graph
Gi+1; vu

1 and vu
2 are shared vertices in the current-level

ed = 3
(External
  degree)

id = 1

 degree)
(Internal

Vi

(a) Internal and external degrees

u

V

V

V

u

u

1

2

3

(b) Roll back

Figure 5. Illustration of the algorithm.

graph Gi propagated from Gi+1; and v3 is a shared ver-
tex that is newly created in this level. Since vu

1 needs not be
shared any more, namely, it has a zero external degree, we
restore it to its original partition.

Third, in the propagation phase, we project the shared
vertices created in the current-level graph Gi to the upper-
level graph Gi−1.

3.3 Application: VLSI Placement

We illustrate the application of HG Partitioning Share
in solving the VLSI cell-placement problem.

We first map the given cells and nets into vertices and
hyperedges. The hypergraph created only describes the log-
ical connection of nets and does not convey any information
about their layout and fixed I/O terminal interconnections.
Next, we assign the fixed terminals to partitions according
to their locations before applying our algorithm.

One of the most important considerations in a
partitioning-based placement approach is to coordinate the
result of each subproblem in such a way that its optimiza-
tion is consistent with the optimization of the original prob-
lem. Since hypergraph partitioning leads to some hyper-
edge cuts (global nets) that have to be considered in multi-
ple partitions, the optimization of these global nets requires
an additional overhead in solving each subproblem. Our hy-
pergraph partitioning algorithm minimizes this overhead by
controlling the number of shared cells and the correspond-
ing number of global nets.

Figure 6 presents our proposed partition-and-place pro-
cedure. It first partitions a subregion S (a whole die in the
first iteration) into S1 and S2 by choosing a horizontal or
vertical cutline with respect to the constraint on aspect ratio.
Given the partitioned subproblems Pi, i = 1, 2, it finds the
placement of Pi for subregion Si using an existing placer
until a stopping condition is met.

After partitioning, we have some shared cells Cs that be-
long to both partitions and private cells C1 and C2 that be-
long to, respectively, partitions 1 and 2. To allow Pi to be
solved by an existing placer, we need an additional place-
ment step Ps for shared cells. We first place Cs on a given
subregion S and divide Cs into Cs1 and Cs2 according to
their locations and the cutline. In solving P1 (resp., P2), we



1. procedure partition and place(S)
2. call partition(); // partition cells

and choose a cutline of subregion S //
3. repeat // outer loop //
4. for i = 1 to 2
5. place(Pi,Si); // apply an existing placer //
6. end for
7. place(Ps,S);
8. until stopping condition is satisfied
9. end procedure

Figure 6. The partition-and-place framework.

place C1 and Cs1 (resp., C2 and Cs2) in S1 (resp., S2). In
this step, we calculate both the wirelength of the local nets
and that of the global nets.

4 Experimental Results

We have performed extensive experiments on our pro-
posed algorithm using several NLP and VLSI placement
benchmarks. Figure 7 shows the trade-offs between the
number of global constraints and that of shared variables.
We observe that all the benchmarks have similar and con-
sistent trade-offs. For instance, the NLP benchmark lukve5
shows 70% reduction in the number of global constraints
with only 5% increase in the number of shared variables.

To illustrate the effects of shared variables and global
constraints when solving a benchmark problem, we have
applied the existing placer Capo [1] for finding the wire-
lengths and placements of the partitioned subproblems for
those benchmarks in the ISPD04 [14] and ISPD06 [17]
standard-cell suites. Our experiments were performed on an
AMD 2-GHz computer running RedHat Linux 3.4.6 with 2
GB of main memory.

Table 1 summarizes our results by comparing the wire-
lengths of the partitions without shared variables (Ours
w/o Share) and those of the partitions with shared vari-
ables (Ours w/ Share), when normalized with respect to
the wirelengths found by the original Capo (run in the de-
fault mode). It also shows the normalized run times for
finding those partitions. The results show, for a range of
small and large benchmarks, that our placement algorithm
with shared variables has about 8%-9% better average wire-
lengths when compared to, respectively, our algorithmwith-
out shared variables and Capo, with only 6% increase in
run time. They demonstrate that incorporating shared vari-
ables in hypergraph partitioning can improve the solutions
in partitioning-based constrained optimization.
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